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ABSTRACT

RHODIUM CATALYZED ARYLATIVE CYCLIZATION OF DIYNES
WITH ARYLBORONIC ACIDS

This study reveals that exo-conjugated cyclic dienes can be synthesized by
rhodium(I) catalyzed arylative cyclization of unsymmetric diyne molecules with
arylboronic acids. Cyclic dienes are important reagents in organic chemistry because
they easily undergo [4+2] cycloaddition reactions with dienophiles and also, they are
useful intermediates in the synthesis of complex polycyclic compounds.

To form carbon—carbon bonds, transition metal catalyzed arylative cyclization
reactions of unsaturated reagents with arylboronic acids is a useful and efficient way in
organic synthesis. For this purpose, rhodium catalyzed arylative cyclization of enyne
type unsaturated reagents have been found significantly in literature.

In this study, unsymmetric diyne type molecules were reacted with arylboronic
acids in the presence of a rhodium complex under argon atmosphere. The reactions

proceeded effectively in methanol as a solvent under very mild reaction conditions.
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OZET

DIINLERIN ARILBORONIK ASITLER iLE RODYUM KATALIZLI
ARILATIF HALKALASMA TEPKIMELERI

Bu ¢alisma ekzo-konjuge siklik dienlerin, simetrik olmayan diinlerin arilboronik
asitler ile rodyum katalizli arilatif halkalasma tepkimeleri ile sentezlenebileceklerini
gostermektedir.

Doymamus bilesiklerin gecis metal katalizli arilatif halkalasma tepkimeleri ile
karbon-karbon bagi olusturmalari1 organik sentezlerde kullanislt ve etkili bir yontemdir.
Bu amagla enin tipi doymamus bilesikler ile gergeklestirilen rodyum katalizli arilatif
halkagma tepkimeleri literatiirde cok sayida yer almaktadir.

Bu calismada, simetrik olmayan diin tipi molekiillerin bir rodyum kompleksi
ortaminda  arilboronik  asitler ile argon atmosferi altinda reaksiyonlar
gerceklestirilmistir. Coziicli olarak metanol kullanilmasi ile reaksiyonlar etkin bir

bicimde yiiriitiilmiistiir.
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CHAPTER 1

INTRODUCTION

Sakai et al. reported in 1997 that arylboronic acids can undergo conjugate
addition to a,B-unsaturated ketones in the presence of a rhodium catalyst (Sakai, et al.
1997). Since then, as its utility for the carbon-carbon bond formation, this method has
become increasingly clear and, -interest in the rhodium(I) catalyzed addition of
organoboron species to unsaturated functionalities has grown dramatically in organic
chemistry (Hayashi, et al. 2001, Fagnou and Lautens 2003).

Due to the high functional-group compatibility, ready availability, and stability of
organoboronic acids, a rhodium-catalyzed addition of organoboronic acids to unsaturated
carbon-carbon, or carbon-heteroatom bonds is a useful strategy for the construction of
carbon-carbon bonds (Hayashi and Yamasaki 2003, Fagnou and Lautens 2003, Bolm, et
al. 2001). To form arylrhodium(I) species that are capable of inducing the nucleophilic
arylation of various electrophilic sites, organoboron reagents undergo transmetallation
with rhodium species (Sakai, et al. 1997, Fagnou and Lautens 2003).

Recently, several examples of rhodium-catalyzed tandem cyclization reactions
with organoboron reagents have been described (Cauble, et al. 2003, Bocknack, et al.
2004, Lautens and Yoshida 2002, Lautens and Mancuso 2004, Miura, et al. 2007). A
series of dienes, enynes, and diynes has been widely utilized for the transition metal
catalyzed cyclization reactions, since the cyclization of these compounds is a
geometrically favored process (Nakamura and Yamamoto 2004).

In the literature, there are various reports for rhodium catalyzed cyclization
reactions of organoboronic acids with enyne type unsaturated reagents (Shintani, et al.
2005(a), Miura, et al. 2005(a)). In 2002, Liu and Widenhoefer reported a study about
cationic rhodium catalyzed cyclization/hydrosilylation of 1,6-diynes but that was not an
arylative cyclization reaction. In 2007, Miura et al. reported that diynes having malonate
based tethers react with arylboronic acids in the presence of [Rh(cod)(OH)], in
dioxane:H,O at room temperature to give 1,2-dialkylidienenecycloalkanes.

Diyne molecules are very versatile intermediate reagents for the synthesis of

various fine chemicals. Furthermore, functionalized 1,2-dialkyldienecyclopentanes can



easily undergo [4+2] cycloaddition reactions with dienophiles and be useful reagents in
synthesis of complex polycyclic compounds.

In this thesis, we have developed rhodium catalyzed arylative cyclization
reactions of unsymmetric diynes with a terminal alkyne functionality with electronically
and sterically different arylboronic acids efficiently under mild conditions to yield

conjugated exo-cyclic dienes.



CHAPTER 2

TRANSITION METAL CATALYZED REACTIONS OF
ORGANOBORONS

2.1. Organoborons

Organoborons are chemical compounds having aryl or alkyl functional groups on
the boron atom. The term organoboron refers to a compound which has at least one C-B
bond. Organoboron compounds generally exist either as tricoordinate or as
tetracoordinate species. The trisubstituted derivatives of boron are called boranes, which
may exist either as essentially trigonal planar monomeric species or as aggregates in
which the boron atoms occupy the central position of an essentially tetrahedral
configuration. Infact, essentially all monoorganoboranes (RBH;) and diorganoboranes
(R;BH) as well as the parent borane (BH3) exist as dimers, whereas triorganoboranes
(R3B) are usually monomeric.

Boronic acids and their derivatives are among the most useful classes of
organoboron molecules. Unlike many organometallic derivatives and most
organoboranes, boronic acids are usually stable to air and moisture, and are of relatively
low toxicity and environmental impact. The reactions of organoborons can be carried out
in aqueous containing solvents and are widely functional-group tolerant.

Boronic acids are used extensively in organic chemistry as chemical building
blocks and intermediates predominantly in Suzuki coupling reactions. A key concept in

its chemistry is transmetallation of its organic residue to a transition metal.

2.2. Transition Metal Catalyzed Reactions of Organoborons

Transition metals have many properties that make their chemistry very different
from, main group elements, and those properties can make them uniquely suited toward
certain tasks. Most of them have to do with far greater variability and therefore tunability
of transition metal complexes. This is mostly due to the fact that transition metal
compounds tend to have partially populated d-orbitals and are relatively closely spaced

together. A transition metal can do lots of different things, change in many different

3



ways, and do so with relatively small energy barriers, which makes for very fast
reactions. Moreover, transition metal compounds can exhibit variable oxidation states,
with finely controlled and tunable redox potentials, because the d-orbital energies and
spacings can be selectively altered with different ligands.

As a result of those properties, many of the highly critical reactions in organic

chemistry employ transition metal compounds as catalysts.

2.2.1. Rhodium Catalyzed Carbon-Carbon Bond Forming Reactions of
Organometallic Compounds

In recent years, rhodium catalysts have been used with organometallic reagents in
the formation of new C-C bonds. In the past twenty years there has been dramatic
growth in the use of transition metal catalysts for synthetically important organic
transformations. Nowadays, there is an increased attention to rhodium catalysts for
carbon-carbon bond forming reactions. High activity allows the use of metal
concentrations as low as 107 M. Moreover, in carbon-carbon bond forming reactions,
palladium involves a redox process, Pd(II)/Pd(0), but rhodium remains 1+ through the
reaction, that means formal oxidation step does not change.

The rhodium catalyzed addition/cyclization reactions of organoborons occurs by
transmetallation of rhodium/boron generating an intermediate organorhodium(I) species

and this arylrhodium(I) species reacts with unsaturated functionalities (Figure 2.1).

transmetalation

R-BY, Rh(I)-OR'
organoboron rhodium(l) catalyst
Y
Rh(l)-R
C=X e [ | p— ¢
unsaturated addition Ar - Rh(l) protonolysis Ar H
functionality organorhodium(|)

intermediate
X=C,0O,N
(alkyne, alkene, aldehyde, ketone, imine, nitrile)

Figure 2.1. General reaction pathway of Rh(I)-catalyzed addition of organoborons



When rhodium’s possible catalytic cycle was compared with other transition
metals, palladium, nickel and platinum, rhodium represents a different and interesting
catalytic cycle (Figure 2.2.,Figure 2.3.). In catalytic reactions, oxidation state of rhodium
lies between the (I) and (III) oxidation states and as a consequence transmetallation
process occurs at two points. Transmetallation can occur with rhodium(I) to generate an
organorhodium(l) capable of reacting in new ways. However, catalytic cycles for
palladium, nickel and platinum, transmetallation occurs with the metal(II) species
because catalytic cycles shuttles between the (0) and (II) oxidation states and to design
viable reactions, a suitable electrophilic component must be incorporated that will

oxidatively add to the metal(0) complex to produce the organometal(II) species.

R-X

MX  R-M

Figure 2.2. Generalized catalytic cycle for Ni, Pd and Pt
(Source: Fagnou and Lautens 2003)



R-R H-Y-R-R

Rh(NX
H-X
/ R-M

Cycle B Cycle C

R-Rh(N-R RhO.Y-R-R
)

MX

) R'=Y

R'-X

Figure 2.3. Possible catalytic cycles with Rh-catalysts
(Source: Fagnou and Lautens 2003)

Since oxidative addition is still a viabla pathway, addition of a suitable
electrophile will produce a catalytic cycle illustrated as cycle B. Alternatively, the
organorhodium complex can be coupled with units of unsaturation in organic
compounds as illustrated in cycle C. The outcome of cycle C is a net R,H-addition across
the unsaturated unit (Fagnou and Lautens 2003).

A wide variety of organometallic compounds reacts with rhodium(I) halides to

generate rhodium-aryl complexes.

2.2.1.1. Reactions of Organometallic Compounds with Rhodium
Complexes

In 1968, Keim reported that treatment of [RhCI(PPhs);] complex with
phenylmagnesium bromide gives rhodium-aryl complex in a high yield (Keim 1968)
(Figure 2.4). Carbonyl-rhodim aryl complexes were synthesized by treatment of
[Rh(CO)CI(PPh3),] with diarylzinc nucleophiles in THF by Krug and Hartwig 2002
(Figure 2.5).



PhsPiiny,,,,  wwWPPh3
Rh

PhMgBr
Et,0, 1t, 24h
2 Pth/ \Ph

[RhCI(PPhs)];

Figure 2.4. Formation of rhodium-aryl complex
(Source: Keim 1968)
_,\\\\\\\PPh3

OClu,,
[Rh(CO)CI(PPhy),] __RoZ0 PAUNG
THF, rt PhsP R

Figure 2.5. Formation of carbonyl rhodium-aryl complex
(Source: Krug and Hartwig 2002)

Rhodium-aryl complexes have been prepared by transmetallation with

rhodium(I) precursors, rhodium(Il) complexes have also been employed and Figure 2.6.
shows treatment of [Rh,(CO,Me)s] with diphenylmagnesium and trimethylphosphine

(Figure 2.6.) (Jones and Wilkonson 1979).

o o070
\ 5 /\\\\\O Me.P PMe;
—Rh™ PhMg, PMe; &, S
> ‘Rh
vep” Wph

Rh
O// A Et,0

Figure 2.6. Formation of rhodium(I)-aryl complex
(Source: Wilkinson and Jones 1979)

Rhodium(III) aryl complexes have also been prepared and rhodium(III) chloride

undergoes exchange of ligand with a variety of organometallic reagents. In 1991,
Wilkinson et al. reported a reaction of [RhCls(tht);] with aryl Grignard reagents to

generate trisaryl complexes showing in Figure 2.7.(tht = tetrahydrothiophene)



PhMe,Fy, WPMeoPh
[RhCly(tht);] ~ ArMgBr - PMe,Ph R
>
Et,0, -78°C to rt Et,0 PhMeZP/ Ny

Me
Arliyy,,, h“‘\\\H

R
A l vy
H
Ar=2,6-Me,CgH; or 2,4,6-Me;CcH,

Figure 2.7. Formation of rhodium(I)-aryl complex
(Source: Wilkinson, et al. 1991)

2.2.1.2. Reactions of Aryl Rhodium(I) Complexes

In 1997, Sakai et al. reported a study about rhodium(I) catalyzed conjugate 1,4-
addition of aryl and alkenylboronic acids to enones (Figure 2.8). The catalytic cycle
involved arylrthodium(I) species which was generated from transmetallation of
rhodium(I)enolate with arylboronic acid and resulted in the insertion of the enone into
the Ar-Rh bond and the B-Rh transmetallation was the key step as shown in Figure 2.8.
and Figure 2.9.

O i )
/%)J\ , t R3B(OH), [Rh(acac)(CO),]/ligand )\)J\
R ;

R! aqueous solvent, 50°C

Figure 2.8. Rh-catalyzed conjugate addition of arylboronic acids to enones
(Source: Sakai, et al. 1997)



R3 0

J
R-B(OH), /\)\ /{: o R! R
7 OB(OH),

A /\tRh(l)Ln‘ i«)ok

Figure 2.9. Rh-catalyzed addition of arylboronic acids to enones
(Source: Sakai, et al. 1997)

> R-Rh(L,

The first enantioselective variant of this type of reactions was reported by Takava
et al. in 1998. They reported asymmetric 1,4-addition of arylboronic acids which
proceeds with high enantioselectivity in the presence of chiral phosphine-rhodium

catalyst and asymmetric alkenylboronic acids were also successful (Figure 2.10.).

0]
O]
[RhD]/(S)-BINAP
+ PhB(OH), -
dioxane/H,0 (10/1), 100 °C
Rhodium Complex: Ph

[Rh(acac)(C,Hy),]

Figure 2.10. Rh-catalyzed asymmetric 1,4-additions of arylboronic acids to enones
(Source: Takaya, et al. 1998)

In 2001, Sakuma and Miyaura reported conjugate addition of arylboronic acids to
a,B-unsaturated amides in the presence of a rhodium(I)-binap (Figure 2.11.) and
compared to enones, a,B-unsaturated amides showed low reactivity. To overcome this
reactivity problem, addition of catalytic amount of bases such as K,COs; or KOH, was

found to be very effective to complete the reaction.



Ph O

(@]
\ + PhB(OH), [RN(@cac)GHyY (S)-BINAP
/\ dioxane/H,0 (6/1), Additive /\
H Ph \ .
H

100°C, 16 h

(93-94% ee)

Figure 2.11. Rhodium(I)-catalyzed addition of arylboronic acids to a,B-unsaturated
amides (Source: Sakuma and Miyaura 2001)

The first examples of rhodium catalyzed addition of arylboronic acids to
alkenylphosphonates was reported by Hayashi and co-workers (Hayashi, et al. 1999).
Using a rhodium complex generated from [Rh(acac)(C,H4),] and (S)-BINAP, the

products were resulted in high yields and good enantioselectivities (Figure 2.12.).

(0] Ph O
” Phenyl boron nucleophile ”
\ P(OEt), > P(OEt),
/\/ [Rh(acac)(C,H,)]/ (S)-BINAP
Me dioxane, H20 Me
100 °C

84-96% ee

Figure 2.12. Rh-catalyzed addition of arylboronic acids to 1-alkenylphosphonates
(Source: Hayashi, et al. 1999)

In 2000, Hayashi et al showed that a-substituted nitroalkanes were good reagents
in the rhodium catalyzed asymmetric addition of arylboronic acids. Treatment of 1-
nitrocyclohexene with phenylboronic acid in the presence of [Rh(acac)(C,H4),] and (S)-
BINAP in dioxane/water mixture at 100 °C for 3h yielded a diastereomer product

mixture with high enantioselectivity (Figure 2.13.).
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Ph Ph

NO, NO, SNO:
[Rh(acac)(C,H,),}/ (S)-BINAP 3
PhB(OH >
¥ (OH), dioxane/H,O (10/1), +
100 °C
Cis-63 trans-63

Figure 2.13. Rh-catalyzed addition of arylboronic acids to nitroalkenes
(Source: Hayashi, et al. 2000)

In 1998, Sakai et al. reported that rhodium catalyzed addition reactions of aryl
and alkenylboronic acids to aldehydes yielded secondary alcohols (Figure 2.14.). They
proposed a mechanism which involves a nucleophilic attack of the aryl group on the
arylrhodium(I) species and reactions were facilitated by the presence of an electron
withdrawing group on the aldehyde and an electron donating group on the arylboronic

acid.

O
[Rh(acac)(CO),]/ligand
DME or dioxane / H,O
+ PhB(OH), >
16 h, 80 °C
MeO MeO

Figure 2.14. Rh-catalyzed 1,2-addition of arylboronic acids to carbonyls
(Source: Sakai, et al. 1998)

OH

Rhodium has also recently found application in addition of carbon functionalities
to unactivated alkenes and alkynes.

In 2001, Lautens et al. reported an addition reaction of styrene with arylboronic
acid in the presence of catalytic [Rh(cod)Cl], and TPPDS media with addition of SDS

and sodium carbonate in neat water giving arylation product stilbene (Figure 2.15.).
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N /\ [Rh(cod)Cl], (2 mol%) / TPPDS (8 m=01%) /\/ Ph
PhB(OH), (2.5 eq.) / SDS (0.5 eq.) Ar
Na,CO5 (2 eq.)/ H,O /80 °C
15h

Figure 2.15. Rh-catalyzed coupling reactions of alkenes with arylboronic acids
(Source: Lautens, et al. 2001)

In 2001, Hayashi et al. reported another example of the rhodium catalyzed
reactions of internal alkynes with organoboronic acids whose catalytic cycle involves
1,4-shift of rhodium from an alkenyl carbon to an ortho position of aryl carbon
surprisingly. The reaction of 4-octyne was performed under that conditions which shown

in Figure 2.16.

n-Pr

[Rh(acac)(C,Hy),] / dppb /

n-Pr — n-Pr + PhB(OH), — »
dioxane / H,O (10:1), 100 °C

Ph
n-Pr

Figure 2.16. Rhodium catalyzed hydroarylation of alkynes with arylboronic acids
(Source: Hayashi, et al. 2001)

Lautens and Yoshida (2002) studied rhodium catalyzed addition reactions of
pyridine substitutes alkynes with arylboronic acids. They obtained the trisubstituted
alkenes as a single regio and stereoisomer in good yields (Figure 2.17). The presence of
the pyridyl nitrogen on ortho position had a dramatic effect in obtaining a single
regioisomer. They observed that having the alkynyl group at the meta and para positions

on the pyridine ring caused the failed of the addition reaction.
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2 mol% [Rh(cod)Cl], /
e + ArB(OH), 8 mol% ligand o
N % SDS, N32CO3, HZO, 80 °C \ /
R N Ar

Figure 2.17. Rh-catalyzed addition of arylboronic acids to pyridine substituted alkynes
(Source: Lautens and Yoshida 2002)

2.2.1.3. Rhodium-Catalyzed Cyclization Reactions of Organoborons to
Unsaturated Systems

Transition metal catalyzed arylative cyclization of unsaturated reagents
comprising more than one multiple double bonds is becoming a popular method in
simultaneous formation of both intra and intermolecular carbon-carbon bond formation
(Fagnau and Lautens 2003).

In the literature there are many studies about the rhodium-catalyzed cyclization
reactions of organoborons to enyne type unsaturated compounds.

In 2005(b), Miura et al. studied rhodium-catalyzed intramolecular cyclization
reaction of 1,6-enynes having an allylic ether moiety with arylboronic acids (Figure
2.18.). Rhodium catalyzed reaction of arylboronic acids with 1,6-enyne resulted in an
arylative product. This reaction contained multiple carbon-carbon bond forming steps to
afford the product. In the catalytic cycle, transmetallation of rhodium(I) with
phenylboronic acid generates arylrhodium(I) intermediate and added onto the alkyne
(A), the intramolecular carborhodation to allylic double bond occurred, leading to
intermediate B. Finally, B-elimination of methoxy group afforded the cyclization product

and a catalytically active methoxorhodium(I) species (Figure 2.18.).
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MEOZC —— CH3
H3CO,C
1.5 mol% [Rh(cod)(OH)],
MeO,C +  PhB(OH), >
\ dioxane, RT, 2 h HsCO,C
OMe
Rh(I)PhL,,
Me

OMe

CH,

S ~pn

CH,

-Rh(I)OMeL,

Me
/ Ph

Rh()L,

OMe

Figure 2.18. Rh-catalyzed cyclization reaction of 1,6-enynes with arylboronic acids

(Source: Miura, et al. 2005(b))

In 2005(a), Shintani et al. reported highly chemo and enantioselective arylative

cyclization reactions of alkyne tethered electron deficient olefins (Figure 2.19). Using a

rhodium-chiral diene ligand instead of using biphosphine ligands, they obtained higher

reactivity and enantioselectivity. They also examined electron-withdrawing groups on

the olefinic part to obtain five-membered carbocycles with high chemoselectivity and

enantioselectivity (90-99 % ee).
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H,C
’ Ph

H;CO,C /
%3 [Rh(C,H,)Cl], H3COC
+ PhB(OH), -
H;CO,C (3.5 equiv)
60 °C, 4h H;CO,C X
’ EWG
dioxane-water 10:1

KOH, (S,S bn-bod) high yield
90-99% ee

( [Rh]-OH
H,0
SCOZC H3C02C /
Rh]
HsCOC H,CO,C [Rh]

A B

[Rh]- Ar

Figure 2.19. Rh-catalyzed arylative cyclization of alkyne-tethered electron
deficient olefins (Source: Shintani, et al. 2005(a))

In 2006, Chen and Lee reported another example of arylative cyclization of 1,5-
enynes. Their study described a new addition-cyclization reaction that occurs through a
novel mechanism involving a metal vinylidene-mediated geminal carbometalation of
alkynes (Figure 2.20.). Cyclization reaction of 1,5-enynes based on 1,1-

carbofunctionalization process (Figure 2.21.).

COPh
COPh
Ph
5 mol % [Rh(cod)(OH)],
+ PhB(OH), >
Et;N (1.5 equiv), CH;0H
— 4 23C

Figure 2.20. Rh-catalyzed phenylative cyclization of 1,5-enyne
(Source: Chen and Lee 2006)
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1,2-Carbometalation K [M]
)(/ [MI C[ C[x R
-
s
H\ KH

[MI
m— M
1. 1-Carbometalation _

ando

Figure 2.21. Addition-Cyclization via Carbometallation of Alkynes
(Source: Chen and Lee 2006)

As a consequence of intermolecular coupling 1,2-carbometalation occurs, it
converts an alkyne to an exo-alkene upon ring closure. A 1,1-carbometalation pathway
would offer an alternative reaction motif that gives rise to an endo-product but has
remained unexplored (Chen and Lee 2006). The phenylative cyclization reaction was
examined using both acyclic and cyclic enones and substituents at the allylic and
propargylic positions and resulted in good yields.

Another study about cyclization reactions was reported by Miura et al. (2005(¢)).
They synthesized enantioselective bicyclo[2.2.1]heptan-2-one cyclic ketone derivatives
by the reaction of organorhodium(I) species with unsymmetrical acetylenic ester groups
(Figure 2.21.). The importance of this study is its being the first report which prompts
intramolecular acylations with an ester group to form cyclic ketones. In literature, there
are many examples that show organorhodium species to undergo nucleophilic addition to
aldehydes, ketones, imines, and acid anhydrides (Sakai, et al. 1998, Takezawa, et al.
2002, Ueda, et al. 2000, Frost et al. 2001). However, there are no examples of such

addition reaction with ester reagents.
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Ph

MeO,C — Me Me \ Me
5.0 equiv PhB(OH),
Me »
2.5 mol% [RhCI(C2H4),],
MeO,C
#2 5.0 mol% (R)-binap
dioxane, 100 C, 2h E O
1,6-enyne 60%, 89% ee

Figure 2.22. Rh-catalyzed cyclization of acetylenic ester by addition of arylboronic acids
(Source: Miura, et al. 2005(c))

In 2006, Miura et al. reported another rhodium catalyzed arylative cyclization of
1,6-enynes which yielded vinylcyclopropane type compounds (Figure 2.23.).
Vinylcyclopropanes have an important role in organic chemistry because they are
biologically active compounds and therefore they developed a new approach to the
vinylcyclopropane structure and this approach consists of multiple carborhodation steps

different from other reaction pathways (Figure 2.24).

OMe o
MeO,C —
3.0 equiv PhB(OH), MeO:C
2.5 mol% [Rh(cod)(OH)],
MeO,C
2 dioxane, 1t, 4h MeO,C
Me Me

Figure 2.23. Rhodium catalyzed arylative cyclization of 1,6-enyne
(Source: Miura, et al. 2006)

Figure 2.24. Intramolecular 3-exo-trig-cyclization and termination step with f-oxygen
elimination (Source: Miura, et al. 2006)
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They showed that vinylcyclopropane, three membered ring, is obtained by
coordination of the methoxy group. Also, they performed a control experiment and used
a l,6-enyne lacking a methoxy moity and no cyclopropane formation was observed

(Figure 2.25).

Ph Me Ph
N Me Me
MeO,C ———Me E
? 2.5 mol% [Rh(cod)OH], AN /
; r
MeO,C dioxane/H,0(10/1), 1t, 1h + Me
E
M
(] E )
4% s005™M¢
(E=CO,Me)

Figure 2.25. Rhodium catalyzed arylative cyclization of 1,6-enyne
(Source: Miura, et al. 2006)

In 2005(b), Shintani et al. reported that the addition/cyclization of arylboronic
acids to alkynals leads to cyclic allylic alcohols by the use of a thodium/diene catalyst
(Figure 2.26.). The reaction took place successfully by the use of a chiral diene ligand,
(S,S)-Bn-bod, while phosphorus based ligands failed.

[RhCI(CyHy)s]n
(7 mol % Rh)

BnO —— Me ligand (7.5 mol %) BnO Z Ph
, PhB(OH),
; KOH (0.3 equiv)
BnO 3.5 equiv
CHo dioxane/H,0 (10/1) BnO on
60°C,4h

Figure 2.26. Rh-catalyzed arylative cyclization of alkynal with phenylboronic acid
(Source: Shintani, et al. 2005(b))

For the first time the reactivity of a cyano group for nucleophilic addition of an
organorhodium species was demonstrated in a study by Miura et al. in 2005(b). When an
alkynyl nitrile was treated with phenylboronic acid in the presence of [Rh(cod)OH], in
dioxane at 60 °C under a nitrogen atmosphere cyclization products were obtained as a
mixture of E and Z isomers together with an addition product (5% yield) (Figure 2.27.).

In proposed mechanism, the catalytic cycle was initiated with transmetallation of
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rhodium(I) with phenylboronic acid and a cis-1,2-addition took place onto the alkyne.

Finally, the N-rhodium imine was hydrolyzed to give a,B-unsaturated ketone.

M,e Me
E e Me ;:“\\\\\ Ph /
PhB(OH), _ E = E
E: : N 2.5 mol% [Rh(cod)(OH)], +
dioxane, 60 C, 12 h E
0 E CN
65% 5%
E:COZMC
[Rh]'b < [Rh]-OH
H,0
Me
Ph
Ph
H3CO,C H3CO,C /
HCO,C " i
302 HsCO,C X /Rh(l)Ln
N

Figure 2.27. Rhodium catalyzed arylative cyclization of alkynyl nitriles with arylboronic
acids (Source: Miura, et al. 2005(b))

Alkynones were also shown to undergo rhodium catalyzed arylative cyclization
reactions (Miura, et al. 2007). The catalytic cycle again started with transmetallation
process and followed by the ketonic carbonyl group directed carborhodation to the triple
bond. The intramolecular nucleophilic addition to the carbonyl group proceeded by an

exo mode and the product was released by protodemetalation (Figure 2.28.).
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H,CO,C

O
H,CO,C

Ph

—

Me

+

PhB(OH),
el
2.5 mol% [Rh(cod)OH],
dioxane/H,O

(100/1), rt, 5 h

H,CO,C
H,CO,C

78%

82%

H,0

-[Rh(D)(OH)]

Me
Ph

=

ORN())
Ph

Figure 2.28. Rh-catalyzed arylative cyclization of alkynones induced by the addition of
boronic acids (Source: Miura, et al. 2007)

In 2007, Miura et al. reported symmetric arylative cyclization reactions of 1,6-

diynes. They used malonate-based tethers diyne molecules in the presence of rhodium(I)

catalyst with arylboronic acids leading to the stereoselective formation of 1,2-

dialkylidenecycloalkanes in good yields (Figure 2.29.) and obtained that catalytic

process worked well with sterically and electronically different boronic acids. However,

they showed no successful application with nonsymmetric diynes.
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E —— Me E
2.0 cquiv. PRBOH), =~ TPh
2.5 mol% [Rh(cod)(OH)],
E — Me dioxane-H,O0, 1t, 12 h E X H
20:1)

E:COZMC
Me

Figure 2.29. Rh-catalyzed arylative cyclization of diynes by the addition of arylboronic
acids (Source: Miura, et al. 2007)
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CHAPTER 33

EXPERIMENTAL STUDY

3.1. Procedures for Synthesis of Diyne Molecules

Diyne compounds were synthesized based on the literature in our laboratory.

The synthesis of diethyl 2-(prop-2-ynyl)malonate (1):

Diethyl malonate (0.9 g, 6.16 mmol) was added slowly with a dropping funnel
into a suspension of NaH (0.162g, 6.15 mmol) in THF (40 ml) at 0 °C in a schlenk tube.
The mixture was stirred for 2 hours at room temperature and gas evolution was
controlled with a bubbler. Then, the mixture was cooled to 0 °C and propargyl bromide
(6.15 mmol) was added. The reaction mixture was stirred at room temperature overnight,
quenched with water and extracted with diethyl ether. The organic layer was washed
with brine, dried over magnesium sulfate and concentrated under high vacuum. The
residue was purified by silica gel chromatography using hexane:ether mixture (100:4
gradient elution) and the product (Figure 3.1) was obtained as a colorless oil (Yield:

45%) (Shintani, et al. 2005).

Figure 3.1. Diethyl 2-(prop-2-ynyl)malonate

The synthesis of diethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate (1a):

The compound 1 (2.73 mmol) was added to a suspension of NaH (0.08 g, 3.28
mmol) in THF (20 ml) at 0 °C. After the mixture was stirred for 2 hours at room
temperature, 1-bromo-2-butyne (3.28 mmol) was added slowly with dropping funnel at 0
°C and stirred overnight at room temperature. The mixture was quenched with water and

extracted with diethyl ether, the organic layer washed with brine, and dried over
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magnesium sulfate and concentrated under high vacuum. The residue was purified by
silica gel chromatography by hexane:ether mixture (100:4 gradient elution) and obtained

the product as a colorless oil (Yield: 78%) (Tekavec, et al. 2004).

O

TN
O
JO

Figure 3.2. Diethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate

The synthesis of diethyl 2-(pent-2-ynyl)-2-(prop-2-ynyl)malonate (1b):

Diethyl 2-(pent-2-ynyl)-2-(prop-2-ynyl)malonate (1b) (Figure 3.3) was
synthesized with the reaction of 1 and 1-bromo-2-pentyne (3.28 mmol) employing the
method for the synthesis of 1a. The crude product was purified by silica gel column
chromatography hexane:ether (100:4 gradient elution) (Yield: 80%) (Tekavec, et al.
2004).

Figure 3.3. Diethyl 2-(pent-2-ynyl)-2-(prop-2-ynyl)malonate

The synthesis of diethyl 2-methyl-2-(prop-2-ynyl)malonate (5):

In a schlenk tube which included a suspension of NaH (3 mmol) in THF,
compound 1 (3 mmol) was added with a dropping funnel at 0 °C, gas evolution being
observed during this addition. After the reaction mixture was stirred at room temperature
for 2 hours, the reaction mixture was cooled to 0 °C and CH;I (4.2 mmol) was added
slowly. The mixture was stirred for 5 hours and quenched with saturated ammonium
chloride solution (40 ml). The aqueous layer was seperated and extracted with diethyl
ether. After that, the combined organic layers was washed with saturated sodium

chloride, dried over magnesium sulfate and concentrated in vacuo. The residue was
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purified by silica gel column chromatography with hexane:ether (100:5 gradient
elution)(Yield:60%) (Figure 3.4).

EtO,C — H
EtOZC CH3

Figure 3.4. Diethyl 2-methyl-2-(prop-2-ynyl)malonate

The synthesis of diethyl 2-(but-2-ynyl)malonate (7a):

Diethyl malonate (0.9 g, 6.16 mmol) was added slowly with a dropping funnel
into a suspension of NaH (0.162g, 6.15 mmol) in THF (40 ml) at 0 °C in a schlenk tube.
The mixture was stirred for 2 hours at room temperature and gas evolution was
controlled with a bubbler. Then, the mixture was cooled to 0 °C and 1-bromo-2-butyne
(6.15 mmol) was added. The reaction mixture was stirred at room temperature overnight,
quenched with water and extracted with diethyl ether. The organic layer was washed
with brine, dried over magnesium sulfate and concentrated under high vacuum. The
residue was purified by silica gel chromatography using hexane:ether mixture (100:5
gradient elution) and the product (Figure 3.5) was obtained as a colorless oil (Yield:

50%) (Shintani, et al. 2005).

Etozci ﬁ: CHs

Figure 3.5. Diethyl 2-(but-2-ynyl)malonate

The synthesis of diethyl 2-(but-2-ynyl)-2-methylmalonate (7):

Diethyl 2-(but-2-ynyl)-2-methylmalonate (7) was synthesized with the reaction
of 7a and CHj3l employing the method for the synthesis of 5§ (Figure 3.6). The crude
product was purified by silica gel column chromatography hexane:ether (100:6 gradient

elution) (Yield: 80%).
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EtO,C — CHs
EtOZC C:H3

Figure 3.6. Diethyl 2-(but-2-ynyl)-2-methylmalonate

The synthesis of 1-(prop-2-ynyloxy)pent-2-yne (1f):

In a schlenk tube which included a suspension of NaH (0.5 g, 21 mmol) in THF
(40 ml), 2-propyn-1-ol (1.12 g, 20 mmol) in THF was added with a dropping funnel at 0
°C, gas evolution being observed during this addition. After the reaction mixture was
stirred at room temperature for 2 hours, the reaction mixture was cooled to 0 °C and 1-
bromo-2-pentyne (3.8 g, 26 mmol) was added slowly. The mixture was stirred for 5
hours and quenched with saturated ammonium chloride solution (50 ml). The aqueous
layer was seperated and extracted with diethyl ether. After that, the combined organic
layers was washed with saturated sodium chloride, dried over magnesium sulfate and
concentrated- in vacuo. The residue was purified by silica gel column chromatography
with pentane and pale yellow oily product was obtained (Yield:50%) (Xiong, et al.
1995).

Figure 3.7. 1-(prop-2-ynyloxy)pent-2-yne

The synthesis of 2,2-di(prop-2-ynyl)malonate (1i) :

2,2-di(prop-2-ynyl)malonate (11), (Figure 3.8.) was prepared according to the
following procedure. To a suspension of NaH (0.66 g, 27.2 mmol) in THF at 0 °C, 2
molar equivalent of diethylmalonate (1.62 g, 13.6 mmol) was added slowly under argon
atmosphere and the reaction mixture was stirred for an hour. Then, propargyl bromide
(27.2 mmol) was added with a dropping funnel at 0 °C and stirred overnight at room
temperature, then quenched with water and extracted with diethyl ether. Organic layer
was washed with brine, dried over magnesium sulphate, and concentrated under vacuum.

The residue was purified with by silica gel column chromatography with hexane:ether
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mixture (100:4 gradient elution), pale yellow oily product was obtained (yield:88%) (Liu
and Widenhoefer 2002).

T

C,H50,C

T

C,H50,C

Figure 3.8. Diethyl 2,2-di(prop-2-ynyl)malonate

The synthesis of diethyl 2-(3-(1-hydroxycyclohexyl)prop-2-ynyl)-2-(prop-2-
ynyl)malonate (1e) :

To prepare diethyl 2-(3-(1-hydroxycyclohexyl)prop-2-ynyl)-2-(prop-2-ynyl)
malonate (1e) (Figure 3.9), n-BuLi (1.6 M in hexane 10 mmol, 6.25 ml) was added to a
stirred solution of 2,2-di(prop-2-ynyl)malonate (2.36g, 10 mmol) in THF at -78 °C, and
the resulting mixture was stirred at -78 °C until no gas evolution was observed with a
bubbler. Then, cyclohexanone was added slowly by the help of a syringe. The mixture
was stirred for 1 hour and then cooled gradually to room temperature and stirred for
overnight. The reaction mixture was quenched with water and extracted with diethyl
ether. The organic layer was washed with water, dried over anhydrous magnesium
sulfate, and concentrated under vacuum. The product was purified by silica gel column
chromatography method with a hexane:ethyl acetate (100:8 gradient elution) elute to
obtain 58% yield of 2-(3-(1-hydroxycyclohexyl)prop-2-ynyl)-2-(prop-2-ynyl)malonate
(1e), as yellow oil (Trost and Rudd 2005).

Figure 3.9. Diethyl 2-(3-(1-hydroxycyclohexyl)prop-2-ynyl)malonate
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The synthesis of diethyl 2-(but-2-ynyl)-2-(but-3-ynyl)malonate (1h):

To synthesize diethyl 2-(but-2-ynyl)-2-(but-3-ynyl)malonate (1h), (Figure 3.10),
we followed two steps. For the first step, sodium ethoxide (0.357 g, 5.25 mmol) and
ethanol (5 ml) was stirred and heated at 50 °C using an oil bath under an argon
atmosphere. Then, diethylmalonate (0.68 g, 5.15 mmol) was added to the mixture
through the dropping funnel and the mixture was refluxed and checked with a bubbler to
control gas evolution. When no more gas evolution observed, 4-Bromo-1-butyne (5
mmol, 0.48 ml) was added to the mixture and refluxed until neutral to moist litmus. The
reaction mixture was quenched with water and extracted with diethylether. The organic
layer was washed with water, dried over magnesium sulfate, and concentrated under
vacuum. For the second step, the product of the first step was alkylated by using 1-
bromo-2-butyne. In a mixture of NaH (0.062g, 2.56 mmol) in 15 ml THF, the product of
the first step (0.45 g, 2.13 mmol) was added slowly with a dropping funnel at 0 °C and
stirred at room temperature for 1 hour. 1-Bromo-2-butyne (2.56 mmol, 0.22 ml) was
added gradually at 0 °C and stirred overnight at room temperature. The reaction mixture
was quenched with water and extracted with diethylether. The organic layer was washed
with water and dried over magnesium sulfate, and concentrated under vacuum. The
mixture was purified by silica gel column chromatography using hexane:ethyl acetate
solvent mixture 100:6 gradient elution; colorless oil; yield: 74% (Adams and Kamm

1941).

4

C,H50,C

C,H50,C —

Figure 3.10. Diethyl 2-(but-2-ynyl)-2-(but-3-ynyl)malonate

The synthesis of N-(prop-2-ynyl)-N-tosylbut-2-yn-1-amine (1g):

The substrate having sulfonamide group was also synthesized in two steps. For
the first step, to a stirred suspension of K,COs3 (1.74 g, 12.6 mmol ) in acetonitrile (15
ml) was added p-toluenesulfonamide (0.60 g, 2.52 mmol) and propargyl bromide (0.55

ml, 6.28 mmol), and the resulting mixture refluxed for 2 hours. Then, the mixture was
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extracted with diethyl ether and the organic layer was washed with brine, dried over
magnesium sulfate, and concentrated under vacuum. The crude product was purified by
silica gel column chromatography with hexane:ethyl acetate mixture (100:6 gradient

elution), and obtained as pale yellow (Figure 3.11) (Tanaka, et al. 20006).

Figure 3.11. N-(prop-2-ynyl)-N-tosylprop-2-yn-1-amine

N-(prop-2-ynyl)-N-tosylprop-2-yn-1-amine (0.32 g, 1.21mmol) was taken in
THF (25 ml) and n-BuLi (1.6 M in hexane, 2.38 ml ) was added in stirring mixture
slowly with a dropping funnel at -78 °C and then CH;I (0.31 ml, 5 mmol) was added into
the mixture and stirred overnight at room temperature. The reaction mixture was
extracted with diethyl ether and the organic layer was dried over magnesium sulfate and
concentrated under vacuum. The crude product was purified by silica gel column
chromatography using hexane:acetone mixture (100:4 gradient elution), and obtained as

a colorless oil (Figure 3.12) (Tanaka, et al. 2006).

Figure 3.12. N-(prop-2-ynyl)-N-tosylbut-2-yn-1-amine

The synthesis of diethyl 2-(3-phenylprop-2-ynyl)-2-(prop-2-ynyl)malonate
1p):

Synthesis of diethyl 2-(3-phenylprop-2-ynyl)-2-(prop-2-ynyl)malonate (1j)
involves 3 steps. At first step diethyl malonate (0.9g, 6.15 mmol) was added suspension
of NaH (0.162 g, 6.15 mmol) in THF (40 mL) at 0 °C. The mixture was stirred 2 hours at

room temperature. Propargyl bromide (6.15 mmol) was added to the mixture at 0 °C.
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The mixture was stirred overnight at room temperature, quenched with H,O, and
extracted with Et,;O. The organic leayer was washed with brine, dried over magnesium
sulfate, and concentrated under vacuum. The mixture was purified by silica gel column
chromatography using hexane:ether mixture (100:4 gradient elution) and obtained as
colorless oil (Yield: 45%) (Takimoto, et al. 2006).

The second step: To a solution of aryl iodide (1.6 mmol) and the alkyne (2 mmol,
obtained from the first step) in 10 mL Et;N was added 2 mol % Pd(PPh;)Cl, with respect
to the aryl halide. The mixture was stirred at room temperature for five minutes, after
that 1 mol of % Cul was added to the mixture. Then reaction flask was placed in a
preheated oil bath at 50 °C and vigorously stirred under an argon atmosphere. Small
amounts of samples were periodically taken by the help of a syringe during the reaction,
diluted in ethyl acetate and analyzed by GC to check whether all alkyne was consumed
in the reaction. Then the residue was purified by column chromatography on silica gel
using hexane:ethylacetate mixture (100:4 gradient elution) to give the pure product as a

yellow oil (Figure 3.13) (Yield: 75%) (Roesch and Larock 2001).

Figure 3.13. Sonagashira-Coupling Product

The third step: The alkyne obtained from the second step (1.5 mmol) was added
to suspension of NaH (0.04 g, 1.8 mmol) in THF (20 mL) at 0 °C. The mixture was
stirred at room temperature for 2 hours. Propargyl bromide (2 mmol) was added to the
mixture at 0 °C. The mixture was stirred overnight at room temperature, quenched with
water, and extracted with diethyl ether. The organic layer washed with brine, dried over
magnesium sulfate, and concentrated under vacuum. Silica gel column chromatography
of the residue hexane:ether (100:4 gradient elution) gave the product as a yellow oil

(Yield: 83%) (Shintani, et al. 2005).
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Figure 3.14. Diethyl 2-(3-phenylprop-2-ynyl)-2-(prop-2-ynyl)malonate

The synthesis of diethyl 2-(3-(trimethylsilyl)prop-2-ynyl)-2-(prop-2-
ynyl)malonate (1c):

In order to synthesize trimehylsilyl substituted diyne (1c), diethyl malonate (4g,
25 mmol) was added into the suspension of NaH (240 mg, 10 mmol) in THF (15 ml) at 0
OC. The mixture was stirred at room temperature for 2 hours. 3-Bromo-1-(trimethylsilyl)-
1-propyne (1.91g, 10 mmol) was added to the mixture at 0 °C. The mixture was stirred
overnight at room temperature, quenched with water, and extracted with diethyl ether.
The organic layer washed with brine, dried over magnesium sulfate, and concentrated
under vacuum. Silica gel column chromatography of the residue hexane:ether mixture
(100:7 gradient elution) gave the product as colorless oil (66% yield) (Takimoto, et al.
2006).

Second Step: The product that obtained from the first step (0.91g, 3.36 mmol)
was added to a suspension of NaH (121 mg, 5.04 mmol) in THF (10 mL) at 0 °C. The
mixture was stirred 2 h at room temperature. Propargyl bromide (595 mg, 5.04 mmol)
was added to the mixture at 0 °C. The mixture was stirred overnight at room
temperature, quenched with water, and extracted with diethyl ether. The organic layer
was washed with brine, dried over magnesium sulfate, and concentrated under vacuum.
The silica gel column chromatography of the residue hexane:ether (100:10 gradient

elution) gave the product as a pale yellow oil (67% yield).

EtO,C -

o</
)

Figure 3.15. Diethyl 2-(3-(trimethylsilyl)prop-2-ynyl)-2-(prop-2-ynyl)malonate
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The synthesis of (E)-4,4-diethyl 1-methyl hept-1-en-6-yne-1,4,4-
tricarboxylate (6):

In order to synthesize 1,6-enyne, (E)-4,4-diethyl 1-methyl hept-1-en-6-yne-1,4,4-
tricarboxylate (6), the following procedure was performed.

As a first step, diethyl malonate (4.8g, 30 mmol) was added to the suspension of
NaH (360 mg, 15 mmol) in THF (20 mL) at 0 C. The mixture was stirred at room
temperature for 2 h. Propargyl bromide (1.79g, 15 mmol) was added to the mixture at 0
°C. The mixture was stirred overnight at room temperature, quenched with water, and
extracted with diethyl ether. The organic layer was washed with brine, dried over
magnesium sulfate, and concentrated under vacuum. Silica gel column chromatography
of the residue with hexane:ether (100:4 gradient elution) gave the product as a colorless
o0il (60% yield) (Shintani, et al. 2005).

As a second step product that obtained from the first step (1.5g, 7.55 mmol) was
added to the suspension of NaH (181 mg, 7.55 mmol) in THF (10 mL) at 0 °C. The
mixture was stirred at room temperature 2 h. Methyl 4-bromocrotonate (1.35g, 7.55
mmol) was added to the mixture at 0 °C. The mixture was stirred for overnight at room
temperature, quenched with water, and extracted with diethyl ether. The organic layer
was washed with brine, dried over magnesium sulfate, and concentrated under vacuum.
Silica gel column chromatography of the residue with hexane:ethyl acetate (100:13
gradient elution) gave the product as a pale yellow oil (71% yield) (Shintani, et al. 2005).

C,H50,C

C,H50,C \

CO,Me
Figure 3.16. (E)-4,4-diethyl-1-methyl hept-1-en-6-yne-1,4,4-tricarboxylate

The synthesis of diethyl 2-(4-hydroxybut-2-ynyl)-2-(prop-2-ynyl)malonate
(1d):

In order to synthesize a primary alcohol substituted diyne, diethyl 2-(4-
hydroxybut-2-ynyl)-2-(prop-2-ynyl)malonate (1d), first 4-chloro-2-butyne-1-ol was
synthesized; to a solution of 860 mg. (10 mmol) of 2-butyne-1,4-diol in 7 ml of dry
benzene and 869 mg. (11 mmol) of dry pyridine was added, 1309 mg. (11 mmol) of

31



thionyl chloride dropwise over a period of 6 h, while the temperature was maintained in
the temperature range of 10 and 20 °C. The reaction mixture was stirred for an additional
hour and allowed to stand overnight at room temperature. The mixture was then poured
into 50 ml of icewater and the benzene layer was separated. The aqueous layer was
extracted with 250 ml portions of ether four times and the ether extracts were combined
with the original benzene layer. The combined organic extracts were washed with a
saturated sodium bicarbonate solution, then with cold water and dried over Drierite. The
crude product was used for the next step.

To a solution of diethyl propargyl malonate (1.15g, 5.8 mmol) in DMF (60 mL)
was slowly added NaH (0.28 g, 7.05 mmol) at 0 °C. To this was added 2-(4-chloro-but-
2-ynyloxy)-tetrahydro-pyran (1.09 g, 5.8 mmol) and sodium iodide (88 mg, 0.58 mmol).
The reaction mixture was slowly warmed to r.t. and stirred for 36 h. The reaction was
then cooled to 0 °C and quenched with 1 M HCI (100 mL). The mixture was then stirred
further for 4 h to completely remove the THP group. The DMF/aqueous layer was then
extracted with ether. The combined organic layers were washed with water and brine to
remove DMF, dried over magnesium sulfate, and the solvent was removed in vacuo to
give the crude product which was purified on silica with hexane:ether mixture (100:7) to
yield 0.75 g (55%) of the corrosponding product as a pale yellow oil (Trost and Rudd
2005).

EtO,C -

EtO,C” : -

OH

Figure 3.17. Diethyl 2-(4-hydroxybut-2-ynyl)-2-(prop-2-ynyl)malonate

The synthesis of diethyl 2,2-di(but-2-ynyl)malonate (11):

To synthesize 2,2-di(but-2-ynyl)malonate, (11), substrate, to a suspension of NaH
(0.65 g, 27.2 mmol) in THF at 0 oC, 1-bromo-2-butyne (4 g, 27.2 mmol) and
diethylmalonate (1.62 g, 12.3 mmol) were added slowly under argon atmosphere. The
reaction mixture was stirred for overnight and then quenched with water and extraction
process was performed with diethyl ether. Then, organic layer was washed with

anhydrous magnesium sulfate, and concentrated under vacuum. After that, the residue
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was purified by column chromatography (hexane:ether) on silica gel to give the pure

product and product was obtained as a colorless oil (Liu and Widenhoefer 2002).

O

O
JO

@)
Figure 3.18. Diethyi 2,2-di(but-2-ynyl)malonate

The synthesis of triethyl hepta-1,6-diyne-1,4,4-tricarboxylate (1m):

To an oven dried flask containing 2,2-di-prop-2-ynyl malonate (1i) (4.8 mmol)
and dry THF(40 ml) was added Li-HMDS (5.3 ml, 0.9 M in THF, 4.8 mmol)at -78 °C
under argon. The solution was stirred for 30 min, and then ethylchloroformate (0.41 mL,
5.3 mmol) was added dropwise. After 2 h, the reaction was quenched with saturated
aqueous NH4Cl, warmed to room temperature, extracted with diethyl ether, and the
organic layer was dried over magnesium sulfate. The solvent was then removed in vacuo
to give the crude product, which was further purified by silica gel chromatography
(hexane:ether) to give the product (50 % yield) (Figure 3.19) (Trost and Rudd 2005).

EtO,C — H
EtO,C —  OCHs

O
Figure 3.19. Triethyl hepta-1,6-diyne-1,4,4-tricarboxylate
3.2. General Procedure for Drying the Solvents

THF (tetrahydrofuran) was dried by using Na wire and benzophenone. Na wire
was added into a flask with THF and benzophenone and refluxed under a nitrogen
atmosphere until the blue color of the benzophenone ketyl radical persists. Dry THF was
collected and used immediately.

For drying of methanol (200 mL), Mg turnings (1.00 mg), iodine (100 mg), and

10 mL methanol was added into a 250 mL round-bottom flask. This mixture was heated
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under inert atmosphere until iodine disappears. More iodine was added if stream of
bubbles is not observed. Then the remainder methanol was added to the mixture when no
magnesium turnings was observed and refluxed for 3 hours and collected onto a 3A
molecular sieve beads (10% w/v) and waited at least 1 day before use (Leonard, et al.
1998).

Acetone was dried over anhydrous calcium sulfate. Acetone and anhydrous
calcium sulfate was added into a flask and it was refluxed for 3 hours under nitrogen

atmosphere and used immediately (Ward 1961).

3.3. General Procedure for the Synthesis of Rh Complexes

[Rh(cod)OMe], was synthesized according to literature methods. A round-
bottomed flask containing a magnetic stirrer bar was charged with a solution of
[Rh(cod)Cl], (175 mg, 0.355 mmol) in dichloromethane (15 mL). The addition of a
solution of KOH (40 mg, 0.173 mmol) in methanol (5 mL) gave rise to the immediate
precipitation of a yellow solid. After being stirred for 30 minutes at room temperature,
the solvent was completely removed in a rotary evaporater. Then, 10 mL of methanol
and subsequently 15 mL of water were added to the residue, after which the solid was
collected by filtration using a fine sintered-glass filter, washed with water (5- ml, ten
portions) and vacuum dried over phosphorus (V) oxide (Uson, et al. 1985).

[Rh(cod)Cl], was synthesized in our laboratory. 7.3 mmol RhCl;.3H,0, 6 mL
1,5-cyclooctadiene, (cod), 3 mL H;O, and 35 mL EtOH were added into a 100-mL
round-bottomed flask containing with a magnetic stirrer bar. Reaction mixture was
refluxed overnight under nitrogen atmosphere (82% yield). In literature Na,COs3; was
used as a base but we didn’t because the clour of the crystals should be yellow but when
we used base the colour turned to olive green (Giordano and Crabtree 1979).

[Rh(cod)OH], was also synthesized in our laboratory (Uson, et al. 1985).
[Rh(cod)Cl], (0.65 mmol) in acetone (35 mL) was added to a round-bottom flask which
contained a solution of potassium hydroxide (1.337 mmol) in water (4 mL). The mixture
was stirred for two hours at room temperature, then yellow suspension was concentrated
to ~10 mL with evaporation Then, 15 mL of water was added. Solid part was taken by
filtration over a fine sintered-glass filter and it was washed with water (ten times in 5 mL

portions) and vacuum-dried over phosphorus(V) oxide.
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3.4. General Procedure for Rh-Catalyzed Arylative Cyclization

Reactions of Diynes with Arylboronic Acids

Acetylphenylboronic acid, 4-hydroxyphenylboronic acid 4-methylphenylboronic
acid, 4-methoxyphenylboronic acid, 2-methoxyphenylboronic acid, 2-methylphenyl
boronic acid, thiophene-3-boronic acid, 1-bromo-2-butyne and diethylmalonate were
supplied from Alfa Aesar. 4-(Trifloromethyl) phenyl boronic acid, trans-2-phenylvinyl
boronic acid, propargyl bromide, 4-bromo-1-butyne and 1-bromo-2-pentyne were
supplied from Aldrich. 3,4-diflorophenylboronic acid and 3-tolylboronic acid were
supplied from Acros Organics. Phenylboronic acid was supplied from Merck or Fluka.
Rhodium(III) chloride hydrate was supplied from Precious Metal.

A mixture of arylboronic acid (0.24 mmol for unsymetrical diins), diyne (0.2
mmol), [Rh(cod)OMe], (3 mol % Rh), methanol (2 ml, pre-dried and degassed before
used), water (50 microliter, degassed before used) was added into a schlenk tube
containing a magnetic stirring bar and charged with argon atmosphere. Small amounts of
sample were taken periodically by the help of a syringe and analyzed with GC and
product isolation was done by flash chromatography, using hexane:trichtylamine
(100:1)-ethylacetate solvent system. All of the isolated products were colorless or pale

yellow oil.

3.5. Characterization of Products

The samples were analyzed by GC/MS (HP GC/MS 6890/5973N or Varian Star
3400CX/Satrun 2000 on a HP- 5MS, 30m, 0.25 mm capillary column, 5%
phenylmethoxysiloxane with 0.25um film thickness) and GC (19091J-413 HP-5 6890N
on a 30m, 0.25 mm capillary column (5% dimetylsiloxane, 95% phenyldimethylsiloxane
with a 0.25 pm film thickness and FID detector).

The GC program applied throughout the analysis is as follows: the column
temperature was 40 °C at the beginning of the program and it was heated with a rate of
10 °C/min up to 300 °C, then it was kept at this temperature for 15 min. Throughout the
analysis the injector and detector temperatures were kept constant at 280 °C and 300 °C,

respectively. The analysis was performed on a split mode with a split ratio of 1/50.
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The synthesized reactants and isolated products were characterized by NMR
(Varian VnmrJ 400) and HRMS (High Resolution Mass Spectroscopy; HPLC-ESI-
HRMS, GC-EI-HRMS and DI-EI-HRMS; -direct inlet ionization; (Thermo Electron).

Product 2la: 'H NMR (400 MHz, CDCls) &: 1.19 (t, J=7.2 Hz, 6H), 1.34, (d,
J=6.8 Hz, 3H), 1.93 (s, 3H), 2.9 (s, 2H), 3.0 (s, 2H), 4.15 (q, J=7.2 Hz, 4H), 4.67-4.72
(m, 1H), 7.04-7.25 (m, 5H); >C NMR (100 MHz, CDCl3) &: 14.3, 15.4, 24.2, 38.2, 40.0,
57.3, 61.8, 121.3, 126.5, 128.2, 128.8, 130.3, 132.6, 136.5, 144.8, 172.0; MS(EL m/2):
342 (19 M"), 268 (100), 239 (69), 195 (96), 167 (44); HRMS (m/z, M"): 342.1826
(calculated), 342.1822 (found).

Product 2aa: '"H NMR (400 MHz, CDCls) &: 1.26 (t, J = 7.0 Hz, 6H), 1.55 (d, J
= 7.2 Hz, 3H), 3.01 (s, 2H), 3.08 (d, J = 2.0, 2H), 4.22 (q, J = 7.2 Hz, 4H), 5.73-5.78 (m,
1H), 6.33 (s, 1H), 7.14-7.34 (m, 5H); °C NMR (100 MHz, CDCl;) &: 14.1, 15.1, 38.1,
43.4,57.0, 61.6, 122.0, 122.2, 126.4, 128.2, 128.5, 135.2, 138.0, 138.2, 171.5; MS(EI,
m/z): 328 (12 M"), 254 (92), 181 (100); HRMS (m/z, M"): 328.1669 (calculated),
328.1671 (found).

Product 2ab: '"H NMR (400 MHz, CDCls) &: 1.26 (t, J = 7.0 Hz, 6H), 1.56 (d, J
= 7.2 Hz, 3H), 2.32 (s, 3H), 3.00 (d, J = 1.6 Hz, 2H), 3.07 (d, J= 1.6 Hz, 2H), 4.22 (q, J
= 7.6 Hz, 4H), 5.79-5.84 (m, 1H), 6.29 (s, 1H), 7.07 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0
Hz, 2H); °C NMR (100 MHz, CDCL;) &: 14.0, 15.1, 21.2, 38.1, 43.4, 57.0, 61.5, 121.9,
122.0, 128.4, 128.9, 134.9, 135.3, 136.0, 137.6, 171.5; MS(EI, m/z): 342 (15 M"), 268
(100), 195 (99); HRMS (m/z, M"): 342.1826 (calculated), 342.1818 (found).

Product 2ac: '"H NMR (400 MHz, CDCls) 6: 1.26 (t, J = 7.2 Hz, 6H), 1.57 (d, J
= 7.6 Hz, 3H), 3.00 (s, 2H), 3.06 (d, J = 2.0 Hz, 2H), 3.80 (s, 3H), 4.21 (q, J= 7.2 Hz,
4H), 5.80-5.83 (m, 1H), 6.27 (s, 1H), 6.81 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H);
C NMR (100 MHz, CDCl3) &: 14.1, 15.1, 38.1, 43.4, 55.1, 55.2, 57.0, 61.5, 113.6,
121.6, 121.7, 129.7, 130.3, 135.4, 137.2, 158.1, 171.5; MS(EI, m/z): 358 (53 M"), 284
(38), 211 (72); HRMS (m/z, M"): 358.1775 (calculated), 358.1776 (found).

Product 2ad: 'H NMR (400 MHz, CDCl3) &: 1.22 (t, J = 7.2 Hz, 6H), 1.77 (d, J
= 6.8 Hz, 3H), 3.00 (s, 2H), 3.29 (d, J = 1.6 Hz, 2H), 4.219 (g, J = 7.2 Hz, 2H), 4.221 (q,
J=1.2 Hz, 2H), 5.95-6.01 (m, 1H), 6.67 (s, 1H), 6.80 (d, J= 8.4 Hz, 2H), 7.19 (d, J=8.8
Hz, 2H); °C NMR (100 MHz, CDCls) 8: 14.0, 15.0, 36.8, 39.5, 58.4, 61.7, 114.8, 115.3,
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118.5, 130.1, 130.3, 136.2, 139.1, 154.6, 171.7; MS(EL m/2): 344 (58 M"), 270 (88), 197
(100); HRMS (m/z, M"): 344.1618 (calculated), 344.1619 (found).

Product 2ae: 'H NMR (400 MHz, CDCls) &: 1.27 (t, J = 7.0 Hz, 6H), 1.57 (d, J
= 7.2 Hz, 3H), 2.58 (s, 3H), 3.02 (s, 2H), 3.09 (d, J = 1.6, 2H), 4.23 (q, J = 7.2 Hz, 4H),
5.76-5.81 (m, 1H), 6.32 (s, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.8 Hz, 2H); "°C
NMR (100 MHz, CDCl3) &: 14.0, 15.1, 26.5, 37.9, 43.3, 56.9, 61.6, 120.8, 123.3, 128.4,
128.7, 135.1, 135.2, 140.4, 143.3, 171.3, 197.7; MS(EIL, m/2): 370 (33 M"), 296 (93), 254
(100), 223 (54), 181 (49); HRMS (m/z, M"): 370.1775 (calculated), 370.1771 (found).

Product 2af: '"H NMR (400 MHz, CDCls) &: 1.27 (t, J = 7.2 Hz, 6H), 1.57 (d, J
= 7.2 Hz, 3H), 3.02 (s, 2H), 3.09 (d, J = 1.6, 2H), 4.23 (q, J = 7.2 Hz, 4H), 5.71-5.74 (m,
1H), 6.30 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H); *C NMR (100
MHz, CDCls) &: 14.1, 15.1, 37.9, 43.3, 56.9, 61.6, 120.4, 123.2, 125.2 (q, J=15.6 Hz),
128.8, 135.1, 140.2, 141.8, 171.3; MS(EL, m/z): 396 (17 M"), 322 (100), 249 (15);
HRMS (m/z, M"): 396.1543 (calculated), 396.1540 (found).

Product 2ag: "H NMR (400 MHz, CDCls3) o: 1.26 (t, J= 7.0 Hz, 6H), 1.55 (d, J
= 7.2 Hz, 3H), 2.30 (s, 3H), 3.00 (s, 2H), 3.08 (d, J = 1.6, 2H), 4.22 (q, J = 7.2 Hz, 4H),
5.75-5.80 (m, 1H), 6.31 (s, 1H), 6.99 (d, J = 6.0 Hz, 1H), 7.12-7.14 (m, 3H); °C NMR
(100 MHz, CDCl3) &: 14.1, 15.1, 21.3, 38.1, 43.4, 57.0, 61.6, 122.1, 125.5, 127.2, 128.1,
129.1, 135.2, 137.8, 137.9, 171.5; MS(EL, m/2): 342 (21 M"), 269 (100), 196 (79);
HRMS (m/z, M"): 342.1826 (calculated), 342.1825 (found).

Product 2ah: 'H NMR (400 MHz, CDCls) &: 1.27 (t, J = 7.0 Hz, 6H), 1.50 (d, J
= 6.8 Hz, 3H), 2.20 (s, 3H), 3.0 (s, 2H), 3.12 (d, J = 1.6 Hz, 2H), 4.219 (q, J = 7.2 Hz,
2H), 4.22 (q, J = 7.0 Hz, 2H), 5.27-5.33 (m, 1H), 6.33 (s, 1H), 7.08-7.18 (m, 4H); "°*C
NMR (100 MHz, CDCl3) &: 13.1, 14.2, 18.7, 37.3, 42.3, 56.3, 60.5, 120.2, 121.0, 124.6,
125.7, 127.7, 128.8, 134.7, 134.9, 136.5, 137.0, 170.5; MS(EL, m/z): 342 (21 M"), 269
(100), 196 (88); HRMS (m/z, M"): 342.1826 (calculated), 342.1834 (found).

Product 2ai: '"H NMR (400 MHz, CDCl3) 8: 1.26 (t,J=7.2 Hz, 6H), 1.58 (d, J =
6.8 Hz, 3H), 3.00 (s, 2H), 3.06 (d, J = 2.0 Hz, 2H), 4.22 (q, J = 7.2 Hz, 4H), 5.70-5.73
(m, 1H), 6.21 (s, 1H), 6.99-7.17 (m, 3H); *C NMR (100 MHz, CDCl;) &: 14.1, 15.1,
37.9, 432, 56.9, 61.6, 116.9, 117.1, 117.2, 117.3, 119.7, 123.0, 124.67, 124.71, 124.73,
124.76, 135.9, 139.5, 147.6, 147.8, 148.8, 149.0, 150.2, 151.3, 150.1, 151.4, 171.3;
MS(EIL, m/z): 364 (25 M"), 290 (100), 217 (27); HRMS (m/z, M"): 364.1481 (calculated),
364.1488 (found).
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Product 2aj: '"H NMR (400 MHz, CDCl3) &: 1.25 (t, J = 7 Hz, 6H), 1.62 (d, J =
6.8 Hz, 3H), 3.02 (s, 2H), 3.06 (d, J = 1.6 Hz, 2H), 4.22 (q, J = 7.2 Hz, 4H), 5.89-5.95
(m, 1H), 6.23 (s, 1H), 7.10-7.22 (m, 3H); °C NMR (100 MHz, CDCl;) &: 14.1, 15.1,
38.0, 43.2, 57.0, 61.6, 116.1, 122.3, 122.5, 124.7, 128.0, 135.7, 138.4, 138.5, 171.5;
MS(EL m/z): 334 (7 M), 260 (24), 173 (100); HRMS (m/z, M"): 334.1233 (calculated),
334.1227 (found).

Product 2ak: 'H NMR (400 MHz, CDCl3) &: 1.25 (t, J=7.2 Hz, 6H), 1.82 (d, J
= 8.8 Hz, 3H), 3.04 (s, 2H), 3.07 (s, 2H), 4.20 (q, J = 7.2 Hz, 4H), 6.01-6.06 (m, 1H),
6.16 (d, J = 10.8, 1H), 6.53 (d, J = 15.6 Hz, 1H), 7.2 (q, J = 8 Hz, 1H), 7.25-7.45 (m,
5H); >C NMR (100 MHz, CDCl;) &: 14.0, 15.6, 38.2, 43.1, 57.2, 61.6, 123.3, 123.4,
125.7, 126.4, 127.3, 128.6, 132.6, 137.5, 137.7, 138.9, 171.4; MS(EI, m/z): 354 (7 M"),
279 (100), 206 (11); HRMS (m/z, M"): 354.1826 (calculated), 354.1835 (found).

Product 2ba: 'H NMR (400 MHz, CDCls) &: 0.83 (t, J= 7.6 Hz, 3H), 1.26 (t, J
=7.2 Hz, 6H), 1.95 (q, J = 7.2, 2H), 3.00 (s, 2H), 3.08 (d, J =2 Hz, 2H), 4.22 (q, J=17.2
Hz, 4H), 5.70 (tt, J=2.4, 7.6, 1H), 6.33 (s, 1H), 7.10-7.40 (m, 5H); °C NMR (100 MHz,
CDCly) &: 13.2, 14.1, 23.0, 37.9, 43.2, 57.1, 61.5, 122.2, 126.4, 128.1, 128.5, 129.5,
133.6, 138.0, 138.3, 171.5; MS(EI, m/z): 342 (18 M"), 268 (100), 239 (79), 195 (93), 165
(63); HRMS (m/z, M"): 342.1826 (calculated), 342.1821 (found).

Product 2ca: '"H NMR (400 MHz, CDCl3) &: 0.2 (s, 9H), 1.45 (t, J = 7.0 Hz,
6H), 3.25 (d, J = 2.0 Hz, 2H), 3.28 (J = 2.0 Hz, 2H), 4.396 (q, J = 7.2 Hz, 2H), 4.402 (q,
J =172 Hz, 2H), 6.07 (t, J=2.0 Hz, 1H), 6.62 (s, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.41-
7.45 (m, 2H), 7.53 (d, J = 7.2 Hz, 2H); *C NMR (100 MHz, CDCl5) &: -0.5, 14.2, 41.9,
42.4,57.5, 61.7, 124.9, 126.5, 126.9, 128.2, 128.7, 137.5, 139.1, 149.8, 171.5; MS(EI,
m/z): 386 (7, M"), 313 (89), 195 (100), 165 (27), 73 (30); HRMS (m/z, M"): 386.1908
(calculated), 386.1911 (found).

Product 2da: 'H NMR (400 MHz, CDCl;) &: 1.26 (t, J = 7.2 Hz, 6H), 1.68 (s
(OH), 1H), 3.03 (s, 2H), 3.12 (d, J = 1.6 Hz, 2H), 4.07 (d, J = 7.2 Hz, 2H), 4.21 (q, J =
7.2 Hz, 4H), 5.80-5.85 (m, 1H), 6.46 (s, 1H), 7.16-7.33 (m, 5H); *C NMR (100 MHz,
CDCls) &: 14.2, 38.2, 42.8, 57.2, 60.6, 61.9, 124.6, 125.3, 127.0, 128.53, 128.55, 137.3,
137.53, 137.58, 171.4; (MS(EL m/z): 344 (<1 M"), 326 (27), 253 (69), 207 (51), 179
(100), 165 (39); HRMS (m/z, M"): 344.1618 (calculated), 344.1608 (found).

Product 2ea: 'H NMR (400 MHz, CDCl3) &: 1.10-1.60 (m, 10H), 1.26 (t, J=17.2
Hz, 6H), 3.08 (d, J = 2 Hz, 2H), 3.29 (d, J=2 Hz, 2H), 4.21 (q, J = 7.2 Hz, 4H), 5.79
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(t, J =2 Hz, 1H), 6.41 (s, 1H), 7.10-7.38 (m, 5H); >C NMR (100 MHz, CDCl;) &:
14.1, 22.3, 25.2, 38.6, 38.8, 57.6, 61.6, 72.1, 123.2, 126.6, 128.3, 128.6, 133.3, 135.3,
137.9, 139.4, 171.5, MS(EL m/z): 394(39), 320 (62), 247 (62), 173 (100); HRMS (m/%,
M"): 412.2244 (calculated), 412.2251 (found).

Product 2fa: '"H NMR (400 MHz, CDCls) 8: 0.87 (t, J= 7.4 Hz, 3H), 1.89 (q, J
= 8.4 Hz, 2H), 4.52 (m, 4H), 5.8 (tt, J = 2.4, 7.4 Hz, 1H), 6.36 (s, 1H), 7.20-7.40 (m,
5H); >C NMR (100 MHz, CDCls) &: 13.3, 23.3, 71.6, 74.7, 119.5, 126.8, 126.9, 128.3,
128.4, 133.8, 137.1; MS(EI, m/z): 200 (14 M"), 185 (16), 170 (92), 155 (16), 141 (100),
128 (51), 115 (47), 105 (56), 91 (60), 77 (31); HRMS (m/z, M"): 200.1187 (calculated),
200.1196 (found).

Product 2ga: 'H NMR (400 MHz, CDCls) 8:1.49 (d, J = 7.2 Hz, 3H), 2.44 (s,
3H), 3.97 (s, 2H), 4.02 (d, J = 2.0 Hz, 2H), 5.67-5.76 (m, 1H), 6.31 (s, 1H), 7.19-7.30
(m, 5H), 7.34 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H); °C NMR (100 MHz, CDCl;)
8:15.3,21.7, 51.8, 55.2, 122.3, 122.5, 127.2, 128.1, 128.3, 128.6, 129.9, 132.5, 132.8,
134.0, 136.9, 143.9; MS(EI, m/z): 339 (26 M"), 281 (12), 207 (91), 183 (100), 168 (69),
155 (54), 141 (45), 129 (61), 115 (31), 91 (66); HRMS (m/z, (M+H)"): 340.13658
(calculated), 340.13667 (found). (400 MHz, CDCls)

Product 2ha: 'H NMR (400 MHz, CDCls) &: 1.26 (t, J=7.2 Hz, 6H), 1.57 (d, J
= 7.0 Hz, 3H), 2.26 (t, J = 6.4 Hz, 2H), 2.40 (t, J = 6.4 Hz, 2H), 2.94 (s, 2H), 4.20 (q, J =
7.2 Hz, 4H), 5.32 (q, J = 3.2 Hz, 1H), 6.14 (s, 1H), 7.05-7.32 (m, 5H); *C NMR (100
MHz, CDCls) &: 13.2, 14.1, 32.8, 33.6, 34.7, 56.3, 61.4, 122.9, 124.5, 125.9, 127.8,
128.7, 132.2, 137.8, 142.6, 171.1; MS(EIL, m/z): 342 (9, M"), 268 (100), 196 (39); HRMS
(m/z, M"): 342.1826 (calculated), 342.1822 (found).

Product 2ia: '"H NMR (400 MHz, CDCls) 8: 1.26 (t, J = 7.0 Hz, 6H), 3.06 (t, J =
2.0 Hz, 2H), 3.15 (d, J = 1.6 Hz, 2H), 4.21 (q, J = 7.0 Hz, 4H), 4.91 (s, 1H), 5.12 (d, J =
2.0 Hz, 1H), 6.49 (s, 1H), 7.17-7.36 (m, 5H); °C NMR (100 MHz, CDCl;) &: 14.0, 42.8,
43.0, 57.1, 61.6, 111.0, 124.9, 126.8, 128.3, 128.4, 137.1, 137.6, 142.5, 171.3; MS(EI,
m/z): 314 (16 M"), 240 (94), 167 (100); HRMS (m/z, M"): 314.1513 (calculated),
314.1517 (found).

Product 6a: '"H NMR (400 MHz, CDCls) o: 1.26 (t, J= 7.3 Hz, 6H), 2.09 (dd, J
=14.0, 6.2 Hz, 1H), 2.17 (dd, J = 15.6, 11.0 Hz, 1H), 2.60 (dd, J = 16.4, 3.4 Hz, 1H),
2.80 (dd, J=13.6, 8.2 Hz, 1H), 3.02 (d, J = 16.4 Hz, 1H), 3.23 (d, J = 16.4 Hz, 1H), 3.63
(s, 3H), 3.62-2.70 (m. 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.21 (q, J = 7.2 Hz, 2H), 6.41 (s,
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1H), 7.16-7.33 (m, 5H); >C NMR (100 MHz, CDCl3) &: 14.00, 14.04, 36.3, 37.4, 40.1,
43.1, 51.6, 58.3, 61.6, 61.7, 123.6, 126.6, 128.1, 128.4, 136.9, 143.7, 171.3, 171.7,
172.7; MS(EL, m/z): 374 (21 M"), 300 (100), 254 (44), 240 (25), 227 (43), 194 (23), 167
(75), 153 (57), 91 (41); HRMS (m/z, M"): 374.1724 (calculated), 374.1722 (found).
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CHAPTER 4

RESULTS AND DISCUSSION

In this thesis study, rhodium catalyzed arylative cyclization reactions of
unsymmetric diynes with aryl- and alkenylboronic acids carried out efficiently in a
highly regio- and stereoselective manner, yielding conjugated exo-cyclic dienes under

mild conditions.

4.1. Rh-Catalyzed Arylative Cyclization of Diynes with Arylboronic
Acids

Unsymmetric diynes with a terminal alkyne moiety were the substrates mainly
employed in this study to verify relative preference of the carborhodation process
between internal and terminal alkyne sites.

We initially attempted a reaction with an unsymmetric 1,6-diyne la and
phenylboronic acid mixture (1:1.2) in the presence of [Rh(cod)OH], (3% Rh) in
dioxane-water (40:1) at room tempature, which is a slightly modified method employed
for the arylative cyclization of internal 1,6-diynes by Murakami et al. (2007).
Suprisingly, this experimental condition failed to produce any product and the starting
material was recovered (Table 4.1, entry 1). Diyne 1a was also completely unreactive
under the conditions that generated [Rh]-OH species in-situ from [Rh(cod)Cl], complex
in tetrahydrofuran (THF), 1,2-dimethoxyethane (DME), and dioxane solvents,
respectively (Table 4.1, entries 2-4).

Nonetheless, 1a and phenylboronic acid could effectively be coupled with
complete conversion within just 1 h, in the presence of [Rh(cod)OCH;], complex (3%
Rh), and in methanol-water (40:1) solvent system in a regio- and stereoselective manner
to provide an arylative exocylic conjugated diene product 2aa in a good isolated yield
(Table 4.1, entry 5). The aryl group was incorporated exclusively into the terminal
alkyne site and the configurations of the exocyclic double bonds were assigned by an

NOE study (Figure 4.1).
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/Ar

X\H:>

CHs
Figure 4.1. Stereochemistry of arylation product determined by NOE-NMR study

A similar result was also obtained under an in-situ [Rh]-OCH; generating
condition which involved the use of [Rh(cod)Cl],/KOH combination in CH;OH solvent,
(Table 4.1, entry 6). Interestingly, analogous [Rh(nbd)Cl], complex proved less effective
(Table 4.1, entry 7), indicating that cod is a better ligand partner than nbd for the
catalytic activity of the rhodium species in this reaction. [Rh(cod)Cl], and [Rh(cod)OH],
complexes showed little and moderate activities, respectively, in the absence of a base
additive in CH3OH (Table 4.1, entries 8-9), suggesting that the effective exchange of
anionic ligands with alkoxo ligand is needed to render higher activity to the rhodium

complex.
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Table 4.1 Rh-catalyzed reaction of diethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate (1a)
with phenylboronic acid, optimization study

EtO,C = 3% Rh EtO,C Z
N + PhB(OH), - Ph
EtO,C — CH, solvent (2mL) g5, "

water (50 ulL)

la RT, 2h 2aa 3
0.2 mmol 0.24 mmol
Entry | Complex Solvent Additive Conversion Yield [%]*
(0.1 mmol) | [%]“

1 [Rh(cod)OH], Dioxane - 0 0

2 [Rh(cod)Cl], THF KOH 0 0

3 [Rh(cod)Cl], DME KOH 0 0

4 [Rh(cod)Cl], Dioxane KOH 0 0
5 [Rh(cod)OCHs], | CH3;OH - 100 77 (73)
6 [Rh(cod)Cl], CH;OH KOH 100 73

7 [Rh(nbd)Cl], CH;OH KOH 77 37

8 [Rh(cod)Cl], CH;OH - 47 16

9 [Rh(cod)OH], CH;OH - 100 51

a Calculated by 1H NMR relative to an internal standard (1,3,5-trimethoxybenzene). Isolated
yields are given in paranthesis.
b Reaction time is 1 h.
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EtO,C = 3% [RhcodCl], EtOC Zpn
+ PhB(OH)2 d > L
EtO,C — CH, v\'/‘;i‘g‘f(eo(z mL)) Et0,¢ N\
0.06 mmol KOH CH3z
la 60 °C, 4h 20 %
0.2 mmol 0.24 mmol
EtO,C — 3% [RhcodOH], EtO,C Zph
+ PhB(OH), pr 2mb)
EtO,C — CH loxane (. m EtO,C
2 3 water (0,2 mL) 2 \CH
la 60 °C, 4h °
’ 21 %
0.2 mmol 0.24 mmol

Figure 4.2. Rh-catalyzed reaction of diethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate (1a)
with phenylboronic acid

Figure 4.2 showed that [Rh(cod)Cl], and [Rh(cod)OH], complexes showed little
activities in dioxane solvent with diyne 1a even after 4 h of the reaction at 60 °C. The
catalytic process worked well with enyne reagent which involved the use of
[Rh(cod)Cl1],/KOH combination in dioxane solvent but the conversion of enyne was
incomplete with the use of Rh(cod)OH],/dioxane combination even after 5 hours of the

reaction at room temperature (Figure 4.3).
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EtO,C = [Rh(cod)OH], (3% Rh) EtO,C y

+ PhB(OH)z > Ph
EtO,C \ Dioxane:H,0 (2mL:50 uL)  Eto,C
CO,Me RT, 2h CO,Me
0.2 mmol 0.24 mmol 10%
6
78 % conversion
EtO,C, — [Rh(cod)Cl], (6% Rh) EtO,C Zpn
+ PhB(OH),
EtO,C \ Dioxane:H,O (2mL:0.2mL)  EtO,C
COyMe 0.06 mmol KOH CO,Me
(o]
0.2 mmol 0.24 mmol 80°C. Sh
6 69%

100 % conversion

Figure 4.3. Rh-catalyzed reaction of diethyl (E)-4,4-diethyl 1-methyl hept-1-en-6-yne-
1,4,4-tricarboxylate (1k) with phenylboronic acid in dioxane medium

The [Rh(cod)OCHj3],/CH30H system also proved to be superior compared to the
[Rh(cod)OH],/dioxane combination for the arylative cyclization of a methyl substituted
internal symmetric diyne 11. The conversion of the substrate 11 was incomplete with the
use of Rh(cod)OH],/dioxane combination even after 5 h of the reaction (Table 4.2, entry
1), whereas the reaction proceeded to completion in just 30 minutes to afford a high
yield of the corresponding product 11 (Table 4.2, entry 2).

The reason for the higher activity of [Rh]-OCHj3 species as compared to [Rh]-OH
species is not clear presently, however, it can not be attributed to solely differences in
their tranmetalation activities, because there are satisfactory number of evidences that
[Rh]-OH complexes can efficiently catalyze reactions of organoborons with various
electrophilic reagents at room temperature, which are invariably initiated by
transmetalation of Rh(I) with organoboron (Miura, et al. 2009, Miura, et al. 2005, Miura,
et al. 2006, and Hayashi, et al. 2002). The methoxo-ligated rhodium might also be

facilitating later carborhodation steps more effectively.
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Table 4.2. Rh-catalyzed reaction of diethyl 2,2-di(but-2-ynyl)malonate (11) with
phenylboronic acid

CH,
+ PhB(OH), >
EtO,C — CH, water (50 ub)  Eto,C N
30°C
1l lla ©Hs
0.2 mmol 0.6 mmol
Entry | Rh complex Solvent | Time (h) | Conversion [%]* | Yield [%]"
1 [Rh(cod)OH], Dioxane |5 82 74
2 [Rh(cod)OCH3], | CH;0H | 0.5 100 96 (75)
“ Calculated by GC. Isolated yields are given in paranthesis.
EtO,C — Rh(cod)OCHj3], (3% Rh
+ PhB(OH), [Rh(cod) 3l (3% RN) oligomers only
Eto,c  CHs CH3OH (2 mL)
5 H,O (50 pL)
RT, 2h
0.2 mmol 0.24 mmol

100% conversion

Figure 4.4. Rh-catalyzed reaction of diethyl 2-(prop-2-ynyl)malonate with phenylboronic

acid
EtO,C /= CHjs [Rh(cod)OCHs], (3% Rh)
CH + PhB(OH), no reaction
7 H,O (50 pL)
0.2 mmol 0.24 mmol RT, 2h

Figure 4.5. Rh-catalyzed reaction of diethyl 2-methyl-2-(prop-2-ynyl)malonate with
phenylboronic acid

Figure 4.4 showed that the substrate S5 which have a terminal alkyne moiety

failed give any arylation product, the substrate totally consumed via oligomerization.
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This result indicates that 1,2-addition into the terminal alkyne has to be facilitated
through the interaction of another intramolecular functional group to the metal center
under the established condition and the substrate 7 showed no reaction under same

reaction conditions (Figure 4.5).

EtO,C /—=—H EtO,C /—= CHs [Rh(cod)OCHs], (3% Rh) oligomers only
" + PhB(OH
Eto,C CHs Et0,C CHs (OM)2"""Chs0H (2 mL)
2 2 H,0 (50 pL)
5 7 RT, 2h +_
EtO,C /——CH;
Et0,C CHs

7

Figure 4.6. Rh-catalyzed reaction of diethyl 2-(prop-2-ynyl)malonate and diethyl 2-
methyl-2-(prop-2-ynyl)malonate with phenylboronic acid

A mixture of diethyl 2-(prop-2-ynyl)malonate, (5) and diethyl 2-methyl-2-(prop-
2-ynyl)malonate, (7) failed in arylative cyclization reaction, only substrate 5 consumed
via oligomerization and substrate 7 was completely unreactive (Figure 4.6).

After having determined the effective conditions, unsymmetrical terminal diyne
la underwent cyclization reactions with electron rich and poor arylboronic acids
substituted with electron-donating groups at meta- or para- positions (2b-g) and
reactions resulted in good yields (Table 4.3, Entries 1-6). When the reaction was
performed with o-tolylboronic acid, which was more sterically hindered, a good yield of
product 2ah was obtained (Table 4.3, Entry 7). Also, a disubstituted phenylboronic acid,
a heteroarylboronic acid, and an alkenylboronic acid was found as suitable boronic acids
for the cyclization reaction, yielding related cyclized products 2ai-k in the range of 68-

74% (Table 4.3, Entries 8-10).
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EtO,C — Rh(cod)OCHjs), (3% Rh) EtO,C s
Etozcl ;: CH30H:H,0 (2mL:50 L) EtO,C N
RT, 2h

0.2 mmol 0.6 mmol 80 %

la

Figure 4.7. Rh-catalyzed reaction of diethyl 2-(but-2-ynyl)-2-(prop-2-ynyl)malonate
with phenylboronic acid

We performed a reaction with 1,6-diyne 1a and phenylboronic acid mixture as a
mixture of 1:3 in the presence of [Rh(cod)OMe], (3 % Rh) in MeOH:H,O at room

temperature and cyclization product was obtained in a good yield (Figure 4.7).

Table 4.3. Rh-catalyzed arylative cyclization reaction of diethyl 2-(but-2-ynyl)-2-(prop-
2-ynyl)malonate (1a) with various organoboronic acids

Entry R Time, h Isolated Yield , %
1 p-CHs 1 68 (2ab)
2 p-OCH3 1 72 (2ac)
3 p-OH 2 61 (2ad)
4 p-COCHj3 2 72 (2ae)
5 p-CF; 2 70 (2af)
6 m-CHj; 2 66 (2ag)
7 0-CH3; 4 74 (2ah)
8 3.,4-difluoro 1 74 (2ai)
9 Thiophene-3 2 68 (2aj)
10 Trans-2-phenylvinyl 2 80 (2ak)

The scope of unsymmetric diyne substrates were also surveyed with different
tether types, and substituent groups on one of the alkyne terminus. The unsymmetric 1,6-
diynes having a malonate-based tether with —C,Hs 1b and —Si(CHj3)s 1e¢, substituents at
one of the propargylic position and primary and tertiary 1,6-diynols were all applicable
substrates which converted in regio- and stereoselective manners to the corresponding

1,2- dialkylidenecyclopentane products in good yields (Table 4.4, Entries 1-4).
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Bearing sulfonamide group diyne reagent 1g and allylic propargylic diyne ether
1f was used as effective reagents in cyclization reaction (Table 4.4, Entries 5-6).

We also have succeded arylative cyclization reaction with 1,7-diyne 1h and
yielded the six membered ring exocyclic diene in a moderate amounts together with

small amount of its stereoisomer with unassigned structure in the ratio of 15/1 (Table

4.4, Entry 7).

Table 4.4. Rh-catalyzed arylative cyclization reactions of diynes having a terminal
alkyne terminus with phenylboronic acid

) =" leﬁ\ B(OH)Q%l.S[Rh(COd)OCHs]z 4 \ Vi
N -

\;Rz F 2 ml solvent

0.2 mmol 0.24 mmol
R
Entry Diyne Time, h Isolated Yield , %
0
__ 68% 2ba
EtO,C. = EtO,C, z
1 X L 1b 4
EtO,C =—C,Hs EtO,C N
CoHs
61% 2ca
EtO,C — 1c EtO,C Z
2 >< 2
EtO,C =——Sj(CHs)3 EtO,C N
Si(CH3);
s 44%  2da
EtO,C — EtO,C /
3 EtO,C - 2 E10,C N
OH
OH
EtO,C )z
EtO,C = EtO,C N
4 ’ te 2 HO
EtO,C = 620 2ea
HO

(cont. on next page)
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Table 4.4. (cont) Rh-catalyzed arylative cyclization reactions of diynes having a
terminal alkyne terminus with phenylboronic acid

0
— 62% 2fa
1f z
5 o 2 o
\TC2H5 N
CzHs
L 56% 29a
/ —_ 1 /
6 Ts—N 9 2 Ts—N
= CH, N
CH,
// EtO,C 36%
— 2ha
7 EtO2C 1h 2 EtO,C {
EtO,C =——CH,4
HsC
EtO,C — 44%  2ca
EtO,C —
EtO,C

*[Rh(cod)OCHj3], (3%Rh), 2 mL solvent (CH;OH:H,O; 100:2.5), RT: Room Temperature

A symmetric diyne (1i) which bears two terminal alkyne moities underwent
arylative cyclization reaction under optimized conditions with a relatively lower yield
(Table 4.4, Entry 8).

The reaction pathway worked well with an enyne reagent (6) which bearing an
unsubstituted alkyne functionality and cyclization product was obtained in 80% of

isolated yield (Table 4.5).
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Table 4.5. Rhodium catalyzed reaction of diethyl (£)-4,4-diethyl 1-methyl hept-1-en-6-

yne-1,4,4-tricarboxylate (1k) with phenylboronic acid

+ PhB(OH), Ph
EtO,C \ CH30OH:H,0 (2mL:50 pL) EtO,C
CO,Me RT, 2h CO,Me
0.2 mmol 0.24 mmol
6 6a
Time (hour) T(C) Solvent (100:2.5) | Isolated Yield (%)
2 RT MeOH:H,O 80
EtO,C — [Rh(cod)OCHz;], (3% Rh) | _
complex mixture
Etozc><;© T PhBOH: - cp,0H:H,0 (2mLi50 L)
RT, 2h
0.2 mmol 0.24 mmol

1j

100% conversion

EtO,C =
Etozc><;\(OC2H5 + PhB(OH),

o]

0.2 mmol

im

100% conversion

0.24 mmol

[Rh(cod)OCH3], (3% Rh)

CH3OH:H,0 (2mL:50 pL)

50°C, 6h

complex mixture

Figure 4.8. Rh-catalyzed reaction of diethyl 2-(3-phenylprop-2-ynyl)-2-(prop-2-
ynyl)malonate and triethyl hepta-1,6-diyne-1,4,4-tricarboxylate with
phenylboronic acid

The reactions with ester functionalized electron deficient diyne molecule and also

phenyl substituted diyne molecule were performed under given conditions in Figure 4.8.

According to the characterization process we obtained complex mixture instead of

having arylative cyclization product.
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4.2. Proposed Mechanism of Rh-Catalyzed Arylative Cyclization

Reactions of Diynes with Arylboronic Acids

In Figure 4.9, proposed mechanism for formation of exocyclic dienes is shown.

H
EIOZCCH @_ /O:>T [Rh(COd)OCH3]2 (3% Rh) EtO,C z Ph
+ B
“N
Et0,C \—==—CH; o CD50D, 2 mL EtO,C NP e
RT
1a CHs
0.24 mmol
0.2 mmol 70%
CH30"
PhRh(I) -Rh()
9y CHZ0D c
/ Ph H
EtO,C EtO,C, 7
2 Il?h(l) . Ph
EtO,C _ EtO,C X Rh(1)
T CHs CHs
B

Figure 4.9. The reaction mechanisn for the Rh-catalyzed arylative cyclization of diynes
with arylboronic acids

Vinylidene formation which is a common intermadiete in rhodium catalysis of
terminal alkynes, is unlikely in our case considering the product profile (Chen and Lee
2006). Likewise, that the reaction of diyne 1a with a phenylboronate ester in CD;OD
produced 1aa-d, with a deuterium introduction only at the vinylic position, proposes the
following mechanism: coordination of organorhodium to the unsaturated carbon-carbon
bonds triggers vicinal addition across the unhindered terminal alkyne (A), which follows
by intra-carborhodation onto the next unsaturated carbon-carbon bond (B).
Hydrometalation at the last step produces the product and regenerates the catalytically

active Rh(I) complex (C).
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CHAPTER §

CONCLUSION

In this thesis study, we have succeded rhodium-catalyzed arylative cyclization
reactions of unsymmetrical diynes with arylboronic acids both regio- and
stereoselectively to yield conjugated exocyclic dienes. The arylation took place

selectively at the terminal alkyne site under mild conditions.

[Rh(cod)OCHj3], was found as the most effective complex in catalyzing the

reactions in methanol at room temperature.

This study is really important for being the first in the literature because of using

terminal unsymmetrical diynes for rhodium catalyzed arylative cyclization reactions.

The yield of cyclization products was higher with para- and meta- substituted
phenylboronic acids than sterically hindered ortho- substituted phenylboronic acid, 2-

methylbenzeneboronic acid.
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APPENDIX A

'H AND ®C NMR SPECTRUMS OF CYCLIZATION
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Figure A.16.*"H NMR of (3Z,4E)-diethyl 3-(2-methylbenzylidene)-4-ethylidenecyclopentane-1,1-dicarboxylate
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Figure A.22.'"H NMR of (3E,4Z)-diethyl 3-ethylidene-4-((Z)-3-phenylallylidene)cyclopentane-1,1-dicarboxylate
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APPENDIX B
MASS SPECTRUMS OF CYCLIZATION PRODUCTS
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Figure B.14 GC-MS spectrum of (3Z.4E)-diethyl 3-benzylidene-4-(2-hyvdroxvethylidene)cyclopentane-1.1-dicarboxvlate
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