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ABSTRACT 

HETEROTROPHIC BIO-OIL PRODUCTION FROM MICROALGAE 

 The purpose of the thesis is to investigate the parameters affecting heterotrophic 

production of microalga, Chlorella minutissima. The aim is to use crude glycerol, a 

waste product derived from biodiesel production, as a carbon and energy source for 

microalgal growth and examine the optimum growth conditions in chemostat mode, as 

well as the productivity of oil using FTIR based technique. The highest lipid 

productivity achieved was 1.04 gl-1h-1, at the temperature 250C, with the dilution rate of 

0.25 h-1 and using a substrate concentration of 80 gl-1 in feeding medium. The lipid, 

protein and carbohydrate content at this conditions was 14.36%, 47.89% and 8.06%, 

respectively.  
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ÖZET 

SU YOSUNUNDAN HETEROTROFĐK YÖNTEMLE  
BĐYO-YAĞ ÜRETĐMĐ 

 Bu çalışmada, Chlorella minutissima mikroalginin karbon kaynağı ile heterotrof 

yöntemle çoğaltılması ve bu süreci etkileyen parametlerin araştırılması amaçlanmıştır. 

Biyodizel üretiminden atık olarak çıkan ham gliserolün mikroalg çoğaltılmasında enerji 

ve karbon kaynağı olarak kullanılması, kemostat üretim şeklinde optimum çoğalma 

koşullarının ve yağ üretim hızlarının FT-IR temelli bir yöntemle araştırılması 

hedeflenmiştir. Çalışmada en yüksek yağ üretim hızı, 25oC sıcaklıkta, 0.25 h-1 seyreltme 

hızında ve 80 gl-1 ham gliserol besleme derişiminde, 1.04 gl-1h-1 olarak elde edilmiştir. 

Bu koşullarda, mikroalgin içeriği, %14.36 yağ, %47.89 protein ve %8.06 karbonhidrat 

olarak belirlenmiştir.   
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CHAPTER 1 

 

INTRODUCTION 

 

 One of the most important problems that mankind has been facing is the issue of 

global warming. Therefore, the efforts for finding alternative energy and fuel sources is 

greatly increased. One of the successfully applied alternative is called as “biodiesel 

fuel” which is carbon neutral fuel source since it is produced from oil coming from 

agricultural crops.  

 It is known that up to 20% of processed oil in biodiesel production ends up with 

a waste product; crude glycerol. It is a low value waste product because it contains only 

40 – 60% glycerol, and the rest are water, methanol, salts and other impurities. It is an 

expensive process to purify glycerol to convenient percentages. Therefore, crude 

glycerol from biodiesel production is a waste product that intensive research has been 

done for finding alternative ways to process it.  

 Literature states that bio-fuel production from microalgae could be a promising 

alternative. Microalgae are single cell plants and some strains are able to accumulate 

significant amounts of lipid. The limiting factors for microalgae growth rate are the light 

and nutrient concentration. These limitations prevents this idea from being feasible. It is 

also known that some strains of microalgae can deplete organic carbon for its nutrient 

and energy requirements. 

 Qingyu Wu et al. (2010) applied heterotrophic growth of Chlorella 

protothecoides and it contained lipid content of 55.2%. To increase the biomass and 

reduce the cost of alga, corn powder hydrolysate instead of glucose was used as organic 

carbon source in heterotrophic culture medium in fermenters. The result showed that 

cell density significantly increased under the heterotrophic condition, and the highest 

cell concentration reached 15.5 g/l. In 5 l fermenter, the cell growth reached 15.5 g/l 

after 184 h culture, and then microalgal oil was efficiently extracted from the 

heterotrophic cells. Biodiesel which was obtained from heterotrophic microalgal oil by 

acidic transesterification was characterized by a high heating value of 41 MJ/kg, a 

density of 0.864 kg/L, and a viscosity of 5.2×10−4 Pa s (at 40
0
C). The results suggest 

that the new process was a low-cost, feasible, and effective method for the production of 
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high quality biodiesel from microalgae. 

 Heterotrophic microalgae can utilize carbon sources such as glucose, ethanol, 

glycerol, and fructose depending on the microalgal species used. In order to lower the 

production cost of microalgal oils as biodiesel, cheaper carbon sources should be 

considered.  

 Heterotrophic oil production from microalgae greatly exceeds that of vegetable 

oil crops. However, commercial application of biodiesel production from C. 

protothecoides is restricted due to the high cost, which mostly exists in the fermentation 

substrate. According to a previous estimate, the cost of glucose accounted for 80% of 

the total medium cost (Wu et al., 2007). 

 In order to lower the production cost of microalgal oils as biodiesel, cheaper 

carbon sources should be considered. For example, Qingyu Wu et al. (2007), 

investigated sweet sorghum which contains sugars as substrate for fermentation. 

 Crude glycerol is also used for microalgal fermentation to produce valuable 

products such as docosahexaenoic acid (DHA, 22:6 n-3) using microalga 

Schizochytrium limacinum and highest DHA yield of 4.91 g/l with 22.1 g/l cell dry 

weight was obtained (Zhanyou et al., 2007). Another study using the same microalgae 

were grown on crude glycerol and 35 g/l dry weight concentration with the cellular lipid 

content of 73.3 % was obtained (Liang et al., 2010). 

 Cryptococus curvatus, an oleaginous yeast was also grown on crude glycerol 

derived from yellow grease and cultured in a one stage fed batch mode process wherein 

crude glycerol and nitrogen source were fed intermittently for 12 days and final biomass 

of 32.9 g/l and the lipid content of 52% at the end of 12 days were obtained.  

 Glycerol-rich streams generated in large amounts by the bio-fuel industry, 

especially during the production of biodiesel, present an excellent opportunity to 

establish bio-refineries. Once considered a valuable ‘co-product’, crude glycerol is 

rapidly becoming a ‘waste product’ with a disposal cost attributed to it. Proposed 

research is based on using crude glycerol as the carbon source for microalgal 

fermentation. Consequently, the main motivation of this work is to use waste crude 

glycerol from biodiesel production as a carbon source for microalgae, and producing oil 

out of microalgae, and to investigate the feasibility of this process. In this way, crude 

glycerol can be processed into a valuable product, while microalgal oil is produced as 

an alternative fuel source. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1. Photoautotrophic Production 

 

 Under natural growth conditions photoautotrophic algae absorb sunlight, and 

assimilate carbon dioxide from the air and nutrients from the aquatic habitats. 

Therefore, as far as possible, artificial production should attempt to replicate and 

enhance the optimum natural growth conditions. 

 Under natural growth conditions, microalgae assimilate CO2 from the air. Most 

microalgae can utilize high levels of CO2 and it can be fed to medium from different 

sources such as flue gases from coal power plans and exhaust from brewing industry. 

However, high levels of sulfur in flue gases can be poisonous to microalgae and 

therefore it must be removed from gas stream before feeding. This limits direct use of 

such sources easily as carbon source. Other important limitation is the low solubility of  

CO2  in water. Other inorganic nutrients required for algae production include nitrogen, 

phosphorus and silicon (for diatoms). Although some blue-green algae can fix nitrogen 

from air, nitrogen fixation is highly energy intensive process for these species of 

microalgae. Therefore, most of microalgae require nitrogen in soluble from.  

Phosphorus required in very small amount in microalgae structure but since not all  the 

phosphorus is bioavailable, it must be added in excess amounts to medium. 

 Currently, photoautotrophic production is the only method which is technically 

and economically feasible for large-scale production of algae biomass for non-energy 

production (Borowitzka M., 1997). Two systems that have been deployed are based on 

open pond and closed photobioreactor technologies (Borowitzka M., 1999). The 

technical viability of each system is influenced by intrinsic properties of the selected 

algae strain used, as well as climatic conditions and the costs of land and water 

(Borowitzka M., 1992). 
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2.1.1. Open Pond Production Systems 

 

 Algae cultivation in open pond production systems has been used since the 

1950's (Borowitzka M., 1999). These systems can be categorized into natural waters 

(lakes, lagoons, and ponds) and artificial ponds or containers. 

 Raceway ponds are the most commonly used artificial system. They are typically 

made of a closed loop, oval shaped recirculation channels, generally between 0.2 and 

0.5 meter deep, with mixing and circulation required to stabilize algae growth and 

productivity. Raceway ponds are usually built in concrete, but also ponds with white 

plastic have also been used. In a continuous production cycle, algae broth and nutrients 

are introduced in front of the paddle wheel and circulated through the loop to the 

harvest extraction point. The paddle wheel is in continuous operation to prevent 

sedimentation. The microalgae’s CO2 requirement is usually satisfied from the surface 

air, but submerged aerators may be installed to enhance CO2 absorption (Terry et al., 

1985). 

 Compared to closed photobioreactors, open pond is the cheaper method of large-

scale algal biomass production. Open pond production can be done in areas that are not 

good for agriculture. Open ponds also have lower energy input requirement, and regular 

maintenance and cleaning are easier and therefore may have the potential to return large 

net energy production.  

 In 2008, the unit cost of producing Dunaliella salina, one of the commonly 

cultivated algae strains, in an open pond system was about €2.55 per kilogram of dry 

biomass, which was considered to be too high to justify production for bio-fuels 

(Borowitzka M., 1999). 
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Figure 2.1. Plan view of a raceway pond. Algae broth is introduced after the paddle                   

         wheel, and  completes  a  cycle  while  being   mechanically   aerated   with  

         CO2.  It is  harvested  before  the  paddle  wheel   to  start  the  cycle  again  

         (Source: Chisti Y., 2008). 

 

Table 2.1. Advantages and limitations of open ponds and photobioreactors 

Production System Advantages Limitations 

Raceway pond Relatively cheap 

Easy to clean  

Utilises non-agricultural land  

Low energy inputs  

Easy maintenance 

Poor biomass productivity 

Large area of land required 

Limited to a few strains of algae 

Poor mixing, light and CO2 

utilisation 

Cultures are easily contaminated 

Tubular photobioreactor Large illumination surface area  

Suitable for outdoor cultures 

Relatively cheap  

Good biomass productivities  

Some degree of wall growth 

Fouling 

Requires large land space 

Gradients of pH, dissolved oxygen 

and CO2 along the tubes 

Flat plate photobioreactor High biomass productivities 

Easy to sterilise  

Low oxygen build-up  

Readily tempered  

Good light path 

Large illumination surface area 

Suitable for outdoor cultures 

Difficult scale-up 

Difficult temperature control 

Small degree of hydrodynamic stress 

Some degree of wall growth 

Column photobioreactor Compact  

High mass transfer  

Low energy consumption  

Good mixing with low shear 

stress  

Easy to sterilise 

Reduced photoinhibition and 

photo-oxidation 

Small illumination area 

Expensive compared to open ponds 

Shear stress 

Sophisticated construction 
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 Open pond systems, require highly selective environments due to inherent threat 

of contamination and pollution from other algae species and protozoa. Monoculture 

cultivation is possible by maintenance of extreme culture environment, although only a 

small number of algae strains are suitable. For example, the species Chlorella 

(adaptable to nutrient-rich media), D. salina (adaptable to very high salinity) and 

Spirulina (adaptable to high alkalinity) can be grown in such systems.  

 An example of large-scale monoculture cultivation is the production of D. salina 

for β-carotene in the extremely halophilic waters of Hutt-Lagoon, Western Australia. 

However, long production periods for such approaches do not necessarily exclude 

bacterial and other biological contaminants (Lee et al., 2001). As far as biomass 

productivity is concerned, open pond systems are less efficient when compared with 

closed photobioreactors. This is caused by several determining factors; evaporation 

losses, temperature fluctuation in the growth media, CO2 deficiencies, inefficient 

mixing, and light limitation. Temperature fluctuations due to seasonal variations are 

difficult to control in open ponds. Potential CO2 deficiencies due to diffusion into the 

atmosphere may result in reduced biomass productivity due to less efficient utilization 

of CO2. Also, poor mixing by inefficient stirring mechanisms, may result in poor mass 

CO2 transfer rates causing low biomass productivity (Ugwu et al., 2008).  Light 

limitation due to top layer thickness may also cause reduced biomass productivity. 

However, enhancing light supply is possible by reducing layer thickness; using thin 

layer inclined types of culture systems, and improved mixing can minimize impacts to 

enhance biomass productivity.  

 High algae biomass production rates are achievable with open pond systems. 

However, there are still inconsistencies in the production rates reported in literature.. 

Jimênez et al. extrapolated an annual dry weight biomass production rate of 30 tonnes 

per hectare using data from a 450 m
2
 and 0.30 m deep raceway pond system producing 

biomass dry weight of 8.2 gm
-2

 per day in Malaga, Spain. Using similar depth of 

culture, and biomass concentrations of up to 1 gl
-1

, estimated dry biomass productivity 

in the range of 10–25 gm
-2

 per day. However, the only open pond system for large-scale 

production that has achieved such high biomass productivity is the inclined system 

developed by Setlik et al. (1970) for the production of Chlorella. In this system, a 

biomass concentration of higher than 10 gl
-1

 was achieved, with extrapolated 

productivity of 25 gm
-2

 per day. Weissman and Tillett (1992) operated an outdoor open 

pond (0.1 ha) in New Mexico, USA, and attained an average annual dry weight biomass 
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production rate of 37 tonnes per hectare with a mixed species culture (four species), 

highest yields were confined to the 7 warmest months of the year. 

 

2.1.2. Closed Photobioreactor Systems 

  

 Microalgae production based on closed photobioreactor technology is designed 

to overcome some of the major problems associated with the described open pond 

production systems. For example, pollution and contamination risks with open pond 

systems, prevents their use for the preparation of high-value products for use in the 

pharmaceutical and cosmetics industry. Also, unlike open pond production, 

photobioreactors permit culture of single-species of microalgae for prolonged durations 

with lower risk of contamination.  

 Closed systems include the tubular, flat plate, and column photobioreactors. 

These systems are more appropriate for sensitive strains as the closed configuration 

makes the control of potential contamination easier. Owing to the higher cell mass 

productivities attained harvesting costs can also be significantly reduced. However, the 

costs of closed systems are substantially higher than open pond systems (Carvalho et al., 

2006). Photobioreactors consist of an array of straight glass or plastic tubes as shown in 

Figure 2.2. The tubular array captures sunlight and can be aligned horizontally, 

vertically, inclined or as a helix, and the tubes are generally 0.1 m or less in diameter  

(Molina et al., 2001). Algae cultures are re-circulated either with a mechanical pump or 

airlift system, the latter allowing CO2 and O2 to be exchanged between the liquid 

medium and aeration gas as well as providing a mechanism for mixing (Eriksen N., 

2008). Agitation and mixing are very important to encourage gas exchange in the tubes. 
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Table 2.2. Biomass productivity figures for closed photobioreactors 

Species       Reactor  

type 

Volume 

(l) 

Xmax  

(g l
-1

) 

Paerial 

(gm
-2

 day
-

1
) 

Pvolume  

(g l
-1

 day
-1

) 

PE 

(%) 

Reference 

Porphyridium 

cruentum 

Airlift 

tubular 

200 3 - 1.5 

 

- Camacho 

Rubio et al., 

1999 

Phaeodactylum 

tricornutum 

Airlift 

tubular 

200 - 20 1.2 

 

- Acien 

Fernandez et 

al., 2001 

Phaeodactylum 

tricornutum 

Airlift 

tubular 

200 - 32 1.9 

 

2.3 

 

Molina 

Grima et al., 

2001 

 

Chlorella 

sorokiniana 

Inclined 

tubular  

6 1.5 

 

 –  1.47 

 

–  Ugwu CU et 

al., 2002 

Arthrospira 

platensis  

Undular 

row 

tubular  

11 6 47.7 2.7 

 

 

–  Carlozzi P., 

et al., 2003 

Phaeodactylum 

tricornutum 

Outdoor 

helical t. 

75  –  – 1.4 

 

15 Hall DO et 

al., 2003 

Haematococcus 

pluvialis  

Parallel 

tubular 

(AGM)  

25 – 13 0.05  – Olaizola M., 

2000 

Haematococcus 

pluvialis 

Bubble 

column 

55  1.4 

 

 –  0.06  –  Garcia et al., 

2003 

Haematococcus 

pluvialis  

Airlift 

tubular  

55 7 –  0.41 –  Garcia et al., 

2003 

Nannochloropsis 

sp.    

Flat plate 440 –  –   0.27 –  Cheng-Wu 

et al., 2001 

Haematococcus 

pluvialis   

Flat plate  25,000 

 

– 10.2 

 

–  –  Huntley et 

al., 2007 

Spirulina 

platensis  

Tubular  5.5 

 

 –  –  0.42 8.1 

 

Converti et 

al., 2006 

Arthrospira  Tubular  146 2.37 

 

25.4 

 

1.15 

 

4.7 

 

Carlozzi P., 

2003 

Chlorella   Flat plate  400 – 22.8 

 

3.8 

 

5.6 

 

Doucha et 

al., 2005 

 

Chlorella  Flat plate 400 –  19.4 

 

3.2 

 

6.9 

 

Doucha et 

al., 2005 

 

Tetraselmis  Column ca. 

1,000 

 

1.7 

 

38.2 

 

0.42 

 

9.6 

 

Chini et al., 

2006 

 

Chlorococcum  Parabola 70 

 

1.5 

 

14.9 

 

0.09 

 

 – Sato et al., 

2006 

Chlorococcum  Dome  130 1.5 

 

11.0 

 

0.1 

 

 – Sato et al., 

2006 
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Figure 2.2. Basic design of a horizontal tubular photobioreactor (Source: Becker, 1994) 

 

 Some of the earliest forms of closed systems are flat-plate photobioreactors 

which have received much research attention due to the large surface area exposed to 

illumination and high densities of photoautotrophic cells (>80 g l
-1

) observed (Hu et al., 

1998). The reactors are made of transparent materials for maximum solar energy 

capture, and a thin layer of dense culture flows across the flat plate, which allows 

radiation absorbance in the first few millimetres thickness. Flat-plate photobioreactors 

are suitable for mass cultures of algae due to low accumulation of dissolved oxygen and 

the high photosynthetic efficiency achieved when compared to tubular versions 

(Richmond A., 2000). Tubular photobioreactors have design limitations on length of the 

tubes, which is dependent on potential O2 accumulation, CO2 depletion, and pH 

variation in the systems (Eriksen N., 2008). Therefore, they cannot be scaled up 

indefinitely; hence, large-scale production plants are based on integration of multiple 

reactor units. However, tubular photobioreactors are considered to be more suitable for 

outdoor mass cultures since they expose a larger surface area to sunlight. The largest 

closed photobioreactors are tubular, e.g. The 25 m
3
 plant at Mera Pharmaceuticals, 

Hawaii, and the 700 m
3
 plant in Klotze, Germany. 

 Column photobioreactors offer the most efficient mixing, the highest volumetric 

mass transfer rates and the best controllable growth conditions (Eriksen N., 2008). They 

are low-cost, compact and easy to operate. The vertical columns are aerated from the 

bottom, and illuminated through transparent walls, or internally (Suh et al., 2003). Their 
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performance compares favorably with tubular photobioreactors. Closed 

photobioreactors have received major research attention in recent years. The most 

important advantages of pilot-scale production using closed photobioreactors compared 

to open raceway ponds are rigorous process control and potentially higher biomass 

production rates. Therefore, potentially higher production of bio-fuel and co-product 

production could be possible. 

 

2.1.3. Hybrid Production Systems 

 

 The hybrid two-stage cultivation is a method that combines distinct growth 

stages in photobioreactors and in open ponds. The first stage is in a photobioreactor 

where controllable conditions minimize contamination from other organisms and favour 

continuous cell division. The second production stage is aimed at exposing the cells to 

nutrient stresses, which enhances synthesis of the desired lipid product. This stage is 

ideally suited to open pond systems, as the environmental stresses that stimulate 

production can occur naturally through the transfer of the culture from photobioreactors 

to the open pond. 

 Huntley and Redalje (2007) used such a two-stage system for the production of 

both oil and astaxanthin (used in salmon feed) from Haematococcus pluvialis, and 

achieved an annual average microbial oil production rate >10 ton ha
-1

 per annum with a 

maximum rate of 24 ton ha
-1

 per annum. They also demonstrated that under similar 

conditions, rates of up to 76 ton ha
-1

 per annum was feasible using species with higher 

oil content and photosynthetic efficiency. 

  

2.2. Heterotrophic Production 

 
 Heterotrophic production has also been successfully used for algal biomass and 

metabolites (Miao et al., 2006). In this process microalgae are grown on organic carbon 

substrates such as glucose in stirred tank bioreactors or fermenters. Algae growth is 

independent of light energy, which allows for much simpler scale-up possibilities since 

smaller reactor surface to volume ratio’s may be used. These systems provide a high 

degree of growth control and also lower harvesting costs due to the higher cell densities 

achieved. The set-up costs are minimal, although the system uses more energy than the 
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production of photosynthetic microalgae because the process cycle includes the initial 

production of organic carbon sources via the photosynthesis process. 

Table 2.3. Biomass productivity figures for heterotrophic microalgae cultures 

Species  Product Culture Xmax  

(g l
-1

) 

Total Lipid 

(%) 

Pvolume  

(g l
-1

 day
-1

) 

Reference 

Galdieria 

sulphuraria   

C-phycocyanin Continuous 83.3 – 50.0 Graverholt et 

al., 2007 

Galdieria 

sulphuraria   

C-phycocyanin Fed-batch 109 – 17.50 Graverholt et 

al., 2007 

Chlorella 

protothecoides   

Biodiesel Fed-batch 3.2 

 

57.8 – Xiong et al., 

2008 

Chlorella 

protothecoides   

Biodiesel Fed-batch 16.8 

 

55.2 

 

– Xiong et al., 

2008 

Chlorella 

protothecoides   

Biodiesel Fed-batch 51.2 

 

50.3 

 

– Xiong et al., 

2008 

Chlorella   Docosahexaenoic 

acid 

Fed-batch 116.2 – 1.02 

 

Wu et al., 

2007 

Crypthecodinium 

cohnii  

Docosahexaenoic 

acid 

Fed-batch 109 56 –  Swaaf et al., 

2003 

Crypthecodiniu 

cohnii  

Docosahexaenoic 

acid 

Fed-batch 83 42 –  Swaaf et al., 

2003 

Chlorella   N/A Fed-batch 104.9 – 14.71 Wu et al., 

2007 

Chlorella 

protothecoides  

Biodiesel Fed-batch 15.5 

 

46.1 

 

–  Li et al., 

2007 

Chlorella 

protothecoides  

Biodiesel Fed-batch 12.8 

 

48.7 –  Li et al., 

2007 

Chlorella 

protothecoides  

Biodiesel Fed-batch 14.2 

 

 

44.3 

 

–  Li et al., 

2007 

 

 Li et al. (2007) outlined the feasibility for large-scale biodiesel production based 

on heterotrophic cultivation of Chlorella protothecoides. Other studies also suggest 

higher technical viability of heterotrophic production compared to photoautotrophic 

methods in either open ponds or closed photobioreactors. Miao and Wu (2006) also 

studied C. protothecoides and found that the lipid content in heterotrophic cells could be 

as high as 55%, which was 4 times higher than in autotrophic cells at 15% under similar 

conditions. Hence, they concluded that heterotrophic cultivation could result in higher 

production of biomass and accumulation of high lipid content in cells. 
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2.3. Mixotrophic Production 

 

 Many algal organisms are capable of using either metabolism process 

(autotrophic or heterotrophic) for growth, meaning that they are able to photosynthesize 

as well as metabolize organic materials (Graham et al., 2009). The ability of mixotrophs 

to process organic substrates means that cell growth is not strictly dependent on 

photosynthesis, therefore light energy is not an absolutely limiting factor for growth as 

either light or organic carbon substrates can support the growth (Chen et al., 1996). 

 Examples of microalgae that displays mixotrophic metabolism processes for 

growth are the cyanobacteria Spirulina platensis, and the green alga Chlamydomonas 

reinhardtii. The photosynthetic metabolism utilizes light for growth while aerobic 

respiration uses an organic carbon source. Growth is influenced by the media 

supplement with glucose during the light and dark phases, hence, there is less biomass 

loss during the dark phase. 

 Table 2.4. Biomass productivity figures for microalgae mixotrophic cultures 

Species Organic 

carbon 

source 

µmax (day
-1

) Xmax  

(g l
-1

) 

Pvolume  

(g l
-1

 day
-1

) 

Reference 

Spirulina 

platensis  

Glucose 0.62 

 

2.66 

 

–  Chen et al., 

1996 

Spirulina 

platensis  

Acetate 0.52 

 

1.81 

 

–  Chen et al., 

1996 

Spirulina  

Sp. 

Glucose 1.32 

 

2.50 

 

–  Andrade et al., 

2007 

Spirulina 

platensis  

Molases 0.147 

 

2.94 

 

0.32 

 

 Andrade et al., 

2007 

 

 Growth rates of mixotrophic algae compare favorably with cultivation of 

photoautotrophic algae in closed photobioreactors. The rates are higher than for open 

pond cultivation but are considerably lower than for heterotrophic production. 

Chojnacka et al. (2004) compared Spirulina sp. growth in photoautotrophic, 

heterotrophic and mixotrophic cultures. They found that mixotrophic cultures reduced 

photo-inhibition and improved growth rates over both autotrophic and heterotrophic 

cultures. Successful production of mixotrophic algae allows the integration of both 

photosynthetic and heterotrophic components during the growth cycle. This reduces the 
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impact of biomass loss during dark respiration and decreases the amount of organic 

substances utilized during growth. These features infer that mixotrophic production can 

be an important part of the microalgae-to-biofuels process. 
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CHAPTER 3 

 

OBJECTIVES 

 

 The main aim of this study is to investigate the optimum parameters of 

microalgal fermentation on crude glycerol-rich medium and to determine the lipid, 

protein and carbohydrate contents of resulting microalgal biomass using FT-IR. The 

goals of the study are listed below: 

� To get an calibration equation for the Dry Weight (DW) of a microalgae 

suspension against the UV spectra at 550 nm, so that fast measurements of DW 

can be possible, 

� To examine the effects of the parameters: Temperature (
0
C), Substrate 

Concentration (g/l), Dilution rate (h
-1

) and Productivity (g biomass/l/h) and the 

composition of algal biomass in terms of lipid, protein and carbohydrate, 

� To optimize the values of the most effective parameters, using a Box Benkhen 

design sets of experiments, 

� To determine lipid productivity of such microalgal system using crude glycerol, 

using FT-IR technique, 

� Compare the lipid productivity values obtained as a result of Box Benkhen 

design with values reported in the literature and report these data into the 

literature. 
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CHAPTER 4 

 

EXPERIMENTAL STUDY 

 

4.1. Materials, Algal Strain and Culture Conditions 

 

 Crude glycerol was obtained from a local glycerol refinery. It is pretreated in 

order to remove residual methanol and acidified to split soaps into FFA's. Therefore, the 

crude glycerol used in this study was approximately 80% purity with impurities of 

water, phospholipids, MONG (non glycerol compounds) and ash. Before using the pH 

of crude glycerol is adjusted to 6.5. The green microalga, Chlorella minutissima (UTEX 

2341) was provided from the Culture Collection of Algae at the University of Texas 

(Austin, Texas, USA). This algal strain is maintained in modified Bristol’s medium 

(referred to as CZ-M1), and this medium is used as growth medium in the experiments 

which consisted of (per litre): 0.75 g NaNO3; 0.175 g KH2PO4; 0.075 g K2HPO4; 0.075 

g MgSO4·7H2O; 0.025 g CaCl2·2H2O; 0.025 g NaCl; 5mg FeCl3; 0.287 mg 

ZnSO4·7H2O; 0.169 mg MnSO4·H2O; 0.061 mg H3BO3; 0.0025 mg CuSO4·5H2O; and 

0.00124 mg (NH4)6Mo7O24·7H2O. 

 New Brunswick BioFlo410 Bioreactor/Fermentor is used in this study for the 

experiments. Complete PID control is available for parameters such as pH, temperature, 

agitation, air injection, foam, and dissolved oxygen (DO). Heat sterilization is also 

automatically controlled before inoculation. Agitation speed (rpm) and air flow rate 

(l/min) is cascaded to (DO) to keep it over 20% saturation. Air flow rate is changed 

between 1 – 25 l/min, and agitation speed is changed between 50 – 300 rpm. Alarm  

shut-down is set for max level in case of excess foaming. The culture is grown in the 

medium supplemented with 10 g/l crude glycerol as inoculum. The pH of the medium is 

adjusted to 6.5 prior to autoclaving at 121 
0
C for 20 min, and it is kept at the pH of 6.8 

using PID control of the bioreactor, for optimum pH point determination. An inoculum 

of 10% (by volume, average cell concentration of 0.5 g/l) is inoculated into the 

bioreactor. Different substrate concentrations of crude glycerol is used at different 

dilution rates and different temperatures for chemostat mode runs. For changing dilution 

rates, flow rate and/or the working volume of the medium is adjusted.  
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4.2. Methods 

 

4.2.1. Biomass Evaulation 

 

 The biomass was evaluated by the dry weight DW (g/l), and its relationship with 

the optical density (OD) at 550 nm and correlated as following: 

 

DW = ( 1.81*OD550  - 0.94 )*D                                    (4.1) 

 

where D is the dilution number for the suspensions that are too dense to be measured by 

the spectrometer (Multiskan, Thermo).  

 

4.2.2. Determination of Biochemical Compositions 

 

 A broth with biomass concentration of 1.0 mg ml
-1

 was prepared. Two-hundred 

microlitres of suspension was dropped on the CaF2 window (32 x 3 mm) for formation 

of a circle with a diameter of 10 mm. The sample was then dried in the vacuum drying 

oven at 40 
0
C for 1.0 h. The absorbance of samples were collected on the FT-IR 

spectrometer (TENSOR 27, Bruker) at a resolution of 4 cm
-1

 with sample and 

background scan time of 16 scans. OPUS 6.5 was employed to process the FT-IR 

spectra ranging from 400 to 4000 cm
-1

. ‘‘Rubberband correction” was chosen to correct 

the spectra baseline, using 64 baseline points and excluding CO2 bands. Then the 

characteristic peak areas of lipids, proteins and carbohydrates were calculated by 

integration. The amounts of biomolecules and their peak areas were correlated as the 

followings (Pistorins et al., 2009): 

 

AL = - 2.30 + 78.96 * TL     (4.2) 

AP = - 0.27 + 12.72 * TP     (4.3) 

AC = 0.07 + 2.05 * TC     (4.4) 

 

where TL (mg), TP (mg) and TC (mg) represent the total amounts of lipids, proteins and 

carbohydrates, and AL, AP and AC are characteristic peak areas of lipids, proteins and 

carbohydrates, respectively.  
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Table 4.1. Band assigment for infrared spectroscopy 

 

Figure 4.1. Typical spectra for macromolecules 

 

4.2.3. Box-Benkhen Experimental Design 

  

 An experimental design is prepared using the software Design Expert Version 

8.0.2. There are 3 factors; temperature, dilution rate and substrate concentration (crude 

glycerol) and 5 responses; dry weight, productivity, lipid, protein and carbohydrate 

contents. The design data matrix and limits for the factors are shown in Table 4.2. 
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Table 4.2. Box Benkhen experimental design data matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3.Box Benkhen Experimental Layout 

Std 

Order 

Run # Factor 1 

Temperature 

(
0
C)  

Factor 2 

Dilution rate  

(h
-1

)
   

Factor 3 

Substrate Concentration 

(g/l) 

 8 

 14 

 6 

 12 

 5 

 3 

 1 

 2 

 4 

 15 

 11 

 9 

 13 

 10 

 7 

   1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 35.00 

 25.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 25.00 

 35.00 

 25.00 

 35.00 

 25.00 

 40.00 

 0.25 

 0.25 

 0.15 

 0.15 

 0.05 

 0.25 

 0.15 

 0.15 

 0.25 

 0.15 

 0.15 

 0.15 

 0.05 

 0.05 

 0.05 

 150.00 

 80.00 

 80.00 

 150.00 

 150.00 

 80.00 

 80.00 

 10.00 

 10.00 

 10.00 

 80.00 

 150.00 

 10.00 

 80.00 

 80.00 

 

   

 

Data Matrix (randomized)

  Run  A  B  C

    1  0  +  +

    2  -  +  0

    3  0  0  0

    4  +  0  +

    5  0  -  +

    6  +  +  0

    7  0  0  0

    8  +  0  -

    9  0  +  -

   10  -  0  -

   11  0  0  0

   12  -  0  +

   13  0  -  -

   14  -  -  0

   15  +  -  0

Low Limit Midpoint High Limit

Temperature 25 35 40

Dilution rate 0,05 0,15 0,25

Substrate Conc. 10 80 150
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

5.1. Lipid, Protein and Carbohydrate Detection by FTIR Spectroscopy 

 

 FTIR spectra of Chlorella minutissima showed nine distinct absorption bands 

over the wavenumber range 1900 – 800 cm
-1.

. The bands were assigned to specific 

groups on the basis of biochemical standarts and published studies, as described 

previously (Stehfest et al., 2005). Table 5.1. shows the integrated band areas. 

 

Table 5.1. Integrated band areas 

Designation Wavenumber (cm
-1

) 

Amide I                                                           1705 – 1575 

Amide II                                                          1575 – 1480 

Carbohydrates                                                 1064 – 880 

Lipid                                                                1780 – 1708 

Phosphour                                                       1350 – 1190 

 

5.2. Productivity 

 

 The highest productivity is obtined in the first run with the value of 7.42 g/l/h 

(Table 5.2). Surface graphs in Figure 5.1, 5.2 and 5.3 shows the effects of factors on 

productivity. 
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Table 5.2. Cell dry weight and productivity responses 

Run Factor 1 

Temperature 

(
0
C)  

Factor 2 

Dilution rate  

(h
-1

)
   

Factor 3 

Substrate 

Concentration (g/l) 

Dry 

weight  

(g/l) 

Productivity 

(g/l/h) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 35.00 

 25.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 25.00 

 35.00 

 25.00 

 35.00 

 25.00 

 40.00 

 0.25 

 0.25 

 0.15 

 0.15 

 0.05 

 0.25 

 0.15 

 0.15 

 0.25 

 0.15 

 0.15 

 0.15 

 0.05 

 0.05 

 0.05 

 150.00 

 80.00 

 80.00 

 150.00 

 150.00 

 80.00 

 80.00 

 10.00 

 10.00 

 10.00 

 80.00 

 150.00 

 10.00 

 80.00 

 80.00 

 29.71 

 28.84 

 38.70 

 50.59 

 61.04 

 27.10 

 39.86 

 2.76 

 2.38 

 2.92 

 35.80 

 44.50 

 2.70 

 40.15 

 35.51 

 7.42 

 7.21 

 5.80 

 7.58 

 3.05 

 6.77 

 5.97 

 0.41 

 0.59 

 0.43 

 5.37 

 6.67 

 0.13 

 2.01 

 1.78 

 

 

 

 

Figure 5.1. Surface graph for productivity (g/l/h) for factors dilution rate and  

        temperature 
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Figure 5.2. Surface graph for productivity (g/l/h) for factors substrate concentration and 

        temperature 

 

 

Figure 5.3. Surface graph for productivity (g/l/h) for factors substrate concentration and 

       and dilution rate 
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5.3. Lipid Content 

  

 The highest lipid content was obtained in the second run with the value of 

14.35% and with a lipid productivity of 1.04 g/l/h (Table 5.3). Graphs in Figures 5.4, 5.5 

and 5.6 shows the change of lipid content in term of different factors.  

Table 5.3. Cell dry weight and lipid (%) responses 

Run Factor 1 

Temperature 

(
0
C)  

Factor 2 

Dilution rate  

(h
-1

)
   

Factor 3 

Substrate 

Concentration (g/l) 

Dry 

weight  

(g/l) 

Lipid 

(%) 

   1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 35.00 

 25.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 25.00 

 35.00 

 25.00 

 35.00 

 25.00 

 40.00 

 0.25 

 0.25 

 0.15 

 0.15 

 0.05 

 0.25 

 0.15 

 0.15 

 0.25 

 0.15 

 0.15 

 0.15 

 0.05 

 0.05 

 0.05 

 150.00 

 80.00 

 80.00 

 150.00 

 150.00 

 80.00 

 80.00 

 10.00 

 10.00 

 10.00 

 80.00 

 150.00 

 10.00 

 80.00 

 80.00 

 29.71 

 28.84 

 38.70 

 50.59 

 61.04 

 27.10 

 39.86 

 2.76 

 2.38 

 2.92 

 35.80 

 44.50 

 2.70 

 40.15 

 35.51 

13.90 

 14.35 

 10.71 

 10.19 

 8.91 

 13.20 

 9.77 

 8.43 

 8.02 

 9.70 

 12.13 

 12.71 

 13.48 

 7.55 

 9.08 
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Figure 5.4. Surface graph for Lipid (%) for factors substrate concentration and  

        temperature 

 

 

 

 

 

Figure 5.5. Surface graph for Lipid (%) for factors substrate concentration and dilution 
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        rate 

 

Figure 5.6. Surface graph for Lipid (%) for factors temperature and dilution rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 

 

5.4. Protein and Carbohydrate Content 

 
 The highest protein content was observed in the second run while the highest 

carbohydrate content was observed in the run 14 (Table 5.4).   

Table 5.4. Protein and carbohyrate responses 

Run Factor 1 

Temperature 

(
0
C)  

Factor 2 

Dilution rate  

(h
-1

)
   

Factor 3 

Substrate 

Concentration (g/l) 

Protein 

(%) 

Carbohydrate 

(%) 

   1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 35.00 

 25.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 40.00 

 35.00 

 25.00 

 35.00 

 25.00 

 35.00 

 25.00 

 40.00 

 0.25 

 0.25 

 0.15 

 0.15 

 0.05 

 0.25 

 0.15 

 0.15 

 0.25 

 0.15 

 0.15 

 0.15 

 0.05 

 0.05 

 0.05 

 150.00 

 80.00 

 80.00 

 150.00 

 150.00 

 80.00 

 80.00 

 10.00 

 10.00 

 10.00 

 80.00 

 150.00 

 10.00 

 80.00 

 80.00 

 48.40 

 47.89 

 35.05 

 43.45 

 38.90 

 36.80 

 17.95 

 25.98 

 14.91 

 43.89 

 24.71 

 46.43 

 36.65 

 22.01 

 39.89 

 8.05 

 8.06 

 29.45 

 29.59 

 32.53 

 35.33 

 45.37 

 55.48 

 58.18 

 25.88 

 40.74 

 25.87 

 44.09 

 50.08 

 25.66 

 

 

 Although lipid content of microalgae in this study (14%) is lower than reported 

in the literature (up to 55%), high lipid productivities (1.04 g/l/h) in total was achieved 

in this study due to the high dry weight concentration and dilution rates. Also, protein 

content is high compared to literature which can be used as animal feed after oil 

extraction for fuel purposes. This could be a valuable side product and would 

significantly affect the economics of such process. 

 Biodiesel is regarded to be one of the most promising alternatives to fossil fuel 

because it is renewable and environmental friendly. Currently, biodiesel is produced 

mainly from soybeans, rapeseed, canola oil, palm oil, animal fat and waste cooking oil. 

It is important to note that current supply is far less than demand and the price is high. A 

country such as the United States produced 491 million gallons biodiesel in 2007, far 

below the annual biodiesel demand. It is not practical to increase biodiesel production 

by increasing planting area of oil crops in concern of limited land. Another alternative 

method for biodiesel production is offered by fermentation of high lipid yield 
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microorganism. Heterotrophic Chlorella Sp. has been reported to be a very good 

candidate for biodiesel production because of its high lipid content and cell density. The 

high cost of the feedstock glucose is the main obstacle for commercialization. And in 

the long run, it is not practical to produce biodiesel from the food-based sugar. Crude 

glycerol is a problematic side product because it contains lots of impurities, and so 

having low economic value in biodiesel production. So, this study investigated the 

application of crude glycerol for oil production by heterotrophic Chlorella minutissima.                                                                

In this research, the lipid yield reached up to 1.04 g/l/day. Typically, the lipid 

productivity by phototrophic microalgae was significantly lower at 17–204 mg/l/day 

(Mata et al., 2009). As regard to carbon efficiency, there are two advantages in this 

heterotrophic process. Firstly, the lipid productivity in heterotrophic process is much 

higher than the phototrophic system. Thus, to produce the same amount of lipid, the 

heterotrophic process needs less energy for maintenance, irradiation, mixing and 

collection of microalgae. The save of energy, which is commonly generated by burning 

fossil fuel, would reduce the emission of CO2. Secondly, crude glycerol is directly used 

as a natural carbon source, so the feedstock of the process is obtained by bio-fixation of 

atmospheric CO2. From the global perspective, the heterotrophic fermentation has 

special characteristics, and the improvement of technology would further increase the 

carbon efficiency and biodiesel productivity. 

 The work presented here showed the potential of using less expensive crude 

glycerol from the biodiesel industry to produce oil by microalgal culture. The optimal 

crude glycerol content for algal oil production was around 150 g/L. Using statistically 

based experimental designs, it was found that substrate concentration and dilution rate 

were factors significantly influencing the algal oil production from crude glycerol. The 

optimal level of these two factors for oil yield were determined as 150 g/l and 0.25 1/h.  

Under the optimal culture conditions, oil content in the algae biomass was more 

than 14%; with a yield of oil 4.14 g/l. Successful application of this process could have 

a significant impact on the biodiesel industry as it helps to solve the problem of waste 

glycerol disposal in the biodiesel industry, while simultaneously produces a valuable 

nutraceutical. 
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CHAPTER 6 

 

CONCLUSIONS 

 

 In this study, the usability of waste crude glycerol from biodiesel processes and  

some important factors affecting the productivity and chemical composition of 

microalga, Chlorella minutissima, are investigated. From the results it was concluded 

that such a process is possible with a productivity values up to 7.42 g biomass/l/h and 

with a lipid content of 14.32 %.  

 Protein content of the resulting biomass was also in high percentages suggesting 

that the cake after oil extraction for fuel can be used for animal feed purposes. 

Processing waste glycerol by feeding it to microalgae in bioreactors can be a promising 

solution for biodiesel producers that are producing high amounts of waste crude 

glycerol. Microalgal fermentation is advantageous over photoautotrophic systems in 

terms of high productivity and easier downstream process handling due to high biomass 

concentrations achieved in bioreactors. This way, not only the waste glycerol is 

removed, also it can be converted into bio-oil to be used back in biodiesel industry and 

also resulting another valuable product as animal feed due to its high protein content. 
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APPENDIX A 

 

DRY WEIGHT CORRELATION for 550 nm 

 

 

 

Figure A.1. Correlation curve for Dry weight (g/l) versus optical density at 550 nm 
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APPENDIX B 

 

FTIR SPECTRAS for SAMPLES 

 

 

Figure B.1. FTIR Spectra for run #1 
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Figure B.2. FTIR Spectra for run #2 

 

Figure B.3. FTIR Spectra for run #3 
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Figure B.4. FTIR Spectra for run #4 

 

Figure B.5. FTIR Spectra for run #5 
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Figure B.6. FTIR Spectra for run #6 

 

Figure B.7. FTIR Spectra for run #7 
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Figure B.8. FTIR Spectra for run #8 

 

Figure B.9. FTIR Spectra for run #9 
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Figure B.10. FTIR Spectra for run #10 

 

Figure B.11. FTIR Spectra for run #11 
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Figure B.12. FTIR Spectra for run #12 

 

Figure B.13. FTIR Spectra for run #13 
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Figure B.14. FTIR Spectra for run #14 

 

Figure B.15. FTIR Spectra for run #15 


