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ABSTRACT

Artificial neural networks are nonlinear mapping structures are
shown to be universal and highly flexible function approximators for the
cases, especially where the underlying data relationships are unknown.
Feed-forward artificial neural networks that are trained with the back-
propagation algorithm are a useful tool for modeling environmental
systems. Back-propagation networks employ a modeling philosophy that
unknown model parameters (i.e. connection weights) are optimized in
order to obtain the best match between a historical set of model inputs

and corresponding outputs.

In this study, a systematic approach to the development of the
artificial neural networks based forecasting model is presented. SO;, and
dust values are predicted with different topologies, inputs and transfer
functions. Temperature and wind speed values are used as input
parameters for the models. The back-propagation learning algorithm is
used to train the networks. R? (correlation coefficient), and daily average
errors are employed to investigate the accuracy of the networks.
MATLAB 6 neural network toolbox is used for this study. The study
results indicate that the neural networks are able to make accurate
predictions even with the limited number of parameters. Results also
show that increasing the topology of the network and number of the
inputs, increases the accuracy of the network. Best results for the SO,
forecasting are obtained with the network with two hidden layers,
hyperbolic tangent function as transfer function and three input variables
(R? was found as 0,94 and daily average error was found as 3,6 pg/m’).
The most accurate results for the dust forecasting are also obtained with
the network with two hidden layer, hyperbolic tangent function as
transfer function and three input variables (R® was found as 0,92 and

daily average error was found as 3,64 pgz’m3).



SO, and dust predictions using their last seven days values as an
input are also studied, and R” is calculated as 0,94 and daily average
error is calculated as 4,03 pg/m’ for SO, prediction and R? is calculated
as 0,93 and daily average error is calculated as 4,32 pg/m’ for dust

prediction and these results show that the neural network can make

accurate predictions.



0z

Yapay sinir aglar1 6zellikle veriler arasindaki iliskilerin tamamiyla
bilinemedigi  durumlarda  her  tarli  verilerle  uygulanabilme
ozelliklerinden dolay: ¢ok kullanisli olan dogrusal olmayan modelleme
sistemleridir. Geri yayilma algoritmas: ile egitilen ileri beslemeli yapay
sinir aglari, ¢gevresel sistemlerin modellenmesinde sik kullanilan ve iyi
sonuglar verebilen bir yoéntemdir. Geriye yayilma algoritmasi,
bilinmeyen model degiskenlerinin (baglanti agirliklari gibi), sistem
girdileriyle ¢iktilar: arasindaki en iyi uyumu saglamak iizere ayarlanmasi

prensibinden hareketle geligtirilmigtir.

Bu ¢aligma, yapay sinir aglarinin kullanilmas: ile SO, ve toz
degerlerinin farkli ag topolojileri, degisik sayida girdi setleri ve farkl
tasvir fonksiyonlarinin kullanilmasi ile 6ngorilmesi iizerinedir. Ginlik
sicaklik  ve riazgar hizi  degerleri de modellerde girdi olarak
kullanilmistir. Yapay sinir aglarinin egitilmesinde geri yayilma
algoritmas:1 kullamilmistir. Ongoériillerin  dogruluklarinin  incelenmesi
amaciyla R’ (korelasyon katsayisi) ve ortalama giinlik hata degerleri
kullanilmigtir. Caligmadan elde edilen sonuglara gore, yapay sinir aglari
kisithh  verilerin kullanilmast durumunda bile basarili o6ngoriler
yapabilmektedir. AZ topolojilerinin gelistirilmesi ve girdi sayilarinin
arttirilmasi ile ongorilerin kesinliklerinin de arttigt gozlenmistir. SO,
ongorisiine yonelik c¢aligmalarda en iyi sonuglar iki gizli katmanin
bulundugu aglarda, hiperbolik tanjant fonksiyonunun tasvir fonksiyonu
olarak se¢ildigi ve toz, sicaklik ve riizgar hizi degerlerinin girdi olarak
kullanildig: sistemde elde edilmigstir (bu ¢aligmanin sonuglarinda R? 0,94
ve ortalama ginlik hata ise 3,6 pg/m3 olarak bulunmustur). Toz
ongoriisiine ait en iyi sonuglar da iki gizli katmanli aglarda, tasvir
fonksiyonu olarak hiperbolik tanjant fonksiyonunun kullanildig ve SO,
sicaklik ve riuzgar hizi degerlerinin girdi olarak kullanildig sistemde
elde edilmistir (bu ¢aligmanin sonuglarinda R? 0,92 ve ortalama ginlik

hata ise 3,64 pg/m’ olarak bulunmustur).

vi



SO; ve toz degerlerinin 6ngériisiine yonelik bir diger ¢alismada ise
ongoriisii yapilacak degiskenlerin son yedi gunlak degerleri girdi olarak
kullanilmis ve sekizinci gine ait deferin 6ngérilmesine galisilmistir.
SO, degerlerinin 6ngorisi igin R* 0,94 ve ortalama giinliik hata ise 4,03
1,1g;’m3 olarak bulunmustur. Toz degerlerinin 6ngérii ¢alismasinda ise R’

0,93 ve ortalama giinliik hata ise 4,32 pg/m’ olarak hesaplanmistir.
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Chapter 1

INTRODUCTION

Urban air pollution has emerged as the most acute problem in recent
years because of its detrimental effects on health and living conditions.
To prevent any further decline in air quality, scientific planning of
analytical methods and pollution control is required. Within this
framework it is necessary to analyze and specify all pollution sources
and their contribution to air quality, to study the various factors which
cause the pollution phenomenon, and to develop tools for reducing

pollution by introducing alternatives to existing practices.

In most of the studies conducted on atmospheric dispersion of
pollutants, wide-ranging prediction techniques, including Gaussian
models and numerical models are generally used. The primary inputs to
dispersion models include emission inventory, meteorological data and
receptor locations. The major output from these models is the predicted
ground-level concentration at specified receptor locations. The models
are mainly based on the mathematical formulation of the physics and

chemistry of the atmosphere, which govern the dispersion of pollutants.

Mathematical models are based on a fundamental mathematical
description of atmospheric processes in which the effects are generated
by causes (Zannetti 1983, 1994). Such models aim to resolve the
underlying chemical and physical equations that control pollutant
concentrations and therefore require detailed emission data and
meteorological conditions for the region of interest. There are generally
severe limitations in accuracy of the data. In addition, some input data
are not easily acquired by environmental protection agencies or local
industries. This means that if these inputs are unknown, then the
application of the mathematical models is problematic. Therefore, in

such cases, it is much more practical to rely on statistical models.



tatistical models are based on semi-empirical statistical relations
vailable data and measurements. They do not necessarily reveal

lation between cause and effect. They attempt to determine the

ng relationship between sets of input data and targets. Examples
tical models are correlation analysis (Abdul-Wahab et al., 1996)
e series analysis (Hsu, 1992). However, the complex and
mes non-linear relationships of multiple variables can make
al models awkward and complicated (Comrie, 1997). Therefore,
pected that they will underperform when used to model the
ip between environmental and the other variables that are

non-linear.

cial neural networks provide an attractive alternative tool for
sting researchers and practitioners. Several distinguishing
artificial neural networks make them valuable and attractive
orecasting task. As opposed to the traditional model-based
artificial neural networks are data-driven self-adaptive methods
there are few a priori assumptions about the models for problems
study. They learn from examples and capture subtle functional
iships among the data even if the underlying relationships are
yn or hard to describe. Thus artificial neural networks are well
for problems whose solutions require knowledge that is difficult
ify but for which there are enough data or observations. This
ng approach with the ability to learn from experience is very
for many practical problems since it is often easier to have data
n to have good theoretical guesses about the underlying laws

ing the systems from which data are generated.

The purpose of this research is to investigate the modeling of the
dust parameters with artificial neural networks for the city
er of izmir. For this purpose meteorological data (temperature and
5 eed) are selected as input. These data sets are divided into two
training and testing set. The training set is used to train the

'm and back-propagation algorithm is selected as a learning algorithm.



s presented to the system to produce the output which is
s predicted outputs and these outputs are compared with the

red) values.

er 2, fundamental principles of artificial neural networks
ed. Historical development of the neural networks and

are also given in this chapter.

er 3, back-propagation algorithm is given and mathematical
ack-propagation algorithm is examined. Training procedure

bed in this chapter.

er 4, artificial neural networks are studied as a forecasting
1 development processes for forecasting and the forecasting
given in this chapter. Literature review of the forecasting

ntal variables is also given in this chapter.

\apter 5, sulphur dioxide and dust parameters are explained,
ces, health effects, and hazards on human beings and
nt are given. In this chapter, the training and testing sets

- used for modeling), and the modeling procedure are also

hapter 6, experimental results of SO, and dust predictions are
cording to the results, neural networks are able to make

and accurate predictions. These results are discussed in this



Chapter 2

.i ARTIFICIAL NEURAL NETWORKS

neural networks are one of the artificial intelligence
ogies. The term “artificial intelligence”, in its broadest
ses a number of technologies that include, but is not
systems, neural networks, genetic algorithms, fuzzy
~cellular automata, chaotic systems, and anticipatory
ingly, most of these technologies have their origins in
havioral phenomena related to human or animal.
nany of these technologies are simple analogs of human

tems.

erm “artificial intelligence” came into common use at a
t Dartmouth College, and it is defined as “Computer process
ts to emulate the human thought process which is associated

hat require the use of intelligence”.

cal Development of Neural Networks

to say that first studies of neural networks have been
beginning of the 1940s. McCulloch and Pits (1943)
t are generally regarded as the first neural networks. These
gnized that combining many simple neurons into neural
source of increased computational power. The flow of
rough the net assumes a unit time step for a signal to
ne neuron to the next. This time delay allows the net to

physiological processes, such as the perception of hot and

d of 1940°s Hebb who is a psychologist at McGill

igned the first learning law for artificial neural networks.



“was that if two neurons were active simultaneously, then the
f the connection between them should be increased.
vere subsequently made to this rather general statement to

simulations (Rochester et al., 1956).

: with several other researchers Block (1962), Minsky and
osenblatt (1958, 1959, 1962) introduced and developed a
artificial neural networks called “perceptrons”™. The
g rule uses an iterative weight adjustment that is more
‘Hebb rule.

Hoff (1960), developed a learning rule that is closely
eptron learning rule. The delta rule adjusts the weights
ence between the net input to the output unit and the
is results in the smallest mean squared error. The
ning rule for a single-layer network is a precursor of

on rule for multi-layer networks.

‘1970’5 the early work of Kohonen (1972), dealt with
' ry neural networks. His more recent work (Kohonen,
the development of self-organizing feature maps that use
ructure for the cluster units. These networks have been

recognition (Kohonen et al., 1987).

he reasons for the quite years of the 1970°s were the failure
perceptrons to be able to solve such simple problems
the Xogr function and the lack of a general method of
ayer net. A method for propagating information about
t units back to the hidden units had been discovered in
de (Werbos, 1974) but had not gained wide publicity.
covered by Parker (1985) and by LeCun (1986) before it
own. Parker’s work came to attention of the Parallel
ssing Group led by psychologist David Rumelhart of
the California and James McClelland of Carneigie-

ity who refined and publicized it.



el prize winner John Hopfield has developed a number of
orks based on fixed weights and adaptive activations
2, 1984; Hopfield and Tank, 1985, 1986, 1987). These
serve as associative memory nets and can be used to solve

sfaction problems such as the “Traveling Salesman

. tals of Neural Networks

neural networks are computer programs that emulate
al networks. In order to process vague, noisy, or
'mation, researchers are turning to biological neural

odel for a new computing paradigm.

,:‘f_-heural systems are unlike traditional programming
erman, 1993). Generally, traditional methods use
ning to apply known rules to situations to produce
new situation may require that another rule be
he programs can become quite large and complicated in
ddress all possible situations. Artificial neural systems,
natically construct associations based upon the results of
s. For each new situation, the neural system

' adjusts itself and eventually generalizes these new

tworks are a form of artificial intelligence related
-ey'are massively parallel systems that rely on dense
f interconnections and simple processors. Artificial neural
eir name from the networks of nerve cells in the brain
., 1994). They are motivated by the neural architecture and
brain. Although a great deal of biological detail is
ese computing models, the artificial neural networks

the structure observed in the brain to provide insight

al neural processing may work. T "’5—‘1'?&%
\'[FJ?\‘{\\KSH TEKHOLOMN b=
W 1V e & ¢
?\t‘\ 1 1 J wa Rl
r b e ‘."n":;i' '_,"-'1:“; nSk
hone v it



I Basis of Neural Networks

an brain is a very complex system capable of thinking,
nd problem solving. The fundamental cellular unit of the
system is a “neuron”. It is a simple processing element
d combines signals from other neurons through input
ndrites”. If the combined input signal is strong enough,
» neuron to produce an output signal along the axon that
drites of many other neurons. Figure 2.1 is a sketch

ng the various components.

dendrites

Axon

i

information flow

| A biological neuron and components (Soucek, 1989)

neuron is a model whose components have direct
onents of an actual neuron. Figure 2.2 shows the

ntation of an artificial neuron. The input signals are

' negative, corresponding to acceleration or inhibition of



'_electrical signals. This processing element consist of two
alas and Uhrig, 1997). The first part simply aggregates
‘weighted inputs resulting in a quantity I; the second part is
a nonlinear filter, usually called the “activation function”

ich the combined signal flows.

Sum of weighted input (2.1)
Activation Function (2.2)
Artificial

Neuron

Sum of . iEs Axon
WBighted Activatlon ( ) ’ Yj

Function
Input
e Output

k Path

(SOMA)

hematic representation of an artificial neuron
1997)

nents of Artificial Neurons

n (Figure 2.2) can also be called as a processing
ng element handles several basic functions. A
aluate the input signals, and after determining
nput signal, it can compare the threshold level

. Finally it can determine the output according to



and Outputs

e are many inputs to a biological neuron, there should be
als to the processing element and all of them should
usly. Depending on the threshold level processing

d be activated and then it may produce or not produce an

on, just as real neurons are affected by things other than
works provide a mechanism for other influences. This

 called as a “bias term” or a “forcing term”. (Lek and

g Factors

ut will be given a relative “weighting” (Figure 2.2) which
impact of that input. Weights are adaptive coefficients
vork that determine the intensity of the input signal
lingworth, 1994). The initial weight for a processing
d be modified in response to various inputs and according to

vn rules for modification.
r Functions

ship between inputs and outputs at any instant is
1e transfer or the activation function. The sum of the
becomes the input to the transfer function, which
ut from the particular processing element. A number of
are commonly used. Typically they are non-linear and
s the transfer functions which are generally used in

. studies.

n: The linear transfer function (Figure 2.3a) calculates

by simple equation (where « is a scalar) :



2.3

n be trained to find a linear approximation to a nonlinear
ar network cannot be made to perform a nonlinear
‘urada, 1992).

imiter) Function: The hard limit transfer function
to output a P if its net input reaches a threshold,
utputs a (Figure 2.3b). This allows a neuron to make a
fication (Tsoukalas and Uhrig, 1997). It can say yes or
euron is often trained with the perceptron learning

parameters are chosen as 3 =1 and o = 0 or 1 in the

f(x) f(x)
p 1
E x X
L e o
= value
b-) step (hard limiter function) c-) ramping function
1

= =md EEEEEE SIS NI IEEEEEES

e-) hyperbolic tangent function

Transfer Functions (Bose and Liang, 1996)

10



on: For inputs less than -1 ramping function (Figure
For inputs in the range -1 to +1 it simply returns to
For inputs greater than +1 it produces +1, but this
continuous function at the intersection points
1g, 1997). This network can be tested with one or
which are presented as initial conditions to the
itial conditions are given, the network produces an
fed back to become the input. This process is

until the output stabilizes.

: The sigmoid transfer function (Figure 2.3d) takes
have any value between plus and minus infinity,
t into the range 0 to 1. This transfer function is
ckpropagation networks, in part because it is
and Illingworth, 1994). The mathematical

id function is:

(2.4)

t Function: Alternatively, multi-layer networks
rbolic tangent transfer function (Figure 2.3e).
4 nctions output range is [-1, 1] and also its
(LiMin Fu, 1994). The mathematical expression

nt function is :

(2.5)

nctions

is attached to the processing element, the
ld restore the previous computations results and
rding to these results. The ability to change the
sarning” (Engel, 1994).

11



ural Networks

neural network can be defined as “a data processing
of a large number of simple, and highly interconnected
nts in an architecture inspired by the structure of the
oukalas and Uhrig, 1997).

mics of an individual processing element are decided
specifying a neural network is to determine the
individual processing elements. These processing
ally organized into a sequence of layers with

en the layers.

f elements needed for the input and output layers will
er of inputs and outputs for the system. Figure 2.4

ral network architecture.

¥i y2 V3

X1 X2 X3

;}:"_5;-1 of an Neural Architecture (Rafiq et. al., 2001)

12



chitecture (Topology) of Neural Networks

geometry is generally defined by the number of hidden
s and the number of nodes in each of these layers. It
‘the number of model parameters that need to be estimated. If
| insufficient number of parameters, it may be difficult to
rgence during training, as the network may be unable to
vate fit to the training data. On the other hand, if too
lers are used in relation to the number of available training
etwork may lose its ability to generalize. In addition,
number of parameters to a minimum reduces the
time needed for training. It has been shown that artificial
ks with one hidden iélyer can approximate any continuous

sufficient degrees of freedom (Maier and Dandy, 2001).

er of nodes in the input layer is equal to the number of
: 'hereas the number of nodes in the output layer
he number of model outputs. There are some general
ch may be followed to optimize the number of hidden
s in these layers. The literature suggests the following
number of hidden layer nodes in order to ensure that

etworks to approximate any continuous function;

(2.6)

ymber of hidden layer nodes and N' is the number of
f inputs) (Hecht-Nielsen, 1987). However, in order
networks do not overfit the training data, the
| the number of training samples and the network
onsidered (Yao and Tan, 2000). The following

umber of hidden layer nodes is recommended to

13



(2.7)

number of training samples. Consequently, the upper
ber of hidden layer nodes may be taken as the smaller
r N obtained using (3) and (4). However, in many

 performance can be obtained with fewer nodes.

um number of hidden layer nodes, on the other hand,

n found by using a trial and error approach.

architecture is also characterized by the
nodes in layers. The connections between nodes in a
ly determine the behavior of the network. For most
as other applications, the networks are fully
1l nodes in one layer are only fully connected to all

igher layer except for the output layer.

are often classified as single-layer or multi-layer.

ral Networks: A single-layer neural network has one
weights. Often, the units can be distinguished as
eceive signals from the outside world, and output

the response of the net can be read (Fausett, 1994).

Networks: A multi-layer neural network is a net
rers of nodes between the input units and the output
ural networks can solve more complicated prbblems
al networks , but training may be more difficult.
e of an multi-layer neural network architecture
7, 1997).

all

‘perform two major functions; “learning” and

process of adapting the connection weights in

14



al network to produce the desired output in response to
the input buffer. Recall is the process of accepting an
and producing an output response in accordance with the
cture (Corchado and Fyfe, 1999).

types of learning; “supervised” and “unsupervised”.

ng: Supervised learning assumes the availability of
visor who classifies the training samples. In this mode
a neural network is compared to the desired output.
> generally randomly set to begin with, are then
k so that the next iteration, or cycle, will produce
supervised learning, it is necessary to train the
ing consist of presenting input and output data to

enerally referred to as the “training set” (Zhang et

pning: Unsupervised learning also called as self-
ere, networks use no external influences to adjust
there is an internal monitoring or performance.
regularities or trends in the input signals, and

ing to the function on the network (Zhang et

without a Teacher
as introduced by Hebb (1949) as :

(2.8)

portionally representing the learning rate;

s connected to the input of unit i through

15



; a; 1s the state of activation and the output o; is a function
ation state . According to this rule, where unit i and j are
usly excited, the strength of the connection between them

n proportion to the product of their activations.
e Delta Rule (Widrow-Hoff Rule) with a Teacher

le is based on the simple idea of continuously modifying the
e connections to reduce the difference (the delta) between
utput and the current output. This learning rule is also
t mean square (LMS) learning rule because it minimizes

1ared error (Spellman, 1999).
ti-yijlxi (2.9)

e learning rate, x as training input, t is the target output for

honen Learning Rule without a Teacher

s inspired by learning in biological systems. In this
T'___processing elements compete for the opportunity of
cessing element with the largest output is declared the
he capability of inhibiting its competitors as well as
hbors; for this reason, sometimes this rule is also

petitive learning rule (Bose and Liang, 1996).

§ + 10X~ Wold) (2.10)

vector, Wyew is the new weight factor and n is the

Minimum-Energy Rule

concentrates on the units that are symmetrically

are always in one of two states: +1 or —1. The

16



y of the system is defined as:
j+20isi (2.11)

Wkisi —0k (2.12)

state of the ith unit (-1 or 1), 0; is the threshold, and AEy

ce between the energy of the whole system with the kth
> and its energy with the kth hypothesis true (Bose and

Learning Rule

n learning algorithm is designed for a machine with
ctions. The binary threshold in a perceptron is

1 a Boltzmann machine it is probabilistic:

(2.13)

ity for the ith unit to be in state 1, P(x) is a
function, T 1is a parameter analogous to
sures the noise introduced into the decision; and

input to the unit. This rule has been designed to

ation problems in vision. The learning is
gradient with respect to w;; depends on the
Jjth units (Reich et al., 1999).

on Learning

' of errors technique is the most commonly
Ita Rule. This procedure involves two
the “forward phase”, occurs when the
sated forward through the network to

each processing element. For each

17



ement, all current outputs are compared with the desired

> difference, or error is computed (Bose and Liang, 1996).

ond phase, called the “backward phase”, the recurrent
ation (from the first phase) is performed in a backward

 when these two phases are complete can new inputs be

18



Chapter 3

BACK-PROPAGATION ALGORITHM

ropagation is a systematic method for training multiple
ore) layer artificial neural systems. The elucidation of this
orithm in 1986 by Rumelhart et al., was the key step in
ural networks practical in many real-world situations.
jas developed independently by Parker in 1982. This method
ient descent method to minimize the total squared error

computed by the net.

propagation is the most widely used of the neural

ligms and has been applied successfully in applications in a

pagation network is usually layered, with each layer fully
the layers below and above. When the network is given an
ting of activation values propagates forward from the
yrocessing units, through each internal layer, to the output
ng units. The output units then provide the network’s
the networks corrects its internal parameters, the
sm starts with the output units and back-propagates
each internal layer to the input layer. Hence, it is

rror propagation”, or “back-propagation”.

Q‘:.hack-propagation lies in its ability to train hidden
has middle or hidden layers of processing units.
ts as a layer of “feature detectors” which are units
ic features in the input pattern. These feature
earning takes place, and are developed in such a

plish the specific task presented to the network.

19



k Structure

agation employs three or more layers of processing units.
ows the topology for a typical three-layer back-propagation
ttom layer of units is the input layer (the only units in
receive external input). The layer above is the hidden
the processing units are interconnected to layers and

layer is the output layer.

output
unit

D<) r
hidden
. unit
\ inp}xt
. unit

three-layered back-propagation network, fully
pukalas and Uhrig, 1997)

gure 3.1 are fully interconnected (each processing
every unit in the layer above and in the layer

onnected to other units in the same layer.

n networks do not have to be fully interconnected,

ations have been done with fully interconnected

ic back-propagation processing unit is shown.
outputs are at the right. The processing unit
s (S;), an output value (a;), and an associated

sed during weight adjustments.
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TEQSE O

i = weighted sum of inputs = Zwix;

F(S;) = output

ire 3.2 The basic back-propagation processing unit
and Uhrig,1997)

_ssociated with each interconnection are adjusted during
> weight to unit j from unit i is denoted as w;;. After learning
the weights are fixed. These final values are then used
sessions. Figure 3.2 illustrates the weights along the
>tions to the processing unit at the center. There is a
weight values that corresponds to each layer of
(Figure 3.3); these matrices are indexed with
tinguish in different layers.

ILAYER 2 ILAYER 3

% e 3
W™ Wiz

3 W' Wig' Wiy piaily
oW W Wy an an
3 Wi1" Wa

atrices of a three-layered back-propagation system

21



'ack-propagation learning algorithm involves a forward-
g step followed by a backward-propagating step. Both the
nd back-propagation steps are done for each pattern
during training. The forward-propagation step begins with
ation of an input pattern to the input layer of the network, the
le of each processing unit propagate forward thorough the
. In each successive layer, every processing unit sums its
~ then applies a transfer function (sigmoid or tangent
function in this study) to compute its output. The output layer
;;)roduces the output of the network.

'_ward-propagation step begins with the comparison of the
tput pattern to the target data, when the difference, or
culated. The backward-propagation step then calculates
for hidden units and changes incoming weights, starting
layer and moving backward through the successive
. In this back-propagating step, the network corrects its

way as to decrease the observed error.

ue (8) associated with each processing unit reflects the
or associated with that unit. This parameter is used during
ection procedure, while learning is taking place. A larger
ates that larger correction should be made to the

and its sign reflects the direction in which the weights

op gation

propagation step is initiated when an input pattern is
ork. Each input unit corresponds to an entry in the
, and each unit takes on the value of its entry. After
r the first layer of units is set, the remaining layers
pagation step, which determines the activation

s of units. _ —
1 1ZMIR YUKSEK TERRCLUS ERo
!1: 0L LR

(8
y




Bias Unit

Processing
Element

Sj == Zajoi

output = f(S;)

he forward-propagation step (Soucek, 1989)

illustrates the specifics of the forward-propagation step.

’tions to unit j are at the left and originate at units in the

utput values from these units arrive at unit j and are

(3.1)

el of unit 1,

unit i to unit j (unit 1 is one layer below unit j)

sum S; is computed, a function f is used to
nction f, sigmoid or tangent hyperbolic functions
d and illustrated in Figure 2.3d and 2.3e. f(x)
ally as x gets larger, and f(x) approaches 0
mes a greater negative value for sigmoid
es 1 asymptotically as x gets larger, and f(x)

ly as x becomes a greater negative value for



1 for the sigmoid function is,

(3.2)
for the tangent hyperbolic function is,
(3.3
he weighted sum of unit j, (3.2) becomes;
- (3.4)
b T
-_:_,.-Sj eZain'i_e—Eaini

(15)

R 2aiwji  -Xaiwjj

transfer functions computed (Sj), the resulting value
ion level of unit j. This value, the output of unit j, is

t interconnections (on the right of Figure 3.4).

r units constitute a special case. These units do not
d sum on their inputs because each input unit simply
nding value taken from the input vector. The input
to be a layer of the network, although it does not

d sum and sigmoid calculations.

gation networks employ a bias unit (Figure 3.4) as
pt the output layer. Each bias unit is connected to
gher layer, and its weights to them are adjusted
propagation. The bias units provide a constant term
units in the next layer. The result is sometimes an

sonvergence properties of the network.
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[he bias unit also provides a “threshold” effect on each unit it
5. It contributes a constant term in the summation S;, which is the
nd in the transfer functions (3.4) and (3.5). This is equivalent to

ating the function’s curves to the left or to the right.

For example, suppose the bias unit (ap) has an output value of

iWji (3.6)

hen z is the incoming sum from all of the units other than the
If the bias unit contributes the constant ¢ to the incoming sum
then this sum becomes, “z + ¢”. Constant ¢ translates the graph
t ¢, thus moving the threshold of the sigmoid or tangent
e from 0 to —c. In this way, the bias units provide an
shold for each target unit. The threshold for unit j then

alue of wjp, which is the weight of the interconnection

strates the back propagation network. The error
for all processing units and weight changes are
rconnections. The calculations begin at the output
kward through the network to the input layer. The
te backward through the network, where they

eights.

step takes place after a pattern is presented at
orward-propagation step is completed. Each

ut layer produces a single real number for its

25



pared to the target output specified in the training

ference, an error value is calculated for each unit in

iveights are adjusted for all of the interconnections
layer. Then an error value is calculated for all of
layer that is just below the output layer. Then, the
for all interconnections that go into the hidden

ontinued until the last layer of weights has been

em of the back-propagation algorithm is that the
ave no target values. Hence, the training is more
¢ the error must be propagated back through the

€ non-linear functions, layer by layer.

COMPUTED
OUTPUT
O
A
o jle—
A

propagation network (Fausett, 1992)

by the variable 8, is simple to compute for
. more complicated for the hidden layers. If

hen its error value (§;) is:

(3.7)
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‘ the target value for unit j

.= the output value for unit j

= the derivative of the transfer function f
weighted sum of inputs to j

The quantity (tj-a;) reflects the amount of error. The f’, scales
to force a stronger correction when the sum Sj is near the rapid

e curves. Figure 3.6 illustrates the form of the f' functions.

(b)
e 3.6 The derivatives of the transfer functions a-) derivative
id function, b-) derivative of the hyperbolic tangent function

3.2 illustrates j as a unit in a hidden layer. In such a

: error value of j is computed as:

Ok WK (3.8)

a weighted sum is taken of the & values of all units that

ym unit j. The ' again serves to scale this output by

> region of rapid rise of the sigmoid function.

nt of the connection weights is done using the & values

nit. Each interconnection weight is adjusted by taking

27



account the & value of the unit that receives input from that

ection. The connection weight adjustment is done as follows:

ji = ndja; : (3.9)

Figure 3.7 diagrams the adjustment of weight w;j;, which goes
j from unit i. The amount adjusted depends on three factors: §j,

. This weight adjustment equation is known as the generalized-

e size of the weight adjustment is proportional to &j, the error
f the target unit. Thus a larger error value for unit j results in

ljustments to its incoming weights.

i i 5;: ERROR
VALUE

iji=nai5j

re 3.7 Process of Weight Updating (Fu, 1994)

weight adjustment is also proportional to a;, the output value
iginating unit. If this output value is small, then the weight
s small. If this output value is large, then the weight
‘is large. Thus a higher activation value for incoming unit i

larger adjustment to its outgoing weight.

ariable n in the weight-adjustment equation (3.9) is the
e. Its value is chosen by the neural network user, and usually
_'!'e of learning of the network. Values that are very large
. instability in the network, and unsatisfactory learning.
~are too small can lead to excessively slow learning.
learning rate is varied in an attempt to produce more
ing of the network. For example, allowing the value of n

h value and to decrease during the learning session can
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mes produce better learning performance.
-Propagation Learning Algorithm (Generalized Delta Rule)

performing neural network analysis, the accuracy of the

be determined through error analysis.

ie error function is defined to be proportional to the square of the

between the actual and desired output, for all the patterns to

%?“pj —ap; )2 ' (3.10)

ere, Ep is the error function for pattern p, t,; represents the
ut for pattern p on node j, while a,; represents the actual

node. wj; is the weight from node i to node j.

activation of each unit j, for pattern p, can be written as

";ZW jidpi (3.11)
1

imply the weighted sum.

itput from each unit j is the threshold function fj acting on the
um. In the perceptron, this was the step function; in the back-
n (multi-layer perceptron), it is generally the sigmoid

hyperbolic tangent function is also used in this study.

(3.12)

(3,13)
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 written by the chain rule.

he derivative of S,; with respect to w;; can be written as follows:

=apj (3.14)
=0, except when k =i it equals to 1.

nge in error can be defined as a function of the change in

uts to a unit.

=8 (3.15)

(3.16)

in the value of the error function, Ep, implies that the

-;_re proportional to dpj api, i.e.

(3.17)

to determine 8pj for each of the unit. If known, then

sed. Using (3.16) and the chain rule:
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. T ; P (3.18)
6 %pi p
der the second term in (3.13), and from (3.12),
~=11(Spj) (3.19)

now the first term in (3.18). From (3.10), E, can be

ntiated with respect to a,;, giving

2~ (1 -ap)) (3.20)

| = /jSpj)Xtpj ~2pj) (3.21)

s is useful for the output units, since the target and output are

‘j_able, but not for the hidden units, since their targets are not

if units j is not an output unit, it can be written, by the chain

9Ep OSpk
Spk apj
E OE F)
B ““p
—““"‘—*_"Zwkiapi (3.22)
'k OSpk Gap;
. _Espkwkj (3.23)

1) and (3.15), and noticing that the sum drops out since the

ferential is non-zero for only one value, as shown in (3.14).
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ituting (3.23) in (3.18), the following is obtained:

dpj = £§(Spj) L pk Wkj (3.24)

equation represents the change in the error function, with
' to the weights in the network. This provides a method for
1g the error function and reducing it. The function is proportional
Irors 8y in subsequent units, so the error has to be calculated in
put units first (given by (3.21)) and then passed back through the
he earlier units to allow them to alter their connection weights. It
passing of this error value that leads to the network being
to as “back-propagation networks”. Equation (3.21) and (3.24)

define how multi-layer networks are trained.

> advantage of using the sigmoid function as the non-linear
d function is that it is quite like the step function, and so should

ate behavior of a similar nature. The sigmoid function is

" l+e P

e range 0 < f (Spi) < 1.

ajor reason for its use is that it has a simple derivative, and
the implementation of the back-propagation system much

n that the output of a unit, apj is given by

el (3.26)

1+€-Spj

ve with respect to that unit, f'(Spj)is given by
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el
R

(1+f:“Spj )2
i) = f(Spj (1 f(Spj))
pi) = apj(1-2p;). S

“advantage of using the hyperbolic tangent function as the non-

eshold function is that it has the range -1 < f (S;;) < 1.

hyperbolic tangent function is defined as

I —Xx
= (3.28)
e X
the output of a unit, apj is given by
4 Spi —Spi
Pl _e “P
- (3.29)

espj + e_Spj

ivative with respect to that unit, f’(Spj-)is given by

(4]

4 Spj _e“Spj * eSpj _e_Sp.l
I s it
en . Spi Spi 4 o Spi

+ /Sl 1- 7S )] S
tive is a simple function of the outputs.
aining

ation networks are trained by supervised learning
the network is presented with a series of pattern

~consisting of an input pattern and a target output
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. Each pattern is a matrix or vector format of real numbers. The
_'put pattern is the desired response to the input pattern and is

determine the error values in the network when the weights are

¢ target output pattern is sometimes designed to represent a
ation for the input pattern. In this way, the network may be
ith a series of input patterns together with the classification
ut pattern. In other applications, the target output is simply a

yattern response to the input pattern, and the network is trained

attern-mapping system.

patterns in the training set are presented to the network
Each training iteration consists of presenting each
pattern pair once. When all patterns in the training set have
ented, the training iteration is completed, and the next training
begun. A typical back-propagation example can entail

or thousands of training iterations.

raining procedure is as follows:

izing the weights to small values (both positive and negative)
hat the network is not saturated by large values of weights. (If
, start at equal values, and the desired performance requires

ights, the network would not be trained at all. )
he training matrix to the network after selecting the training set

g the error, or the difference between desired and calculated
e weights of the network again in a way to minimize the error

these steps for each pair of input-output values in the

intil the error for the entire system is acceptably low.
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rergence Criteria

a network is trained successfully, the error decreases as the
sion progresses. It is important, then, to have a quantitative
of learning. The average error is usually calculated to reflect
to which learning has taken place in the network. This
reflects how close the network is getting to the correct answers.

twork learns, its average error decreases.

gence is a process whereby the error value for the network
r and closer to 0. Convergence is not always easy to achieve
process may take an exceedingly long time and sometimes

:'_'_'gets stuck in a local minimum and stops learning altogether.

it is desired to find a global minimum. This corresponds to
or value possible. Unfortunately, it is possible to encounter
mum. Nevertheless, a local minimum is surrounded by higher
d the network usually does not leave a local minimum by the
k-propagation algorithm described. Special techniques

d to get out of a local minimum.

"_earance of a local minimum is not always a significant
ack-propagation networks typically converge to a good error
| the training examples are clearly distinguishable. When a
im is encountered, the network may be able to avoid entering
inimum by a number of techniques, for example, changing
rameter or the number of hidden units. These techniques
the scenario involved with moving on a different path in

nd may cause the network to avoid the local minimum.

small random values to the weights allows the network to
local minimum once it is encountered by moving the
the network from a local minimum to a random point some
ly. If the new position is sufficiently removed from the local

en convergence may proceed in a new direction without
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 stuck in the same local minimum again.
rengths and Limitations of Back-Propagation Algorithm

principal strength of back-error propagation is its relatively
| pattern-mapping capability; it can learn a tremendous variety of
n-mapping relationships. It does not require any a priori knowledge
_hematical function that maps the input patterns to the output
1s; back-propagation merely needs examples of the mapping to be
The flexibility of the paradigm is enhanced by many design
s available (choices for the number of layers, interconnections,
g units, the learning constant, and data representations), As a
ack-error propagation might be able to address a broad spectrum

ications.

:  largest drawback with back-propagation algorithm appears to be
mvergence time. Training sessions can require hundreds or
of iterations for relatively simple problems. Realistic
ations may have thousands of examples in a training set, and it
¢e days of computing time (or more) to complete training. Usually
gth needs to be done only during the development of network,
> most applications require a trained network and do not need on-

raining of the net.

variety of special techniques have been developed in a attempt to
convergence time and to avoid local minima. A “momentum”
.metimes used to speed convergence procedures. Improvements
ergence have also been found by varying the learning parameter n
ing with a larger value for n and progressing to smaller values.
ues for avoiding local minima include changing the network or

ing set, and adding small random values to the weights.
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Chapter 4

FORECASTING WITH

ARTIFICIAL NEURAL NETWORKS

Recent research activities have shown that artificial neural networks
ve powerful pattern classification and pattern recognition capabilities.
rrently, artificial neural networks are being used for a wide variety of
in many different fields of business, industry and science (Widrow
al., 1994).

One major application area of artificial neural networks is
ecasting (Kolehmainen et al., 2000). Artificial neural networks
vide an attractive alternative tool for both forecasting researchers and
itioners. Several distinguishing features of artificial neural

works make them valuable and attractive for a forecasting task.

First, as opposed to the traditional model-based methods, artificial
networks are data-driven self-adaptive methods in that there are
a priori assumptions about the models for problems under study.
 learn from examples and capture suitable functional relationships
ng the data even if the underlying relationships are unknown or hard
scribe. Thus artificial neural networks are well suited for problems
¢ solutions require knowledge that is difficult to specify but for
1 there are enough data or observations. This modeling approach
the ability to learn from experience is very useful for many
cal problems since it is often easier to have data than to have good
tical guesses about the underlying laws governing the systems

vhich data are generated.

Second, artificial neural networks can generalize. After
-j-‘the data presented to them (a sample), artificial neural networks

1 correctly infer the unseen part of a population even if the
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imple data contain noisy information. As forecasting is performed via
rediction of future behavior (the unseen part) from examples of past

ghavior, it is an ideal application area for neural networks, at least in

inciple.

Third, artificial neural networks are universal functional
pproximators. It has been shown that a network can approximate any
ontinuous function to any desired accuracy (Irie and Miyake, 1988;
ornik et al., 1989; Cybenko, 1989; Funahashi, 1989; Hornik, 1991,
93). Artificial neural networks have more general and flexible
nctional forms than the traditional statistical methods can effectively
al with. Any forecasting model assumes that there exists an underlying
j'::;-. or unknown) relationship between the inputs (the past values of
 time series and/or other relevant variables) and the outputs (the
ure values). Frequently, traditional statistical forecasting models have
itations in estimating this underlying function due to the complexity
the real system. Artificial neural networks can be a good alternative

hod to identify such a function.

.-'inally, artificial neural networks are nonlinear. Forecasting has
g been the domain of linear statistics. The traditional approaches to
- series prediction assume that the time series under study are
rated from linear processes. Linear models have advantages in that
_n be understood and analyzed in great detail, and they are easy to
in and implement. However, they may be totally inappropriate if
inderlying mechanism is nonlinear. It is unreasonable to assume a
i that a particular realization of a given time series is generated by

ear process. In fact, real world systems are often nonlinear
dduq et al., 2002).

he idea of using artificial neural networks for forecasting is not
The first application dates back to 1964. Hu (1964), in his thesis,
he Widrow’s adaptive linear network to weather forecasting. Due

k of a training algorithm for general multi-layer networks at the
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the research was quite limited. It is not until 1986 when the back-
gation algorithm was introduced (Rumelhart et al., 1986) that there
en much development in the use of artificial neural networks for
sting.

orecasting the Environmental Variables with Artificial Neural
tworks

n recent years, artificial neural networks have become a popular
eful tool for modeling environmental systems. They have already
-cessfully used to simulate the export of nutrients from river
air et al., 1996), to forecast salinity (DeSilets et al., 1992) and
levels (Comrie, 1997), to predict air pollution (Boznar et al,
and the functional characteristics of ecosystems (Paruelo et al.,
to model algal growth, and transport in rivers (Whitehead et
. Many environmental modelers are “experimenting” with
1l neural networks on datasets for which the use of more

al techniques (e.g., regression) has been unsuccessful.
lodel Development Process

Data Normalization

linear activation functions have the squashing role in restricting
hing the possible output from a node to, typically, [0,1] for
function or [-1,1] for tangent hyperbolic function. Data
ation is often performed before the training process begins. As
d earlier, when nonlinear transfer functions are used at the
des, the desired output values must be transformed to the range
lual outputs of the network. Even if a linear output transfer
s used, it may still be advantageous to standardize the outputs
inputs to avoid computational problems, to meet algorithm

it, and to facilitate network learning (Mok and Tam, 1998).
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- Here are the generally used methods for normalization:

E. . Ko =K
Linear transformation to [0,1]: xp = —2—™N_ (7urada, 1992)
Xmax ~ Xmin

1 : Rl
Linear transformation to [-1,1]: xn=2*[—u—m—J—l (Zurada,
' Xmax ~ Xmin

2)

* . . - xO ""?
atistical normalization: xp =

(Soucek, 1992)

Simple normalization: x5 =—°— (Bose and Liang, 1996)
Xmax

Normalization of the output values (targets) is usually dependent of
jormalization of the inputs. For time series forecasting problems, the
alization of targets is typically performed together with the inputs.
choice of range to which inputs and targets are normalized depends
ly on the activation function of output nodes, with typically [0, 1]
bgistic function and [-1, 1] for hyperbolic tangent function. Several
rchers scale the data only to the range of [0.1, 0.9] (Srinivasan et
994) or [0.2, 0.8] (Tang et al., 1993) based on the fact that the
near activation functions usually have asymptotic limits (they reach
mits only for infinite input values) and the guess that possible
'.};'_ may lie, for example, only in [0.1, 0.9], or even [0.2, 0.8] for a
ic function (Bose and Liang, 1996).

1 this study, linear normalization methods have been used for
_function and hyperbolic tangent function and their ranges were

or sigmoid function and [-1,1] for hyperbolic tangent function.

should be noted that, as a result of normalizing the target values,
erved output of the network will correspond to the normalized
Thus, to interpret the results obtained from the network, the
must be rescaled to the original range. From the user’s point of
'."accuracy obtained by the artificial neural networks should be

 the rescaled data set.
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4,1.1.2. Training and Testing Sets

As it is mentioned earlier, training and testing sample are typically
required for building an artificial neural network forecaster. The training
sample is used for artificial neural networks model development and the
lest sample is adopted for evaluating the forecasting ability of the model.
Sometimes a third one called the validation sample is also utilized to
ivoid the overfitting problem or to determine the stopping point of the
raining process (Tsoukalas and Uhrig, 1997). It is common to use one

est set for both validation and testing purposes particularly with small
ata sets.

The first issue here is the division of the data into the training and
st sets. Although there is no general solution to this problem, several
actors such as the problem characteristics, the data type and the size of
¢ available data should be considered in making the decision. It is
itical to have both the training and test sets representative of the
pulation or underlying mechanism. This has particular importance for
me series forecasting problems. Inappropriate separation of the training
d test sets will affect the selection of optimal artificial neural network

ucture and the evaluation of artificial neural network forecasting
riormance.

The literature offers little guidance in selecting the training and the
t samples. Most authors select them based on the rule of 90% vs. 10%,

o vs. 20% or 70% vs. 30%, etc. Some choose them based on their
ticular problems.

In this study, 273 daily average values of dust, SO,, temperature
jfwiud speed were used. Of 273, first 197 were used as a training set

76 were used as testing set.

Another closely related factor is the sample size. No definite rule
ts for the requirement of the sample size for a given problem. The

mt of data for the network training depends on the network
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structure, the training method, and the complexity of the particular
problem or the amount of noise in the data on hand. In general, as in any
'tistical approach, the sample size is closely related to the required
accuracy of the problem. The larger the sample size, the more accurate
he results will be. Perez et al. (2000) test the effect of different training

ample size and find that as the training sample size increases, the

artificial neural network forecaster performs better.

.1.1.3. Performance Measures

Although there can be many performance measures for an artificial
eural network forecaster like the modeling time and training time, the
Itimate and the most important measure of performance is the
ediction accuracy it can achieve beyond the training data. However, a
;able measure of accuracy for a given problem is not universally
;cepted by the forecasting academicians and practitioners. An accuracy
easure is often defined in terms of the forecasting error which is the
erence between the actual (desired) and the predicted value. There

e number of measures of accuracy in the forecasting literature and each

s advantages and limitations (Bose and Liang, 1996). The most

quently used measures are;

the mean absolute deviation (MAD) = —Z—ll\?ﬂ
the sum of squared error (SSE) = Y (e¢)?
the mean squared error (MSE) = Z'(;t—)z
he root mean squared error (RMSE) =+MSE

he mean absolute percentage error (MAPE) = %z

"-f{xmo
€y

re ¢, is the individual forecast error; y, is the actual value; and N is

wumber of error terms. For this study, the mean squared error is used
_'}: sure the accuracy of the models.
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2. Literature Review of the Modeling of the Environmental

Variables with Artificial Neural Networks

In most of the studies conducted on environmental parameters,
ide-ranging prediction techniques, including gaussian models and
umerical models are generally used. These kind of models are mainly
sed on the mathematical formulation of the physics and chemistry of
¢ atmosphere, which govern the dispersion of pollutants. Gaussian
lodels can be applied to any situation where the distribution pattern of
¢ pollutants in that direction can be represented by a gaussian or
yrmal distribution over the selected averaged time. Even though these
odels have some physical basis, detailed information about the sources
;pollutants and other parameters is not generally known. To overcome
s limitation, statistical models are also used to facilitate the
rediction of pollutant concentrations (Ziomass et al, 1995; Finzi et al.,
82). These models assume that the relationship between the variables
statistical in nature. However, such models require information about
¢ distribution of the data which is generally not known a priori
omrie, et al., 1997). Recently, neural network based models have also
en applied to predict pollutant concentrations. These models provide a
ter alternative to statistical models because of their computational
iciency and generalization ability. They can handle data having high

ensionality.

Chelani et al. (2002), studied on a sulphur dioxide concentration
diction in New Delhi by using a three-layer neural network model
a one hidden layer and they used the Levenberg-Marquardt
orithm to train the network. They compared the results of artificial
ral networks  with multivariate regression model. The input
ameters to the model included wind speed (in km.h™"), temperature (in
), relative humidity (%) and the wind direction. In their study, Chelani
al,, concluded that the neural network model provides a better

ernative than regression models.
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Gardner et al., (1999) used the multi-layer perceptron neural
networks to the prediction of the hourly NOy and NO, concentration in
London. Their multi-layer perceptron have two hidden layer each of
which contained 20 nodes. Hourly NO, and NO; concentration and
hourly meteorological data were wused for their model. The
meteorological data included wind speed (m.s™'), vapor pressure (mbar),
dry bulb temperature(°C), visibility (presented to the system in the
UKMO synoptic code) and base of lowest cloud(presented to the system
'i'_‘ the UKMO synoptic code). Their work showed that the multi-layer
perceptron neural networks can accurately model the relationship

between local meteorological data and NO, and NO; concentrations.

Sucar et. al., (1997) proposed an algorithm for structure learning in
predictive expert system based on a probabilistic network representation.
They applied this method for ozone prediction in Mexico City and their
network was a three-layer Bayesian network. They used eight parameters
for their model and these are; wind direction and velocity, temperature,
elative humidity, sulphur dioxide, carbon monoxide, nitrogen dioxide
and ozone. They represented random 400 samples to the system as a
raining set and tested their system with 100 random samples to estimate
the ozone. They observed that their estimations are acceptable and also
their work also showed that wind velocity and the wind direction are the

najor parameters effecting the ozone level.

Maier et al., (2001) worked on two case studies; the forecasting of
alinity in the River Murray, South Australia, and the forecasting of
ncidences of a species group of cyanobacterium Anabaena spp. in the
liver Murray. The data used for the salinity case study included daily
alinities and the daily flow. The data used for the blue-green algea case
tudy included weekly values of blue—green algea concentrations,
irbidity, color, temperature, total phosphorus, soluble phosphorus,
xidized nitrogen, and total iron. Both the case studies have been done
jith three-layer feed-forward neural networks which are trained by back-

opagation algorithm. They observed better results for salinity
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algea concentrations was also acceptable.

Murtagh et al., (2000) studied the prediction of the oceanic
upwelling off the Mauretanian coast. The data available to them
consisted of daily satellite SST data for 1982 (these were sunshine data
and only available if the sky is not cloudy), daily wind and surface heat
flux data, and the topology of the region. The multi-layer perceptron
architecture was used with one hidden layer. They used 299 values as
training set and 40 values as testing set, but their studies did not make

them satisfied, because their model’s mean squared error was more then
0,25.

Perez et al., (2001) studied the prediction of NO and NO;
concentrations near a street with heavy traffic in Santiago, Chile. They
lso used meteorological data in their study and this meteorological data
ncluded temperature, wind velocity and relative humidity. Perez et al.,
eveloped a three-layer feed-forward neural network and used back-
propagation algorithm to train their model. They also compared their
edictions with linear regression model and obtained that neural

ietwork model had more accurate results.
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Chapter §
FORECASTING THE SO, AND DUST WITH

ARTIFICIAL NEURAL NETWORKS FOR IZMIR

' 5.1. Sulphur Dioxide (SO,)

Sulphur dioxide (SO3) is a potent respiratory irritant when inhaled.
Asthmatics are particularly susceptible. SO, acts directly on the upper
airways (nose, throat, trachea and major bronchi), producing rapid
responses within minutes. It achieves maximum effect in 10 to 15
minutes, particularly in individuals with significant airway reactivity,

such as asthmatics and those suffering similar bronchospastic conditions.

Epidemiological studies have shown significant associations
between daily average SO, levels and mortality from respiratory and
cardiovascular causes. Increases in hospital admissions and emergency
room visits for asthma, and respiratory disease have also been associated
with ambient SO, levels (Jones, 1999). These associations were observed
with up to a two-day lag period. Long-term exposure to SO; and fine
particle sulphates (SO4%") has been associated with an increase in
mortality from lung cancer and development of asthma and cardio-
pulmonary obstructive disease (Jones, 1999). Increases in respiratory

symptoms have also been associated with SO, levels (Cogliani, 2001).

The guideline values for sulphur dioxide are 350 pg/m’ (1-hour
average) and 120 pg/m’ (24-hour average) (WHO, 1999). These values
are set to provide protection of lung function and prevent other
respiratory symptoms of vulnerable sub-groups in the population,
including asthmatics and those with chronic obstructive lung disease.
They are in line with current international guideline values and
tandards. The short-term guideline value has been removed, as it is not

appropriate for managing air quality in large air sheds, however, shorter-
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term criteria for sulphur dioxide may be appropriate for assessing
~ industrial discharges.

- 5.2. Dust

Dust is a particulate contaminant suspended in the atmosphere that
may consists of solids or liquid droplets and vary in diameter from 0.001
pum to 100 pm. It can be directly emitted or can be formed in the

atmosphere when gaseous pollutants such as SO, and NOx react to form

fine particles (Bockreis and Jager, 1999).

Like CO; dust limits the amount of energy arriving and leaving the
surface of the planet, with consequent changes in weather patterns.
Industrial, transport and domestic equipment all release particles of dust
“into the atmosphere. The exposure of man to dust can lead to a wide
variety of respiratory diseases, including pulmonary fibrosis, obstructive
lung disease, allergy and lung cancer (Mussio et al., 2001). Particles can
cause irritation to the eyes, nose and throat. Some of the larger particles
(>10 pm diameter) reaching the nose or throat will be filtered out by the
body's natural defence system. However, very tiny particles that reach
deep into the lung may be absorbed into the blood stream or cause lung

or other health problems. Such particles are those less than 10 pm in
diameter (Mussio et al., 2001).

The particulate pollutants may be classified according to their

‘optical properties, nature and size as follows:

Smoke particulate consists of solid and liquid particles ranging from
005 to 1.0 um which are formed during incomplete combustion of
carbonaceous materials. It includes smoke of gaseous pollutants like

oxides of sulphur, oxides of nitrogen, CO and hydrocarbons etc.

Dust particles are composed of fine solid particles ranging from 1-

100 pm.

¢ Mist or liquid particles are formed by condensation of a vapour,

having a size less than 10 pm.
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¢ Spray It constitutes from liquid particles obtained from the parent

liquid by the process of mechanical disintegration like atomization.

« Fumes are generally obtained by the condensation of vapours by
ublimation, distillation, boiling, calcination and by several other
chemical reactions. Generally organic solvents, metals and metallic
oxides form fume particles having a size less than 1 pm. Carbon

rtic]es, ash, asbestos, oil, grease and acids form particulates which are
widely distributed in air.

Sources of the dust are;

' Energy (Coal burning, fossil fuel burning stoves, power plants, dung
burning smelters)

* Industry

Construction industry (cement factory, mining and quarrying)

* Chemical industry (carbon powder manufacturers
pharmaceuticals, industrial additives, pesticides and other

agricultural chemicals)
*= Metal processing industry (metal flakes, dust and fumes)

* Light industries (pre-treatment, drying operations, paint
pigments)

- Transport

' Natural Sources (volcano eruption, wind erosion, sea salt, forest fire)

Major concerns for human health from exposure to PM-10 include:
ffects on breathing and respiratory systems, damage to lung tissue,
.cer, and premature death. The elderly, children, and people with
hronic lung disease, influenza, or asthma, are especially sensitive to the

ffects of particulate matter. Table 5.1 shows the limit values for Dust

atters.
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Table 5.1 Air quality guidelines on Dust (WHO, 1994)

Reference period Limit value
one year (median of daily values) 80 pg/m’
winter (median of daily values) 130 pg/m’
year peak (98 percentile of daily values) | 250 pg;’m"

5.3. Sulphur Dioxide and Dust Pollution in izmir

The 1ZSU Air Pollution Controlling Department has been
‘monitoring the sulphur dioxide and dust concentration in the air of izmir
at four locations since 1997. Since the main SO, and dust sources for
lzmir are industrial processes, traffic, commercial and residential
activities, the stations are located in Bornova, Konak, Karsiyaka and
Alsancak. These districts are chosen according to their local properties.
All this districts have high commercial and residential activities, and

especially Karsiyaka is affected by the industrial activities.

Daily average values of SO, and dust values from 01.01.2001 to
30.09.2001 have been used in this study.

Since the air quality is directly related with the meteorological
parameters, in this study daily average values of temperature and wind
'peed are used, and these data have been collected by the Meteorological

Weather Forecasting Department.

These data are separated into two groups; training (first 197 daily
values) and testing set (last 76 daily values), and this extraction has been
_'ne with neuro-shell extraction program (NeuroShell2, Ward-Systems

Group Inc.). These sets are illustrated in Figure 5.1, 5.2, 5.3, 5.4, 5.5,
5.6,5.7, and 5.8.
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Figure 5.1 Daily SO, values for training set
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Figure 5.5 Daily SO; values for testing set
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Figure 5.6 Daily dust values for testing set
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Figure 5.7 Daily temperature values for testing set
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Figure 5.8 Daily wind speeds for testing set

Several trials have been done with these sets with two different

transfer functions (sigmoid and hyperbolic tangent functions) and
different topologies (with 1-hidden layer and 2-hidden layers). The
purpose of these trials is to obtain the relationship between the accuracy
of the models with the topology of the networks and the transfer
functions. For sensitivity analyses, inputs of the models are also
changed; for SO, prediction, only dust, dust and temperature, dust and
wind speed, temperature and wind speed, and finally dust, temperature
and wind speed values are presented to the systems as input. The same
procedure is followed for dust prediction, input sets are changed with the
same method. Aim of these trials is to determine the efficiencies of the

input parameters and deciding their relationships.
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Another approach to forecast the SO, and dust values is by using
their last 7 days’s values to predict the eighth day’s value. Using last
seven day is determined by trial and error method. Several models are
developed by starting from last days value and 1000 iteration is done for
every network. Minimum error is obtained at the prediction of the eighth

day value both for SO, and dust predictions. After these trials, 10000
iteration is made for main model.

Learning rate was constant and equal to the 0.02 for all these
studies and back-propagation algorithm is used to train the systems.
Batch Gradient Descent Rule is used as a training method whereas the
weights and biases are updated in the direction of the negative gradient
of the activation function. MATLAB 6.0’s Neural Network Toolbox (ver

4) is used as a software and all the systems have been run for 10000
iterations.

The general procedure for the network simulation includes:

1. Representation of input and output matrices; (as it is mentioned

earlier data are separated into two groups as training set and testing set,
Figure 5.1-5.8)

2. Representation of the transfer functions; (sigmoid and hyperbolic
tangent functions are used)

3. Selection of the network structure; (two different network topologies

have been developed; with one hidden layer and two hidden layers and
hidden layers with three nodes)

4. Assigning of the random weights; (initial random weights are assigned)

5. Selection of the learning procedure (Gradient Descent Rule is
applied);

6. Presentation of the test pattern and prediction or validation set of data

for generalization (training of the network completed after 10000
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iterations, than testing set is represented to the system but validation set

is not used in this study)

The learning of weights is done using the following procedure:
1. Selection of random numbers for all weights;

2. Calculation of output vectors (referred also as the network output)
nd comparison with the target output (referred also as the desired

output);

. If the network output is approximately equal to the desired output,
then continue with step 1, and if not, weights are corrected according to

the correction rule and then continue with step 1.

54



Chapter 6

RESULTS AND DISCUSSION

6.1. Prediction of Sulphur Dioxide

The network topologies for the SO, prediction is shown in Figure
6.1. For this trial input parameters are dust, temperature and wind speed.
The network of the first trial has one hidden layer with three nodes and
the network of the second trial has two hidden layers with three nodes in

each hidden layers, and system is trained with 10000 iterations.

SO,
A

SO,

A &P

ust temperature  wind speed

dust temperature  wind speed
Figure 6.1 Network Architectures for SO, predictions with three

input parameters

Graphics in the Figure 6.2, 6.3, 6.4 and 6.5 shows the results

of the neural network models. It is obtained that neural networks are able
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to learn from the training set and make the predictions accurately. R’
g p ¥

. (correlation coefficient between desired and predicted outputs) and daily
l average error values are used to control the accuracy of the systems.
.} These values are shown in Table 6.1. According to the R* values and
daily average errors, increasing the topology of the network gives more
accurate results than the simple neural networks topologies. It is also
obtained that using the hyperbolic tangent function makes more accurate

predictions then the sigmoid function.

g0 1 —:simulated i
.. - observed .

17.07.2001 01.08.2001 16.08.2001 31.08.2001 15.08.2001 30.08.2001
time (day)

Figure 6.2 SO, predictions with three input parameters with two

hidden layer with hyperbolic tangent function
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Figure 6.3 SO, predictions with three input parameters with two

hidden layer with sigmoid function l
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Figure 6.4 SO, predictions with three input parameters with one

hidden layer with hyperbolic tangent function
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Figure 6.5 SO, predictions with three input parameters with one

hidden layer with sigmoid function

Several trials have also been done for SO; prediction with the same
procedure (by changing the architecture, transfer functions, and input
parameters). All the experiments have been done with 0,02 learning rate
and 10000 iterations. Results of these experiments are shown in Table

6.1 and their graphics are shown in Appendix-B.
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Table 6.1 Results of the SO, predictions with neural networks with

different topologies, transfer functions and inputs. (T: temperature, D:

l dust, W: wind speed, tansig: hyperbolic tangent function, logsig: sigmoid
function)
Number of Hidden
Transfer > Daily average
Input Layers and Nodes R 5
function error (pg/m~)
in the Layers
tansig 0,94 3,60
el logsig 0.9 3,98
D+T+W : i :
tansig 0,92 3,34
1(3-3-1) :
logsig 0,90 4,08
tansig 0,92 3,84
S don logsig 0,88 4,80
T+W . 3 »
| tansig 0,90 4,19
. 1(2-3-1) ¢
logsig 0,91 4,77
i tansig 0,89 4,36
; 2(2-3-3-1) PR i
m_ D+W - 0,91 17
tansig 0,86 4,70
1(2-3-1) .
logsig 0,89 5,01
tansig 0,90 4,51
; 2(2-3-3-1) logsig 4.7
!_ D+T ; sk L
5 tansig 0,89 4,79
: 1(2-3-1) .
f logsig 0,88 4,99
| tansig 0,80 5,21
2 (1-3-3-1) .
" logsig 0,83 4,77
tansig 0,76 5.49
1(1-3-1) x
logsig 0,82 5,26

According to these results, increasing the topology of the networks
‘generally gives better and accurate results. However, sometimes
‘increasing the number of hidden layers could make the system unstable.
‘For example, when the temperature and the wind speed are input to the
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network with sigmoid function, network with one hidden layer gave more
accurate results than network with two hidden layers. Similar case is
also occurred when the dust and the temperature are given to the system

as inputs with sigmoid function being the transfer function.

Using more variables as input leads to the better results. This is
because system can generalize data better and possible errors or mistakes
can be distributed through the system and they can be minimized and
cannot effect the results too much. These results are also consistent with

the literature.

Another study on the prediction of SO, is done by using the last
seven day’s sulphur dioxide values as inputs. Topology of the network is
shown in the Figure 6.6. This experiment is also done with 0.02 learning

rate and 10000 iterations.

SO, (1)

SO,(t-1) SO(t-2) SO,(t-3) SO,(t-4) SO,(t-5) SO»(t-6) SOi(t-7)

Figure 6.6 Network Architecture for SO, predictions with last

seven day’s values.

Sigmoid function is used as transfer function and R? is calculated as
0,94 and daily average error is calculated as 4,03 pg/m’ and these results
are showing that neural network gives accurate results. Figure 6.7

illustrates the comparison between simulated and observed outputs.
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Figure 6.7 SO, predictions with last seven days sulphur dioxide

values

6.2 Prediction of Dust

The network topologies for the dust prediction is shown in Figure
6.8. For this trial input parameters are SO,, temperature and wind speed.
The network of the first trial has one hidden layer with three nodes and
the network of the second trial has two hidden layers with three nodes in

each hidden layer, and system is trained with 10000 iterations.

Figures 6.9, 6.10, 6.11 and 6.12 show the results of the neural
network models. It is obtained that neural networks are again able to
learn from the training set and make the predictions accurately. R’
(correlation coefficient between desired and predicted outputs) and daily
average error values are again used to control the accuracy of the
systems. These values are shown in Table 6.2. According to the R’
values and daily average errors, increasing the topology of the network
gives more accurate results than the simple neural networks topology. It
is also obtained that using the sigmoid function makes more accurate

predictions than the hyperbolic tangent function.

Several trials have also been done for dust prediction with the same
procedure (by changing the architecture, transfer functions, and input

parameters). All the experiments have been done with 0,02 learning rate
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and 10000 iterations. Results of these experiments are shown in Table

6.2 and their graphics are shown in Appendix-C.
dust

dust

SO, temperature  wind speed

SO, temperature  wind speed
Figure 6.8 Network Architectures for dust predictions with three

input parameters
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Figure 6.9 Dust predictions with three input parameters with two
hidden layer with hyperbolic tangent function
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Figure 6.10 Dust predictions with three input parameters with two

hidden layer with sigmoid function

140 -

420 | —: simulated
vevn.... - Observed

8

80 -
60 -

DUST (pg/m®)

40 -
20 4

0+ T =
17.07.2001 01.08.2001 16.08.2001 31.08.2001 15.08.2001 30.08.2001

time (day)

Figure 6.11 Dust predictions with three input parameters with one

idden layer with hyperbolic tangent function
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Table 6.2 Results of the dust predictions with ncural networks with
different topologies, transfer functions and inputs. ( T: temperature, S:

$O,, W: wind speed, tansig: hyperbolic tangent fuaction, logsig: sigmoid

function)
Number of Hidden
Transfer 2 daily average
Input Layers and Nodes R 5
function error (pg/m~)
in the Layers
tansig 0,92 3,64
2 (3-3-3-1) Togsig 5
S— . 0,91 4,08
tansig 0,90 4,09
1(3-3-1) .
logsig 0,91 3,90
tansig 0,91 4,02
2 (2-3-3-1) o
S ' 0,90 4,15
tansig 0,90 4,07
1(2-3-1) :
logsig 0,95 4,30
tansig 0,91 3,67
& logsig 0.89
S ! : 3,95
tansig ¢,26 4,62
1(2-3-1) . —
logsig 0,80 4,54
tansig 0,92 3,70
e logsig 0,92 3
S+T ' ’ ; 3,51
tansig 0,87 4,42
1(2-3-1) .
logsig | (.86 4,86
tansig 0.81 4,91
2 (1-3-3-1) .
g logsig 0,81 4,93
tansig 0,30 5,16
1(1-3-1) :
logsig 0,84 5.57

According to these results, increasing the topology of the networks
generally gives better and accurate results. For some models, increasing
the number of hidden layers made the system unstable. For example,
when the temperature and the wind speed are input to the network with

sigmoid function, network with one hidden layer gave more accurate
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results than network with two hidden layer. The similar case is also
occurred when the SO, and the temperature are inputs with hyperbolic
tangent function. It is also obtained that changing the topology of the
network does not make any differences when sigmoid function is used as
a transfer function when the SO, 1s the only input parameter. Increasing
the number of the parameters also increased the system performance,

best results are occurred with three input parameters.

Another study on the prediction of dust is done by using the last
seven days dust values as inputs. The topology of the network is shown
in the Figure 6.13. This experiment is also done with 0.02 learning rate

with 10000 iterations.

dust(t)

dust(t-1) dust(t-2) dust(t-3) dust(t-4) dust(t-5) dust(t-6) dust(t-7)

Figure 6.13 Network Architecture for dust predictions with last

seven days values.

Sigmoid function is used as a transfer function and R” is calculated

as 0,93 and daily average error is calculated as 4,32 pg/m’ and these

- results are showing that neural network gives accurate results. Figure

6.14 illustrates the comparison between predicted and actual outputs.
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Figure 6.14 Dust predictions with last seven days dust values
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Chapter 7

CONCLUSIONS

In this study, neural networks are used to predict the sulphur
dioxide and dust concentrations for the city center of izmir. For this
purpose, MATLAB 6.0 Neural Network Toolbox (Ver. 4) is used. Daily
average values of SO,, dust, temperature and wind speed from
01.01.2001 to 30.09.2001 have been used in this study. These data are
separated into two groups; training set (first 197 daily values) and
testing set (last 97 daily values). Back-propagation learning algorithm is
used to train the neural networks. Different networks are developed by
changing the topologies of the systems and types of the inputs. Results
generated from the networks are compared with the exact values, and R?
and daily average errors are calculated to determine the accuracy of the

models.

The satisfactory prediction of the actual measured data by the model
has shown that neural networks can accurately model the relationship
between local meteorological data and SO,-dust concentrations in an

urban environment.

In addition, several artificial neural networks models are
constructed in this study, and results have shown that improving the
architecture of the networks gives better and more accurate results. For
SO, forecasting, best results are found by using three input parameters
and a network with two hidden layers. For the dust prediction studies,
the best and the most accurate results are found by using three input
parameters with two hidden layers. The reason of this conclusion is that
improvement in the system (increasing the number of the hidden layers)
increases the system’s fault tolerance because errors can be distributed
throughout the system which decreases the differences between the

desired and actual outputs.

66



It may be concluded that neural networks are a powerful
computational tool to analyse the complex relationships between air
pollutants and meteorological parameters (wind speed and temperature).
The performance of the neural network models improves as the more
number of inputs are provided; however, they can also make accurate
predictions with limited data. Although giving only one parameter as
input is decreasing the performance of the artificial neural networks
models, it can be said that results are still acceptable both for SO, and

dust predictions.

As future work, when further meteorological parameters (e.g.
relative humidity, NO,, CO, visibility) become available, the
performance of the neural network can be improved. With larger number
of data, better sensitivity analysis can be attained for air pollutants. The
better way to study air pollution and to make better predictions of air
pollutants is to establish a gauging station and collect the appropriate

data as much as possible.
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Figure A.4 SO; predictions with two input parameters

(temperature and wind speed) with one hidden layer with sigmoid

function
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Figure A.6 SO, predictions with two input parameters (dust

and wind speed) with two hidden layer with sigmoid function
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