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ABSTRACT 

IN-PLANE VIBRATIONS OF CURVED BEAMS HAVING VARIABLE  
CURVATURE AND CROSS-SECTION 

In this study, vibration characteristics of curved beams having variable 

curvatures and cross-sections are investigated. For convenience and progressive 

requirements, vibration characteristics of curved beams having; constant curvature and 

cross-section, variable curvature and constant cross-section, constant curvature and 

variable cross-section are also examined. The governing differential equations have 

derivatives with variable coefficients except for constant curvature and cross-sectioned 

case. Due to the fact that the solutions of differential equations with variable 

coefficients are analytically impossible except for special combinations of coefficients, 

in the investigation of eigenvalues of differential equations with variable coefficients 

usage of a numerical solution technique becomes necessary. At this point, the Finite 

Difference Method (FDM) is used to have the eigenvalues by converting continuous 

eigenvalue problem into discrete eigenvalue problem. Numerical solutions of the 

equations of motion with variable coefficients based on Finite Difference Method are 

carried out by using a symbolic program developed in Mathematica. The accuracy and 

numerical precisions of the developed program are evaluated by comparing the results 

with the analytical results given in literature. Good agreement is obtained in the 

comparisons of the present results with analytical results given in tabular form. Then, 

the effects of selected taper and curvature functions of beams on natural frequencies are 

found. The results are presented in tabular and graphical forms. 
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ÖZET 

DEĞİŞKEN EĞRİLİK VE KESİT ALANLI EĞRİ ÇUBUKLARIN  
DÜZLEM İÇİ TİTREŞİMLERİ 

Bu çalışmada, değişken eğrilik yarıçapına ve kesite sahip eğri çubukların 

titreşim özellikleri incelenmiştir. Uyum açısından ve incelemenin ilerleyen bir yapıda 

olması gerekliliğinden, sabit eğrilik yarıçapına ve kesit alanına, değişken eğrilik 

yarıçapına ve sabit kesit alanına, sabit eğrilik yarıçapına ve değişken kesit alanına sahip 

eğri çubukların titreşim özellikleri de incelenmiştir. Sabit eğrilik yarıçapı ve kesit alanı 

durumu hariç, hareket denklemi değişken katsayılı türevlere sahiptir. Bazı özel katsayı 

kombinasyonları hariç, değişken katsayılı diferansiyel denklemlerde özdeğer 

araştırmasının analitik olarak imkansız olduğu gerçeğinden dolayı, çalışmada özdeğer 

araştırması yapılırken bir sayısal çözüm yönteminin kullanımı zorunlu hale gelmiştir. 

Bu noktada, Sonlu Farklar Yöntemi (SFY), sürekli ortamdaki özdeğer problemini matris 

özdeğer problemine dönüştürerek özdeğerlere ulaşmada kullanılmıştır. Değişken 

katsayılı hareket denklemlerinin SFY tabanlı sayısal çözümü Mathematica’da 

geliştirilen sembolik program kullanılarak gerçekleştirilmiştir. Geliştirilen programın 

doğruluğu ve hassasiyeti sabit eğrilik yarıçapına ve kesit alanına sahip eğri çubuk 

durumunun literatürde verilen sonuçlarının, SFY programı kullanılarak elde edilen 

sonuçlarla karşılaştırılması ile değerlendirilmiştir. Bulunan sonuçlarla analitik sonuçlar 

arasında iyi bir uyum gözlenmiş olup, sonuçlar tablolar halinde verilmiştir. Daha sonra, 

kesit değişimi ve eğrilik yarıçapı fonksiyonlarının çubukların doğal frekansları 

üzerindeki etkileri bulunmuştur. Sonuçlar tablolar ve grafikler halinde verilmiştir. 
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CHAPTER 1  

 
GENERAL INTRODUCTION 

 
Vibration analysis of structural elements is one of the design steps which needs 

to be considered to avoid collapse of whole structure because of resonance, and 

affecting adjacent structures or machines. Preventing machines from spending more 

energy than actual need is also another cause which directs engineers and analyzers to 

investigate vibrations of structural elements, structures, and machines. 

It is obvious that curved beams have been used widely in a lot of aerospace, 

machinery, and architectural applications. This is because their advantage in terms of 

storing mechanical energy, carrying loads better as a component of structures, and 

beauty of their appearance. Geometric and functional requirements also direct designers 

to employ such curved structures. 

Curved beams can be utilized as parts of arch bridges, piping systems, aerospace 

structures, springs, watches, as well as smart structures. Besides, curved beams can be 

classified from different aspects. Namely, a curved beam can 

• be a space curve or a plane curve, 

• have constant (circular) or variable (such as catenary, elliptic, and parabolic etc.) 

curvature, 

• have constant or variable (tapered etc.) cross section. 

 

 
 

Figure 1.1. Balance springs: (1) flat spiral, (2) Breguet overcoil, (3) chronometer helix, 
                    showing curving ends, (4) early balance springs. 

 

Because of the wide usage of curved beams, many investigators have studied 

curved beams, arches, and spirals. Researchers investigating vibration characteristics of 

curved beams dealt with problems of different points of view aforementioned. Some of 

those studies can be surveyed as in next paragraph. 
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An exact solution for in-plane vibration of arches was developed using 

Frobenius method combined with the dynamic stiffness method. The effects of rotary 

inertia and shear deformation were taken into account. The effects of rise to span length, 

slenderness ratio, and variation of cross-section on non-dimensional frequencies were 

also showed (Huang et al. 1998). A transfer matrix method was presented for predicting 

the natural frequencies of circular arcs with varying cross-section. The numerical results 

obtained by the method were compared with the experimental results (Irie et al. 1982). 

In-plane vibration of a free-clamped slender arc of varying cross section was analyzed 

using spline interpolation technique (Irie et al. 1980). In order to use this technique, the 

arc was divided into small elements. The in-plane displacement of each element was 

expressed by a spline function of seven degrees with unknown coefficients. An 

approximate method was presented to study both in-plane and out-of-plane free 

vibrations of horizontally curved beams with arbitrary shapes and variable cross 

sections. The characteristic equation was obtained by application of the Green function 

(Kawakami et al. 1995). The first two natural frequencies of vibration of symmetric 

circular arches with linearly varying thickness carrying concentrated masses were 

determined (Laura and Irassar 1988). The frequency equation was generated by means 

of the Ritz method and eigenvalues were optimized with respect to an exponential 

parameter. It was proposed that the Love strain form (Love 1944) of naturally curved 

and twisted rods are not valid for two dimensionally curved beams when shear 

deformation is considered (Leung and Chan 1997). The differential equations governing 

free, in-plane vibrations of non-circular arches with non-uniform cross-sections were 

derived (Oh et al. 1999). The effects of shear deformation, rotary inertia, and axial 

deformation were included. The governing equation was solved numerically to obtain 

frequencies and mode shapes. Numerical results showed agreement with results 

determined by means of finite element method. Besides, an experiment was conducted 

(Oh et al. 2000) and it was showed that the results obtained by use of theory are in 

agreement with those of experiments. The equations without making use of the 

assumption of no extension of the central line were derived (Philipsson 1956). It was 

showed that the forced vibration problem to require the possibility of extension in 

certain cases in which its neglecting in a free-vibration analysis is valid. An 

approximate method was presented to analyze the free vibration of any type of arches 

(Sakiyama 1985). The solutions of differential equations were obtained in discrete form, 

by translating the differential equations into integral equations and applying numerical 
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integrations. The dynamic response of a plane curved bar with varying cross-section 

under a dynamic load was analyzed (Suzuki et al. 1985). The eigenfunction expansion 

method was employed to solve the equations of motion and also the time responses 

were compared with those for a static load to understand their characteristics. The in-

plane vibrations of a uniform curved bar were investigated considering the bending, the 

extension, the shear deformation, and the rotary inertia of the bar (Suzuki and Takahashi 

1979), (Suzuki and Takahashi 1982). The equations of vibration and boundary 

conditions were obtained from the stationarity condition of the Langrangian. As 

examples, calculations for elliptic arc bars with built-in ends were made. The equations 

of vibration were solved exactly by a series solution. The Rayleigh-Ritz method was 

used to find the lowest natural frequency of clamped parabolic arcs to understand the 

effect of the variation of depth and width on natural frequencies (Wang 1972). The in-

plane and out-of-plane free vibration frequencies of Archimedes-type spirals were 

computed (Yıldırım 1997). The transfer matrix method was used and the shear 

deformation and rotary inertia were taken into account. To compute the overall dynamic 

transfer matrix, the complementary functions method was made use of. The coupled 

bending-bending vibration of pre-twisted tapered cantilever blades was dealt with 

(Carnegie and Thomas 1972). The domain was discretized using the finite difference 

method and a set of simultaneous algebraic equations was obtained. Solving this set of 

equations it was showed that taper has a considerable influence on both the frequencies 

of vibration and the associated modal shapes. Vibration characteristics of rectangular 

cross-sectioned pretwisted beams of which width and depth variations along the beam 

were expressed as power of axial coordinate of the beam were investigated by using the 

Finite Difference Method (Yardımoğlu and Kara 2009). The effects of width and depth 

power, multiplication, and pretwist parameters were showed. 

Although, the problem to define the effects of parameters affecting vibration 

characteristics of curved beams is much investigated and a considerable amount of 

publications have been published so far, it still holds attraction because of wide usage. 

Therefore, in this study, the effects of variable radius of curvature and cross-section on 

vibration characteristics of curved beams are determined. The method employed to 

solve the eigenvalue problem is chosen as the Finite Difference Method, because the 

method has not been used for such curved structures yet. 

A symbolic program is developed in Mathematica environment based on the 

Finite Difference Method. Using the program developed, dimensionless natural 
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frequencies are obtained and the effects of parameters those defining variable radius of 

curvature and cross-section are determined. 

The accuracy and numerical precision of the developed program are evaluated 

by using the analytical results given in literature for a curved beam of constant 

curvature and cross-section. Good agreement is reached in the comparisons of the 

present results with analytical results. As novel examples of the study, curved beams 

having polynomial, sinusoidal, and exponential curvature and/or having linearly varying 

width and depth are investigated. Besides the effects of parameters defining the shape of 

cross-section and curvature, the effects of parameters concerning opening angle (or 

dimensionless curvature parameter) are examined. The effects of cross-section and 

curvature variation parameters are given in tabular and graphical form. 
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CHAPTER 2  

 

THEORETICAL VIBRATION ANALYSIS 

 
2.1. Introduction 

 
In this chapter, statement of the investigated problem is given. Geometry, 

curvature expression and energies which are needed to derive equations are given. Two 

methods which may be used to derive the equations of motions governing the stated 

problem are introduced. The derived equations of motions governing free vibrations can 

be found in following sections.  

Before employing a method to find eigenvalues, equations of motions which are 

derived need to be non-dimensionalized. Non-dimensional parameters need to be 

introduced to make investigation general and based on those given parameters. 

At the end of this chapter, the logic behind the Finite Difference Method is 

explained and determination of natural frequencies using the Finite Difference Method 

is mentioned. Finally the Richardson Extrapolation Method, which is a method utilized 

to have better approximations, is introduced. 

 

2.2 Statement of the Problem 

 
Curved beams having variable curvature and cross-section are considered. The 

material of the beam is thought to be linearly isotropic. For the cases of constant radius 

of curvature and cross section, variable radius of curvature and constant cross-section, 

constant curvature and variable cross-section, and variable radius of curvature and 

cross-section, equations which govern free vibrations are obtained in a manner that is 

dependent from specific geometry. If desired equations for radius of curvature and 

cross-sectional area are substituted in derived equations, specific governing equations 

for that geometry can be obtained. In Figure 2.1., a representative curved beam with 

both variable radius of curvature and cross-section can be seen. 
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Figure 2.1. A representative curved beam with variable curvature and cross section 

 

2.3 Derivation of the Equation of Motion 

 
In this section methods which may be employed to derive equations of motion of 

continuous systems are presented. Equations of motion of continuous systems can be 

obtained by using different methods; such as; “Dynamic Equilibrium Approach”, 

“Variational Method”, and “Integral Equation Approach”. In this study, Dynamic 

Equilibrium Approach is applied using Newtonian Method and Variational Method is 

applied using Hamilton’s Principle. On the other hand, Integral Equation Approach is 

not mentioned, because it is based on the derivation of governing differential equations 

using other methods. Besides, equations of motions and boundary conditions which are 

derived by hand and by using Mathematica are introduced for all of the cases 

investigated. 

 

2.3.1 Newtonian Method 

 
Dynamic Equilibrium approach can be applied by using either Newtonian 

Method or D’Alembert’s Principle. Due to the fact that the D’Alembert’s Principle is 

just the restatement of the Newtonian Method, it is not used to derive the equations of 

motion. 

sL 

y 

x 

s 

O

ρ0(s) 

A(sL) 
IYY(sL) 
 

IYY0 
A0  
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Newtonian method is based on dynamic equilibrium of internal and external 

forces and moments. Therefore, in Newtonian method what needs to be done is to 

equalize the external forces and internal forces, and external moments and internal 

moments in same direction. Newtonian method can be given using following equations 

(Rao 2007): 

 

amvm
dt
dF

i
i

rrr
==∑ )(     (2.1) 

 

∑ ==
i

i II
dt
dM αω

rrr
)(       (2.2) 

 

 
Figure 2.2. A differential curved beam with internal forces and bending moment 

 

If forces and moments which can be seen in Figure 2.2 are substituted in 

Equations 2.1 and 2.2, force and moment equilibrium equations can be obtained as 

follows (Love 1944): 

 

NP amXT
ds
dN

=+′+ 1κ      (2.3.a) 

TP amZN
ds
dT

=+′− 1κ      (2.3.b) 

0=′++
′

KN
ds
Gd      (2.3.c) 

N

T
G′ 

T + dT
N + dN 

G′ + dG′ 

N

T
G′ 

T + dT
N + dN 

G′ + dG′ 

κ′1(s) 
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where mP aN and mP aT are inertial forces. Bending moment and curvature can be written 

as follows: 

 

)()( 0 w
ds
du

ds
dsEIG yy κ+=′     (2.4.a) 

 

)( 001 κκκ w
ds
du

ds
d

++=′     (2.4.b) 

 

If central line is assumed as unextended, the inextensionality condition is wrıtten 

in following equation: 

 

0κu
ds
dw

=      (2.5) 

 

Internal force along z-axis “T ” vanishes. Also, knowing that there is no 

externally applied moment, “ K ′”; equilibrium equations becomes: 

 

NP amX
ds

Gd
=+

′
− 2

2

            (2.6.a) 

 

TP amZ
ds
Gd

=+
′

′1κ            (2.6.b) 

 

After substituting the expressions of G′  and 1κ ′  and inextensionality condition 

given by Equation 2.5 the equation of motion of curved beam is obtained. One of the 

disadvantages of using Newtonian Method is that it does not yield boundary conditions 

associated with differential equations unlike Hamilton’s method. Besides, while 

derivation of equations of motions using Newtonian method, it is needed to neglect 

small quantities of higher order unlike Hamilton’s Principle. 
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2.3.2 Hamilton’s Method 

 
The variational principle that can be used for dynamic problems is called 

Hamilton’s principle. Hamiltonian method is a more powerful approach than Newtonian 

method, because it also yields boundary conditions. Variation of a function can be 

depicted as shown in Figure 2.3. 

 

 
Figure 2.3. Variation of u(t) 

 

The principle can be stated as follows; “Of all possible time histories of 

displacement states that satisfy the compatibility equations and the constraints or the 

kinematic boundary conditions and that also satisfy the conditions at initial and final 

times t1 and t2, the history to the actual solution makes the Langrangian a minimum” 

(Meirovitch 1967). The principle can be defined mathematically as follows; 

 

0)(
2

1

2

1

=−= ∫∫
t

t

t

t

VKL δδ        (2.7) 

 

Where K is the kinetic energy and V is the elastic strain energy- i.e. potential 

energy of the curved beam. Kinetic energy and elastic strain energy of the curved beam 

examined are as follows; 

 

∫ +=
Ls

dswumK
0

22 )(
2
1

&&              (2.8.a) 

t1 

u

t

δu

t t1 

u1

u2

O 
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∫ −′′=
Ls

dsGV
0

01 ))(
2
1( κκ              (2.8.b) 

 

If G′  and 1κ ′  given in Equations 2.4 are substituted in Equations 2.8, and 

employing inextensionality condition given in Equation 2.5 energies given in Equation 

2.8 becomes: 

 

∫ +
′

=
Ls

dswwAK
0

2

0

2

)(
2
1

&
&

κ
ρ               (2.9.a) 

∫ ′+′
′′

=
Ls

YY dswwIEV
0

2
0

0

))((
2
1 κ

κ
                (2.9.b) 

 

Using energies given in Equations 2.9, differential equations governing free 

vibrations of curved beams with constant radius of curvature and cross-section can be 

obtained with associated boundary conditions as follows: 

 

)(2 2
0

2
02

0 κ
ρκ

κ
wwAwEIwEIw

EI
yy

iv
yy

viyy ′′
−=′′++

&&
&&         (2.10) 

0)(
0

0

=′′′+
′′′ Lswww δ

κ
           (2.11.a) 

0)(
0

0

=′′′+
′′′ Lswww δ

κ
           (2.11.b) 

0)(
0

0

=′+
′′′ Lswww δ

κ
            (2.11.c) 

 

Physical interpretations for boundary conditions corresponding to Equations 

2.11.a-c as follows: 

a) Either bending moment is zero(pinned or free), or slope is zero(clamped). 

b) Either shear force is zero(free), or displacement is zero(pinned or clamped). 

c) Either bending moment is zero(pinned or free), or displacement is zero(pinned or 

clamped). 

 Boundary conditions given in Equations 2.11.a-c remain the same for all of the 

cases. 
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Differential equation governing free vibrations of curved beam with variable 

curvature and constant cross-section can be obtained by choosing a curvature variation 

function and substituting it into Equations 2.8 as follows: 
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Differential equation governing free vibrations of curved beam with constant 

curvature and variable cross-section can be obtained by choosing a cross-section 

variation function and substituting it into Equations 2.8 as follows: 
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(2.13) 

 

Differential equation governing free vibrations of curved beam with variable 

curvature and cross-section can be obtained by choosing variation functions of both 

curvature and cross-section and substituting them into Equations 2.8 as follows: 
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           (2.14) 

 

After obtaining governing equations of the problem, the separation of variables 

technique is used to convert partial differential equation into an ordinary differential 

equation. This technique can be introduced as follows: 

 

)()(),( tfswtsw =      (2.15) 
 

Because of the fact that a conservative system has constant total energy, the 

function f(t) in Equation 2.15 needs to be a harmonic function (Meirovitch 1967). Only 
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for the differential equation governing free vibrations of curved beams with constant 

radius of curvature and cross-section is separated using Equations 2.15 as a 

representative example. It is obvious that this step should be performed for other cases 

as well. Therefore, substituting Equation 2.15 into Equation 2.10, the partial differential 

equation reduces to the following ordinary differential equation form: 

 

)(2 2
0

22
02

0 κ
ωρκ

κ
wwAwEIwEIw

EI
yy

iv
yy

viyy ′′
−−=′′++        (2.16) 

 

2.4. Non-dimensionalization of Equation of Motions 

 
Non-dimensionalization is one of the most important steps in the analysis of a 

system of differential equations. It comprises scaling each variable (dependent and 

independent) by a typical or representative value, providing a nondimensional variable. 

Non-dimensionalization is important to analyze such problems because; 

1. It identifies the dimensionless groups (ratios of dimensional parameters) which 

control the solution behavior. 

2. Terms in the equations are now dimensionless and so allow comparison of their 

sizes. 

3. It permits estimations of the effects of extra features to the original model 

through the new dimensional group(s) connected to the extra term(s). 

4. Finally, it can decrease the amount of parameters appearing in the problem by 

creating the nondimensional parameters or dimensionless groups. 

Because of those four reasons aforementioned, in our analysis, problem should 

be non-dimensionalized, and dimensionless variables and parameters have to be 

introduced. Dimensionless parameters, variables, and differential equation governing 

free vibrations of curved beams having constant curvature and cross-section can be 

written as follows: 

 

Ls
ss = , 

Ls
ww = , Ls0κλ = , 2

4
0

ω
κ

ρ

YYIE
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=Ω      (2.17) 
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 Dimensionless parameters given in Equation 2.17 can be described as; w  is 

dimensionless displacement, λ is dimensionless curvature parameter (i.e. κ0 has the unit 

of m-1), and Ω is dimensionless frequency parameter. It is clear that, for such a problem, 

to identify only the dimensionless curvature parameter λ is enough to have a frequency 

parameter that is independent from curvature itself, arc length, cross-section, and 

material of the beam. 

 For other three cases, dimensionless parameters are going to be written knowing 

following cross-section and curvature variation definitions: 

 

)()( 0 skks =κ       (2.19.a) 

)()( 10 sIIsIYY =       (2.19.b) 

)()( 10 sAAsA =       (2.19.c) 

 

where, k0 is curvature, I0 is second moment of area, and A0 is cross-sectional area at s=0. 

k(s), I1(s), and A1(s) are predefined functions to determine the variations of curvature, 

second moment of area, and cross-sectional area, respectively. Combinations of 

Equations 2.19.a-c must be chosen for determination of cross-sectional area and 

curvature expressions. For the cases of variable curvature and constant cross-section, 

constant curvature and variable cross-section and variable curvature and cross-section, 

dimensionless parameters and variables can be written as follows: 

 

Ls
ss = , 

Ls
ww = , Lsk00 =λ , 2

4
00

0 ω
ρ

kIE
A

=Ω       (2.20) 

 

 Substituting proper dimensionless parameters given in Equations 2.17 and 2.20 

into Equations 2.10, 2.12, 2.13, or 2.14, the equations are transformed into 

dimensionless form like given in Equation 2.18 for the simplest case. 
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2.5. Finite Difference Method to Determine Natural Frequencies 

 
In mathematics, the Finite Difference Methods are numerical methods for 

approximating the solutions to differential equations using finite difference equations to 

approximate derivatives (Hildebrand 1987).  

Because differential equations having variable coefficients are analytically 

unsolvable except for equations having special combinations of coefficients, the Finite 

Difference Method is used. In addition to that, as it is mentioned before, the Finite 

Difference Method has not been used to solve such curved beam vibration problems, 

although it is used to solve pretwisted beam problems (Carnegie and Thomas 1972). 

 

 
Figure 2.4. A domain divided into six subdomains for approximation 

 

Following two assumptions are used to employ the Finite Difference Method; 

1. The derivatives of dependent variable (for instance y) in the differential 

equation(s) are replaced by the finite difference approximations. 

2. The differential equation(s) is/are enforced only at mesh points. As a result, the 

differential equations are replaced by n simultaneous algebraic equations, the unknowns 

being yi , i=1,2,….,n.  

In the problem, the Finite Difference Method can be applied by; 

a) Dividing the range 10 ≤≤ s  into n number of equal parts of step length )/1( nh =  

(as shown in Figure 2.4.), 

x0 x1 x2 x3 x4 x5 x6 

h h h h h h 

y=f(x) 
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b) Replacing the derivatives of w  appearing in equations by their corresponding 

central difference relationships, given in Table 2.1. 

c) Replacing the derivatives of  w  appearing in left and right boundaries by their 

corresponding central difference relationships, given in Table 2.1. 

d) Grouping like terms. After grouping like terms n simultaneous algebraic 

equations are obtained. 

After these steps, problem defined in Equation 2.18 for a curved beam having 

constant cross-section and curvature becomes the form of a matrix eigenvalue problem 

as given in following equation: 

 

[ ]{ } { }ii wwD Ω=      (2.21) 

 

Table 2.1. Differences approximations for derivatives 

Term Central Difference Expressions 

ds
dw  

h
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 After substituting boundary conditions given in Equation 2.18 into Equation 

2.11, the problem reduces to finding the eigenvalues of coefficient matrix D. 

 For the cases having variable cross-sections or/and variable curvature, 

coefficient matrix D has variable terms as well. 

 i appearing in Equation 2.21 should be defined considering boundary conditions. 

The values that i must be assigned are tabulated (0 is left boundary and n is right 

boundary) in Table 2.2. 
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Table 2.2. i values considering boundary conditions 

Boundary Conditions i values 

Cantilever 1 ≤ i ≤ n 

Fixed-Fixed 1 ≤ i ≤ n-1

Fixed-Simple 1 ≤ i ≤ n-1

Simple-Free 1 ≤ i ≤ n 

Simple-Fixed 1 ≤ i ≤ n-1

Simple-Simple 1 ≤ i ≤ n-1

Free-Free 0 ≤ i ≤ n 

Free-Simple 0 ≤ i ≤ n-1

 

2.6. Richardson Extrapolation Method 

 
Richardson extrapolation is a method for improving the accuracy of some 

numerical procedures, including finite difference approximations and numerical 

integration. The method is named after English mathematician, physicist, meteorologist, 

psychologist, and pacifist Lewis Fry Richardson. 

Let us suppose that we have an approximate means of computing the 

dimensionless natural frequency Ω of a curved beam.  It is known that, the result 

depends on the parameter h, the stepsize. Richardson extrapolation formula then can be 

written as follows (Richardson and Gaunt 1927): 

 

p
p

phh φ∑
=

+Ω=Ω
1

2)(      (2.22) 

 

where pφ  is a constant function and the upper bound of p needs to be chosen 

considering how many approximate values are used to find an extrapolated value. It is 
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also worth to mention that the value assigned for the upper bound of p affects the 

elimination of the order of error. It means, if p=2 is chosen (i.e. there are three 

approximated dimensionless frequency parameter values), an error of O(h2) is 

eliminated. 
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CHAPTER 3  

 

NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, numerical applications for four cases are done. These are: 

a) a curved beam with constant curvature and cross-section, 

b) a curved beam with variable curvature and constant cross-section, 

c) a curved beam with constant curvature and variable cross-section, 

d) a curved beam with variable curvature and cross-section.  

The numerical results are found and compared with those existing in the 

literature. Observations concerning tendency of results given in tabular and graphical 

forms are discussed. The accuracy of obtained values is also improved by using the 

Richardson Extrapolation Method which is explained before. 

 

3.2. Applications for Constant Curvature and Cross-Section 

 
Vibration problem of a curved beam having constant cross-section and curvature 

is the simplest among the cases considered in this study. For this case, governing sixth 

order differential equation and boundary conditions in dimensionless form may be 

written as follows: 
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Although the problem can be solved analytically, it is also solved by using the 

Finite Difference Method to show accuracy and precision of the developed symbolic 

Mathematica program. Applying finite difference scheme to governing equation and 

also boundary conditions to approximate the derivatives, an aforementioned matrix 

eigenvalue problem can be obtained. 

 

3.2.1 Comparison of Results with Those Existing in the Literature 

 
The results obtained by using Finite Difference Method and extrapolated by 

using Richardson extrapolation method given in Equation 2.23 are compared with the 

analytical results available in the literature (Archer 1960). 

 

Table 3.1. Comparison of dimensionless frequency parameters (Ω) for a fixed-fixed  
                  constant curvature and cross-sectioned curved beam with analytical results 
                  (Archer 1960) for different λ values 

Finite Difference Method 
Mode λ Ω (Archer 

1960) Ω(n =20) Ω(n =50) Ω(n =100) Extrapolated

1 19.22 19.153 19.2128 19.2207 19.2233 

2 93.15 91.4226 92.8919 93.0927 93.1591 

3 321.5 306.428 318.9 320.621 321.191 

4 

 

π 

756.3 698.581 748.321 755.262 757.567 

1 1.946 1.92795 1.94304 1.94513 1.94582 

2 12.85 12.5576 12.8075 12.8421 12.8536 

3 49.58 47.2065 49.2117 49.4893 49.5813 

4 

 

1.5π 

126.6 118.154 126.924 128.151 128.559 

1 0.3208 0.313559 0.319682 0.320546 0.320833 

2 2.545 2.45968 2.53129 2.54134 2.54468 

3 11.46 10.8293 11.3572 11.4309 11.4554 

4 

 

2π 

33.06 30.2361 32.6646 33.0058 33.1192 
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3.2.2 Discussion of Results 

 
It is obvious from the Table 3.1 that present results are in a good agreement with 

analytical results (Archer 1960). It can be seen that for all λ values, errors are larger at 

higher modes than those at lower modes. 

Table 3.1 also gives the convergence patterns and extrapolated values to 

improve the accuracy of results. If the first natural frequency of the curved beam with λ 

= 2π is investigated, it can be concluded that, the extrapolated values from n= 20, 50, 

100 are more reasonable than those values themselves. There is one exception of this 

fact, which is fourth vibration mode of λ = 1.5π, where frequency parameter found by 

n= 50 is closer to analytical value than extrapolated result. 

Analyzing Table 3.1, it can also be seen that, if λ value increases, natural 

frequencies decrease. It is also reasonable, because the meaning of increase of λ-the 

dimensionless curvature parameter (which corresponds to the opening angle of the beam 

for constant curvature case) is that curved beam gets longer. 

 

 
Figure 3.1. Absolute percentage error of dimensionless first natural frequency Ω for a  
                   fixed-fixed curved beam of λ=π vs. n-number of grids 

 

In Figure 3.1, absolute percentage error versus number of grids for first natural 

frequency of a curved beam having λ= π is depicted. It is seen that, while number of 

grids increase, absolute percentage error decreases. At about n =75 absolute percentage 

error is almost zero. Although this problem is a simple one, maximum absolute 

percentage error is about 1.85% at n= 10. But still, as seen in Figure 3.1, the smallest 
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value of absolute percentage error is about 0.0003% and it can be said that this is a good 

approximation to the exact value. 

 

3.3. Applications for Variable Curvature and Constant Cross-Section 

 
In this section, numerical applications for the case of variable curvature and 

constant cross-section are done for various functions of curvature. The challenge while 

solving this problem is differential equation which is tried to be solved to yield 

eigenvalues is order of six and has variable coefficients of differential terms. Due to the 

fact that differential equations having variable coefficients cannot be solved except for 

special cases, a numerical method becomes necessary to utilize. 

The results obtained by using Finite Difference Method are tabulated for curved 

beam having variable curvature and constant cross-section. As descriptive examples: 

curved beams having neutral axis of which shape is a linearly, quadraticly, cubically, 

exponentially, and sinusoidally varying curve are chosen and results are given in tabular 

form.  

For linearly varying curvature case, the chosen curvature variation function can 

be written as: 

 

)1()( 0
Ls
sks δκ +=      (3.3) 

 

 If differential equation is derived using the curvature form given in Equation 

3.3., and non-dimensionalized employing proper parameters given in Equation 2.16 and 

Equation 2.19, equations are ready to solve using finite difference scheme. 

 

Table 3.2. Dimensionless frequency parameters for fixed-fixed linearly varying  
                 curvature and constant cross-sectioned curved beam ( λo =π, δ=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

1. 17.9369 17.9971 18.005 18.0076 

2. 88.4424 89.8868 90.0843 90.1496 

3. 299.476 311.678 313.361 313.919 



 23

For quadraticly varying curvature case, the chosen curvature variation function 

can be written as: 

 

))(1()( 2
0

Ls
sks δκ +=      (3.4) 

 

 If differential equation is derived using the curvature form given in Equation 

3.4., and non-dimensionalized employing proper parameters given in Equation 2.16 and 

Equation 2.19, equations are ready to solve using finite difference scheme. 

 

Table 3.3. Dimensionless frequency parameters for fixed-fixed quadraticly varying  
                curvature and constant cross-sectioned curved beam ( λo = π, δ=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

1. 19.221 19.2791 19.2866 19.2891 

2. 91.4524 92.9208 93.1215 93.1879 

3. 305.666 318.073 319.784 320.351 

 

For cubically varying curvature case, the chosen curvature variation function can 

be written as: 

 

))(1()( 3
0

Ls
sks δκ +=      (3.5) 

 

If differential equation is derived using the curvature form given in equation 

3.5., and non-dimensionalized employing proper parameters given in Equation 2.16 and 

Equation 2.19, equations are ready to solve using finite difference scheme. 
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Table 3.4. Dimensionless frequency parameters for fixed-fixed cubically varying 
     curvature and constant cross-sectioned curved beam ( λo = π, δ=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

1. 19.9072 19.9644 19.9718 19.9742 

2. 93.0434 94.5262 94.7289 94.796 

3. 308.788 321.3 323.026 323.598 

 
For exponentially varying curvature case, the chosen curvature variation 

function can be written as: 

 

Ls
s

eks
δ

κ 0)( =             (3.6) 

 

If differential equation is derived using the curvature form given in Equation 

3.6., and non-dimensionalized employing proper parameters given in Equation 2.16 and 

Equation 2.19, equations are ready to solve using finite difference scheme. 

 

Table 3.5 Dimensionless frequency parameters for fixed-fixed exponentially varying  
                curvature and constant cross-sectioned curved beam ( λ0 = π, δ=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

1. 17.938 17.9981 18.006 18.0086 

2. 88.4334 89.8776 90.0752 90.1406 

3. 299.42 311.618 313.302 313.86 

 

For sinusoidally varying curvature case, the chosen curvature variation function 

can be written as: 

 

))(1()( 0
Ls
sSinks δκ +=     (3.7) 
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If differential equation is derived using the curvature form given in Equation 

3.7., and non-dimensionalized employing proper parameters given in Equation 2.16 and 

Equation 2.19, equations are ready to solve using finite difference scheme. 

 

Table 3.6. Dimensionless frequency parameters for fixed-fixed sinusoidally varying  
                curvature and constant cross-sectioned curved beam ( λ0 = π, δ=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

1. 17.9358 17.996 18.0039 18.0065 

2. 88.4402 89.8845 90.0821 90.1475 

3. 299.473 311.674 313.358 313.916 

 

Tables 3.2-3.4 need to be considered together because they all have the same 

polynomial function form. As it can be seen from these tables, if the order of the 

polynomial increases, dimensionless frequency parameters also increase, for the same 

dimensionless curvature parameter. Besides, it can be seen from Tables 3.5 and 3.6 that 

dimensionless frequency parameters for curved beams having exponentially and 

sinusoidally varying curvature are almost equal to each other for the same 

dimensionless curvature parameter. 
 

3.3.1. The Effects of Parameters Defining Variation of Curvature 

 
 In this section, the effects of parameters defining of variation of curvature (δ) 

and dimensionless curvature parameter are investigated. Results are given in graphical 

form for various cases of curvature variation.  

 If curvature variation is chosen considering Equation 3.3 (i.e. linearly varying 

curvature), the effect of parameters can be depicted in the following figure: 
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Figure 3.2. Dimensionless first natural frequency for a fixed-fixed curved beam of  
                 different λ0’s vs. δ-linear variation parameter (n=100) 

 
In Figure 3.2, dimensionless first natural frequency parameter of a curved beam 

having linearly varying curvature versus δ-variation parameter can be seen for various 

λ0-dimensionless curvature parameters. First thing to deduce from Figure 3.2 is that if 

dimensionless curvature parameter λ0 increases, dimensionless frequency parameter 

decreases for a curved beam having linearly varying curvature. When λ0=π, 

dimensionless frequency parameter has the biggest form then, and while δ-variation 

parameter gets bigger, it decreases. 
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Figure 3.3. Dimensionless first natural frequency for a fixed-fixed curved beam of two  
                  different λ0’s vs. δ-linear variation parameter (n=100) 

 

For other values of dimensionless curvature parameters tendency of change of 

dimensionless natural frequency parameters is different as it is seen in Figure 3.3. When 

λ0=1.5π dimensionless frequency parameter increases as δ-linear variation parameter 

reaches the value of almost 0.8. After that value, Ω almost remains constant. On the 

other hand, different than other λ0 values, when λ0=2π dimensionless frequency 
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parameter decreases as δ-linear variation parameter reaches the value of almost 0.4. 

After that value, Ω starts increasing. 

If curvature variation is chosen considering Equation 3.4 (i.e. quadraticly 

varying curvature), the effect of parameters can be depicted in the following figure, 
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Figure 3.4. Dimensionless first natural frequency for a fixed-fixed curved beam  

       of two different λ0’s vs. δ-quadratic variation parameter (n=100) 
 

In Figure 3.4, dimensionless first natural frequency parameter of a curved beam 

having quadraticly varying curvature versus δ-variation parameter can be seen for two 

different λ0-dimensionless curvature parameters. First thing to deduce from Figure 3.4 is 

that if dimensionless curvature parameter λ0 increases, dimensionless frequency 

parameter decreases for a curved beam having quadraticly varying curvature. When 

λ0=1.5π dimensionless frequency parameter shows a small decrease as δ-quadratic 

variation parameter increases. On the other hand, different than other λ0 values, when 

λ0=2π dimensionless frequency parameter increases. 

 

3.3.2 Discussion of Results 

 
In this section, curved beams having constant cross-section and variable radius 

of curvature are investigated. Results are given in tabular and graphical form. It is 

noticed that when variation parameters are constant, for all cases, dimensionless natural 

frequencies decrease as dimensionless curvature parameters increase. On the other hand, 

the tendency of change of dimensionless frequency parameter when dimensionless 

curvature parameters are constant does not have a standard increase or decrease 

behavior. Comments on specific cases having non-standard tendency are mentioned in 

previous subsection. 
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3.4. Applications for Constant Curvature and Variable Cross-Section 

 
In this section, numerical application for the case of constant curvature and 

variable cross-section is done for linear functions of width and depth. The challenge 

while solving this problem is differential equation which is tried to be solved to yield 

eigenvalues is order of six and has variable coefficients of differential terms. Due to the 

fact that differential equations having variable coefficients cannot be solved except for 

special cases, a numerical method becomes necessary to utilize. 

The results obtained by using Finite Difference Method are tabulated for curved 

beam having constant curvature and variable cross-section. As descriptive examples, 

curved beams of which width and depth are linear functions of independent variable are 

chosen.  

For the case of linearly varying width and depth, the chosen width and depth 

variation functions can be written as in following equations, respectively: 

 

)1()( 0
Ls
sbsb γ+=             (3.8.a) 

)1()( 0
Ls
shsh β+=             (3.8.b) 

 

 where b0 and h0 defines width and depth at s=0. If differential equation is derived 

using width (b(s)) and depth (h(s)) variation forms given in Equation 3.8., and non-

dimensionalized employing proper parameters given in Equations 2.16 and 2.19, 

equations are ready to solve using finite difference scheme. 

Dimensionless frequency parameters for curved beams having linearly varying 

width and depth with two different dimensionless curvature parameters are tabulated in 

Table 3.7. As it can be seen from table, if λ increases dimensionless frequency 

parameters tend to decrease. If Table 3.7 is studied, it is seen that, for given grid 

numbers, results are converged well. Again using Richardson Extrapolation Method, 

results are corrected. 
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Table 3.7. Dimensionless frequency parameters for fixed-fixed curved beam having  
                 constant curvature and linearly varying width and depth (γ=0.1, β=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

λ = 1.5π 

1. 2.13028 2.14736 2.14972 2.1505 

2. 13.7896 14.0659 14.1041 14.1168 

3. 51.9200 54.1319 54.4381 54.5396 

λ = 2π 

1. 0.3511 0.3578 0.3588 0.3591 

2. 2.7034 2.7828 2.7939 2.7975 

3. 11.9084 12.4907 12.5720 12.5990 

 

3.4.1. The Effects of Parameters Defining Variation of Cross-Section 

 
In this section, the effects of parameters defining of variation of width (γ) and 

depth (β) and dimensionless curvature parameter on dimensionless frequency 

parameters are investigated. Results are given in graphical form If cross-section 

variation is chosen considering Equation 3.8 (i.e. linearly varying width and depth), the 

tendency of change of dimensionless frequency parameters can be depicted as follows; 

In Figure 3.5.a, dimensionless first natural frequency parameter of a curved 

beam having constant curvature versus γ-linear width variation parameter can be seen 

for β=0.1. It is seen in the figure that, firstly frequency parameter decreases and after the 

γ reaches the value of 0.2, tendency changes and parameter starts to increase. 

In Figure 3.5.b, dimensionless first natural frequency parameter of a curved 

beam having constant curvature versus γ-linear width variation parameter can be seen 

β=0.2. It is seen in the figure that, firstly frequency parameter decreases and after the γ 

reaches the value of 0.3, tendency changes and parameter starts to increase. 
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Figure 3.5. Dimensionless first natural frequency for a fixed-fixed curved beam of λ=π  
                  vs. γ-width variation parameter for different β values (n=100) 
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In Figure 3.5.c., system starts to show a different behavior. Although again 

frequency parameter firstly decreases, increase of the results is not as much as in 

previous graphics. 

In Figure 3.5.d. and e., dimensionless frequency parameters decrease as γ 

reaches the value of almost 0.35. After that value of γ frequency parameter remains 

almost constant. 
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Figure 3.6. Dimensionless first natural frequency for a fixed-fixed curved beam of λ=π  

       and γ=0.1 vs. β-linear cross-section variation parameter (n=100) 

 

In Figure 3.6., dimensionless frequency parameter increase linearly as β 

increases. If Figures 3.5 and 3.6 are compared, it can be said, system is more delicate 

according to change of β. Because, when β increases to 0.5 from 0(γ is constant); rate of 

change of dimensionless frequency parameter is about 45%, but when γ increases to 0.5 

from 0(β is constant); rate of change of frequency parameter is about -0.67%. 

 

3.4.2 Discussion of Results 

 
In this section, curved beams having constant curvature and linearly varying 

width and depth are investigated. Results are given in tabular and graphical form. It is 

noticed that when variation parameters are constant, for all cases, dimensionless natural 

frequencies decrease as dimensionless curvature parameters increase.  
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The tendency of change of dimensionless frequency parameter when 

dimensionless curvature parameters are constant does not have a standard increase or 

decrease behavior. Comments on specific cases having non-standard tendency are 

mentioned in previous subsections. 

As mentioned before dimensionless frequency parameter increase linearly as β-

linear depth variation parameter increases. On the other hand, when β and λ are 

constant, dimensionless frequency parameter shows different behaviors as γ-linear 

width variation increases. In those cases, when β=0.4 and 0.5 the tendency of curves can 

be said to be nearly the same. 
 

3.5. Applications for Variable Curvature and Cross-Section 

 
In this section, numerical application for the case of variable curvature and 

variable cross-section is done for linear functions of curvature, width, and depth. The 

challenge while solving this problem is differential equation which is tried to be solved 

to yield eigenvalues is order of six and has variable coefficients of differential terms. 

Due to the fact that differential equations having variable coefficients cannot be solved 

except for special cases, a numerical method becomes necessary to utilize. 

The results obtained by using Finite Difference Method are tabulated for curved 

beam having variable curvature and cross-section. As descriptive examples, curved 

beams of which curvature, width, and depth are linear functions of independent variable 

are chosen.  

For the case of linearly varying curvature, width, and depth, the chosen 

curvature, width, and depth variation functions function can be written as: 

 

)1()( 0
Ls
sks δκ +=             (3.9.a) 

)1()( 0
Ls
sbsb γ+=             (3.9.b) 

)1()( 0
Ls
shsh β+=              (3.9.c) 
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 where k0, b0 and h0 values of curvature, width, and depth at s=0 respectively. If 

differential equation is derived using curvature (κ(s)), width (b(s)), and depth (h(s)) 

variation forms given in Equation 3.9., and non-dimensionalized employing proper 

parameters given in Equations 2.16 and 2.19, equations are ready to solve using finite 

difference scheme. 

 

Table 3.8. Dimensionless frequency parameters for fixed-fixed curved beam having  
                constant curvature and linearly varying width and depth (δ=0.1, γ=0.1,  
                β=0.1) 

Mode n = 20 n = 50 n = 100 Extrapolated 

λ0 = 1.5π 

1. 1.9186 1.9362 1.9386 1.9394 

2. 12.9675 13.2378 13.2753 13.2877 

3. 49.7862 51.9321 52.2295 52.3281 

λ0 = 2π 

1. 0.3167 0.3234 0.3244 0.3247 

2. 2.4379 2.5155 2.5264 2.5300 

3. 11.0855 11.6470 11.7256 11.7517 

 

 Dimensionless frequency parameters for curved beams having linearly varying 

curvature, width, and depth with two different dimensionless curvature parameters are 

tabulated in Table 3.8. As it can be seen from table, if λ0 increases dimensionless 

frequency parameters tend to decrease. If Table 3.8 is studied, it is seen that, for given 

grid numbers, results are converged well. Again using Richardson Extrapolation 

Method, results are corrected. 

 

3.5.1. The Effects of Parameters Defining Variation of Curvature and  
          Cross-Section 
 

In this section, the effects of parameters defining of variation of width (γ) and 

depth (β), curvature (δ), and of λ0 on Ω are investigated. 
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Figure 3.7. Dimensionless first natural frequency for a fixed-fixed curved beam of λ0=π  
                   and δ=0.1 vs. γ-width variation parameter for different β values (n=100) 
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In Figure 3.7.a, dimensionless first natural frequency parameter of a curved 

beam having variable curvature versus γ-linear width variation parameter can be seen 

for β=0.1, δ=0.1. It is seen in the figure that dimensionless frequency parameters shows 

an increase. It is notified that, this tendency is different from Figure 3.5.a. 

In Figure 3.7.b, dimensionless first natural frequency parameter of a curved 

beam having variable curvature versus γ-linear width variation parameter can be seen 

β=0.2, δ=0.1. It is seen in the figure that, firstly frequency parameter decreases and after 

the γ reaches the value of 0.1, tendency changes and parameter starts to increase. 
In Figure 3.7.c, system starts to show a different behavior. Although again 

frequency parameter firstly decreases, increase of the results is not as much as in 

previous graphics. 

In Figure 3.7.d and e, dimensionless frequency parameters decrease as γ reaches 

the value of almost 0.2 and 0.3 respectively. After that value of γ frequency parameter 

starts to increase slightly. 
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Figure 3.8. Dimensionless first natural frequency for a fixed-fixed curved beam of λ0=π,  

      δ=0.1 and, γ=0.1 vs. β-linear depth variation parameter (n=100) 

 

In Figure 3.8., dimensionless frequency parameter increase linearly as β 

increases. If Figures 3.7 and 3.8 are compared, it can be said, system is more delicate 

according to change of β. Because, when β increases to 0.5 from 0(γ is constant); rate of 

change of dimensionless frequency parameter is about 36%, but when γ increases to 0.5 

from 0(β is constant); rate of change of frequency parameter is about -0.21%. 

In order to understand the effect of parameter defining variation of curvature of a 

curved beam having variable cross-section, parameter of linear width variation γ is kept 

constant, and for different linear depth variation parameters (β) change in the frequency 

is plotted in Figure 3.9. 

 



 36

13.00

18.00

23.00

28.00

33.00

0 0.1 0.2 0.3 0.4 0.5
δ

Ω β=0
β=0.1
β=0.2
β=0.3
β=0.4
β=0.5

 
Figure 3.9. Dimensionless first natural frequency for a fixed-fixed curved beam of λ0=π, 
                  γ=0.1 vs. δ-linear curvature variation parameter for different β values  
                 (n=100) 

 

In Figure 3.9. dimensionless first natural frequency linearly decreases as δ -

linear depth variation increases, as other two parameters kept constant. Besides, it is 

notified that while linear width variation parameter increases, dimensionless frequency 

parameter increases. 

 

3.5.2 Discussion of Results 

 
In this section, curved beams having linearly varying curvature, width, and depth 

are investigated. Results are given in tabular and graphical form. It is noticed that when 

variation parameters are constant, for all cases, dimensionless natural frequencies 

decrease as dimensionless curvature parameters increase.  

The tendency of change of dimensionless frequency parameter when 

dimensionless curvature parameters are constant does not have a standard increase or 

decrease behavior. Comments on specific cases having non-standard tendency are 

mentioned in previous subsections.  

As mentioned before dimensionless frequency parameter increases linearly as β-

linear depth variation parameter increases. On the other hand, when β, δ, and λ0 are 

constant, dimensionless frequency parameter shows different behaviors as γ-linear 

width variation increases. 

In order to understand the effect of variation of curvature, Tables 3.7 and 3.8 can 

be compared with each other. It is obvious that dimensionless first natural frequency of 

a curved beam having linearly varying curvature and cross-section is smaller than the 

beam of constant curvature and linearly varying cross-section. 
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CHAPTER 4  

 

CONCLUSIONS 

 
In this study, in-plane vibrations of curved beams having variable curvature and 

cross-section are investigated. For convenience and progressive requirements, vibration 

characteristics of curved beams having constant/variable curvature and cross-section are 

also examined. 

Derivations of equations governing free vibrations are presented by using 

Newtonian and Hamiltonian approaches. After this step, non-dimensionalization 

process is carried out and dimensionless parameters are introduced. Derivatives in 

dimensionless governing equations are replaced by respective central difference 

equivalents. Therefore, the problem is converted to matrix eigenvalue problem and then 

eigenvalues are obtained. The obtained eigenvalues are corrected also by using the 

Richardson Extrapolation Method. 

Applicability of the FDM is showed for such vibration analyses of curved 

beams. A Mathematica code is developed and used to obtain eigenvalues. In order to 

test the accuracy and precision of the program developed, analysis of vibrations of 

curved beams having constant curvature and cross-section is done. Results are 

compared with given in literature and a good agreement is achieved. 

It is understood that if dimensionless curvature parameter (for cases of constant 

curvature; opening angle) increases, dimensionless frequency parameter decreases. The 

decrease of frequency parameter when curvature parameter decreases from 2π to 1.5π is 

more dramatical than when curvature parameter decreases from 1.5π to π. 

The results show that, for curved beams of variable curvature and constant cross-

section, the effects of  curvature function variation parameter depend on dimensionless 

curvature parameter. The results show different behaviours for different curvature 

variation parameters. 

The tendency of change of dimensionless frequency parameter depending on 

width variation parameter does not show a standard increase or decrease behavior 

depending on depth variation parameter. Dimensionless frequency parameter increases 

linearly as linear depth variation parameter increases. 



 38

REFERENCES 

 
Archer, R.R. 1960. Small vibrations of thin incomplete circular rings. International  
             Journal of Mechanical Science 1:45-56. 

 

Carnegie, W. and J. Thomas. 1972. The coupled bending-bending vibration of  
             pretwisted tapered blading. Journal of Engineering for Industry 94:255-266. 
 

Hildebrand, Francis B. 1987. Introduction to numerical analysis. New York: Dover  
             Publications. 
 

Huang, C.S., Y.P. Tseng, A.W. Leissa, and K.Y. Nieh. 1998. An exact solution  
             for in-plane vibrations of an arch having variable curvature and cross section. 
             International Journal of Mechanical Science 40(11):1159-1173. 
 

Irie, T., G. Yamada, I. Takahashi. 1980. In-plane vibration of free-clamped  
             slender arc of varying cross-section. Bulletin of Japan Society of Mechanical  
             Engineering 23(178):567-573. 
  

Irie, T., G. Yamada, and Y. Fujikawa. 1982. Natural frequencies of circular arcs  
             with varying cross section. Experimental Mechanics 22(11):407-411. 
 

Kawakami, M., T. Sakiyama, H. Matsuda, and C. Morita. 1995.  In-plane and  
             out-of-plane free vibrations of curved beams with variable sections. Journal of  
             Sound and Vibration 187(3):381-401. 
 

Laura, P.A.A. and P.L. Verniere De Irassar. 1988. A note on in-plane vibrations of arch- 
            type structures of non-uniform cross-section: the case of linearly varying  
            thickness. Journal of Sound and Vibration 124(1):1-12. 
 

Leung, A.Y.T. and J.K.W. Chan. 1997. On the Love strain form of naturally curved and  
            twisted rods. Thin-Walled Structures 28(3-4):253-267. 
 

Love, Augustus E.H. 1944. A treatise on the mathematical theory of elasticity.  
           New York: Dover Publications. 
 

Meirovitch, Leonard 1967. Analytical methods in vibrations. New York: Macmillan  
           Publishing Co. 
 

Oh, S.J., B.K. Lee, and I.W. Lee. 1999. Natural frequencies of non-circular arches  
           with rotatory inertia and shear deformation. Journal of Sound and Vibration  
           219(1):23-33. 



 39

Oh, S.J., B.K. Lee, and I.W. Lee. 2000. Free vibrations of non-circular arches with  
           non-uniform cross-section. International Journal of Solids and Structures  
           37:4871-4891. 
 

Philipson, L.L. 1956. On the role of extension in the flexural vibrations of rings.  
           Journal of Applied Mechanics 23:364-366. 
 

Rao, Singiresu S. 2007. Vibration of continuous systems. New Jersey: John Wiley &  
          Sons, Inc. 
 

Richardson, L.F. and J.A. Gaunt. 1927. The deferred approach to the limit. 
          Philosophical Transactions of the Royal Society of London Series A 226:299- 
          349). 
 

Sakiyama, T. 1985. Free vibrations of arches with variable cross section and  
          non-symmetrical axis. Journal of Sound and Vibration 102(3):448-452. 
 

Suzuki, K., Y. Miyashita, T. Kosawada, and S. Takahashi. 1985. In-plane  
          impulse response of a curved bar with varying cross-section. Bulletin of Japan  
          Society of Mechanical Engineering  28(240):1181-1187. 
 

Suzuki, K. and S. Takahashi. 1979. In-plane vibrations of curved bars considering shear  
          deformation and rotatory inertia. Bulletin of Japan Society of Mechanical  
          Engineering 22(171):1284-1292. 
 

Suzuki, K. and S. Takahashi. 1982. In-plane vibrations of curved bars with varying  
          cross-section. Bulletin of Japan Society of Mechanical Engineering  
          25(205):1100-1107. 
 

Wang, T. 1972. Lowest natural frequency of clamped parabolic arcs. Journal of  
          Structural Division 98:407-411. 
 

Yardımoğlu, B. and A. Kara. 2009. Vibration analysis of pretwisted beams having  
          variable cross-section (in Turkish). Proceedings of XVI. National Mechanics  
          Congress in-press. Kayseri. 
 

Yıldırım, V. 1997. In-plane and out-of-plane free vibration analysis of Archimedes- 
          type spiral springs. Journal of Applied Mechanics 64:557-561. 


