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ABSTRACT

Artificial neural networks are nonlinear mappIng structures are

shown to be universal and highly flexible function approximators for the

cases, especially where the underlying data relationships are unknown.

Feed-forward artificial neural networks that are trained with the back­

propagation algorithm are a useful tool for modeling environmental

systems. Back-propagation networks employ a modeling philosophy that

unknown model parameters (i.e. connection weights) are optimized in

order to obtain the best match between a historical set of model inputs

and corresponding outputs.

In this study, a systematic approach to the development of the

artificial neural networks based forecasting model is presented. S02, and

dust values are predicted with different topologies, inputs and transfer

functions. Temperature and wind speed values are used as input

parameters for the models. The back-propagation learning algorithm is

used to train the networks. R 2 (correlation coefficient), and daily average

errors are employed to investigate the accuracy of the networks.

MATLAB 6 neural network toolbox is used for this study. The study

results indicate that the neural networks are able to make accurate

predictions even with the limited number of parameters. Results also

show that increasing the topology of the network and number of the

inputs, increases the accuracy of the network. Best results for the S02

forecasting are obtained with the network with two hidden layers,

hyperbolic tangent function as transfer function and three input variables

(R2 was found as 0,94 and daily average error was found as 3,6 j..lg/m3).

The most accurate results for the dust forecasting are also obtained with

the network with two hidden layer, hyperbolic tangent function as

transfer function and three input variables (R2 was found as 0,92 and

daily average error was found as 3,64 j..lg/m3).
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S02 and dust predictions using their last seven days values as an

input are also studied, and R2 is calculated as 0,94 and daily average

error is calculated as 4,03 Jlg/m3 for S02 prediction and R2 is calculated

as 0,93 and daily average error is calculated as 4,32 Jlg/m3 for dust

prediction and these results show that the neural network can make

accurate predictions.
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Yapay sinir aglan ozellikle veriler arasmdaki ili~kilerin tamamlyla

bilinemedigi durumlarda her ttirlti verilerle uygulanabilme

ozelliklerinden dolaYI yok kullam~lt olan dogrusal olmayan modelleme

sistemleridir. Geri yaytlma algoritmasl ile egitilen ileri beslemeli yapay

sinir aglan, yevresel sistemlerin modellenmesinde sik kullanI1an ve iyi

sonuylar verebilen bir yontemdir. Geriye yayllma algoritmasl,

bilinrneyen model degi~kenlerinin (baglantl agIrltklan gibi), sistem

girdileriyle ylktI1an arasmdaki en iyi uyumu saglamak tizere ayarlanmasl

prensibinden hareketle geli~tirilmi~tir.

Bu yaII~ma, yapay smH aglanmn kullanI1masl ile S02 ve toz

degerlerinin farklt ag topoloj ileri, degi~ik saYlda girdi setleri ve farklt

tasvir fonksiyonlannm kullamimasl ile ongortilmesi tizerinedir. Gtinltik

slcakhk ve rtizgar hlZI degerleri de modellerde girdi olarak

kullaOllml~tIr. Yapay Slmr aglannm egitilmesinde geri yayllma

algoritmasl kullamlml~tlr. Ongorulerin dogruluklanmn incelenmesi

amaclyla R2 (korelasyon katsaYIsI) ve ortalama gtinluk hata degerleri

kullaOllml~tlr. <;aII~madan elde edilen sonuylara gore, yapay sinir aglan

k1SltlI verilerin kullanI1masl durumunda bile ba~anlI ongoruler

yapabilmektedir. Ag topolojilerinin geli~tirilmesi ve girdi sayI1anmn

arttlnlmasl ile ongortilerin kesinliklerinin de arttIgl gozlenmi~tir. S02

ongorustine yonelik yalt~malarda en iyi sonuylar iki gizli katmamn

bulundugu aglarda, hiperbolik tanjant fonksiyonunun tasvir fonksiyonu

olarak seyildigi ve toz, slcakltk ve rtizgar hlZI degerlerinin girdi olarak

kullamldigi sistemde elde edilmi~tir (bu yalt~mamn sonuylannda R2 0,94

ve ortalama gunltik hata ise 3,6 jlg/m3 olarak bulunmu~tur). Toz

ongorusune ait en iyi sonuylar da iki gizli katmanh aglarda, tasvir

fonksiyonu olarak hiperbolik tanjant fonksiyonunun kullamldigi ve S02,

slcakIIk ve rtizgar hlZI degerlerinin girdi olarak kullamidigi sistemde

elde edilmi~tir (bu yaII~mamn sonuylarmda R 2 0,92 ve ortalama gtinl uk

hata ise 3,64 jlg/m3 olarak bulunmu~tur).
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S02 ve toz degerierinin ongorilsiine yonelik bir diger yalI~mada ise

ong6riisii yapl1acak degi~kenlerin son yedi gilnlilk degerieri girdi olarak

kulianIlml~ ve sekizinci gilne ait degerin ongOriilmesine yalI~I1ml~tlf.

S02 degerierinin ongOrilsil iyin R2 0,94 ve ortalama giinlilk hata ise 4,03

~g/m3 olarak bulunmu~tur. Toz degerierinin ongoril yalI~masInda ise R2

0,93 ve ortalama giinliik hata ise 4,32 ~g/m3 olarak hesaplanml~tlr.
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Chapter 1

INTRODUCTION

Urban air pollution has emerged as the most acute problem in recent

years because of its detrimental effects on health and living conditions.

To prevent any further decline in air quality, scientific planning of

analytical methods and pollution control IS required. Within this

framework it is necessary to analyze and specify all poll ution sources

and their contribution to air quality, to study the various factors which

cause the pollution phenomenon, and to develop tools for reducing

pollution by introducing alternatives to existing practices.

In most of the studies conducted on atmospheric dispersion of

pollutants, wide-ranging prediction techniques, including Gaussian

models and numerical models are generally used. The primary inputs to

dispersion models incl ude emission inventory, meteorological data and

receptor locations. The major output from these models is the predicted

ground-level concentration at speci fied receptor locations. The models

are mainly based on the mathematical formulation of the physics and

chemistry of the atmosphere, which govern the dispersion of poll utants.

Mathematical models are based on a fundamental mathematical

description of atmospheric processes in which the effects are generated

by causes (Zannetti 1983, 1994). Such models aim to resolve the

underlying chemical and physical equations that control pollutant

concentrations and therefore reqUIre detailed emlSSlOn data and

meteorological conditions for the region of interest. There are generally

severe limitations in accuracy of the data. In addition, some input data

are not easily acquired by environmental protection agencies or local

industries. This means that if these inputs are unknown, then the

application of the mathematical models is problematic. Therefore, In

such cases, it is much more practical to rely on statistical models.
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Statistical models are based on semi-empi rical statistical relations

among available data and measurements. They do not necessarily reveal

any relation between cause and effect. They attempt to determine the

underlying relationship between sets of input data and targets. Examples

of statistical models are correlation analysis (Abdul-Wahab et aI., 1996)

and time series analysis (Hsu, 1992). However, the complex and

sometimes non-linear relationships of multiple variables can make

statistical models awkward and compl icated (Comrie, 1997). Therefore,

it is expected that they will underperform when used to model the

relationship between environmental and the other variables that are

extremely non-linear.

Artificial neural networks provide an attractive alternative tool for

both forecasting researchers and practitioners. Several distinguishing

features of artificial neural networks make them val uable and attractive

for a forecasting task. As opposed to the traditional model-based

methods, artificial neural networks are data-driven self-adaptive methods

in that there are few a priori assumptions about the models for problems

under study. They learn from examples and capture subtle functional

relationships among the data even if the underlying relationships are

unknown or hard to describe. Thus artificial neural networks are well

suited for problems whose solutions require knowledge that is difficult

to specify but for which there are enough data or observations. This

modeling approach with the ability to learn from experience is very

useful for many practical problems since it is often easier to have data

than to have good theoretical guesses about the underlying laws

governing the systems from which data are generated.

The purpose of this research is to investigate the modeling of the

S02 and dust parameters with artificial neural networks for the city

center of izmir. For this purpose meteorological data (temperature and

wind speed) are selected as input. These data sets are divided into two

groups; training and testing set. The training set is used to train the

system and back-propagation algorithm is selected as a learning algorithm.

2



Testing set is presented to the system to produce the output which is

referred as predicted outputs and these outputs are compared with the

actual (desired) values.

In Chapter 2, fundamental principles of artificial neural networks

are described. Historical development of the neural networks and

learning rules are also given in this chapter.

In Chapter 3, back-propagation algorithm is given and mathematical

basis of the back-propagation algorithm is examined. Training procedure

is also described in this chapter.

In Chapter 4, artificial neural networks are studied as a forecasting

tool. Model development processes for forecasting and the forecasting

procedure are given in this chapter. Literature review of the forecasting

the environmental variables is also given in this chapter.

In Chapter 5, sulphur dioxide and dust parameters are explained;

their sources, health effects, and hazards on human beings and

environment are given. In this chapter, the training and testing sets

(which are used for modeling), and the modeling procedure are also

gIven.

In Chapter 6, experimental results of S02 and dust predictions are

given. According to the results, neural networks are able to make

acceptable and accurate predictions. These results are discussed in this

section.
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Chapter 2

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are one of the artificial intelligence

related technologies. The term "artificial intelligence", in its broadest

sense, encompasses a number of technologies that include, but is not

limited to, expert systems, neural networks, genetic algorithms, fuzzy

logic systems, cellular automata, chaotic systems, and anticipatory

systems. Interestingly, most of these technologies have their origins in

biological or behavioral phenomena related to human or animal.

Consequently many of these technologies are simple analogs of human

and/or animal systems.

In ] 956 the term "artificial intelligence" came into common use at a

conference at Dartmouth College, and it is defined as "Computer process

that attempts to emulate the human thought process which is associated

with activities that require the use of intelligence".

2.1. Historical Development of Neural Networks

It is possible to say that first studies of neural networks have been

started at the beginning of the 1940s. McCulloch and Pits (1943)

designed what are generally regarded as the first neural networks. These

researchers recognized that combining many simple neurons into neural

system was the source of increased computational power. The flow of

information through the net assumes a unit time step for a signal to

travel from one neuron to the next. This time delay allows the net to

model some physiological processes, such as the perception of hot and

cold.

At the and of 1940's Hebb who is a psychologist at McGill

University designed the first learning law for artificial neural networks.
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His premise was that if two neurons were active simultaneously, then the

strength of the connection between them should be increased.

Refinements were subsequently made to this rather general statement to

allow computer simulations (Rochester et aI., 1956).

Together with several other researchers Block (1962), Minsky and

Papert (1969), Rosenblatt (1958, 1959, 1962) introduced and developed a

large class of artificial neural networks called "perceptrons". The

perceptron learning rule uses an iterative weight adjustment that is more

powerful than the Hebb rule.

Widrow and Hoff (1960), developed a learning rule that is closely

related to the perceptron learning rule. The delta rule adjusts the weights

to reduce the difference between the net input to the output unit and the

desired output. This results in the smallest mean squared error. The

Widrow-Hoff learning rule for a single-layer network is a precursor of

the backpropagation rule for multi-layer networks.

During the 1970's the early work of Kohonen (1972), dealt with

associative memory neural networks. His more recent work (Kohonen,

1982) has been the development of self-organizing feature maps that use

a topological structure for the cluster units. These networks have been

applied to speech recognition (Kohonen et aI., 1987).

Two of the reasons for the quite years of the 1970's were the failure

of single-layer perceptrons to be able to solve such simple problems

(mappings) as the XOR function and the lack of a general method of

training a multi-layer net. A method for propagating information about

errors at the output units back to the hidden units had been discovered in

the previous decade (Werbos, 1974) but had not gained wide publicity.

This method discovered by Parker (1985) and by LeCun (1986) before it

became widely known. Parker's work came to attention of the Parallel

Distributed Processing Group led by psychologist David Rumelhart of

the University of the California and James McClelland of Carneigie­

Mellon University who refined and publicized it.
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A Nobel pflze wmner John Hopfield has developed a number of

neural networks based on fixed weights and adaptive activations

(Hopfield, 1982, 1984; Hopfield and Tank, 1985, 1986,1987). These

networks can serve as associative memory nets and can be used to solve

constraint satisfaction problems such as the "Traveling Salesman

Problem".

2.2. Fundamentals of Neural Networks

Artificial neural networks are computer programs that emulate

biological neural networks. In order to process vague, nOIsy, or

incomplete information, researchers are turning to biological neural

systems as a model for a new computing paradigm.

Artificial neural systems are unlike traditional programmmg

methods (Wasserman, 1993). Generally, traditional methods use

deductive reaSOnIng to apply known rules to situations to produce

outputs. Each new situation may reqUire that another rule be

implemented. The programs can become quite large and complicated in

an attempt to address all possible situations. Artificial neural systems,

however, automatically construct associations based upon the results of

known situations. For each new situation, the neural system

automatically adjusts itself and eventually generalizes these new

situations.

Neural networks are a form of artificial intel1 igence related

techniques. They are massively parallel systems that rely on dense

arrangements of interconnections and simple processors. Artificial neural

networks take their name from the networks of nerve cells in the brain

(Nelson et aI., 1994). They are motivated by the neural architecture and

operation of the brain. Although a great deal of biological detail is

eliminated in these computing models, the artificial neural networks

retain enough of the structure observed in the brain to provide insight

into how biological neural processing may work. ~~\'USU
\1~\R~U~St~\t~l J_,;_,

\ ~t~10,\liJ.
o \lffiUnluWO\\ L lIe 6
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2.2.1. Biological Basis of Neural Networks

The human brain is a very complex system capable of thinking,

remembering, and problem solving. The fundamental cell ular unit of the

brain's nervous system is a "neuron". It is a simple processing element

that receives and combines signals from other neurons through input

paths called "dendrites". If the combined input signal is strong enough,

it activates the neuron to produce an output signal along the axon that

connects to the dendrites of many other neurons. Figure 2.1 is a sketch

of a neuron showing the various components.

information flow

synapse

Cell

Body

Axon

Figure 2.1 A biological neuron and components (Soucek, 1989)

2.2.2. Artificial Neurons

An artificial neuron is a model whose components have direct

analogs to components of an actual neuron. Figure 2.2 shows the

schematic representation of an artificial neuron. The input signals are

represented by xo, x." , xn. These signals are continuous variables,

not the discrete electrical pulses that occur in the brain. Each of these

input is modified by weight (wo, wI , wn). These weights can be

either positive or negative, corresponding to acceleration or inhibition of
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the flow of electrical signals. This processIng element consist of two

parts (Tsoukalas and Uhrig, 1997). The first part simply aggregates

(sums) the weighted inputs resulting in a quantity I; the second part is

effectively a nonlinear filter, usually called the "activation function"

through which the combined signal flows.

n

Ij=LWijXi
i=l

Sum of weighted input

Activation Function

(2.1)

(2.2)

Artificial
Neuron

(SOMA)

(Axon)

Output
Path

Figure 2.2 Schematic representation of an artificial neuron

(Tsoukalas and Uhrig, 1997)

2.2.3. The Basic Components of Artificial Neurons

An artificial neuron (Figure 2.2) can also be called as a processing

ment, and the processing element handles several basic functions. A

processing element can evaluate the input signals, and after determining

h strength of the each input signal, it can compare the threshold level

ith the summed input. Finally it can determine the output according to

hi comparison.
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2.2.3.1. Inputs and Outputs

Just as there are many inputs to a biological neuron, there should be

many input signals to the processing element and all of them should

come simultaneously. Depending on the threshold level processIng

element could be activated and then it may produce or not produce an

output.

In addition, just as real neurons are affected by things other than

inputs, some networks provide a mechanism for other influences. This

extra input is called as a "bias term" or a "forcing term". (Lek and

Guegan, 1999).

2.2.3.2. Weighting Factors

Each input will be gIven a relative "weighting" (Figure 2.2) which

will affect the impact of that input. Weights are adaptive coefficients

within the network that determine the intensity of the input signal

(Nelson and Illingworth, 1994). The initial weight for a processing

element could be modified in response to various inputs and according to

the networks own rules for modification.

2.2.3.3. Transfer Functions

The relationship between inputs and outputs at any instant IS

specified by the transfer or the activation function. The sum of the

weighted inputs becomes the input to the transfer function, which

specifies the output from the particular processing element. A number of

transfer functions are commonly used. Typically they are non-linear and

Figure 2.3 reviews the transfer functions which are generally used in

neural network studies .

• Linear Function: The linear transfer function (Figure 2.3a) calculates

the neuron's output by simple equation (where a is a scalar) :

9



f(x) = a.x. (2.3)

This neuron can be trained to find a linear approximation to a nonlinear

function. A linear network cannot be made to perform a nonlinear

computation (Zurada, 1992).

• tep (Hard Limiter) Function: The hard limit transfer function

forces a neuron to output a ~ if its net input reaches a threshold,

otherwise it outputs a (Figure 2.3b). This allows a neuron to make a

decision or classification (Tsoukalas and Uhrig, 1997). It can say yes or

no. This kind of neuron is often trained with the perceptron learning

rule, and generally parameters are chosen as ~ = 1 and a = 0 or 1 in the

literature.

f(x)

x

f(x)

a.
Threshold
value

f(x)

a-) linear function b-) step (hard limiter function) c-) ram ping function

1....................... 1

-1..•.•...................

d-) sigmoid function

-1. .

e-) hyperbolic tangent function

igure 2.3 Sample Transfer Functions (Bose and Liang, 1996)
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• Ramping Function: For inputs less than -1 ramping function (Figure

2.3c) produces -1. For inputs in the range -1 to + I it simply returns to

the linear function. For inputs greater than +1 it produces +1, but this

function is not a continuous function at the intersection points

(Tsoukalas and Uhrig, 1997). This network can be tested with one or

more input vectors which are presented as initial conditions to the

network. After the initial conditions are given, the network produces an

output which is then fed back to become the input. This process is

repeated over and over until the output stabilizes.

• igmoid Function: The sigmoid transfer function (Figure 2.3d) takes

the input, which may have any value between plus and minus infinity,

and squashes the output into the range 0 to 1. This transfer function IS

commonly used in backpropagation networks, in part because it IS

differentiable (Nelson and Illingworth, 1994). The mathematical

e pression of the sigmoid function is:

I
f(x)~ --

l+e-x
(2.4)

• Hyperbolic Tangent Function: Alternatively, multi-layer networks

may use the hyperbolic tangent transfer function (Figure 2.3e).

Hyperbolic tangent functions output range is [-1, 1] and also its

derivative is continuous (LiMin Fu, 1994). The mathematical expression

of the hyperbolic tangent function is :

2

f(x) = 2 1l+e- x

2.2.3.4. Learning Functions

(2.5)

If a local memory is attached to the processmg element, the

processing element could restore the previous computations results and

modify the weights according to these results. The ability to change the

ights is called as "learning" (Engel, 1994).

11



2.3. Artificial Neural Networks

An artificial neural network can be defined as "a data processlllg

system consisting of a large number of simple, and highly interconnected

processing elements in an architecture inspired by the structure of the

human brain" (Tsoukalas and Uhrig, 1997).

Once the dynamics of an individual processing element are decided

the next step in specifying a neural network is to determine the

combination of the individual processing elements. These processing

elements are usually organized into a sequence of layers with

connections between the layers.

The number of elements needed for the input and output layers will

depend on the number of inputs and outputs for the system. Figure 2.4

shows the simple neural network architecture.

Yl

output
buffer

hidden

(middle)
layer

input
buffer

igure 2.4 Example of an Neural Architecture (Rafiq et. aI., 2001)
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2.3.1. Architecture (Topology) of Neural Networks

Network geometry is generally defined by the number of hidden

layer nodes and the number of nodes in each of these layers. It

determines the number of model parameters that need to be estimated. If

there is an insufficient number of parameters, it may be difficult to

obtain convergence during training, as the network may be unable to

obtain an adequate fit to the training data. On the other hand, if too

many parameters are used in relation to the number of available training

samples, the network may lose its ability to generalize. In addition,

keeping the number of parameters to a mInImUm reduces the

computational time needed for training. It has been shown that artificial

neural networks with one hidden layer can approximate any continuous

function, given sufficient degrees of freedom (Maier and Dandy, 2001).

The number of nodes in the input layer is equal to the number of

model inputs, whereas the number of nodes in the output layer

corresponds to the number of model outputs. There are some general

guidelines which may be followed to optimize the number of hidden

layers and nodes in these layers. The literature suggests the following

upper limit for the number of hidden layer nodes in order to ensure that

artificial neural networks to approximate any continuous function;

(2.6)

where Nil is the number of hidden layer nodes and N1 is the number of

input nodes (number of inputs) (Hecht-Nielsen, 1987). However, in order

to ensure that the networks do not overfit the training data, the

relationship between the number of training samples and the network

size also needs to be considered (Yao and Tan, 2000). The following

upper limit for the number of hidden layer nodes is recommended to

atisfy the above criteria;

13



(2.7)

where NTR is the number of training samples. Consequently, the upper

limit for the number of hidden layer nodes may be taken as the smaller

of the values for NH obtained using (3) and (4). However, In many

instances, good performance can be obtained with fewer nodes.

The optimum number of hidden layer nodes, on the other hand,

generally has been found by using a trial and error approach.

The network architecture IS also characterized by the

interconnections of nodes in layers. The connections between nodes In a

network fundamentally determine the behavior of the network. For most

forecasting as well as other applications, the networks are fully

connected in that all nodes in one layer are only fully connected to all

nodes in the next higher layer except for the output layer.

Neural networks are often classified as single-layer or multi-layer.

Single-Layer Neural Networks: A single-layer neural network has one

layer of connection weights. Often, the units can be distinguished as

input units, which receive signals from the outside world, and output

units, from which the response of the net can be read (Fausett, 1994).

Multi-Layer Neural Networks: A multi-layer neural network is a net

with one or more layers of nodes between the input units and the output

units. Multi-layer neural networks can solve more complicated problems

than single-layer neural networks, but training may be more difficult.

igure 2.4 is an example of an multi-layer neural network architecture

(Tsoukalas and Uhrig, 1997) .

•1. earning and Recall

eural networks perform two major functions; "learning" and

call". Learning is the process of adapting the connection weights in
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an artificial neural network to produce the desired output in response to

data presented to the input buffer. Recall is the process of accepting an

input stimulus and producing an output response in accordance with the

network weight structure (Corchado and Fyfe, 1999).

There are two types of learning; "supervised" and "unsupervised".

• upervised learning: Supervised learning assumes the availability of

a teacher or supervisor who classifies the training samples. In this mode

the actual output of a neural network is compared to the desired output.

Weights, which are generally randomly set to begin with, are then

adjusted by the network so that the next iteration, or cycle, will produce

a closer match. With supervised learning, it is necessary to train the

neural network. Training consist of presenting input and output data to

n twork. This data is generally referred to as the "training set" (Zhang et

aI., 1997).

n upervised learning: Unsupervised learning also called as self­

upervised learning. Here, networks use no external influences to adjust

h ir weights. Instead there is an internal monitoring or performance.

h network looks for regularities or trends in the input signals, and

adaptations according to the function on the network (Zhang et

1 , 1997).

ebbian Learning without a Teacher

Th first learning rule was introduced by Hebb (1949) as

ij = llaioj (2.8)

11 i the constant of proportionally representing the learning rate;

put from unit j, and is connected to the input of unit i through
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the weight Wij; aj is the state of activation and the output OJ is a function

of the activation state. According to this rule, where unit i and j are

simultaneously excited, the strength of the connection between them

increases in proportion to the product of their activations.

2.3.3.2. The Delta Rule (Widrow-Hoff Rule) with a Teacher

This rule is based on the simple idea of continuously modifying the

strengths of the connections to reduce the difference (the delta) between

the desired output and the current output. This learning rule is also

referred as least mean square (LMS) learning rule because it minimizes

the mean squared error (Spellman, 1999).

(2.9)

where Tl is the learning rate, x as training input, t is the target output for

the input x.

2.3.3.3. The Kobonen Learning Rule without a Teacher

This rule was inspired by learning in biological systems. In this

procedure, the processing elements compete for the opportunity of

learning. The processing element with the largest output is declared the

winner and has the capability of inhibiting its competitors as well as

exciting its neighbors; for this reason, sometimes this rule is also

referred as the competitive learning rule (Bose and Liang, 1996).

wnew = Wold +Tl(x-wold) (2.10)

here x is the input vector, Wnew IS the new weight factor and 11 is the

learning rate .

• •3.4 The Hopfield Minimum-Energy Rule

Hoppfield's study concentrates on the units that are symmetrically

onnected. The units are always in one of two states: + 1 or -1. The

16



global energy of the system is defined as:

E - - ~w··s·s· + "e·s·- .L.. IJ 1 J L. I I
I<J

AEk = LWkiSi - ek

(2.11 )

(2.12 )

where Sl is the state of the ith unit (-lor 1), ei is the threshold, and Mk

is the difference between the energy of the whole system with the kth

hypothesis false and its energy with the kth hypothesis true (Bose and

Liang, 1996).

2.3.3.5. Tbe Boltzmann Learning Rnle

The Boltzmann learning algorithm IS designed for a machine with

mmetrical connections. The binary threshold in a perceptron IS

d terministic, but in a Boltzmann machine it is probabilistic:

(2.13 )

here Pi is the probability for the ith unit to be in state 1, P(x) is a

moidal probability function, T IS a parameter analogous to

p rature and measures the noise introduced into the decision~ and

i = WijSj is the total input to the unit. This rule has been designed to

a class of optimization problems in vision. The learning is

p r is d and the energy gradient with respect to Wij depends on the

a ior of only the ith and jth units (Reich et aI., 1999).

e Back-Propagation Learning

h back propagation of errors technique is the most commonly

n ralization of the Delta Rule. This procedure involves two

h first phase, called the "forward phase", occurs when the

presented and propagated forward through the network to

n output value for each processing element. For each

17



proceSSIng element, all current outputs are compared with the desired

output, and the difference, or error is computed (Bose and Liang, 1996).

In the second phase, called the "backward phase", the recurrent

difference computation (from the first phase) is performed in a backward

direction. Only when these two phases are complete can new inputs be

presented.

18



Chapter 3

BACK-PROPAGA TION ALGORITHM

Back-propagation is a systematic method for training multiple

(three or more) layer artificial neural systems. The elucidation of this

training algorithm in 1986 by Rumelhart et aI., was the key step in

making neural networks practical in many real-world situations.

However it was developed independently by Parker in 1982. This method

is simply a gradient descent method to minimize the total squared error

of the output computed by the net.

Back-error propagation IS the most widely used of the neural

network paradigms and has been applied successfully in applications in a

broad range of areas.

Back-propagation network is usually layered, with each layer fully

connected to the layers below and above. When the network is given an

input, the updating of activation values propagates forward from the

input layer of processing units, through each internal layer, to the output

layer of processing units. The output units then provide the network's

response. When the networks corrects its internal parameters, the

correction mechanism starts with the output units and back-propagates

backward through each internal layer to the input layer. Hence, it is

named as "back-error propagation", or "back-propagation".

The power of back-propagation lies in its ability to train hidden

la ers. The network has middle or hidden layers of processing units.

ach hidden layer acts as a layer of "feature detectors" which are units

at respond to specific features in the input pattern. These feature

ctors organize as learning takes place, and are developed in such a

that they accomplish the specific task presented to the network.
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3.1. etwork Structure

Back-propagation employs three or more layers of processing units.

Figure 3.1 shows the topology for a typical three-layer back-propagation

network. The bottom layer of units is the input layer (the only units in

the network that receive external input). The layer above is the hidden

layer, in which the processing units are interconnected to layers and

below. The top layer is the output layer.

output
unit

hidden
unit

input
unit

igure 3.1 A three-layered back-propagation network, fully

°nt rconnected (Tsoukalas and Uhrig, 1997)

The layers in Figure 3.1 are fully interconnected (each processmg

nit is connected to every unit in the layer above and in the layer

10 ). Units are not connected to other units in the same layer.

Back-propagation networks do not have to be fully interconnected,

ough most applications have been done with fully interconnected

r .

Figure 3.2, a basic back-propagation processmg unit IS shown.

are at the left, and outputs are at the right. The processing unit

ighted sum of inputs (Sj), an output value (aj), and an associated

lue (lij) that is used during weight adjustments.
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u

U

t
t

Sj = weighted sum of inputs = l:WiXi

F(Sj) = output

Figure 3.2 The basic back-propagation processmg unit

(Tsoukalas and Uhrig, 1997)

Weights associated with each interconnection are adjusted during

learning. The weight to unit j from unit i is denoted as Wji. After learning

i completed, the weights are fixed. These final values are then used

during "testing" sessions. Figure 3.2 illustrates the weights along the

incoming connections to the processing unit at the center. There is a

matrix of weight values that

interconnections (Figure 3.3);

corresponds

these matrices

to

are

each layer of

indexed with

uperscripts to distinguish in different layers.

T.AYRR 1

1----.

2----.

LA YFR 2 LA YFR 1

2

igure 3.3 Weight matrices of a three-layered back-propagation system

rada, 1992)
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The back-propagation learning algorithm involves a forward­

propagating step followed by a backward-propagating step. Both the

forward and back-propagation steps are done for each pattern

presentation during training. The forward-propagation step begins with

the presentation of an input pattern to the input layer of the network, the

output value of each processing unit propagate forward thorough the

hidden layers. In each successive layer, every processing unit sums its

inputs and then applies a transfer function (sigmoid or tangent

hyperbolic function in this study) to compute its output. The output layer

of units then produces the output of the network.

The backward-propagation step begins with the comparIson of the

network's output pattern to the target data, when the difference, or

• error" is calculated. The backward-propagation step then calculates

error values for hidden units and changes incoming weights, starting

with the output layer and moving backward through the successive

hidden layers. In this back-propagating step, the network corrects its

weights in such a way as to decrease the observed error.

The error value (0) associated with each processing unit reflects the

amount of error associated with that unit. This parameter is used during

the weight-connection procedure, while learning is taking place. A larger

alue for 0 indicates that larger correction should be made to the

incoming weights, and its sign reflects the direction in which the weights

hould be changed .

•1. orward-Propagation

The forward-propagation step IS initiated when an input pattern is

ented to the network. Each input unit corresponds to an entry in the

ut pattern vector, and each unit takes on the value of its entry. After

tivation level for the first layer of units is set, the remaining layers

rm a forward-propagation step, which determines the activation

of the other layers of units.



/.J II Processing
Element

Sj = LajWji

output = f(Sj)

igure 3.4 The forward-propagation step (Soucek, 1989)

Figure 3.4 illustrates the specifics of the forward-propagation step.

Incoming connections to unit j are at the left and originate at units in the

layer below. Output values from these units arrive at unit j and are

ummed by;

Sj = ~aiWji
1

here;

1 - the activation level of unit i,

(3.1)

)1 - the weight from unit i to unit j (unit i is one layer below unit j)

After the incoming sum Sj is computed, a function f is used to

pute f(Sj)' The function f, sigmoid or tangent hyperbolic functions

Iready been discussed and illustrated in Figure 2.3d and 2.3e. f(x)

roaches 1 asymptotically as x gets larger, and f(x) approaches 0

ptotically as x becomes a greater negative val ue for sigmoid

Ion; and f(x) approaches 1 asymptotically as x gets larger, and f(x)

,pplroaches -1 asymptotically as x becomes a greater negative value for

n hyperbol ic function.
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The equation for the sigmoid function is,

If(x)=--I+ e-x

and the equation for the tangent hyperbolic function is,

ince here x is the weighted sum of unit j, (3.2) becomes;

I 1f(S·)=--=----
J l+e -Sj l+e - Laiw ji

and (3.3) becomes;

Sj -Sj LaiWji -LaiWji
f(S.)=e -e =e -e

J S' _So La'w" -La'w"
e J + e J e 1 JI + e 1 JI

(3.2)

(3.3 )

(3.4)

(15)

After the transfer functions computed (Sj), the resulting value

b comes the activation level of unit j. This value, the output of unit j, IS

nt along the output interconnections (on the right of Figure 3.4).

The input layer units constitute a special case. These units do not

p rform the weighted sum on their inputs because each input unit simply

urnes the corresponding value taken from the input vector. The input

I y r is considered to be a layer of the network, although it does not

rform the weighted sum and sigmoid calculations.

orne back-propagation networks employ a bias unit (Figure 3.4) as

of every layer except the output layer. Each bias unit is connected to

nits in the next higher layer, and its weights to them are adjusted

. g the back-error propagation. The bias units provide a constant term

eighted sum of units in the next layer. The result is sometimes an

o ement on the convergence properties of the network.
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The bias unit also provides a "threshold" effect on each unit it

targets. It contributes a constant term in the summation Sj, which is the

operand in the transfer functions (3.4) and (3.5). This is equivalent to

translating the function's curves to the left or to the right.

For example, suppose the bias unit (ao) has an output value of

1.0and a weight,

c= WjO

thenlet

Z=~:aiWji
i=l

(3.6)

Then z is the incoming sum from all of the units other than the

bias unit. If the bias unit contributes the constant c to the incoming sum

of unit j, then this sum becomes, "z + c". Constant c translates the graph

by the amount c, thus moving the threshold of the sigmoid or tangent

hyperbolic curve from 0 to -c. In this way, the bias units provide an

adjustable threshold for each target unit. The threshold for unit j then

comes from the value of WjO, which is the weight of the interconnection

from the bias unit .

•3. Backward Propagation

Figure 3.5 illustrates the back propagation network. The error

alues are calculated for all processing units and weight changes are

alculated for all interconnections. The calculations begin at the output

r and progress backward through the network to the input layer. The

I ulated errors propagate backward through the network, where they

u ed to adjust the weights.

The error-correction step takes place after a pattern is presented at

put layer and the forward-propagation step is completed. Each

prCllCe!lsling unit in the output layer produces a single real number for its
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utput, which is compared to the target output specified in the training

t. Based on this difference, an error value is calculated for each unit in

h output layer.

Next, the weights are adjusted for all of the interconnections

hat go into the output layer. Then an error value is calculated for all of

units in the hidden layer that is just below the output layer. Then, the

ights are adjusted for all interconnections that go into the hidden

r. The process is continued until the last layer of weights has been

dJu ted.

The problem of the back-propagation algorithm is that the

I dl -layer neurons have no target values. Hence, the training is more

plicated, because the error must be propagated back through the

or , including the non-linear functions, layer by layer.

TARGET
OllTPlIT

OUTPUT

LAYER

COMPUTED
OUTPUT

o 0 0
Forward
information flow

"lODE 0 0 0
LAYER Forwar

information flow
I PUT

LAYER 0 0 0
3. The Back-propagation network (Fausett, 1992)

rror'value, denoted by the variable 0, is simple to compute for

yer and somewhat more complicated for the hidden layers. If

he output layer, then its error value (OJ) is:

(3.7)
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where;

tj = the target value for unit j

aj = the output value for unit j

f'(x) = the derivative of the transfer function f

Sj = weighted sum of inputs to j

The quantity (tj-aj) reflects the amount of error. The ff, scales

the error to force a stronger correction when the sum Sj is near the rapid

rise in the curves. Figure 3.6 illustrates the form of the ff functions.

(a) (b)

Figure 3.6 The derivatives of the transfer functions a-) derivative

of the sigmoid function, b-) derivative of the hyperbolic tangent function

Figure 3.2 illustrates j as a unit III a hidden layer. In such a

situation, the error value of j is computed as:

OJ= ftSj)L<>kWkj
k

(3.8)

In this case, a weighted sum is taken of the 8 values of all units that

r ceive output from unit j. The ff again serves to scale this output by

mphasizing the region of rapid rise of the sigmoid function.

The adjustment of the connection weights is done using the 8 values

f the processing unit. Each interconnection weight is adj usted by taking
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into account the 0 value of the unit that receIves input from that

interconnection. The connection weight adjustment is done as follows:

(3.9)

Figure 3.7 diagrams the adj ustment of weight Wji, which goes

to unit j from unit i. The amount adjusted depends on three factors: oj,

all and 11.This weight adjustment equation is known as the generalized­

delta rule.

The size of the weight adjustment is proportional to oj, the error

value of the target unit. Thus a larger error value for unit j results in

larger adjustments to its incoming weights.

ACTIVATION
LEVEL O Wji ni_- ••U

t:, Wji=11aioj

OJ: ERROR
VALUE

Figure 3.7 Process of Weight Updating (Fu, 1994)

The weight adjustment is also proportional to ai, the output value

for the originating unit. If this output value is small, then the weight

adjustment is small. If this output value is large, then the weight

adjustment is large. Thus a higher activation value for incoming unit i

results in a larger adjustment to its outgoing weight.

The variable 11 in the weight-adjustment equation (3.9) is the

learning rate. Its value is chosen by the neural network user, and usually

reflects the rate of learning of the network. Values that are very large

can lead to instability in the network, and unsatisfactory learning.

alues that are too small can lead to excessively slow learning.

ometimes the learning rate is varied in an attempt to produce more

fficient learning of the network. For example, allowing the value of 11

o begin at a high value and to decrease during the learning session can
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sometimes produce better learning perfOrmanC\

3.4. Back-Propagation Learning Algorithm (Generalized Delta Rule)

Upon performing neural network analysis, the accuracy of the

results can be determined through error analysis.

The error function is defined to be proportional to the square of the

difference between the actual and desired output, for all the patterns to

be learned.

(3.10)

Where, Ep is the error function for pattern p, tpj represents the

target output for pattern p on node j, while apj represents the actual

output at that node. Wji is the weight from node i to node j.

The activation of each unit j, for pattern p, can be written as

Spj = ~w jiapi
1

i.e. Spj is simply the weighted sum.

(3.11)

The output from each unit j is the threshold function fj acting on the

weighted sum. In the perceptron, this was the step function; in the back­

propagation (multi-layer perceptron), it is generally the sigmoid

function, but hyperbolic tangent function is also used in this study.

The following relationship

oEp aEp aSpj--=----
Ow ji aSpj aw ji

(3.12)

(3,13)
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can be written by the chain rule.

The derivative of Spj with respect to Wji can be written as follows:

8Spj a
-=--LWjkapk
8v{ji Ow ji k

Owjk
=I:--apk

k Owji

(3.14)

Ow·k
since _J_ = 0, except when k = i it equals to 1.

Ow··
JI

The change in error can be defined as a function of the change 10

the net inputs to a unit.

DE--p -0 .
as . - pJ

pJ

and (23) becomes

(3.15)

(3.16)

Decrease In the value of the error function, Ep, implies that the

ight changes are proportional to 8pj api, i.e.

(3.17)

It is necessary to determine 8pj for each of the unit. If known, then

p can be decreased. Using (3.16) and the chain rule:
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8Ep 8Ep 8apj0·-------
pJ- 8Spj - 8apj 8Spj

Consider the second term in (3.13), and from (3.12),

8a .
-BL= II(S .)
as· J pJ

pJ

(3.18)

(3.19)

Consider now the first term in (3.18). From (3.10), Ep can be

differentiated with respect to apj, giving

(3.20)

Thus,

(3.21)

This is useful for the output units, since the target and output are

both available, but not for the hidden units, since their targets are not

known.

So, if units j is not an output unit, it can be written, by the chain

rule such that

(3.22)

(3.23)

using (3.11) and (3.15), and noticing that the sum drops out since the

partial differential is non-zero for only one value, as shown in (3.14).
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Substituting (3.23) in (3.18), the following is obtained:

(3.24)

This equation represents the change in the error function, with

respect to the weights in the network. This provides a method for

changing the error function and reducing it. The function is proportional

to the errors 8pk in subsequent units, so the error has to be calculated in

the output units first (given by (3.21)) and then passed back through the

net to the earlier units to allow them to alter their connection weights. It

is the back passing of this error value that leads to the network being

referred to as "back-propagation networks". Equation (3.21) and (3.24)

together define how multi-layer networks are trained.

One advantage of using the sigmoid function as the non-linear

threshold function is that it is quite like the step function, and so should

demonstrate behavior of a similar nature. The sigmoid function is

defined as,

I
f(Spj) = -S'

1+ e pJ

and has the range 0 < f (Spj) < 1.

(3.25)

The major reason for its use is that it has a simple derivative, and

this makes the implementation of the back-propagation system much

easier. Given that the output of a unit, apj is given by

I
apj = f(Spj) = -S'

1+e pJ

The derivative with respect to that unit, /'(S pj) is given by

(3.26)

32



(3.27)

One advantage of using the hyperbolic tangent function as the non­

linear threshold function is that it has the range -1 < f (Spj) < 1.

The hyperbolic tangent function is defined as

Given that the output of a unit, apj is given by

S· -S'
e pj - e pj

apj=f(Spj)= S· -S'
e pj + e pj

(3.28)

(3.29)

The derivative with respect to that unit, f'(S pi) is given by

[ S' S·l[ S· S'l

e pj - e - pj e pj - e - pjf'(S.)= 1+ * 1-----
pJ eSpj + e-Spj eSpj + e -Spj

!'(Spj) = II+ f(S pi )J* ll- f(S Pi)J

The derivative is a simple function of the outputs.

(3.30)

. etwork Training

Back-propagation networks are trained by supervised learning

hnique, whereby the network IS presented with a series of pattern

IrS (each pair consisting of an input pattern and a target output
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pattern). Each pattern is a matrix or vector format of real numbers. The

target output pattern is the desired response to the input pattern and is

used to determine the error values in the network when the weights are

adjusted.

The target output pattern is sometimes designed to represent a

classification for the input pattern. In this way, the network may be

presented with a series of input patterns together with the classification

for each input pattern. In other applications, the target output is simply a

desired pattern response to the input pattern, and the network is trained

o be a pattern-mapping system.

The patterns In the training set are presented to the network

repeatedly. Each training iteration consists of presenting each

input/output pattern pair once. When all patterns in the training set have

been presented, the training iteration is completed, and the next training

iteration is begun. A typical back-propagation example can entail

hundreds or thousands of training iterations.

The training procedure is as follows:

1.Randomizing the weights to small values (both positive and negative)

to ensure that the network is not saturated by large values of weights. (If

all weights start at equal values, and the desired performance requues

unequal weights, the network would not be trained at all. )

2. applying the training matrix to the network after selecting the training set

. calculating the error, or the difference between desired and calculated

utputs

. adjusting the weights of the network again in a way to minimize the error

repeating these steps for each pair of input-output values in the

ining set until the error for the entire system is acceptably low.

34



.6. Convergence Criteria

When a network is trained successfully, the error decreases as the

training session progresses. It is important, then, to have a quantitative

measure of learning. The average error is usually calculated to reflect

the degree to which learning has taken place in the network. This

measure reflects how close the network is getting to the correct answers.

As the network learns, its average error decreases.

Convergence is a process whereby the error value for the network

ets closer and closer to O. Convergence is not always easy to achieve

because the process may take an exceedingly long time and sometimes

he network gets stuck in a local minimum and stops learning altogether.

Ideally, it is desired to find a global mInImum. This corresponds to

the lowest error value possible. Unfortunately, it is possible to encounter

local minimum. Nevertheless, a local minimum is surrounded by higher

round, and the network usually does not leave a local minimum by the

andard back-propagation algorithm described. Special techniques

bould be used to get out of a local minimum.

The appearance of a local mInImUm IS not always a significant

roblem. Back-propagation networks typically converge to a good error

alue when the training examples are clearly distinguishable. When a

oeal minimum is encountered, the network may be able to avoid entering

at local minimum by a number of techniques, for example, changing

learning parameter or the number of hidden units. These techniques

nd to change the scenario involved with moving on a different path in

or plane and may cause the network to avoid the local minimum.

Adding small random values to the weights allows the network to

ape from a local minimum once it is encountered by moving the

hion of the network from a local minimum to a random point some

ance away. If the new position is sufficiently removed from the local

imum, then convergence may proceed in a new direction without
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getting stuck in the same local minimum again.

3.7.Strengths and Limitations of Back-Propagation Algorithm

The principal strength of back-error propagation IS its relatively

general pattern-mapping capability; it can learn a tremendous variety of

pattern-mapping relationships. It does not require any a priori knowledge

of a mathematical function that maps the input patterns to the output

patterns; back-propagation merely needs examples of the mapping to be

learned. The flexibility of the paradigm is enhanced by many design

choices available (choices for the number of layers, interconnections,

processing units, the learning constant, and data representations), As a

result, back-error propagation might be able to address a broad spectrum

of applications.

The largest drawback with back-propagation algorithm appears to be

its convergence time. Training sessions can require hundreds or

thousands of iterations for relatively simple problems. Realistic

applications may have thousands of examples in a training set, and it

maytake days of computing time (or more) to complete training. Usually

this length needs to be done only during the development of network,

because most applications require a trained network and do not need on­

line retraining of the net.

A variety of special techniques have been developed in a attempt to

decrease convergence time and to avoid local minima. A "momentum"

term is sometimes used to speed convergence procedures. Improvements

in convergence have also been found by varying the learning parameter 11

by starting with a larger value for 11 and progressing to smaller values.

Techniques for avoiding local minima include changing the network or

the training set, and adding small random values to the weights.
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Chapter 4

FORECASTING WITH

ARTIFICIAL NEURAL NETWORKS

Recent research activities have shown that artificial neural networks

havepowerful pattern classification and pattern recognition capabilities.

Currently, artificial neural networks are being used for a wide variety of

tasks in many different fields of business, industry and science (Widrow

et aI., 1994).

One major application area of artificial neural networks IS

forecasting (Kolehmainen et aI., 2000). Artificial neural networks

provide an attractive alternative tool for both forecasting researchers and

practitioners. Several distinguishing features of artificial neural

networks make them valuable and attractive for a forecasting task.

First, as opposed to the traditional model-based methods, artificial

neural networks are data-driven self-adaptive methods in that there are

few a priori assumptions about the models for problems under study.

They learn from examples and capture suitable functional relationships

amongthe data even if the underlying relationships are unknown or hard

to describe. Thus artificial neural networks are well suited for problems

whose solutions requIre knowledge that is difficult to specify but for

which there are enough data or observations. This modeling approach

with the ability to learn from experience is very useful for many

practical problems since it is often easier to have data than to have good

theoretical guesses about the underlying laws governing the systems

fromwhich data are generated.

Second, artificial neural networks can generalize. After

learningthe data presented to them (a sample), artificial neural networks

can often correctly infer the unseen part of a population even if the
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sample data contain nOIsy information. As forecasting is performed VIa

prediction of future behavior (the unseen part) from examples of past

behavior, it is an ideal application area for neural networks, at least in

principle.

Third, artificial neural networks are universal functional

approximators. It has been shown that a network can approximate any

continuous function to any desired accuracy (Irie and Miyake, 1988;

Hornik et a!., 1989; Cybenko, 1989; Funahashi, 1989; Hornik, 1991,

1993). Artificial neural networks have more general and flexible

functional forms than the traditional statistical methods can effectively

deal with. Any forecasting model assumes that there exists an underlying

(known or unknown) relationship between the inputs (the past val ues of

the time series and/or other relevant variables) and the outputs (the

future values). Frequently, traditional statistical forecasting models have

limitations in estimating this underlying function due to the complexity

of the real system. Artificial neural networks can be a good alternative

method to identify such a function.

Finally, artificial neural networks are nonlinear. Forecasting has

long been the domain of linear statistics. The traditional approaches to

time series prediction assume that the time series under study are

generated from linear processes. Linear models have advantages in that

they can be understood and analyzed in great detail, and they are easy to

explain and implement. However, they may be totally inappropriate if

the underlying mechanism is nonlinear. It is unreasonable to assume a

priori that a particular realization of a given time series is generated by

a linear process. In fact, real world systems are often nonlinear

(Tasadduq et a!., 2002).

The idea of using artificial neural networks for forecasting is not

new. The first application dates back to 1964. Hu (1964), in his thesis,

used the Widrow's adaptive linear network to weather forecasting. Due

to the lack of a training algorithm for general multi-layer networks at the
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time, the research was quite limited. It is not until 1986 when the back­

propagation algorithm was introduced (Rumelhart et al., 1986) that there

has been much development in the use of artificial neural networks for

forecasting.

4.1. Forecasting the Environmental Variables with Artificial Neural

etworks

In recent years, artificial neural networks have become a popular

and useful tool for modeling environmental systems. They have already

been successfully used to simulate the export of nutrients from river

basins (Clair et al., 1996), to forecast salinity (DeSilets et aI., 1992) and

ozone levels (Comrie, 1997), to predict air pollution (Boznar et aI.,

1993) and the functional characteristics of ecosystems (Pamelo et aI.,

1997), and to model algal growth, and transport in rivers (Whitehead et

aI., 1997). Many environmental modelers are "experimenting" with

artificial neural networks on datasets for which the use of more

conventional techniques (e.g., regression) has been unsuccessful.

4.1.1. Model Development Process

4.1.1.1. Data Normalization

Nonlinear activation functions have the squashing role in restricting

or squashing the possible output from a node to, typically, [0,1] for

sigmoid function or [-1,1] for tangent hyperbolic function. Data

normalization is often performed before the training process begins. As

mentioned earlier, when nonlinear transfer functions are used at the

output nodes, the desired output values must be transformed to the range

of the actual outputs of the network. Even if a linear output transfer

function is used, it may still be advantageous to standardize the outputs

as well as the inputs to avoid computational problems, to meet algorithm

r quirement, and to facilitate network learning (Mok and Tam, 1998).
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Here are the generally used methods for normalization:

• Linear transformation to [0,1]: xn = Xo - xmin (Zurada, 1992)
xmax -xmin

• Linear transformation to [-1,1]: xn =2*( Xo-Xmin. )-1 (Zurada,xmax -xmm

1992)

• Statistical normalization: xn = Xo - x (Soucek, 1992)
s

• Simple normalization: xn = Xo (Bose and Liang, 1996)
xmax

Normalization of the output values (targets) is usually dependent of

the normalization of the inputs. For time series forecasting problems, the

normalization of targets is typically performed together with the inputs.

The choice of range to which inputs and targets are normalized depends

largely on the activation function of output nodes, with typically [0, 1]

for logistic function and [-1, 1] for hyperbolic tangent function. Several

researchers scale the data only to the range of [0.1, 0.9] (Srinivasan et

aI., 1994) or [0.2, 0.8] (Tang et al., 1993) based on the fact that the

nonlinear activation functions usually have asymptotic limits (they reach

the limits only for infinite input values) and the guess that possible

outputs may lie, for example, only in [0.1, 0.9], or even [0.2, 0.8] for a

logistic function (Bose and Liang, 1996).

In this study, linear normalization methods have been used for

sigmoid function and hyperbolic tangent function and their ranges were

[0,1] for sigmoid function and [-1,1] for hyperbolic tangent function.

It should be noted that, as a result of normalizing the target values,

the observed output of the network wi II correspond to the normalized

range. Thus, to interpret the results obtained from the network, the

outputs must be resealed to the original range. From the user's point of

view, the accuracy obtained by the artificial neural networks should be

based on the resealed data set.
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4.1.1.2. Training and Testing Sets

As it is mentioned earlier, training and testing sample are typically

required for building an artificial neural network forecaster. The training

sample is used for artificial neural networks model development and the

test sample is adopted for evaluating the forecasting ability of the model.

Sometimes a third one called the validation sample is also utilized to

avoid the overfitting problem or to determine the stopping point of the

training process (Tsoukalas and Uhrig, 1997). It is common to use one

test set for both validation and testing purposes particularly with small

data sets.

The first issue here is the division of the data into the training and

test sets. Although there is no general sol ution to this problem, several

factors such as the problem characteristics, the data type and the size of

the available data should be considered in making the decision. It is

critical to have both the training and test sets representative of the

population or underlying mechanism. This has particular importance for

time series forecasting problems. Inappropriate separation of the training

and test sets will affect the selection of optimal artificial neural network

structure and the evaluation of artificial neural network forecasting

performance.

The literature offers little guidance in selecting the training and the

test samples. Most authors select them based on the rule of 90% vs. 10%,

80% vs. 20% or 70% vs. 30%, etc. Some choose them based on their

particular problems.

In this study, 273 daily average values of dust, SOz, temperature

and wind speed were used. Of 273, first 197 were used as a training set

and76 were used as testing set.

Another closely related factor is the sample SIze. No definite rule

exists for the requirement of the sample size for a gIven problem. The

amount of data for the network training depends on the network
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structure, the training method, and the complexity of the particular

problem or the amount of noise in the data on hand. In general, as in any

statistical approach, the sample size is closely related to the required

accuracy of the problem. The larger the sample size, the more accurate

the results will be. Perez et al. (2000) test the effect of different training

sample size and find that as the training sample size increases, the

artificial neural network forecaster performs better.

4.1.1.3. Performance Measures

Although there can be many performance measures for an artificial

neural network forecaster like the modeling time and training time, the

ultimate and the most important measure of performance is the

prediction accuracy it can achieve beyond the training data. However, a

suitable measure of accuracy for a given problem is not universally

accepted by the forecasting academicians and practitioners. An accuracy

measure is often defined in terms of the forecasting error which is the

difference between the actual (desired) and the predicted value. There

are number of measures of accuracy in the forecasting literature and each

has advantages and limitations (Bose and Liang, 1996). The most

frequently used measures are;

• the mean absolute deviation (MAD) = LletlN

• the sum of squared error (SSE) = L(ed2

• the mean squared error (MSE) = L(ed2N

• the root mean squared error (RMSE) =~MSE

1 e(
• the mean absolute percentage error (MAPE) = -L - x 100

N ey

where el is the individual forecast error; Yl is the actual value; and N is

the number of error terms. For this study, the mean squared error is used

to measure the accuracy of the models.
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4.2. Literature Review of the Modeling of the Environmental

Variables with Artificial Neural Networks

In most of the studies conducted on environmental parameters,

wide-ranging prediction techniques, including gaussian models and

numerical models are generally used. These kind of models are mainly

based on the mathematical formulation of the physics and chemistry of

the atmosphere, which govern the dispersion of pollutants. Gaussian

models can be applied to any situation where the distribution pattern of

the pollutants in that direction can be represented by a gaussian or

ormal distribution over the selected averaged time. Even though these

models have some physical basis, detailed information about the sources

of pollutants and other parameters is not generally known. To overcome

this limitation, statistical models are also used to facilitate the

prediction of pollutant concentrations (Ziomass et aI, 1995; Finzi et aI.,

1982). These models assume that the relationship between the variables

is statistical in nature. However, such models require information about

the distribution of the data which is generally not known a priori

(Comrie, et aI., 1997). Recently, neural network based models have also

beenapplied to predict pollutant concentrations. These models provide a

better alternative to statistical models because of their computational

efficiency and generalization ability. They can handle data having high

dimensionality.

Chelani et al. (2002), studied on a sulphur dioxide concentration

prediction in New Delhi by using a three-layer neural network model

with a one hidden layer and they used the Levenberg-Marquardt

algorithm to train the network. They compared the results of artificial

neural networks with multivariate regression model. The input

parameters to the model included wind speed (in km.h-1), temperature (in

°C),relative humidity (%) and the wind direction. In their study, Chelani

et a\., concluded that the neural network model provides a better

alternative than regression models.
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Gardner et aI., (1999) used the multi-layer perceptron neural

networks to the prediction of the hourly NOx and N02 concentration in

London. Their multi-layer perceptron have two hidden layer each of

which contained 20 nodes. Hourly NOx and N02 concentration and

hourly meteorological data were used for their model. The

meteorological data included wind speed (m.s-1), vapor pressure (mbar),

dry bulb temperature(OC), visibility (presented to the system in the

UKMO synoptic code) and base of lowest cloud(presented to the system

in the UKMO synoptic code). Their work showed that the multi-layer

perceptron neural networks can accurately model the relationship

between local meteorological data and NOx and N02 concentrations.

Sucar et. aI., (1997) proposed an algorithm for structure learning in

predictive expert system based on a probabi listic network representation.

They applied this method for ozone prediction in Mexico City and their

network was a three-layer Bayesian network. They used eight parameters

for their model and these are; wind direction and velocity, temperature,

relative humidity, sulphur dioxide, carbon monoxide, nitrogen dioxide

and ozone. They represented random 400 samples to the system as a

training set and tested their system with 100 random samples to estimate

the ozone. They observed that their estimations are acceptable and also

their work also showed that wind velocity and the wind direction are the

major parameters effecting the ozone level.

Maier et aI., (200 I) worked on two case studies; the forecasting of

salinity in the River Murray, South Australia, and the forecasting of

incidences of a species group of cyanobacterium Anabaena spp. in the

River Murray. The data used for the salinity case study included daily

salinities and the daily flow. The data used for the blue-green algea case

study included weekly values of blue-green algea concentrations,

turbidity, color, temperature, total phosphorus, soluble phosphorus,

oxidized nitrogen, and total iron. Both the case studies have been done

withthree-layer feed-forward neural networks which are trained by back­

propagation algorithm. They observed better results for salinity
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forecasting then the blue-green algea case study but prediction of the

algea concentrations was also acceptable.

Murtagh et aI., (2000) studied the prediction of the oceanIC

upwelling off the Mauretanian coast. The data available to them

consisted of daily satellite SST data for 1982 (these were sunshine data

and only available if the sky is not cloudy), daily wind and surface heat

flux data, and the topology of the region. The multi-layer perceptron

architecture was used with one hidden layer. They used 299 values as

training set and 40 values as testing set, but their studies did not make

them satisfied, because their model's mean squared error was more then

0,25.

Perez et aI., (2001) studied the prediction of NO and N02

concentrations near a street with heavy traffic in Santiago, Chile. They

also used meteorological data in their study and this meteorological data

included temperature, wind velocity and relative humidity. Perez et aI.,

developed a three-layer feed-forward neural network and used back­

propagation algorithm to train their model. They also compared their

predictions with linear regression model and obtained that neural

network model had more accurate results.
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Chapter 5

FORECASTING THE S02 AND DUST WITH

ARTIFICIAL NEURAL NETWORKS FOR IZMIR

5.1. Sulphur Dioxide (S02)

Sulphur dioxide (S02) is a potent respiratory irritant when inhaled.

Asthmatics are particularly susceptible. S02 acts directly on the upper

airways (nose, throat, trachea and major bronchi), producing rapid

responses within minutes. It achieves maximum effect in 10 to 15

minutes, particularly in individuals with significant airway reactivity,

such as asthmatics and those suffering similar bronchospastic conditions.

Epidemiological studies have shown significant associations

between daily average S02 levels and mortality from respiratory and

cardiovascular causes. Increases in hospital admissions and emergency

room visits for asthma, and respi ratory disease have also been associated

with ambient S02 levels (Jones, 1999). These associations were observed

with up to a two-day lag period. Long-term exposure to S02 and fine

particle sulphates (S042-) has been associated with an increase in

mortality from lung cancer and development of asthma and cardio­

pulmonary obstructive disease (Jones, 1999). Increases in respiratory

symptoms have also been associated with S02 levels (Cogliani, 2001).

The guideline values for sulphur dioxide are 350 Ilg/m3 (I-hour

average) and 120 Ilg/m3 (24-hour average) (WHO, 1999). These values

are set to provide protection of Iung function and prevent other

respiratory symptoms of vulnerable sub-groups in the population,

including asthmatics and those with chronic obstructive Iung disease.

They are in line with current international guideline values and

standards. The short-term guideline value has been removed, as it is not

appropriate for managing air quality in large air sheds, however, shorter-
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term criteria for sulphur dioxide may be appropriate for assessmg

industrial discharges.

5.2. Dust

Dust is a particulate contaminant suspended in the atmosphere that

may consists of solids or liquid droplets and vary in diameter from 0.001

~m to 100 J.lm. It can be directly emitted or can be formed in the

atmosphere when gaseous pollutants such as S02 and NOx react to form

fine particles (Bockreis and Jager, 1999).

Like CO2 dust limits the amount of energy arriving and leaving the

surface of the planet, with consequent changes in weather patterns.

Industrial, transport and domestic equipment all release particles of dust

into the atmosphere. The exposure of man to dust can lead to a wide

variety of respiratory diseases, including pulmonary fibrosis, obstructive

lung disease, allergy and lung cancer (Mussio et aI., 2001). Particles can

cause irritation to the eyes, nose and throat. Some of the larger particles

(>10 Ilm diameter) reaching the nose or throat will be filtered out by the

body's natural defence system. However, very tiny particles that reach

deep into the lung may be absorbed into the blood stream or cause lung

or other health problems. Such particles are those less than 10 J.lm in

diameter (Mussio et aI., 2001).

The particulate pollutants may be classified according to their

optical properties, nature and size as follows:

• Smoke particulate consists of solid and liquid particles rangmg from

0.05 to 1.0 J.lm which are formed during incomplete combustion of

carbonaceous materials. It includes smoke of gaseous pollutants like

oxides of sulphur, oxides of nitrogen, CO and hydrocarbons etc .

• Dust particles are composed of fine solid particles ranging from l­

IDO Ilm .

• Mist or liquid particles are formed by condensation of a vapour,

having a size less than 10 J.lm.
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• Spray It constitutes from liquid particles obtained from the parent

liquid by the process of mechanical disintegration like atomization.

• Fumes are generally obtained by the condensation of vapours by

sublimation, distillation, boiling, calcination and by several other

chemical reactions. Generally organic solvents, metals and metallic

oxides form fume particles having a size less than 1 Ilm. Carbon

particles, ash, asbestos, oil, grease and acids form particulates which are

widely distributed in air.

Sources of the dust are;

• Energy (Coal burning, fossil fuel burning stoves, power plants, dung

burning smelters)

• Industry

• Construction industry (cement factory, mining and quarrying)

• Chemical industry (carbon powder manufacturers

pharmaceuticals, industrial additives, pesticides and other

agricultural chemicals)

• Metal processing industry (metal flakes, dust and fumes)

• Light industries (pre-treatment, drying operations, paint

pigments)

• Transport

• Natural Sources (volcano eruption, wind erosion, sea salt, forest fire)

Major concerns for human health from exposure to PM-10 include:

effects on breathing and respiratory systems, damage to lung tissue,

cancer, and premature death. The elderly, children, and people with

chronic lung disease, influenza, or asthma, are especially sensitive to the

effects of particulate matter. Table 5.1 shows the limit values for Dust

matters.
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Table 5.1 Air quality guidelines on Dust (WHO, 1994)

Reference period
Limit value

one year (median of daily values)

80 flg/m3

winter (median of daily values)

130 flg/m3

year peak (98 percentile of daily values)

250 flg/m3

5.3. Sulphur Dioxide and Dust Pollution in izmir

The izsu Air Pollution Controlling Department has been

monitoring the sulphur dioxide and dust concentration in the air of Izmir

at four locations since 1997. Since the main S02 and dust sources for

izmir are industrial processes, traffic, commercial and residential

activities, the stations are located in Bornova, Konak, Kaqlyaka and

Alsancak. These districts are chosen according to their local properties.

All this districts have high commercial and residential activities, and

especially Kar~lyaka is affected by the industrial activities.

Daily average values of S02 and dust values from 01.01.2001 to

30.09.2001 have been used in this study.

Since the air quality is directly related with the meteorological

parameters, in this study daily average values of temperature and wind

speed are used, and these data have been collected by the Meteorological

Weather Forecasting Department.

These data are separated into two groups; training (first 197 daily

values) and testing set (last 76 daily values), and this extraction has been

done with neuro-shell extraction program (NeuroShe1l2, Ward-Systems

Group Inc.). These sets are illustrated in Figure 5.1, 5.2, 5.3, 5.4, 5.5,

5.6,5.7, and 5.8.
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Several trials have been done with these sets with two different

transfer functions (sigmoid and hyperbolic tangent functions) and

different topologies (with I-hidden layer and 2-hidden layers). The

purpose of these trials is to obtain the relationship between the accuracy

of the models with the topology of the networks and the transfer

functions. For sensitivity analyses, inputs of the models are also

changed; for S02 prediction, only dust, dust and temperature, dust and

wind speed, temperature and wind speed, and finally dust, temperature

and wind speed val ues are presented to the systems as input. The same

procedure is followed for dust prediction, input sets are changed with the

same method. Aim of these trials is to determine the efficiencies of the

input parameters and deciding their relationships.
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Another approach to forecast the S02 and dust values is by usmg

their last 7 days's values to predict the eighth day's value. Using last

seven day is determined by trial and error method. Several models are

developed by starting from last days value and 1000 iteration is done for

every network. Minimum error is obtained at the prediction of the eighth

day value both for S02 and dust predictions. After these trials, 10000

iteration is made for main model.

Learning rate was constant and equal to the 0.02 for all these

studies and back-propagation algorithm is used to trai n the systems.

Batch Gradient Descent Rule is used as a training method whereas the

weights and biases are updated in the direction of the negative gradient

of the activation function. MATLAB 6.0's Neural Network Toolbox (ver

4) is used as a software and all the systems have been run for 10000

iterations.

The general procedure for the network simulation includes:

1. Representation of input and output matrices; (as it is mentioned

earlier data are separated into two groups as training set and testing set,

Figure 5.1-5.8)

2. Representation of the transfer functions; (sigmoid and hyperbolic

tangent functions are used)

3. Selection of the network structure; (two different network topologies

have been developed; with one hidden layer and two hidden layers and

hidden layers with three nodes)

4. Assigning of the random weights; (initial random weights are assigned)

5. Selection of the learning procedure (Gradient Descent Rule is

applied);

6. Presentation of the test pattern and prediction or val idation set of data

for generalization (training of the network completed after 10000
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iterations, than testing set is represented to the system but validation set

is not used in this study)

The learning of weights is done using the following procedure:

1. Selection of random numbers for all weights;

2. Calculation of output vectors (referred also as the network output)

and comparison with the target output (referred also as the desired

output);

3. If the network output is approximately equal to the desired output,

then continue with step 1, and if not, weights are corrected according to

the correction rule and then continue with step 1.
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Chapter 6

RESUL TS AND DISCUSSION

6.1. Prediction of Sulphur Dioxide

The network topologies for the S02 prediction is shown in Figure

6.1. For this trial input parameters are dust, temperature and wind speed.

The network of the first trial has one hidden layer with three nodes and

the network of the second trial has two hidden layers with three nodes in

each hidden layers, and system is trained with 10000 iterations.

S02

dust temperature wind speed

dust temperature wind speed

Figure 6.1 Network Architectures for S02 predictions with three

input parameters

Graphics In the Figure 6.2, 6.3, 6.4 and 6.5 shows the results

of the neural network models. It is obtained that neural networks are able
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to learn from the training set and make the predictions accurately. R2

(correlation coefficient between desired and predicted outputs) and daily

average error values are used to control the accuracy of the systems.

These values are shown in Table 6.1. According to the R2 values and

daily average errors, increasing the topology of the network gIves more

accurate results than the simple neural networks topologies. It is also

obtained that using the hyperbolic tangent function makes more accurate

predictions then the sigmoid function.

: simulated
.............. : observed

90

80

70

_ 60

".E 50Cl
:::I.

-:: 40o
II) 30

20

10

o
17.07.2001 01.08.2001

..

16.08.2001 31.08.2001

time (day)

15.09.2001

,
"

30.09.200'1

..

Figure 6.2 802 predictions with three input parameters with two

hidden layer with hyperbolic tangent function

30,09,200115.09.200116.08.2001 31.08.2001

time (day)

01.08.2001

: simulated
.............. : observed

90

80

70

_ 60

".E 50Cl
:::I.

-:: 40o
II) 30

20

10

o -~I -------,-----,-------,-------,------,-

17,07.2001

Figure 6.3 802 predictions with three input parameters with two

hidden layer with sigmoid function I .

56



---: simulated

.............. : observed

90

80

70

r 60
E
C! 50
::I.

- 40

g 30

20

10

o

17.07.2001 01.082001

'.

1608.2001 31082001

time (day)

1509.2001 30.092001

Figure 6.4 S02 predictions with three input parameters with one

hidden layer with hyperbolic tangent function

' ..'"••• '".• .• '#. "_.

: simulated
.............. : observed

30.09200115.09.2001

"

01.08.2001 16.08.201)1 31.08.2001

tirr e (day)

90

80

70

r 60

~ 50
::I.

- 40

g 30

20

10

o

17.07.2001

Figure 6.5 S02 predictions with three input parameters with one

hidden layer with sigmoid function

Several trials have also been done for S02 prediction with the same

procedure (by changing the architecture, transfer functions, and input

parameters). All the experiments have been done with 0,02 learning rate

and 10000 iterations. Results of these experiments are shown in Table

6.1 and their graphics are shown in Appendix-B.
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Table 6.1 Results of the S02 predictions with neural networks widifferent topologies, transfer functions and inputs. (T: temperature,dust, W: wind speed, tansig: hyperbolic tangent function, logsig: sigmofunction)

Number of Hidden

TransferR2

Daily average

Input
Layers and Nodes

function
error (llg/mJ)

in the Layers
tansig

0,943,60
2 (3-3-3-1) logsig0,93D+T+W

3,98

tansig

0,923,34
1 (3-3-1) logsig0,904,08

tansig

0,923,84
2 (2-3-3-1) logsig0,884,80

T+W tansig
0,904,19

1 (2-3-1) logsig0,914,77

tansig
0,894,36

2(2-3-3-1) logsig0,914,17
D+W tansig

0,864,70
1(2-3-1) logsig0,895,01

tansig

0,904,51
2(2-3-3-1) logsigD+T

0,87
4,75

tansig

0,894,79
1(2-3-1) logsig0,884,99

tansig

0,805,21
2 (1-3-3-1) logsig0,834,77

D tansig
0,765,57

1 (1-3-1) logsig0,825,26

According to these results, increasing the topology of the networ

generally

gIvesbetterandaccurateresults.However,sometime

increasing the number of hidden layers could make the system unstablFor example, when the temperature and the wind speed are input to th

•...



network with sigmoid function, network with one hidden layer gave more

accurate results than network with two hidden layers. Similar case is

also occurred when the dust and the temperature are given to the system

as inputs with sigmoid function being the transfer function.

Using more variables ·as input leads to the better results. This is

because system can generalize data better and possible errors or mi stakes

can be distributed through the system and they can be minimized and

cannot effect the results too much. These results are also consistent with

the literature.

Another study on the prediction of S02 is done by USIng the last

seven day's sulphur dioxide values as inputs. Topology of the network is

shown in the Figure 6.6. This experiment is also done with 0.02 learning

rate and 10000 iterations.

Figure 6.6 Network Architecture for S02 predictions with last

seven day's values.

Sigmoid function is used as transfer function and R 2 is calculated as

0,94 and daily average error is calculated as 4,03 Jlg/m3 and these results

are showing that neural network gives accurate results. Figure 6.7

illustrates the comparison between simulated and observed outputs.
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Figure 6.7 S02 predictions with last seven days sulphur dioxide

values

6.2 Prediction of Dust

The network topologies for the dust prediction is shown in Figure

6.8. For this trial input parameters are S02, temperature and wind speed.

The network of the first trial has one hidden layer with three nodes and

the network of the second trial has two hidden layers with three nodes in

each hidden layer, and system is trained with 10000 iterations.

Figures 6.9, 6.10, 6.11 and 6.12 show the results of the neural

network models. It is obtained that neural networks are again able to

learn from the training set and make the predictions accurately. R2

(correlation coefficient between desired and predicted outputs) and daily

average error values are again used to control the accuracy of the

systems. These values are shown in Table 6.2. According to the R2

values and daily average errors, increasing the topology of the network

gives more accurate results than the simple neural networks topology. It

is also obtained that using the sigmoid function makes more accurate

predictions than the hyperbolic tangent function.

Several trials have also been done for dust prediction with the same

procedure (by changing the architecture, transfer functions, and input

parameters). All the experiments have been done with 0,02 learning rate
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and 10000 iterations. Results of these experiments are shown In Table

6.2 and their graphics are shown in Appendix-C.

dust

dust

temperature wind speed

temperature wind speed

Figure 6.8 Network Architectures for dust predictions with three

input parameters
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hidden layer with hyperbolic tangent function
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Table 6.2 Results of the dust predictions with i1cur~1 networks with

different topologies, transfer functions and inputs. ( T: temperature, S:

S02, W: wind speed, tansig: hyperbolic tangent fUoRctioPi, logsig: sigmoid

function)

Number of Hidden
TransferR2

daily average

Input
Layers and Nodes

function
error (Jlg/m3)

in the Layers
tansig

0,923,64
2 (3-3-3-1) logsig0,91S+T+W

4,08

tansig

0,904,09
1 (3-3-1) logsig0,913,90

tansig
0,914,02

2 (2-3-3-1) logsig0,90T+W
4,15

tansig

0,904,07
1 (2-3-1) logsig0,954,30

tansig
0,913,67

2(2-3-3-1) logsig0,89S+W
3,95

tansig
w,~64,62

1(2-3-1)

_.
logsig 0,804,54

tansig
0,923,70

2(2-3-3-1) logsig0,923,51S+T tansig
0,874,42

1(2-3-1) logsig0,864,86.

tansig
O)n4,91

2 (1-3-3-1) logsig0,814,93S tansig
0,305,16

1 (1-3-1) logsig0,845,57

According to these results, increasing the topology of the networks

generally gives better and accurate results. For some models, increasing

the number of hidden layers made the system unstable. For example,

when the temperature and the wind speed are input to the network with

sigmoid function, network with one hidden layer gave more accurate
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results than network with two hidden layer. The similar case is also

occurred when the S02 and the temperature are inputs with hyperbolic

tangent function. It is also obtained that changing the topology of the

network does not make any differences when sigmoid function is used as

a transfer function when the S02 is the only input parameter. Increasing

the number of the parameters also increased the system performance,

best results are occurred with three input parameters.

Another study on the prediction of dust is done by USIng the last

seven days dust values as inputs. The topology of the network is shown

in the Figure 6.13. This experiment is also done with 0.02 learning rate

with 10000 iterations.

dust(t)

dust(t-1) dust(t-2) dust(t-3) dust(t-4) dust(t-5) dust(t-6) dust(t-7)

Figure 6.13 Network Architecture for dust predictions with last

seven days values.

Sigmoid function is used as a transfer function and R2 is calculated

as 0,93 and daily average error is calculated as 4,32 Jlg/m3 and these

results are showing that neural network gives accurate results. Figure

6.14 illustrates the comparison between predicted and actual outputs.
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Chapter 7

CONCLUSIONS

In this study, neural networks are used to predict the sulphur

dioxide and dust concentrations for the city center of izmir. For this

purpose, MAT LAB 6.0 Neural Network Toolbox (Ver. 4) is used. Daily

average values of S02, dust, temperature and wind speed from

01.01.2001 to 30.09.2001 have been used in this study. These data are

separated into two groups; training set (first 197 daily values) and

testing set (last 97 daily values). Back-propagation learning algorithm is

used to train the neural networks. Different networks are developed by

changing the topologies of the systems and types of the inputs. Results

generated from the networks are compared with the exact values, and R2

and daily average errors are calculated to determine the accuracy of the

models.

The satisfactory prediction of the actual measured data by the model

has shown that neural networks can accurately model the relationship

between local meteorological data and S02-dust concentrations in an

urban environment.

In addition, several artificial neural networks models are

constructed in this study, and results have shown that improving the

architecture of the networks gives better and more accurate results. For

S02 forecasting, best results are found by using three input parameters

and a network with two hidden layers. For the dust prediction studies,

the best and the most accurate results are found by using three input

parameters with two hidden layers. The reason of this conclusion is that

improvement in the system (increasing the number of the hidden layers)

increases the system's fault tolerance because errors can be distributed

throughout the system which decreases the differences between the

desired and actual outputs.
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It may be concluded that neural networks are a powerful

computational tool to analyse the complex relationships between air

pollutants and meteorological parameters (wind speed and temperature).

The performance of the neural network models improves as the more

number of inputs are provided; however, they can also make accurate

predictions with limited data. Although giving only one parameter as

input is decreasing the performance of the artificial neural networks

models, it can be said that results are still acceptable both for SOz and

dust predictions.

As future work, when further meteorological parameters (e.g.

relative humidity, NOz, CO, visibility) become available, the

performance of the neural network can be improved. With larger number

of data, better sensitivity analysis can be attained for air pollutants. The

better way to study air pollution and to make better predictions of air

pollutants is to establish a gauging station and collect the appropriate

data as much as possible.
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75



: simulated
.............. : observed

90

80

70

_ 60

~ 50
Cl~
~ 40o
In 30

20

10

o
17.07.2001 01.08.2001 16.08.2001 31.08.2001

time (day)

15.09.2001 30.09.2001

"

"
•

..

Figure A.7 SOz predictions with two input parameters (dust

and wind speed) with one hidden layer with hyperbolic tangent

function

30.09.200115.09.2001

"

-,-----~-----~----___r
16.')8.~001 31.08.2001

time (day)

.,

01.08.2001

"

90

80 : simulated

70 : observed

60

50

40

30

20

10

o
1'!.07.2001

­
..•
E-
Cl
.=:

o
fI)
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with two hidden layer with sigmoid function
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Figure B.3 Dust predictions with two input parameters

(temperature and wind speed) with one hidden layer with hyperbolic
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function
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and wind speed) with two hidden layer with sigmoid function
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