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ABSTRACT 

SENSITIVITY AND UNCERTAINTY ANALYSIS TO REDUCE 
COOLING REQUIREMENT OF LOW-RISE APARTMENT BLOCKS IN 

THE HOT-HUMID CLIMATE REGION OF TURKEY 

Cooling demand in apartment buildings is an important problem due to the 

global warming today. Implementing passive design techniques to reduce cooling 

requirements cannot be possible in dense cities. Therefore, energy performance of 

apartment buildings usually depends on uncertainties caused by local climate and design 

parameters such as window size, zone height, features of materials and so on.  

The main aims of dissertation are to determine design parameters that have the 

most impact on the annual cooling energy loads for low-rise apartment blocks in hot-

humid climatic region of Turkey, and to evaluate uncertainty in annual cooling loads 

caused by design parameters and global warming. Global sensitivity and uncertainty 

analysis methods are performed by using morphology of an existing low-rise apartment 

block in Izmir, Turkey. The minor aim of thesis is to develop a practical guide to help 

architects while designing low-rise apartment blocks which have low cooling load 

located in Izmir. This practical guide was developed by using the results of sensitivity 

and uncertainty analyses and interviews with architects who have worked on 

commercial architectural projects in Izmir and are considered to be experts on energy 

efficiency in buildings. 

The results show that the sensitivity of evaluated design parameters and annual 

cooling energy loads in low-rise apartment blocks varies based on the effect of global 

warming and floors in the apartment block. In addition, total window area, natural 

ventilation and solar heat gain coefficient of the glazing based on the orientation have 

the most influence on annual cooling load of low-rise apartment blocks in hot-humid 

climates.  Furthermore, the developed practical guide is feasible and could be used in 

design process of low-rise apartment blocks targeted low cooling demand in hot-humid 

climates.  
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ÖZET 

TÜRKİYE’NİN SICAK NEMLİ İKLİM BÖLGESİNDEKİ AZ KATLI 
APARTMAN BLOKLARINDA SOĞUTMA GEREKSİNİMİNİ 
AZALTMAK İÇİN DUYARLILIK VE BELİRSİZLİK ANALİZİ 

 
Günümüzde küresel ısınma nedeniyle apartman binalarında soğutma ihtiyacı 

önemli bir sorundur. Yapılaşmanın yoğun olduğu şehirlerde soğutma yükünü azaltmak 

için her koşulda pasif tasarım tekniklerini uygulamak mümkün değildir. Bu nedenle, 

apartman binalarının enerji performansı, genellikle yerel iklimsel özelliklerden ve 

pencere boyutu, mekan yüksekliği, malzeme özellikleri gibi tasarım parametrelerinden 

kaynaklanan belirsizliklere bağlıdır.  

Bu nedenle, tezin temel amacı Türkiye’nin sıcak-nemli iklim bölgesindeki az 

katlı apartman bloklarında soğutma yükü üzerinde en etkili olan tasarım parametrelerini 

belirlemek ve tasarım parametreleri ile küresel ısınmadan kaynaklanan yıllık soğutma 

yüklerindeki belirsizliğin değerlendirilmesidir. Global duyarlılık ve belirsizlik analizi 

yöntemleri İzmir’de bulunan az katlı bir apartman bloğunun plan şeması kullanılarak 

uygulanmıştır. Tezin ikincil amacı ise İzmir’de mimarların uygun tasarım kararları ile 

daha az soğutma yüküne sahip az katlı apartman blokları tasarlamak için kullanabileceği 

pratik bir rehber oluşturmaktır. Bu rehber duyarlılık ve belirsizlik analizlerinden elde 

edilen sonuçlar ve İzmir’de mimarlık bürosu bulunan enerji verimliliği konularında 

duyarlı 5 mimarla yapılan mülakatlar sonucunda hazırlanmıştır. 

Sonuçlar, incelenen tasarım parametrelerinin hassasiyetinin ve yıllık soğutma 

yükü miktarının, küresel ısınmaya ve katlara bağlı olarak değiştiğini göstermiştir. 

Yönlere bağlı olarak toplam pencere alanı, doğal havalandırma ve camların güneş ısı 

kazanç katsayısı sıcak-nemli iklim bölgesindeki az katlı apartman bloklarının soğutma 

yükü üzerinde en fazla etkiye sahiptir. Ayrıca, geliştirilen pratik rehber sıcak-nemli 

iklim bölgesinde yer alan daha az soğutma ihtiyacı olan az katlı apartman bloğu tasarım 

sürecinde kullanılabilir.  
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Problem Statement 

 
Energy requirements with global warming especially in the building sector are 

an important issue today because energy consumption caused by the buildings is a big 

part of the total energy consumption in many countries. For example, in Turkey the 

building sector is the second largest consumer of energy. Therefore design and 

retrofitting of buildings in terms of energy efficiency is very important problem for all 

developed and developing countries. Building sector consists of many types of 

buildings such as residential, office, health, education, public, and etc. Big part of the 

fast-growing cities usually consists of apartment buildings that accommodate many 

people and the number of them can increase depending on population and policies of 

governments. Thus, apartment buildings have considerable energy saving potential.  

The most important factors affecting rate of the energy consumption in buildings 

is mostly related to design decisions and climatic conditions. Design decisions can 

change depending on climatic regions which can lead to different set of priorities to be 

considered during the design process. As an example, Eastern Turkey has long snowy 

winters that results in a priority on heating requirements, whereas in Western Turkey 

long hot summers result in peaks of energy consumption for cooling. These kinds of 

architectural examples designed with respect to local climate conditions already exist in 

Turkish vernacular architecture. For instance, traditional buildings have heavy thermal 

mass, small windows and light surface colors to reduce cooling requirements in hot and 

dry climatic zones. 

Though climate is an independent criterion which is impossible to control by the 

human being, design decisions can easily be changed by designer. However, architects 

generally have relatively limited information about impact of design decisions on 

energy performance in design process to be able to design buildings which consume less 

energy. Therefore, inappropriate or wrong decisions in the early design process of 
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buildings can lead to increased energy requirements. For example in summer especially 

in hot climates, excessive solar radiation which exposes to building envelope may cause 

overheating in spaces because of the lack of shading measures or wrong glazing 

selection. Consequently, energy consumption for cooling can be higher in buildings but 

a significant amount of energy saving is possible with appropriate design measures in 

summer. In addition, it is possible to provide appropriate thermal comfort conditions 

with low energy consumption in buildings by following only simple heat transfer 

principles and by selecting suitable materials in the early design phase of buildings 

depending on the local climatic conditions. In other words, architects have to deal with 

several uncertain design parameters affecting energy performance of buildings during 

the design process. Some of them are shown in Table 1.1.  

 

Table 1.1. Some parameters affecting energy consumption based on different design 
stages (Source: Morbitzer et al. 2001) 

 

Predesign Schematic design Design development 

Orientation Windows area Different heating systems 

Floor plan depth Glazing type Different heating control strategies 

Space usage Shading and/or blinds Different cooling  systems 

Windows area Blind and/or shading control Different cooling control strategies 

U values for opaque and 

transparent surfaces 

Exact orientation Different ventilation control 

strategies 

Light/heavy construction Exact air change rate  

Air change rate Material selection for overheating 

surfaces 

 

Heat recovery system Cooling required: yes/no  

Fuel type Lighting strategy  
 

 

Integrating and selecting appropriate value of these design parameters depending on the 

climatic conditions and building types into the early stages of building design is a 

complex issue because the design team has large degrees of freedom but has not enough 

information. Therefore, knowledge related to the importance and influence of several 

design parameters can support the architectural decision-making process for low energy 

consumption in especially apartment blocks. Apartment blocks are usually designed by 
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architects without taking consultancy from other professionals such as mechanical 

engineer and etc.  Hence owners have to rely on the performance of active components 

(such as heating, cooling and lighting devices) that are chosen by engineers in the final 

design stage. Other important point is that design parameters and their suitable values 

should be defined in the early stages of design, since changes in later stages may not 

influence energy performance and they cannot be cost effective solutions as well. In 

other words, although degree of the effort to increase building’s energy performance 

rises, impact of the effort can decrease through late stages of the design process (Figure 

1.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Impact of design decisions on building performance 
(Source: ASHRAE, 2008) 

 

In the extant literature, there are lots of general information and sources like 

books related to energy efficient design and strategies to improve building energy 

performance.  However, there are no enough knowledge and source in Turkey for a 

specific subject, location and climate. For example, there are no any information for 

characteristic features of building design parameters which have the most impact on 

annual energy loads and the contribution on the relative energy saving for a local 

condition and specific building type such as apartment blocks. This kind of information 

can be a significant opportunity to support architects during the early design process 

because general design rules that refers usually to massing and orientation of individual 

buildings. However, optimum orientation and massing cannot always be possible in the 

most densely built-up cities of Turkey that had a period of unplanned development. In 

Predesign   Schematic 
design   

Design 
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Construction 
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Construction 

Opportunity for cost-
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High  

Low 
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addition, still the planning of an energy efficient environment has not a priority. In other 

words, in the current practice, the majority of residential buildings are low-rise 

apartment blocks in the attached or detached order depending on the local master plan 

decisions, on plots of varying shape and orientation which may not be always possible 

in terms of energy efficiency. However, an existing research has demonstrated that 

compensation of the negative effect of these mandatory decisions is possible with other 

appropriate building design parameters (De Wit, 2001). It can be concluded that 

important part of the decisions affecting energy consumption in apartment blocks may 

be related to design parameters. Thus, determining the suitable values of the most 

significant, i.e., the most sensitive, building parameters can reduce the energy 

consumption in apartment buildings. In addition, guidelines including this kind of 

information such as reduction of annual heating or cooling energy for architects can be 

developed to use them in the early design stages of apartment blocks. In other words, 

guidelines can be a supporting tool in design process for architects. Thus, this thesis 

focuses on the effects of building design parameters on annual cooling loads of low-rise 

apartment blocks for the time periods of today, 2020s, 2050s, and 2080s in the hot-

humid climatic region of Turkey and integration of produced knowledge into the 

architectural practice by developing a practical guide for architects who have studied in 

Izmir. The special reasons for targeting only cooling loads in low-rise apartment blocks 

can be summarized as follows: 

• Cooling loads is in increase trend because of the climate change. A study 

projected that 6-7 °C increase in mean outside temperature in west side of 

Turkey is expected in summer for the time period of 2071-2100 as a result of 

global warming. The calculated mean maximum temperature will go up 5-6 °C 

in the east part and 4-5 °C in the rest of the Turkey (Demir et. al. 2007). In 

general, it can be called that while heating energy demand would decrease, the 

cooling energy demand would increase in buildings located especially in 

warming climatic zones of Turkey over time.  

• In the hot humid climatic region of Turkey, annual cooling loads are generally 

more than annual heating loads. 
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1.2. Aim and Scope of the Work 
 

 The main aim of the current dissertation is to determine relative effects of 

selected design parameters (window area, glazing type, thermal insulation, envelope 

color, material usage and etc.) on annual cooling energy loads in low-rise apartment 

blocks located in the hot-humid climatic region of Turkey according to today’s local 

climatic feature and global warming impact (2020s, 2050s, and 2080s). In other words, 

which design parameter is more effective than another is examined in the dissertation. 

Consequently, architects can focus on building design parameter(s) which have high 

impact on annual cooling energy loads during the design process of low-rise apartment 

blocks and they do not spend most time for robust design parameters.  Moreover, other 

objective of the thesis is to investigate variations in annual cooling energy loads caused 

by uncertainty in design parameters and global warming, for architects can prefer 

different values for design parameters and it can change energy consumption rate for 

cooling. For that reasons, this thesis will mainly discuss building design parameters, 

impact of global warming, and changing in annual cooling energy loads not the 

influence of design parameters in terms of energy consumption for heating, ventilating, 

daylighting. Minor aim of dissertation is to develop a practical guide to integrate results 

of thesis into the architectural practice and to help architects working in Izmir during 

the design process of low-rise apartment blocks which consume low energy for cooling. 

The guide provides practical feasibility and evaluation of the building design parameters 

into the early design process.  

 The objectives of the dissertation are to find answers to the following research 

questions: 

• What is the sensitive and robust design parameters affecting annual cooling 

energy loads in low-rise apartment blocks located in hot-humid climates? 

• What is the influence of the global warming on sensitivity of design parameters? 

• How will change the annual energy consumption for cooling due to the global 

warming? 

• What kind of tools (book, article, journal, guideline, and magazine) can be used 

to integrate knowledge into the architectural design process? 
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1. 3. Research Methodology 
 

Several methods are applied in this dissertation and main research methodology 

consists of two basic parts (see Figure 1.2). The first part is to determine impacts of 

building design parameters and variations in annual cooling energy loads under global 

warming. The second step is the development part of the practical guide with results of 

the first part.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. The major steps of the research methodology  

 

 

In the first part, research starts with a general literature review for identification 

and explanation of design parameters which can affect annual cooling energy loads in 

residential buildings. In addition, main method and design parameters used in the thesis 

are selected based on results of the literature review. Design parameters should be 

concise and simple in terms of architectural practice in Turkey. Furthermore, they 

should have a respond in the building sector of Turkey.  

In order to investigate the impact and relative importance of each selected design 

parameters on annual cooling energy load, global sensitivity analysis is determined as 

the main method. It is a powerful technique that enables to ascertain uncertainty in the 

model output caused by different inputs (Saltelli et. al. 2004). In addition, it investigate  

Literature review 

Determination of 
general design 

parameters 

Selection of main 
method to define 
impact of design 

parameters  

Application of 
Sensitivity and 

Uncertainty 
Analysis

Evaluation 
of the 

findings  

Preparation 
of the 

practical 
guide 

Conclusion  

The first part of thesis The second part of thesis 



7 
 

the degree to which parameter contribute to variation in outputs from a quantitative 

point of view. As a result, it provides a straightforward conclusion on the impact of 

input parameters on output (Mechri et al. 2010). In this thesis, global sensitivity analysis 

is used to find which design parameter is more important than others for annual cooling 

energy load. This analysis is applied for the time periods of today, 2020s, 2050s, and 

2080s. In this way, influence of climate change on the selected design parameters can 

be found and we can assess the effect of global warming on sensitivity of building 

design parameters easily. 

 Possible annual cooling energy range based on the variety of design parameters 

is evaluated by using uncertainty analysis technique. In this dissertation, it is assumed 

that uncertainty in design parameters is caused by architectural decisions. The backbone 

of this thesis is sensitivity and uncertainty analysis by using Monte Carlo technique with 

Latin hypercube sampling that is expected to produce information to support early 

stages of building design process in general. The sensitivity and uncertainty analysis is 

explained in detail in the Chapter 3. 

The second part is the preparation of a practical guide to help architects in 

design process of low-rise apartment blocks which need less energy for cooling. Thus, 

this study has been formulated as aware of the importance of sharing academic 

knowledge as much as findings of the research. For that reason, a significant focus in 

this part has been given on integration of the results obtained from first section into the 

architectural design practice in Turkey. The results should be presented in a format that 

is easily understandable and physically usable by architects. In the literature, there are 

currently three common formats for this purpose: guidelines, codes, and regulations. 

Practical guides for architects may be more useful during the building design which has 

high energy performance by providing information about relative importance of 

building design parameters in the early stages of design. However, most of the resources 

cover basic fundamentals of energy efficient building design in terms of mostly active 

systems. It means that they do not intend to give enough information in terms of 

architectural perspectives for building design.  In addition, for Turkey there are no 

guidelines for specific subjects such as energy efficient design components and energy 

efficient building design to reduce heating, cooling, and lighting energy consumption. 

For that reason, all results of the present research is organized in a coherent format 

usable in architectural practice by architects.  
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The second part to develop the practical guide consists of the four steps. (1) Literature 

review is conducted to analyze the current knowledge about building design parameters 

and guidelines. (2) Interviews with five architects who is expert on energy efficient 

building design in Izmir are carried to get idea for structure of the practical guide. (3) 

As a result of the two steps, information used in practical guide is determined and first 

draft of the practical guide is constituted. (4) Lastly, mock-up presentations and 

meetings are performed with four academicians (three architects and one mechanical 

engineer) who are specialist about energy efficiency in buildings to develop first draft of 

the practical guide and constitute final draft of the practical guide. 

 

1.4. Thesis Outline 
 

The thesis is structured as follows: 

Chapter 2 explains building design parameters which have influence on cooling 

energy loads in buildings.  

Chapter 3 addresses current sensitivity and uncertainty analysis techniques 

applied with building energy analysis tools.   

Chapter 4 presents application of sensitivity and uncertainty analysis by using an 

existing low-rise apartment blocks located in Izmir. Subsequently, results of the 

sensitivity and uncertainty analysis together with impact of global warming are 

evaluated.   

Chapter 5 introduces preparation process of the practical guide. In addition, 

outcomes of the literature review, interview and mock-up presentations and meetings 

are summarized.   

Chapter 6 gives the main conclusions of the thesis and shows future challenges 

for research effort in this domain.   
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CHAPTER 2 

 

DESIGN PARAMETERS AFFECTING COOLING LOADS 

IN BUILDINGS  

 
In the world, approximately 30-40% of all primary energy is consumed in 

building sector and residential buildings are mostly responsible from relatively high part 

of the consumed energy in this sector. This consumption is usually caused by heating, 

cooling, ventilation and lighting purposes.  

Features of buildings and local climate are the main factors affecting the amount 

of the energy requirements. It is known that climate is an independent criterion and 

impossible to control by human being. However, daily, seasonal, and annual variations 

in the climate can influence rate of the energy usage in buildings. In other words, there 

is a direct relationship between the climatic conditions and energy demand. According 

to the research conducted by the Turkish State Meteorological Service, an increase (4-5 

°C) in mean outside temperature is projected in Turkey between 2071 and 2080 because 

of the global warming. The calculated mean maximum temperatures will go up 5-6 °C 

in the east and 4-5 °C in the rest part of Turkey. Furthermore, the increase in mean 

minimum temperatures in the western Turkey will be less than eastern parts. Based on 

this study, it can be expected that whereas heating loads will decrease, cooling loads 

will increase in buildings in Turkey (Demir, 2007). Therefore importance of cooling 

loads will be more than today in warmer regions of Turkey. 

 Due to the rising cooling loads, dependence of the air-conditioning systems in 

buildings can increase. Thus, excessive use of active cooling systems can lead to some 

problem as follows (Santamouris. and Asimakopoulos, 1996): 

• Increase of peak electrical energy demand in especially midday in summer 

season,  

• Increase of the possibility of symptoms of flu, muscle pain, asthma, and 

tuberculosis, 

• Increase of dependence on exported fuel, 
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• Increase of use of fossil fuels which leads to more poisonous gas release , and 

triggering climate change, 

For that reason, specific strategies for design of new buildings and renovation of 

existing buildings are essential to reduce a significant amount of energy for cooling.  

 It is possible to improve energy performance of buildings by following simple 

heat transfer principles and using appropriate material configurations in the early design 

phase of buildings because decisions taken in these stages have the most impact on 

energy performance of buildings. Rate of the possible energy saving rates is shown in 

Table 2.1.  

 

Table 2.1. Potential energy saving rates based on stages of building design process 
(Source: American Institute of Architects, 1981) 

 

Stages in building design process Potential energy saving rate (%) 
Predesign 0-10 
Schematic design  40-50 
Design development 30-40 
Construction documents 0-10 
Construction management 0-10 
Post-construction 10-20 

 
Another important point is that passive design strategies to reduce energy 

consumption cannot be applied easily in densely cities because passive solar design 

strategies can dictate some certain configurations for more benefits. For example, usage 

of passive heating strategies can lead to narrow building plan with large south facing 

window (Beggs, 2009) but it cannot be applied every time because of the site 

conditions. Therefore, decisions about building design parameters in the design process 

are important and have a deterministic role in terms of energy requirements in 

buildings. In other words, energy performance of buildings may mostly be related to 

controllable design parameters which can be changed easily depending on the decisions 

taken by architects but this uncertainty can lead to large variations in energy demands of 

buildings.  

 For that reason, in this chapter selected simple and concise nine main parameters 

in terms of architectural points of view have been retained as the important variables,  

which have impact on cooling loads: building shape/geometry, windows, building 

materials and their thermal properties, thermal insulation, air infiltration, natural 
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ventilation, zone height, envelope color, and indoor set point temperature. They are 

explained in the following parts.  

 

2.1. Building Shape/Geometry 
 

Building shape has several significant roles such as energy performance, 

building’s functionality, and occupant performance (ASHRAE, 2006). The most 

important one is the impact on energy performance because building shape can 

influence rate of benefits taken from the local climatic conditions (AlAnzi et al. 2009). 

Rate of benefits can also change depending on esthetical concern, prevailing winds, 

natural daylight, shading, ventilation need, acoustical concern and etc. (Thomas, 2006). 

Conditions for optimum building form in terms of high energy performance can be 

formulated as minimum energy losses while maximum solar gain in winter, and 

accepting lower solar radiation in summer (Olgyay, 1962). In addition, the amount of 

heat gain from the solar radiation and heat loss can change depending on the area of 

building envelope exposed to outside conditions. Therefore, solar radiation may be 

minimized with compact building form in cool and hot-dry climates. In hot-humid 

climates, building shape should be elongated in the east-west direction due to intense 

solar radiation on the east and west directions (Hirst et al. 1986).  

 

Building shape can be generally defined with the following parameters: 

• The compactness ratio: the ratio of the amount of the surface area to building 

volume, 

• Building shape factor: the ratio of the amount of the surface area to conditioned 

floor area of building, 

• Aspect ratio: the ratio of the building length to building weight. 

 

2.2. Windows 
 

 Windows have several tasks in buildings to provide visual and auditory contact 

with outside, natural ventilation and daylighting.  In addition, the following factors 

should be considered while designing windows because they take solar radiation into 
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the space and provide lower thermal barrier according to thermal features of opaque 

walls. Thus it can cause high heat gain or loss per unit area compared to opaque walls 

(Athienitis and Santamouris, 2002; Moss, 1997): 

• Net heat transfer: it happens by conduction, convection and long-wave radiation. 

Rate of net heat transfer changes also based on window area.  

• Net transmitted solar radiation: some part of the solar radiation enters in the 

space directly with diffuse or beam solar radiation. A little part of the incident 

solar radiation is absorbed by the windows and its rest enters in the space as 

infrared radiation or by convection.  

• Daylighting effectiveness: it is important in terms of energy cost for lighting and 

visual comfort. Therefore, daylighting factor which is the ratio of illumination at 

the point of work plane is to be considered during the window design.   

• Acoustic performance: it is related to noise transmission from outside to inside.  

 

Window’s form and area should be determined based on the above parameters. 

Furthermore, the amount of the heat loss and gain can change based on the window 

area, frame and thermo physical properties of glazing. In addition, glazing used in 

windows can lead to positive contribution for heating and cooling requirements in 

buildings according to the glazing types and climatic characteristics of locations. At the 

same time, window frame has a significant role in energy performance of buildings 

based on thermal conductivity of frame. Therefore, windows and its area is a critical 

design issue for architects, which provide opportunity to improve energy efficiency 

(Bouchlaghem, 1996). A study showed that different window area according to 

orientation can be used to increase energy performance of buildings if energy efficient 

glazing is used (Hassouneh et al. 2010). In terms of natural ventilation, the effect of the 

window size mostly changes based the ventilation type. If there is one window on one 

wall in the space, window size has little effect on air velocity.  

Another critical point is that small inlet and larger outlet on windows are more 

beneficial to increase air flow rate. It should also not be forgotten that wind direction is 

one of the effective parameter on air velocity as well as window size (Givoni, 1976).  
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2.3. Building Materials and Their Thermal Properties  
 

Selection of materials in buildings is a significant task for design team because 

the heating or cooling requirements and thermal comfort conditions in buildings are 

affected by their thermal properties, thickness, and location. For that reason, thermal 

properties of building components and their impacts on energy performance should be 

known by architects. Two basic features of building components determine the heat 

flow in buildings and have high effect on energy performance. They are thermal 

resistance and thermal capacity. Moreover, the main thermal features of building 

materials can be defined by thermal conductivity, density and specific heat. Thermal 

conductivity is one of important properties of building materials because it is ability of 

materials to conduct heat energy. Another significant feature is the specific heat 

capacity which influence rate of the heat transfer through in and out of a building. 

Specific heat for a material is the amount of heat required to change the temperature of a 

unit volume by one degree (Givoni, 1976). Therefore, high dense materials such as 

brick, earth, and concrete can hold large quantities of heat but low dense materials can 

hold small quantities of heat. Thermal properties of some materials are summarized in 

Table 2.2. In addition, building surfaces absorb and reflect solar radiation depending on 

materials. Thus, the following properties related to radiation should also be considered 

during the design process (Givoni, 1998): 

• Absorptivity: the fraction of the striking radiation absorbed at the surface. 

• Reflectivity: the fraction of the striking radiation reflected away. 

• Transmittance (for glazing): the fraction of the striking solar energy transmitted 

through indoors from glazing. 

• Emissivity: the capacity of a surface to emit long-wave radiation. 

• Solar heat gain coefficient: measure of amount of the solar radiation blocked by 

glazing. 

Emissivity and reflectivity of some materials are shown in Table 2.3. 
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Table 2.2. Thermal properties of some materials 
(Source: Indian standards, 1996) 

 

Building materials Density (kg/m3) Specific heat 
(kJ/kg-K) 

Conductivity 
(W/mK) 

Brickwork 1820 0.88 0.811 
Brick 1731 0.88 0.750 
Dense concrete 2410 0.88 1.740 
Calk  2420 0.84 1.800 
Slate  2750 0.84 1.720 
Reinforced cocncrete 1920 0.84 1.100 
Brick tile 1892 0.88 0.798 
Cement mortar 1648 0.92 0.719 
Cement plaster 1762 0.84 0.721 
Cinder concrete 1406 0.84 0.666 
Gypsum plaster  1120 0.96 0.512 
Gas concrete 500 0.84 0.160 
Wood 480 1.68 0.072 
Plywood 640 1.76 0.174 
Soil 2240 0.84 1.740 
EPS 34 1.34 0.035 
Glass wool 189 0.92 0.040 
Rock wool 150 0.84 0.043 
XPS 35 1.4 0.034 
Bims block 500 0.96 0.29 

 

 

Table 2.3. Emissivity and reflectivity of some materials 
(Source: Indian standards, 1996) 

 

Building materials Emissivity Reflectivity 
Bright aluminium 0.20 0.80 
Concrete (new) 0.60 0.40 
Concrete (old) 0.75 0.25 
Asphalt paving 0.90 0.10 
Pale brass 0.60 0.40 
Shinny brass 0.30 0.70 
Brick 0.70 0.30 
White portland cement 0.40 0.60 
Reinforced concrete 0.65 0.35 
White marble 0.45 0.55 
Aluminium grey 0.50 0.50 
White  0.30 0.70 
Brown 0.70 0.30 
Red 0.70 0.30 
Green 0.70 0.30 
Black 0.90 0.10 
Paper white 0.30 0.70 
Dark stone 0.90 0.10 
Galvenized new steel 0.55 0.45 
Galvanized old steel 0.70 0.30 
Red roof tile 0.70 0.30 
Clourless roof concrete 0.65 0.35 
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2.4. Thermal Insulation 
 

 Thermal insulation which is the first strategy for energy conservation can be 

expressed as a material which is used to decrease heat flow through a building 

component based on its thermal conductivity and thickness. In other words, use of the 

thermal insulation decreases heat flux in the building envelope. Thus, thermal insulation 

in the proper place of the building envelope such as external wall and roof is a kind of 

barrier to reduce heat losses in the winter and heat gains in summer. For example, 

performance of corrugated iron roof with polystyrene, radiant barrier, fibber glass and 

no insulation was investigated with an experimental study. As a result, heat flux in 

unventilated roof was minimized by using polystyrene material (Soubdhan, 2005). In a 

different study made by Bojic and Yik (2005), approximately 38% of annual cooling 

load was saved by applying thermal insulation on external envelope and indoor walls of 

12-storey residential building in Hong Kong. In another experimental study, 

performance of 14 different roof types was evaluated and best results were obtained 

from insulated version of roofs. Other roof types obtained high performances were 

ventilated and terrace roof (Özdeniz and Hançer, 2005). In addition, benefits from 

thermal insulation and its economic value can vary according to the building type and 

its function, climatic features, type of the insulation material, insulation cost, energy 

cost saved (Al-Homoud, 2004). 

 

2.5. Air Infiltration  
 

Air infiltration can be defined as the flow of air through gaps and cracks in the 

building fabric. Uncontrolled air infiltration can increase the amount of the heat loss in 

winter because warmer air from inside is displaced through the outside from some 

points of building envelope. If the indoor space is cooler than the outside, hot air can 

enter in the indoor spaces in summer and it can lead to high cooling demand. In the 

buildings which have enough thermal insulation, air infiltration can be dominant factor 

for heat loss (Oughton and Hodkinson, 2008). Other disadvantages of air infiltration are 

moisture problems, acoustic control, thermal comfort and hygiene consequences 

(Elmroth and Levin, 1983). Rate of the air infiltration can change based on the air 

tightness of the building and wind driving forces across the building envelope. For that 
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reason, insulation continuity and construction process of buildings is important. Some 

measures to succeed insulation continuity and airtightness in buildings can be 

summarized as follows (Government report, 2008): 

• Provide simple form to built right, 

• Reduce the number of different types of construction, 

• Pay carful attention to design of junctions, 

•  Develop the most appropriate details for junctions, 

• Reduce penetrations into the thermal envelope, 

 

2.6. Natural Ventilation 
 

Natural ventilation in buildings is one of the common passive methods for 

cooling. Ventilation is also necessary for fresh air in buildings but it should be 

controlled every time since excessive air flow rate can lead to unwanted heat gain or 

loss. Thus windows should be designed to take fresh air into the space (Figure 2.1).    

 

 
 
 

             
 

Figure 2.1. Window to provide controlled fresh air 

 

Natural ventilation with correct position of indoor spaces to reach air flow until 

the desired point can contribute to coolness and thermal comfort conditions (Allard, 
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1998). Natural ventilation can be defined as transport of low temperatures with air flow. 

Moreover, enough air flow rates help to reject excessive heat from human surface by 

increasing convection coefficient (Çakmanus and Böke, 2001). One of the important 

points is that effectiveness of natural ventilation can change according to climatic 

conditions. For example, though natural ventilation has enough benefit in tropical and 

temperate climates, it does not have enough potential in terms of coolness in subtropical 

regions (Haase and Amato, 2009).  

The speed of air movement in buildings mainly changes depending on the 

pressure difference between internal and external spaces. Pressure difference can occur 

due to the temperature difference inside and outside of building. Wind can also cause a 

natural pressure difference and it can be provided with a fan as mechanically (Athienitis 

and Santamouris, 2002).  

There are various methods used in buildings to provide natural ventilation such 

as cross flow ventilation, single-sided ventilation, passive stack ventilation, wind towers 

and atrium ventilation according to the places of fenestration (Figure 2.2) (Dickson, 

1998). In addition, it is possible to increase indoor air speed naturally by using the solar 

chimney. For instance, a study indicated that indoor air speed can be increased as 

regardless of outdoor wind speed with solar chimney. Therefore, this system may be 

appropriate for the regions having high amount of solar radiation and low external wind 

speed (Macias, 2009). In an another study, air exchange rate in a room (27 m3) which 

varies between 2 and 5.6 ach was obtained by using the solar chimney and it was found 

that air exchange rate can change based on amount of solar radiation, gap between 

absorber and glass surface and size of input/output gap (Mathur et al. 2006). In hot and 

humid climates, the effectiveness of a solar chimney can be increased by adding water 

spraying mechanism on the roof (Chungloo and Limmeechokchai, 2007). Cooling with 

natural ventilation can be assessed under two headings as day and night ventilation in 

buildings. During the daytime, comfort conditions can be provided with natural 

ventilation depending on air flow rate. A sense of coolness as psychological may be 

created with direct air flow even when indoor temperature is 34 °C. Furthermore, 

evaporation rate in human skin can be increased with high air velocity and a sense of 

comfort can be obtained. Therefore, spaces in buildings should be designed to allow 

continues air flow into the deep points of indoor spaces easily and to obtain  
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high air velocity in spaces which human density is high. In a research, thermal comfort 

conditions in three buildings which have different geometry and 1-1.5 m/s wind velocity 

were investigated (1:1, 1:1.44 and 1:1.7 dimensional ratios) by using the FLUENT 6.2 

program for Kayseri. According to the results, thermal comfort conditions could be 

provided with rectangular form, but it was also seen that square form had less potential 

than rectangular form. In addition, optimum geometric form in Kayseri was found to be 

1:1.7 for optimum thermal comfort conditions provided with natural ventilation (Ayata 

and Yıldız, 2006). 

 

 

 
           Figure 2.2. Passive methods to provide natural ventilation 

  

 

 Night cooling is another type of natural ventilation to reduce indoor temperature 

with air flow provided during the night when the external temperature is lower than the 

internal temperature. Benefit from night cooling can change based on thermal storage 

capacity of buildings. Natural ventilation at night can lead to following effects in 

buildings (Kolokotroni and Aronis, 1999): 

1. Reduction of peak temperatures, 

2. Reduction of temperature throughout day and especially in the early hours of 

day, 

3. Reduction of slab temperatures, 

4. Creation of a time lag between external and internal peak temperatures. 

Single-sided ventilation Cross ventilation

Atrium ventilation

Passive stack 
ventilation

Solar chimney 
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Coolness can be stored in wall, floor, ceiling and even in rock beds or water tanks 

designed for these purposes. Under appropriate conditions, it can be stored during the a 

few hours in building mass, a few days in bed rock, seasonal in soil, a few hours or 

months in water and daily or seasonal in phase change materials (Santamouris and 

Asimakopoulos, 1996). In other words, buildings which have enough thermal mass can 

keep low temperature for the next day but windows should be close. If coolness is 

stored out of the building, cool air can also be used as pre-cooling for active cooling 

systems.  

The performance of night cooling is generally affected by air flow rate, climatic 

conditions, capacity of thermal mass and internal heat gains (Artman, 2008). In a 

building which has high thermal mass, well insulation, enough shade, windows closed 

during the day, internal temperature can be reduced 35-40% with night ventilation 

depending on external air temperature (Artman, 2008). According to a study made in 

2001, 54% energy was saved in a 3-storey office building located in a city which 

average outside temperature is 35 °C and relative humidity is 80% with natural 

ventilation provided between the hours of 21.00-8.00 (Keskin, 2001). In another study 

made in Malaysia, the peak air temperature was decreased 2.5 °C with night ventilation 

(Kubota, 2009). Although night cooling has big energy saving potential depending on 

climate conditions, it has some disadvantages such as moisture and condensation 

control is necessary especially in humid regions. Other problem is that especially in the 

city center cooling potential of night ventilation is affected from increasing external 

temperature and reduction in air speed due to the heat island effect and global warming 

(Santamouris, 2007). Therefore, local climatic features should be examined in details 

during the early stages of building design.  

To calculate cooling potential of night ventilation, various methods have been 

developed. In one study, potential of night ventilation based on local climatic features is 

determined depending on the temperature oscillations in the free-running buildings. 

According to this method, the night cooling potential in northern part of Europe is more 

than other regions and it is enough alone in only a small part of the southern Europe 

(Ghiaus and Allard, 2006). Artmann et al. (2007) found by using degree-day approach  

with climate data taken from 259 meteorological stations in Europe that North Europe 

has high potential in terms of night cooling. However this potential is affected by 

climate change over time. For instance, according to another study potential of night 
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ventilation will reduce based on the climate change scenarios at the end of 21 century in 

Europe (Artmann et al. 2008).  

 Reduction of cooling loads in buildings is also possible with ventilated roof. 

Ciampi et al. (2005) calculated that over the 30% of energy can be saved with ventilated 

roof designed correctly in summer.  

As a result, the advantages and disadvantages of natural ventilation can be 

summarized as follows (Liddament, 1996): 

Advantages: 

 Easy applicable for many types of buildings, 

 Inexpensive in terms of implementation and maintenance cost according to other 

cooling methods, 

 High air speed can be obtained with enough open areas, 

 Short uncomfortable times can be tolerated in warm conditions, 

Disadvantages: 

 Insufficient control can cause excessive ventilation rate, 

 Not suitable in locations which have excessive voice and dusty, 

 Security problem, 

 Not suitable in severe climatic regions, 

 Filtration of incoming air is usually not easy.  

 

2.7. Zone Height 
 

Zone height directly affects volume of the space and it determines the size of 

cooling and heating space. Floor height should be minimized for low energy 

consumption depending on architectural and technical considerations because air-

conditioned volume is a main parameter for the amount of the energy consumption in 

buildings.  
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2.8. Envelope Color 
 

Color of external surfaces and properties of coverings determine solar radiation 

rate absorbed and reflected from building envelope. Thus absorptivity and albedo value 

of materials is important in terms of energy performance of buildings. Albedo can be 

defined as reflectivity ability. Absorptivity and albedo value of some materials used in 

external surfaces are shown in Table 2.4.  

 

Table 2.4. Absorptivity and albedo values of some color 
(Source: Yu et. al., 2008) 

 

Color Absorptivity Albedo 
Bare cement plaster 0.65-0.80 0.10-0.35 
Dark >0.90 0.05-0.10 
Grey 0.65-0.85 0.15-0.35 
Red, reddish-brown, green 0.70-0.80 0.20-0.30 
White 0.10-0.30 0.70-0.90 

 
It is clear that though light colors reduce absorption rate of solar radiation, dark colors 

increase the amount of absorbed solar radiation. This directly affects surface 

temperature of building envelope and indirectly affects energy demand for cooling or 

heating and thermal comfort conditions in buildings. For example, while reflectance rate 

of roof was 26%, this ratio was increased up to 72% with white coatings. As a result of 

this, 125 kWh annual energy savings was achieved (Akbari, 2003). In another study, the 

reflectance ratio of a roof increased from 0.2 to 0.6 and 0.85 sequentially. Internal 

maximum temperature reduced between 1.2 °C and 3.3 °C depending on local climatic 

features (Synnefa et al. 2007). In a similar research, when lightweight roof was painted 

with white color and polyurethane material was applied, the reduction in cooling loads 

was calculated as 20% (Han et al. 2009). Furthermore, the surface temperature of tiles 

can be reduced 4 °C in the daytime and 2 °C at night by using reflective coatings in hot 

summer (Synnefa et al. 2006). Performance of the building envelope can also be 

increased by using the thermo coatings. Usage of thermo coatings provides advantages 

in winter and summer, since thermo coatings reduce the surface temperature by showing 

a resistance against the solar radiation in summer and increases surface temperature by 

absorbing solar radiation in winter (Karlessi et al. 2009).  
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Use of light colors, reflective or thermo coatings is also very important in urban 

areas. In this way, heat island effect in cities may be reduced. Heat island effect can be 

described as a general result of urbanization activities, and therefore the average air 

temperature in city centers can be higher than surrounding rural areas in general. 

Although it has positive effects in terms of heat demand in the winter, it causes 

significant increases in cooling loads in summer in especially warm regions. For 

instance, the cooling loads in the city center in London are higher than 25% in rural 

areas because of heat island effect. However, the heating load is less than 22% 

(Kolokotroni et al. 2007). The most significant feature of this kind of materials does not 

require extra implementation cost in buildings. 

 

2.9. Indoor Set Point Temperature 
 

Level of set point temperatures for heating and cooling can affect the quantity of 

energy consumption in buildings positively or negatively (Wan et al., 2009). High 

fluctuations of set point temperature in a space can increase heating or cooling energy 

loads and can lead to uncomfortable conditions. Therefore they should be maintained 

the same level according to thermal comfort conditions. However, temperatures which 

people feel comfortable can change individually or based on the activity level, clothing, 

time of the day, physical and emotional state of people and etc. (Hoen, 1987).  
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CHAPTER 3 

 

UNCERTAINTY AND SENSITIVIY ANALYSIS METHODS 

APPLIED BY USING BUILDING ENERGY ANALYSIS 

PROGRAMS 

 
There are several methods to apply uncertainty and sensitivity analysis in 

literature. While uncertainty analysis determines the possible variations in the outputs of 

the model due to uncertainties in the input(s) (SIMLAB, 2004 and Ruijven et al. 2010), 

sensitivity analysis determines the level of impact of input(s) on the selected output(s) 

(Heiselberg et al. 2009). Sensitivity analysis can be used for several reasons (Marzban, 

2011): (1) definition of the inputs which affect the outputs, (2) the rank the inputs in 

some order of importance, (3) reducing the number of inputs, (4) model tuning.  

 Uncertainty can be categorized as either aleatory or epistemic. Aleatory 

uncertainty is the natural randomness in the behavior of the system under study. It is 

also called as variability, stochastic uncertainty, irreducible uncertainty and Type A 

uncertainty. This type uncertainty cannot be reduced by increasing level of knowledge. 

Epistemic uncertainty is due to the lack of knowledge about usually the suitable value in 

the context of a specific implementation (Swiler and Giunta, 2007). Thus, the rate of 

this type of uncertainty can be decreased by enhancing essential information but 

sometimes it cannot be possible because of the time and resource limitations, 

technological infeasibility, or sociopolitical restraints (Ayyub and Klir, 2006).  In 

addition, basic objective of uncertainty analysis can be sorted as understanding of the 

effect of uncertainties, calibration, simplification and validation of a model, showing 

compliance of the system with an explicit criterion, and comparison of relative 

performance and optimization of operation of the system (de Rocquigny., Devictor., 

Tarantola, 2008).  General uncertainty during the building simulation can be originated 

from (De Wit, 1995): 

• Lack of specification of the system, 

• Simple modeling of complex physical process, 

• Division of more complex geometry into simpler geometry and time step, 
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• Outdoor climatic conditions and occupant behavior. 

In this section, uncertainty and sensitivity analysis methods are summarized under four 

groups as local, screening, global and variance based-techniques which can be applied 

by using building energy analysis programs because these are already well documented 

in literature.  

 

3.1. Local Methods 
 

One of the easy and cheapest methods is local sensitivity analysis. It can also be 

called as one-at-a-time sensitivity measure. Main rule is to change one parameter at a 

time while keeping the others fixed. Aim is to quantify the change in output 

corresponding to change in input (Hamby, 1994).  Local techniques can be used if there 

is a linear correlation between inputs and outputs to define the singular effect of 

selected input parameters on the calculated performance indicator (Struck, Hensen, and 

Kotek, 2009).     

 

3.2. Screening Methods 
 

 The prior step of uncertainty and sensitivity analysis is to use screening methods 

if there are tens or many inputs which will be evaluated. Main objective of the screening 

methods is to eliminate input(s) which have a negligible impact on output(s) to focus on 

the most important input(s) (de Rocquigny, Devictor, Tarantola, 2008). Another 

advantage of the screening is to simplify the complexity of models by removing less 

effective or irrelevant input(s), is to increase the accuracy of model predictions, is to 

reduce computer time for simulations and is helpful to modify the structure of the 

existing model (Saltelli et al. 2004). Various screening methods are available in 

literature. In this part, only some methods used in thermal simulation of buildings are 

investigated. Thus, Morris method and several sensitivity coefficients are considered as 

common techniques. The requirements which should be met by screening methods used 

in building simulation can be summarized as follows (De Wit, 1997): 

• Flexibility to make it useful for building designs with several simulation models, 

• Easy applicability, 
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• Use the available knowledge of the model to obtain maximum economy.  

One of the common screening methods is Morris method which is also called one-at-a-

time (OAT) method. It determines which input(s) are negligible, linear and additive, and 

nonlinear or involved in interactions with other inputs.  Main advantage of the method 

is related to the number of the model needed for assessment (Campolongo and Saltelli, 

1997) but a disadvantage of the method is that uncertainty analysis is not possible 

because it does not use the probability density functions to create inputs (De Wit, 2001). 

Inputs are selected in the input range of variation. Sensitivity of the inputs is related to 

the elementary effects of inputs. Results in Morris method are showed on a graphic 

including the sensitivity indices; mean (µ) and standard deviation (σ). The mean 

evaluates total impact of the input on the output. The standard deviation predict the 

ensemble of the input’s influence, they are nonlinear due to the interactions with other 

inputs (Saltelli et al. 2008).  

Another screening technique is to use sensitivity coefficients which can be used 

as a measure of the sensitivity in the fields of mathematics and engineering to reduce 

the number of inputs. After determining a limit value for sensitivity coefficient, inputs 

which are under the limit value can be admitted as negligible parameters for further 

evaluations. In the building energy simulation, influence coefficient (IC) is usually used 

and is defined as the partial derivatives of output and input (Lam and Hui, 1996): 
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Equation (1) can be used for one step change. The following equation can be used for 

two sets of data: 
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Where OP: the output, IP: the input, OP1 and OP2: the output values, IP1 and IP2: 

corresponding input values.  

 



26 
 

For more sets of data, the influence coefficient can be defined as the slope of the 

regression straight. Other types of the sensitivity coefficient are as follows (Lam and 

Hui, 1996, Heiselberg et al. 2009): 

 

                
BC

BC

IPIP
OPOP

IC
÷∆

÷∆
=                                                        (3.3) 

 

                  
IP

OPOP
IC BC

∆
÷∆

=                                                         (3.4) 

 

            
)

2
(

)
2

(

21

21

IPIPIP

OPOP
OP

IC
+

+∆

+
÷∆

=                                                   (3.5) 

 

              )()(
IP
OP

IP
OPIC ÷
∆
∆

=                                                         (3.6) 

 

              
max

minmax

E
EE

IC
−

=                                                              (3.7) 

 

Where OPBC and IPBC: base case values of output and input respectively, IP1 and IP2: 

two values of input, OP1 and OP2: two values of output corresponding input, OP and IP: 

mean values of output and input, Emax and Emin: maximum and minimum output values.  

Equation (4.2) is used for only one step change. It cannot be used multiple sets 

of data.   

 

3.3. Global Methods 
 

 Global sensitivity analysis investigates the effects of all the inputs at once.  

In other words, it can be used to quantify the influence of uncertain input parameters on 

the response variability of a model (Griensven, 2006). General steps to apply global 

methods on a model can be summarized as follows (Saltelli, 2004): 
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• Determine the objective of your study and consequently identify the output(s) as 

answers of your question(s), 

• Decide input(s) which you would like to use in your study,  

• Assign an appropriate probability density function to each input,  

• Choose a uncertainty and sensitivity analysis method, 

• Generate the input sample depending on a selected method, 

• Calculate the output(s) based on the generated inputs, 

• Analyze the output(s) and evaluate the results. 

 

Monte Carlo analysis (MCA) is used for sensitivity and uncertainty analysis because the 

sensitivity of selected parameters can change based on the interactions and effects of all 

parameters, and the minimum number of simulations is sufficient to apply this method 

(Heiselberg, 2009). MCA uses random input(s) produced based on the some techniques 

and probability density functions for evaluation of uncertainty and sensitivity. There are 

several sampling techniques in literature such as random sampling, stratified sampling 

importance sampling, and Latin hyper-cube sampling (LHS). Random sampling works 

by creating a random number and scaling it to the target variable with its probability 

density function. Stratified sampling can be defines as grouping members of the 

population into the subgroups before creating sampling (Macdonald, 2009). Importance 

sampling is to select a good distribution supporting the important values (Yon and 

Goldsman, 2006). LHS is very common sampling technique used with MCA, for it is 

possible to evaluate a large amount of uncertainty and sensitivity with a relatively small 

number of samples due to its efficient stratification properties (Helton et al. 2006). 

Another powerful aspect of LHS is that it integrates the desirable points of simple 

random sampling with a multilevel, highly fractionated fractional factorial design.  

However, unlike simple random sampling, the size of a LHS cannot be increased by 

producing additional inputs as the new sample including the original LHS and the 

additional sample inputs will not have the structure of an LHS (Sallaberry, Helton and 

Hora, 2008).  

In this approach, every input as a source of uncertainty should have a probability 

density function. Thus appropriate probability function must be defined for each input. 

The common probability density functions used in building simulation are summarized 

as follows (Montgomery and Runger, 2003; Macdonald, 2002): 
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• Discrete distribution: it defines the probabilistic features of a random variable 

which takes on a set of values that are discrete and can be parametric or non-

parametric (Figure 3.1).   

 

 
 

Figure. 3.1. The discrete distribution 

 

• Normal distribution: it is very commonly used distribution in several models, 

which is also called the Gaussian distribution (Figure 3.2). The normal 

distribution can be defined by using its mean and standard deviation. Mean 

shows the center of the probability function. Standard deviation is the square 

root of the variance which is a kind of measure of the dispersion in the function. 

It is mostly appropriate for measured physical data. 

 

 
 

Figure 3.2. The normal distribution 

 

• Log-normal distribution: it is a kind of probability distribution of a random 

variable whose logarithm is normally distributed (Figure 3.3).  

This type of distribution cannot produce negative values. The Log-normal 

distribution can be defined by using its standard deviation median which is the 

middle value in a probability distribution.  
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Figure 3.3. The log-normal distribution 

 

• Triangular distribution: it is a kind of continuous probability distribution and can 

be defined with minimum value, maximum value and mode which is the value 

happening mostly or frequently in a distribution (Figure 3.4). If experts think 

that a value c belonging to [a, b] is the best estimate, a triangular distribution 

could be used. The difference from the uniform distribution is that the likelihood 

of a value x belonging to [a,b] increases linearly as x approaches c [c].   
 

 
 

Figure 3.4. The triangular distribution 

 

• Uniform distribution: The probability of the variable takes a value between a 

and b, which a shows possible minimum and b shows possible maximum value 

(Figure 3.5). Moreover, all values have the same probability to happen. It can be 

assigned for inputs which poorly defined and only minimum and maximum 

values are known. 

 

 
 

Figure 3.5. The continuous uniform distribution 
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If the selected value is between the defined minimum and maximum values, a uniform 

probability density function is a reasonable choice because a value outside of minimum 

and maximum values is not possible.   

MCA is also useful for building thermal simulation and it can be implemented 

for both uncertainty and sensitivity analyses (Breesch and Janssens, 2010). Thus, in this 

study MCA with LHC is preferred for all analysis.  

MCA can be expressed with the following formulae, where N is the number of 

samples, and i is the number of input parameters (Hopfe, 2009): 
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The prospective value E and the variance V of the output Y are predicted with the above 

expressions. MCA is a so-called black box approach; extra code modification is not 

necessary. One of the important points is that there is a difference between simulation 

and Monte Carlo Analysis. Simulation is a direct record within computing terms of a 

natural stochastic process. MCA is to obtain solution for non-probabilistic problems by 

using probabilistic techniques (Kalos and Whitlock, 2004).  

If samples are generated based on LHC method, selection of the sensitivity 

indicator is important process because it is necessary for the evaluation of sensitivity of 

input(s). There are several sensitivity indicators in literature. Regression and correlation 

based techniques to assess results of the global sensitivity analysis is very common and 

easy applicable. Different types of regression and correlation approaches are also 

available depending on LHC method. They are the Pearson Product Moment 

Correlation Coefficient (PEAR), Spearman Coefficient (SPEA), Partial Correlation 

Coefficient (PCC), Partial Rank Correlation Coefficient (PRCC), Standardized 

Regression Coefficient (SRC), and Standardized Rank Regression Coefficient (SRRC). 

They have different features depending on whether the relationships between input and 

output parameters are linear or non-linear. For example, while PEAR is suitable for 

linear models, SPEA is preferred for non-linear models. SRC measures the linear 
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impact of each input variable, while PCC provides a sensitivity analysis of systems that 

excludes the impact of correlations between input parameters (SIMLAB, 2004).  

 

3.4. Variance-Based Methods 
 

 Variance-based sensitivity analysis is based on generated samples. Thus Monte 

Carlo analysis can be applied. Variance-based methods are generally well practice for 

tackling settings and focuses on the questions which of the input variables variances 

influence the model output variance at most? and which of input variables has to be 

known more accurate to reduce the output variance? (Schwieger, 2011). Some 

interesting characteristics of variance-based methods are as follows (Saltelli et al. 

2008): 

• Independent sensitivity measure from model, 

• Capturing capacity for the impact of the full range of variation of every input, 

• Capacity to tackle groups of inputs, 

• Appreciation of interplay influencing among inputs. 

 

However, the most important disadvantage of variance-based methods is that prediction 

of the sensitivity coefficients takes too much time because of the essential many model 

realizations (Ratto et al. 2007). One of the significant variance-based methods is Fourier 

Amplitude Sensitivity Test (FAST). It can be used to define the contribution of singular 

inputs to the expected value of the output variance by using first order sensitivity index 

and allows the computation of the fraction of the variance of an output of model to 

every input (Mokhtari and Frey, 2005).  

An important feature of FAST is that assessment of sensitivity can be conducted 

independently for every parameter by using one simulation since all the parameters in a 

Fourier expansion are mutually orthogonal (Chan, Saltelli, Tarantola, 1997). In addition, 

it can also useful for uncertainty analysis. Another variance-based method is Sobol’s 

method which is depending on total sensitivity indices. Total sensitivity indices (TSI) 

can be calculated with the sum of all the sensitivity indices including all the interaction 

effects of these inputs. In other words, there are three input factors: x, y, z and TSI of 

the input factor x is S(x) + S(xy) + S(xz) + S(xyz) (Frey, Mokhtari, Zheng, 2004). 
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3.5. Evaluation of Existing Studies About Uncertainty and Sensitivity 
Analysis in Buildings 

 
 There are various studies in literature about uncertainty and sensitivity analysis 

related to improvement of energy performance of buildings in general. Several studies 

are mostly regarding to find most effective parameters in terms of building energy 

consumption. Uncertainty and sensitivity analysis are also used to assess accuracy of 

performance of different building simulation tools. In these days, some researchers have 

explored how to change impact of design parameters on energy performance under the 

global warming.  As an example, Gustafsson (1998) used a sensitivity analysis method 

to find suitable building energy retrofitting options. De Wit (2002) evaluated several 

uncertainties related to building performance and their influence on design decisions in 

general. Also, de Wilde (2004) developed a strategy to select energy saving building 

components. It consists of the following steps: 

• Definition of an option space, relevant functions, specification of performance 

indicators, prediction of performance for all options and all performance 

indicators, evaluation of predicted performance and selection of the most 

desirable option,  

• Application of existing building energy simulation tools, 

• Use of a support environment providing a mechanism. 

 

The most effective parameters on thermal comfort with natural night ventilation (single 

sided and cross) were found by using sensitivity analysis and uncertainty caused by 

parameters was determined by Breesch and Janssens (2005).  

As a result, internal heat gains, air tightness and wind pressure coefficients were 

determined as the most effective parameters on thermal comfort conditions in offices.  

Hyun et al. (2008) investigated uncertainty in forecasting of natural ventilation rates in 

high-rise apartment buildings by using the Monte Carlo method with Latin Hypercube 

Sampling. It is found that uncertainty analysis process is very helpful and propagated 

uncertainty is very effective factor on the airflow rates. Mara and Tarantola (2008) 

implemented Analysis of Variance (ANOVA) based global sensitivity analysis to 

thermal model of a building to show global sensitivity analysis gives helpful 

information for both decision makers and users during the preparation of thermal model 
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of a building and its improvement. Lam et al. (2008) analyzed energy usage of 10 air-

conditioned office buildings in subtropical Hong Kong and sensitivity of 10 design 

parameters were investigated with a simulation program. As a result, it is stated that set 

point temperatures, electric lighting and chiller have relatively high energy saving 

potential. Heiselbert et al. (2009) determined what design parameters contribute 

significantly to sustainable building design with a case study from Denmark. Corrado 

and Mechri (2009) investigated influence of 129 input data grouped as climatic data, 

envelope data and building use data on energy rating of a dwelling in Turin, Italy. The 

results showed that only less than 10 input data has considerable impact on the energy 

rating uncertainties. In a study, uncertainty affecting thermal conductivity of 18 

common insulation materials selected from different European manufacturers was 

examined (Dominguez-Munoz et al. 2009).  Mechri et al. (2010) evaluated uncertainty 

in heating and cooling energy requirements depending on possible design variables by 

implementing the ANOVA approach which is based on the variance of an output caused 

by different input variables. The study showed that suggested approach is helpful for 

architects to predict which design variable has more contribution to the building energy 

performance. Dominguez-Munoz et al.  (2010) analyzed inputs for the assessment of 

their influence on the peak cooling load by using a global sensitivity analysis method. It 

revealed the most influential inputs as the characterization of the building internal mass, 

the convection on internal surfaces and the maximum internal and solar gains. Kusiak, 

Li, and Zhang (2010) examined uncertainty propagation of a building thermal model by 

using with Monte Carlo simulation. Heiselberg et al. (2009) stated that definition of the 

most important parameters by using sensitivity analysis techniques is helpful to improve 

design alternatives to develop building performance.    

Importance of design parameters under the climate change can be investigated 

by using the sensitivity and uncertainty analysis methods. De Wilde and Tian (2009) 

defined the significant factors which can lead to uncertainty in the prediction of 

overheating and energy consumption for the time periods of 2020, 2050 and 2080 in 

office buildings. The results showed that important factors leading to uncertainties for 

forecasting heating energy consumption are infiltration, lighting gain, and equipment 

gain. For cooling energy consumption and over heating, the most important factors for 

2020 and 2050 are heat gains from lighting and equipment. In addition, de Wilde and 

Tian (2010) also studied on a theoretical office building to define key design parameters 
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in terms of energy consumption and variations in importance of key design parameters 

under global warming.   

Calibration of building simulation tools and their performance evaluation are 

also possible with uncertainty and sensitivity analysis. Struck et al. (2009) compared 

performance of different four simulation tools with uncertainty and sensitivity analysis 

methods and it was shown that these techniques is capable to support simulation tool 

diagnostics for improving.  
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CHAPTER 4 

 

APPLICATION OF UNCERTAINTY AND SENSITIVITY 

ANALYSIS 

 
 This section presents application of the uncertainty and sensitivity analysis to 

determine the most effective building design parameters and to analyze variations in 

annual cooling energy loads depending on uncertainties caused by selected design 

parameters in low-rise apartment buildings in Izmir located in hot-humid climate for the 

time periods of today, 2020s, 2050s and 2080s. Therefore, firstly, selected existing 

typical low-rise apartment building is defined. Secondly, basic climatic features of Izmir 

are shown and climatic data are produced for 2020s, 2050s, and 2080s. Then the 

uncertainty and sensitivity analyses are applied. Lastly results are evaluated.  

 

4.1. Base-Case Building  
 

A 10-storey apartment building is selected as a reference building to implement 

the uncertainty and sensitivity analyses. The reference building which is located in 

Narlıdere/Izmir (Figure 4.1) is representative of the low-rise apartment blocks to be 

constructed in the near future in Izmir, and thus its location and orientation are not fixed 

(Figure 4.2). 

The building has a rectangular base (23.3 m and 24.6 m) and consists of four 

flats in each story. The height of each flat is 3 m and the total height of the apartment 

building is 30.7 m. The area of the flats is approximately 130 m2, which gives a total 

cooled floor area of 520 m2 for each storey. The apartment building satisfies all 

minimum mandatory conditions defined in TS 825-Thermal Insulation Regulation in 

Buildings (2000). Therefore, the external walls are composed of a 20–mm-thick outer 

layer of plaster, a 30–mm-thick thermal insulation layer (XPS), a 190–mm-thick layer 

of hollow brick and a 15–mm-thick inner layer of plaster with an overall U-value of 

0.606 W/m2K.  
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The overall U-values of the ceiling, ground floors and roof are 0.42 and 0.65 W/m2K 

and . The windows consist of low-e glazing glass panes with an overall U-value of 2.76 

W/m2K. The existing building is heated with geothermal energy and flats are cooled 

with individual air-conditioner.  

 

 
 

Figure 4.1. Location of case area in Izmir in Turkey 

 

 

Annual cooling energy load of selected low-rise apartment block was calculated by 

using EnergyPlus 5.0.0. EnergyPlus is released in 2001 and consists of best features of 

BLAST and DOE2 (Crawley et al., 2004). It is developed to calculate mainly energy for 

heating and cooling which is essential to provide thermal comfort conditions with 

HVAC systems and energy consumption in primary plant equipments. The most 

important features of EnergyPlus can be summarized as follows (EnergyPlus, 2011): 

• User-defined time steps for the interaction between zones and HVAC systems, 

• Simultaneous and integrated solution, 

• ASCII text file for weather, input and output data, 

• Heat balance technique for thermal loads, 

• Developed ground heat transfer model, 

• Combination of heat and mass transfer, 

Aegean Sea 
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• Several thermal comfort models such as Fanger, 

• Developed calculations for fenestration, 

• Anisotropic sky model to calculate diffuse solar radiation on tilted surface. 

 

 
 

Figure 4.2. Typical floor plan of selected apartment block 
 

 

EnergyPlus program is selected because it is a powerful and validated tool. In addition, 

format of input and output are open source code, txt. Thus they can be exported and 

imported easily to the different softwares. Inner performance of EnergyPlus was also 

tested by applying BESTEST procedure. This procedure was designed to examine inner 

performance of energy analysis tools. It consists of different predefined cases to 

investigate different capabilities of tools. In this study, BESTEST Case 600 which has 

lightweight construction was selected. It consists of the one zone with two windows on 

south façade (Figure 4.3). Thermal properties and layer of external wall, ground floor, 

roof and window are shown Table 4.1 and 4.2. Infiltration rate is accepted as 0.5 and 

constant. Internal gains are constant and 200 W (60% radiative, 40% convective, 100% 

sensitive, and 0% latent). Lastly, HVAC system works when inside temperature drops 

below 20°C to heat and rises above 27°C to cool. Results taken from EnergyPlus is 
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within limits represented in BESTEST procedure (Judkoff and Neymark, 1995).  Thus, 

it can be used in this study. 

Table 4.1. Thermal properties and layer of external wall, ground floor and roof 
(Source: Judkoff and Neymark, 1995)  

 

 

External wall λ (W/mK) Density (kg/m3) Cp (J/kgK) Thickness (m) 

Plasterboard 0.16 950 840 0.012 

Fiberglass quilt 0.04 12 840 0.066 

Wood siding 0.14 530 900 0.009 

Ground floor λ (W/mK) Density (kg/m3) Cp (J/kgK) Thickness (m) 

Timber flooring 0.14 650 1200 0.025 

Insulation 0.04 - - 1.003 

Roof λ (W/mK) Density (kg/m3) Cp (J/kgK) Thickness (m) 

Plasterboard  0.16 950 840 0.010 

Fiberglass quilt 0.04 12 840 0.1118 

Roof deck 0.14 530 900 0.019 

 

 

Table 4.2. Thermal properties of window 
(Source: Judkoff and Neymark, 1995)  

 
 

Property Value 

Number of glass 2 

Glass thickness 3.175 mm 

Air gap thickness 13 mm 

Conductivity of glass 1.06 W/mK 

Conductance of each glass pane 333 W/m2K 

Density of glass 2500 kg/m3 

Specific heat of glass 750 J/kgK 

Solar heat gain coefficient 0.787 

 
 

3D-thermal model of selected low-rise apartment block was generated by using 

DesignBuilder v2.2.5.004. DesignBuilder is a comprehensive interface of EnergyPlus. 

Then thermal model was exported to EnergyPlus 5.0.0 and necessary modifications 
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were made. Thermal model consists of three storeys representing the ground, 

intermediate and top floors since every floor has a different energy performance. 

 
Figure 4.3. BESTEST: case 600 

 
 

In addition, it is admitted that there is no any temperature difference between the floors. 

In other words, overlap surfaces are modeled as adiabatic, for reference building has 

central heating system and geothermal energy is used for heating. Cooling is provided 

by a split air conditioner in every flat, but it is assumed that the reference building has a 

central system for cooling in the present study because defining a schedule for 

individual cooling or heating system based on the behavior of occupants who live in 

different flats is not an easy task. As a result, in thermal model energy gains and losses 

take place from external walls, windows and ground in ground floor. It happens only 

from external walls and windows in intermediate floor. In top floor, it is from external 

walls, windows and roof. Furthermore, all features related to location such as latitude, 

longitude, orientation are defined in EnergyPlus. 

 

4.2. Climatic Features of Izmir for the Time Periods of Today, 2020s, 
2050s and 2080s 

 

Izmir is located on the Aegean sea coast of Turkey (38 ° 25' North latitude and 

27 ° 09' East longitude) and Izmir’s climate can be classified as hot-humid climate: 

winter season is warm and summer season is hot and humid (Fig. 4.3).  

The mean annual temperature is around 16.08 °C.  The minimum average 

temperature usually occurs in January (5.7 °C) and maximum mean temperature occurs 
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in July (33 °C). The monthly minimum, mean, and maximum temperatures are 

represented in Figure 4.4. The annual mean relative humidity is approximately 64.58%.  

 
 

Figure 4.4. Monthly mean temperature in Izmir (1938-2003)  
(Source: Adnan Menderes Meteorological Station, 2007)  

 
 

 Building energy analysis tools make dynamic calculations (time dependent) and 

thus they need hourly climatic data. Therefore, Typical Meteorological Year 2 (TMY 2) 

for Izmir was used in this study. Instant climatic data is not preferred, for it only shows 

climatic conditions belonging to selected time such as 2011 for Izmir. However, TMY2 

represents general climatic conditions of Izmir because it consists of collection of 

monthly weather series belonging to different year. In addition, it is very common data 

to evaluate general energy performance of buildings (Belcher, Hacker and Powell, 

2005).  

 To evaluate impact of global warming on building design parameters and annual 

cooling energy loads, the future hourly-climatic data is necessary. For that reason, three 

different climatic data for Izmir was developed by using the UK Handley Center’s third 

generation coupled atmosphere-ocean global climate model (HadCM3). This model 

allows investigating the rate of climate change and its impact (Johns, 2003). It 

composes of different projections based on the envisaged future gas emissions.  

A2 scenario is used for this study since appropriate data is provided from only data 

produced based on A2 scenario. Main concept of this scenario is heterogeneous world 

with continuously increasing global population and regionally oriented economic 

growth which is more fragmented and slower than in other storylines (Nakicenovic, 
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2006). The projection for Izmir were made based on the averaged results of A2a, A2b 

and A2c experiments for four grid points closest to the selected city, Izmir to constitute 

hourly weather data for 30-year time periods of 2020s (2011-2040), 2050s (2041-2070) 

and 2080s (2071-2100). All weather data files (TMY) were generated based on 

‘morphing’ approach by using The Climate Change Weather File Generator 

(CCWorldWeatherGen) (Jentsch, Bahaj and James, 2008). It is a tool to generate 

climate change weather files in different locations to use in building energy analysis 

programs. The morphing approach is combination of present-day weather information 

data and results of climate change models. It also has three advantages: weather series 

used as baseline climate is reliable. Ended weather sequence is probably 

meteorologically consistent. Lastly, spatial downscaling is achieved because of the 

present day weather information which is generated from a real location (Belche, 

Hacker and Powell, 2008). Figure 4.5-6-7 shows the monthly mean temperature, 

relative humidity and direct solar radiation for Izmir used in all simulations for the time 

periods of today, 2020s, 2050s and 2080s. It is clear that while annual mean temperature 

and daily solar radiation increase, relative humidity decreases over time. In other words, 

the annual mean temperature will increase approximately 4 °C and the solar radiation 

will increase only 5% but the relative humidity will decrease 10% by the 2080s in 

Izmir.  

 
 

Figure 4.5. Monthly outdoor temperature for present, 2020s, 2050s, and 2080s in Izmir  
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Figure 4.6. Monthly relative humidity for present, 2020s, 2050s, and 2080s in Izmir  

 

 

 
 

Figure 4.7. Monthly direct solar radiation for present, 2020s, 2050s, and 2080s in Izmir  

 

4.3. Steps of Uncertainty and Sensitivity Analysis 
 

 To start sensitivity and uncertainty analysis, firstly objective of study should be 

established. Then, output parameter(s) which is essential to answer problem questions is 

determined. In addition, which input parameter(s) will be in the analysis is decided.     

After selecting inputs, suitable density distribution function for each input should be 

defined depending on literature review. Later a sensitivity analysis method is selected 

and a sample matrix for inputs is generated. Lastly, model output is analyzed (Saltelli et 

al., 2004). Steps to perform uncertainty and sensitivity analysis and programs were 

shown in Figure 4.8.   
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Figure 4.8.  Steps for application of uncertainty and sensitivity analysis and tools used 

in this process 
 

 

4.3.1. Determination of Output Variable 
 

The aim of the analysis should be determined because the output(s) can be 

defined based on this objective. Cooling requirement in summer is the main issue in the 

present study. Thus the annual cooling energy load is selected as the output variable 

because this is also a significant and common indicator for the level of energy 

consumption in buildings which have active systems. 

 

 

 

Determination of output 

Determination of 
design parameters  

Assignment of 
probability density 

function and generation 
of sample matrix

Calculation of output variable 
based on sample matrix 

Selection of the indicator 
for the sensitivity analysis 

Results of the uncertainty 
and sensitivity analysis  

SIMLAB 2.2

Excel  VBA to generate 
IDF files 

DesignBuilder 
v2.2.5.004 and 
EnergyPlus 5.0.0 

SIMLAB 2.2

This part will be repeated 
for the time periods of 
2020s, 2050s and 2080s. 

Excel  VBA to 
collect outputs
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4.3.2. Determination of Input Parameters 
 

In this study, uncertainty caused by building design parameters is admitted as 

epistemic. Epistemic uncertainty means a lack of knowledge about the suitable value in 

the context of a specific implementation. It is also called as state of knowledge 

uncertainty, subjective uncertainty, reducible uncertainty, and Type B uncertainty 

(Swiler and Giunta, 2007). In terms of design practice of buildings in Turkey, epistemic 

uncertainty in building design parameters arises from decisions by architects, design 

team and occupancy. For example, set point temperatures can change easily in spaces 

because information about their optimum values and their effects on energy 

consumption are lack or poorly known. However, this type of uncertainty can be 

reduced with more research to increase understanding.  For that reason, nine simple and 

concise building design parameters in terms of architectural points of view in Turkey 

are selected and they are assumed to be main variables that influence the annual cooling 

energy loads in low-rise apartment buildings. They are also parameters that can be 

controlled by architects easily: 

1. Building shape (defined width building with and length),  

2. Window to external-wall area,  

3. Thermo-physical properties of building materials,  

4. Thermal insulation,  

5. Air infiltration, 

6. Natural ventilation,  

7. Envelope color,  

8. Set point temperature,  

9. Zone height.  

Then, 34 sub-parameters are derived from nine major design parameters to support 

architectural decision-making process for reducing cooling energy loads of low-rise 

apartment buildings. They are the length and width of the low-rise apartment block; the 

zone height; the set point temperature for cooling; the air infiltration rate; the natural 

ventilation rate; the window areas in the South, North, East, West directions; the U-

value and solar heat gain coefficient (SHGC) of the windows based on orientation; the 

thermal conductivity of the external wall; the thermal conductivity of the thermal 

insulation material on the external wall, roof and ground; the specific heat of the 
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external wall; the thickness of the thermal insulation on external wall depending on the 

orientations; the thickness of the thermal insulation on the roof and ground;  the color of 

the external wall based on the orientation and the color of the roof. The main difficulty 

with increasing the number of the selected building design parameters in this study is 

mostly related to limitations of building energy analysis tool, EnergyPlus because each 

selected design parameter should be defined with one value in selected program. 

 

4.3.3. Assignment of the Probability Density Function and the 
Generation of a Sample Matrix  

 
Third step consists of two sub-steps. First one is to assign appropriate probability 

density functions to the 34-derived building design parameters. The probability density 

functions, which can affect the results of the sensitivity and uncertainty analysis, were 

assumed to be uniform for all parameters represented in Table 4.3. In this probability 

function, all values have the same possibility to happen (De Wilde and Tian, 2009) 

 

Table 4.3. Design parameters: their probability density functions and ranges 
 
Design parameters Unit Probability 

density 
function 

Min. 
valu

e 

Max. 
value 

Length of building 
 

m Continues 
uniform 

12 22 

Width of building 
 

m Continues 
uniform 

12 22 

Set point temperature for cooling (Cooling set point t.) 
 

°C Continues 
uniform 

24 26 

Air infiltration rate (Air infilt.) 
 

ach Continues 
uniform 

0.5 2 

Natural ventilation rate (Natural vent.) 
 

ach Continues 
uniform 

0.5 4 

Windows area: south 
 

% Continues 
uniform 

5 90 

Windows area: north 
 

% Continues 
uniform 

5 90 

Windows area: east 
 

% Continues 
uniform 

5 90 

Windows area: west 
 

% Continues 
uniform 

5 90 

U-value of window on South (U value: window-south) 
 

W/m2K Continues 
uniform 

1.1 2.9 

  
(Cont. on next page) 
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Table 4.3. (Cont.) 
 

Design parameters Unit Probability 
density 

function 

Min. 
value 

Max. 
value 

U-value of window on North (U value: window-north) 
 

W/m2K Continues 
uniform 

1.1 2.9 

U-value of window on East (U value: window-east) 
 

W/m2K Continues 
uniform 

1.1 2.9 

U-value of window on West (U value: window-west) 
 

W/m2K Continues 
uniform 

1.1 2.9 

SHGC of window on South 
 

- Continues 
uniform 

0.28 0.75 

SHGC of window on North 
 

- Continues 
uniform 

0.28 0.75 

SHGC of window on East 
 

- Continues 
uniform 

0.28 0.75 

SHGC of window on West 
 

- Continues 
uniform 

0.28 0.75 

Color of external walls on South (Color: ext. wall-south) 
 

- Continues 
uniform 

0.1 0.9 

Color of external walls on North (Color: ext. wall-north) 
 

- Continues 
uniform 

0.1 0.9 

Color of external walls on East (Color: ext. wall-east) 
 

- Continues 
uniform 

0.1 0.9 

Color of external walls on West (Color: ext. wall-west) 
 

- Continues 
uniform 

0.1 0.9 

Color of roof (Color: roof) 
 

- Continues 
uniform 

0.1 0.9 

Space height 
 

m Continues 
uniform 

2.6 3 

Specific heat of external wall 
 

J/kg-K Continues 
uniform 

800 990 

Thickness of thermal insulation on external walls on 
South (Thickness: ins-ext. wall-south) 

m Continues 
uniform 

0.01 0.2 

Thickness of thermal insulation on external walls on 
North (Thickness: ins-ext. wall-north) 

m Continues 
uniform 

0.01 0.2 

Thickness of thermal insulation on external walls on 
East (Thickness: ins-ext. wall-east) 

m Continues 
uniform 

0.01 0.2 

Thickness of thermal insulation on external walls on 
West (Thickness: ins-ext. wall-west) 

m Continues 
uniform 

0.01 0.2 

Thickness of thermal insulation on roof (Thickness: ins-
roof) 

m Continues 
uniform 

0.01 0.2 

Thickness of thermal insulation on ground (Thickness: 
ins-ground) 

m Continues 
uniform 

0.01 0.2 

Thermal conductivity of  external wall (Thermal 
conduct.:ext. wall) 

W/mK Continues 
uniform 

0.15 2.1 

Thermal conductivity of thermal insulation on external 
wall (Thermal conduct.:ext. wall ins.) 

W/mK Continues 
uniform 

0.028 0.052 

Thermal conductivity of thermal insulation on roof 
(Thermal conduct.: roof ins.) 

W/mK Continues 
uniform 

0.028 0.052 

Thermal conductivity of thermal insulation on ground 
(Thermal conduct.: ground ins.) 

W/mK Continues 
uniform 

0.028 0.052 
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The minimum and maximum values for each parameter are essential for the definition 

of continuous uniform probability density functions. Therefore, minimum and 

maximum values are determined depending on the availability in architectural practice 

and technical limitations in Turkey’s building sector. For example, min. value (0.028 

W/mK) and max. value (0.052 W/mK) were determined for thermal conductivity of 

thermal insulation used on external wall. It means that in Turkey an architect can prefer 

the best thermal insulation material which has the minimum thermal conductivity value 

with 0.028 and also an architect can use a thermal insulation material which has the 

worst thermal conductivity value with 0.052. In other words, they have only chance to 

select thermal insulation material which has thermal conductivity value changing 

between 0.028 W/mK and 0.052 W/mK.  

 The upper and lower values for design parameters were interpreted as a central 

95% confidence interval, and all parameters were considered to be independent from 

any aesthetic concern, energy performance and compulsory legal regulations. This 

interpretation is important for evaluating and quantifying the significance and impact of 

the parameters.  

The second step of the third step is to generate a sample matrix. There are 

several sampling techniques that can be used for uncertainty and sensitivity analysis. 

For this study, 400 samples for each parameter were compiled based on the selected 

density distribution by using the MCA with Latin hypercube sampling (LHS) method, 

for it is depending on repeated simulation. This process was performed by using 

SIMLAB 2.2 which is professional and free software for model developers, scientist to 

apply global sensitivity and uncertainty analysis techniques in a short time (SIMLAB, 

2004). LHS is commonly used with computationally demanding models because its 

effective stratification features allow the extraction of a large amount of sensitivity with 

a relatively little sample size. It works by dividing the inputs into strata, and after 

generating samples, the value created for each parameter comes from a different stratum 

(Helton et. al. 2006). The minimum number of generated samples for each parameter 

should not be less than 1.5 times the number of uncertain inputs used in the model. 

Moreover, after processing 60-80 samples, the increase in the accuracy of the standard 

deviation is very low in MCA (Lomas and Eppel, 1992, MacDonald, 2002). Thus, the 

number of simulation was chosen to be 400 to obtain a good accuracy in the sensitivity 
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and uncertainty analysis and thus, 400 samples for every design parameter were 

generated.   

 

4.3.4. Calculation of Output Variable 
 

Outputs corresponding to generated sample matrix were calculated with the 

EnergyPlus 5.0.0 simulation software (LBNL, 2008). 400 EnergyPlus input files (idf) 

including combinations of different values of building design parameters were created 

by using Excel VBA 2007 for each storey of low-rise apartment block. Thermal model 

of low-rise apartment block consists of three storeys. Thus, 1200 input files were 

produced. Then they were simulated to calculate outputs for each climatic data 

representing present, 2020s, 2050s, and 2080s.     

 

4.3.5. Selection of the Indicator for the Sensitivity  
 

The last step is to determine the sensitivity indicator to be used for evaluation of 

sensitivity of all building design parameters. Different measures for sensitivity 

assessment are available in the SIMLAB program when generating samples with the 

LHC method. They are the Pearson Product Moment Correlation Coefficient (PEAR), 

Spearman Coefficient (SPEA), Partial Correlation Coefficient (PCC), Partial Rank 

Correlation Coefficient (PRCC), Standardized Regression Coefficient (SRC), and 

Standardized Rank Regression Coefficient (SRRC). In this study, Standardized Rank 

Regression Coefficient (SRRC), which can be used instead of SRC, was selected as an 

indicator to identify the sensitivity of each building parameter (SIMLAB, 2004) 

because, like SRC, it is a quantitative measure of the sensitivity based on regression 

analysis. However, SRRC is calculated using a model covering rank transformation 

data. In addition, rank transform is essential to evaluate models which have a nonlinear 

relationship between input(s) and output(s) (Helton et al. 2006). 

 

4. 4. Results of the Uncertainty and Sensitivity Analysis  
 

In the following parts, results of the uncertainty and sensitivity analysis are 

explained based on the time periods.  
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4.4.1. Uncertainty in Annual Cooling Energy Loads at Present 
 

Results of 1200 EnergyPlus simulations covering three stories are evaluated with 

histograms and statistical values to present changes in the annual cooling energy loads 

per unit of flat area based on the uncertainties caused by building design parameters. 

Figure 4.9 shows the range of possible annual cooling energy loads together with the 

frequency of each interval for the ground, intermediate, and top floors.  

For annual cooling energy loads, while the range is between 5.30 and 86.09 

kWh/m2 on the ground floor, it is between 16.58 and 97.85 kWh/m2 on the intermediate 

floor. It also varies between 12.10 and 98.24 kWh/m2 on the top floor. It is clear that the 

ground floor needs the lowest amount of energy for cooling. The maximum energy 

consumption can take place on the top floor. There is no big difference between 

intermediate and top floors in terms of mean cooling energy loads. The most frequent 

annual cooling energy load is 37.78 kWh/m2 on the ground floor, 39 kWh/m2 on the 

intermediate floor, and 48.24 kWh/m2 on the top floor. It is also clear that the ranges in 

annual cooling energy loads are different depending on the floor of the low-rise 

apartment block that is considered. In addition, the difference between possible 

minimum and maximum annual cooling energy loads in flats is relatively high. Rate of 

the uncertainty can be defined with standard deviation which is approximately 14 today. 

It means that design parameters have a considerable impact on variations in annual 

cooling energy load. Thus they should be arranged to provide less cooling energy load 

in the early design stage by architects.  

Design of low-rise apartment blocks which has a high energy performance may 

be possible with local mandatory regulations because if minimum and maximum values 

for especially sensitive design parameters are determined or limited, range for possible 

annual cooling energy loads can be reduced and limited. Hereby, the decision-makers 

and architects cannot select the worst values which can lead to high energy consumption 

for cooling.  According to the results, to optimum energy consumption for cooling in 

low-rise apartment blocks, architects should spend more time on sensitive design 

parameters in the early stages of design process.     

The minimum energy requirements for cooling shown in Fig. 4.9. can be 

obtained by selecting the upper limit of the design parameters that have a negative 
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SRRC and by selecting the lowest limit of the design parameters that have a positive 

SRRC shown in the following section.  

 

 

 
 
 

Figure 4.9. Variation of annual cooling energy loads in present 

   

 

 

 

 

Mean: 33.3 
St. Dev.: 13.8 
N: 400

Mean: 45.6 
St. Dev.: 14 
N: 400 

Mean: 48.5 
St. Dev.: 13.7 
N: 400
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4.4.2. Uncertainty in Annual Cooling Energy Loads in 2020s 
 

 Figure 4.10 shows the range of possible annual cooling energy loads together 

with the frequency of each interval for the ground, intermediate, and top floors in 2020.  

 

 
 

Figure 4.10. Variation of annual cooling energy loads in 2020s 
 

 

For annual cooling energy loads, while the possible annual cooling energy load 

is between 11.21 (more than twice compared to today) and 111.87 kWh/m2 (more than 

29% compared to today) on the ground floor,  

Mean: 48.4 
St. Dev.: 17.6 
N: 400

Mean: 63.8 
St. Dev.: 17.2 
N: 400

Mean: 68.4 
St. Dev.: 16.9 
N: 400
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it is between 27.17 (more than 63% compared to today) and 125.08 kWh/m2 (more than 

27% compared to today) on the intermediate floor. It varies between 30.01 (more than 

247 % compared to today) and 126.24 kWh/m2 (more than 124% compared to today) on 

the top floor. In terms of mean energy demand, the ground floor needs the lowest 

amount of energy with 17.6 kWh/m2 for cooling. The maximum mean energy 

consumption can take place on the top floor with 68.4 kWh/m2. It may be due to the 

roof which exposes to high solar radiation. In addition, there is no considerable 

difference between intermediate and top floors in terms of mean cooling energy loads. 

The most frequent annual cooling energy load is 30.53 and 48.83 kWh/m2 on the ground 

floor, 64.75 kWh/m2 on the intermediate floor, and 56 and 58 kWh/m2 on the top floor. 

Another important point is that uncertainty in 2020 is more than the current situation. In 

other words, while standard deviation in floors is approximately 14 today, it is 17 in 

2020. In other words, climate has an important impact on uncertainty.  

 

4.4.3. Uncertainty Analysis in Annual Cooling Energy Loads in 2050s 
 

The range of possible annual cooling energy loads in 2050 is shown together 

with the frequency of each interval in Figure 4.11 for the ground, intermediate, and top 

floors  

Annual cooling energy loads change between 20.4 kWh/m2 (more than four times 

compared to today) and 142.97 kWh/m2 (more than 66% compared to today) on the 

ground floor, it is between 41.18 kWh/m2 (more than 252% compared to today) and 158 

kWh/m2 (more than 161% compared to today) on the intermediate floor. It can varies 

between 29.52 kWh/m2 (more than 243% compared to today) and 160.7 kWh/m2 (more 

than 163% compared to today) on the top floor. The ground floor needs the lowest 

amount of mean energy with 22.1 kWh/m2 for cooling. The maximum mean energy 

consumption can take place on the top floor with 92.7 kWh/m2. It is the same with 

previous years that there is no significant difference between intermediate and top floors 

in terms of mean cooling energy loads. The most frequent annual cooling energy load is 

65-71-79 kWh/m2 on the ground floor, 70.3 kWh/m2 on the intermediate floor, and 

95.11 kWh/m2 on the top floor. Another important point is that uncertainty continuous 

to rise compared to previous times. In other words, while standard deviation in floors is 

approximately 14 today, it is 21 in 2050. 
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Figure 4.11. Variation of annual cooling energy loads in 2050s 

 

4.4.4. Uncertainty in Annual Cooling Energy Loads in 2080s 
 

Figure 4.12 shows possible annual cooling energy loads in 2080 together with 

the frequency of each interval for the ground, intermediate, and top floors. Annual 

cooling energy load can vary between 36.46 kWh/m2 (more than seven times compared 

to today) and 192.6 kWh/m2 (more than 223% compared to today) on the ground floor. 

It can be between 65.29 kWh/m2 (more than 393.7% compared to today) and 209.48 

kWh/m2 (more than 214% compared to today) on the intermediate floor. Furthermore, it 

Mean: 68.1 
St. Dev.: 22.1 
N: 400

Mean: 86.3 
St. Dev.: 21.1 
N: 400

Mean: 92.7 
St. Dev.: 20.8 
N: 400
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can take place between 48.6 kWh/m2 (more than 401% compared to today) and 214.31 

kWh/m2 (more than 218% compared to today) on the top floor. Minimum cooling is 

necessary in the ground floor and maximum is essential in the top floor because of the 

roof which exposes to high solar radiation. In addition, there is no big difference 

between intermediate and top floors in terms of mean cooling energy loads. The most 

frequent annual cooling energy load is 100.4 kWh/m2 on the ground floor, 95.5 kWh/m2 

on the intermediate floor, and 128 kWh/m2 on the top floor. As a result, uncertainty in 

2080 is more than the previous years. In other words, while standard deviation in floors 

is approximately 14 today, it is 29 in 2080. 

 

 
 

Figure 4.12. Variation of annual cooling energy loads per floor unit in 2080s 

Mean: 102 
St. Dev.: 29.5 
N: 400 

Mean: 124 
St. Dev.: 27.9 
N: 400 

Mean: 133 
St. Dev.: 27.6 
N: 400 
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4.4.5. Sensitivity of Design Parameters that Influence Annual Cooling 
Energy Loads at Present  

 
Importance of each design parameter according to the SRRC value is indicated 

in Figure 4.13 for Today. A positive SRRC means that as the value of the design 

parameter increases, the value of the corresponding output simultaneously increases. A 

negative SRRC implies that changes in the inputs and outputs tend to go in opposite 

directions.   

There are small differences in the order of importance of design parameters 

according to the level/floor considered. These changes should be admitted as an 

expected result because sensitivity of the same design parameters may change 

depending on floors because of the several factors such as difference in cooling energy 

loads in different floors. Furthermore, ground floor may be more affected by ground 

temperature and thus thickness of the insulation material is one of the most significant 

design parameters in the ground floor. Moreover, top floor may be more affected by the 

roof heat transfer and thus thickness of the insulation material on roof is one of the 

important design parameters. For that reason, differences in design parameters 

according to floors should not be considered that though some parameters are important 

in ground or intermediate floor, they are not important in top floor. It should be 

considered that all design parameters is significant but degree of the importance of the 

same parameters can change in different floors.   

In this thesis, design parameters which have SRRC value more than 0.1 

(absolute value) is admitted as the most effective/important factors and others are 

classified as the less effective/important parameters in terms of annual cooling load.  

Based on this classification, there are fourteen the most important design parameters for 

ground and intermediate floor. It is fifteen for roof floor. Others have the less 

importance compared to others. The most important design parameters can be sorted as 

follows:  

 

Ground floor: Thickness: ins-ground, cooling set point t., natural vent., window area: 

east, window area: west, window: SHGC-east, length of building, window area: north, 

window: SHGC-south, window: SHGC-west, air infiltration, space height, window 

area: south, and thermal conduct: ground ins.  
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Figure 4.13. Sensitivity of the selected design parameters in present
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Intermediate floor: cooling set point t., window area: west, window area: east, natural 

vent., window area: north, window: SHGC-east, window: SHGC-west, length of 

building, window: SHGC-south, window: SHGC-north, window area: south, space 

height, air infiltration and width of building,  

 

Top floor: cooling set point t., window area: west, window area: east, natural vent., 

window area: north, window: SHGC-east, window: SHGC-west, length of building, 

window: SHGC-south, window area: south, thickness:ins-roof, window: SHGC-north, 

space height, air infiltration and width of building, 

 

Width and length of building, space height, window area, SHGC value of 

glazing, natural ventilation rate, cooling set point temperature, air infiltration rate, and 

space height are the most effective design parameters on annual cooling energy loads 

for all floors. However, the color of the external wall and roof, the specific heat of main 

external wall materials, U value of windows, thicknesses of insulation material on 

external walls and type of insulation material on external walls are not so much 

affective for the annual cooling energy loads. In addition, the results of the sensitivity 

analysis showed that importance of the building design can change depending on 

orientation. 

 

4.4.6. Sensitivity of Design Parameters that Influence Annual Cooling 
Energy Loads in 2020s  

 
 Figure 4.14 shows the sensitivity coefficient and importance of each design 

parameter in 2020. The most important design parameters are as follows:  

 

Ground floor: Natural vent., thickness: ins-ground, cooling set point t., window area: 

east, window area: west, length of building, window: SHGC-east, air infiltration, 

window area: north, space height, window: SHGC-south, window: SHGC-west, thermal 

conduct:ground ins., and window area: south. 
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Figure 4.14. Sensitivity of the selected design parameters in 2020s 
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Intermediate floor: Cooling set point t., window area: east, natural vent., window area: 

west, window area: north, length of building, window: SHGC-east, window: SHGC-

west, window: SHGC-south, window area: south, width of building, air infiltration, 

space height and window: SHGC-north. 

 

Top floor: Cooling set point t., natural vent., window area: east, window area: west, 

window area: north, length of building, window: SHGC-east, window: SHGC-west, 

window: SHGC-south, width of building, air infiltration, space height, window area: 

south, thickness:ins-roof and window: SHGC-north. 

 

Significant design parameters on annual cooling energy loads for all floors are 

width and length of building, space height, window area, SHGC value of glazing, 

natural ventilation rate, cooling set point temperature, air infiltration rate, and space 

height.  

The color of envelope, the specific heat of main external wall material, 

thicknesses of insulation material on external walls, U value of windows, and type of 

insulation material on external walls are not affective as others for the annual cooling 

energy loads. These can be defined as robust design parameters.  

 

4.4.7. Sensitivity of Design Parameters that Influence Annual Cooling 
Energy Loads in 2050s  

 
 Sensitivity coefficient and importance of each design parameters are presented in 

Figure 4.15 for 2050. The most important design parameters depending on different 

floors are as follows:  

Ground floor: Natural vent., thickness: ins-ground, cooling set point t., window area: 

east, window area: west, air infiltration length of building, window area: north, window: 

SHGC-east, space height, window: SHGC-south, window: SHGC-west, thermal 

conduct:ground ins., and window area: south. 

Intermediate floor: Natural vent., cooling set point t., window area: east, window area: 

west, window area: north, length of building, window: SHGC-east, window: SHGC-

west, window: SHGC-south, air infiltration, width of building, space height, window 

area: south, and window: SHGC-north. 
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Top floor: Natural vent., cooling set point t., window area: west, window area: east, 

window area: north, length of building, window: SHGC-east, window: SHGC-west, air 

infiltration, window: SHGC-south, width of building, thickness:ins-roof, space height, 

window area: south and window: SHGC-north.  

 It is clear that, the same design parameters are significant in 2050 compared to 

important parameters in current situation and 2020. There is only small difference in 

order of design parameters. One of the remarkable points is that importance of natural 

ventilation and air infiltration has been increasing. Again, SHGC value of windows and 

window area are one of the effective design parameters. In addition to this, length and 

width of building and space height are significant. Insulation material on external walls, 

thickness of insulation on external walls, envelope color, U value of windows are not so 

effective as other design parameters. 
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Figure 4.15. Sensitivity of the selected design parameters in 2050s 
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4.4.8. Sensitivity of Design Parameters that Influence Annual Cooling 
Energy Loads in 2080s  

 

 Figure 4.16 represents importance of each design parameters in 2080 depending 

on the SRRC value. Dominant design parameters can be sorted as follows:  

Ground floor: Natural vent., thickness:ins-ground, cooling set point t., air infiltration, 

window area: east, window area: west, length of building, window area: north, space 

height, window: SHGC-east, window: SHGC-south, window: SHGC-west, width of 

building. 

Intermediate floor: Natural vent., window area: west, window area: east, cooling set 

point t., window area: north, length of building, air infiltration, window: SHGC-east, 

window: SHGC-west, window: SHGC-south, width of building, space height, window 

area: south, and window: SHGC-north. 

Top floor: Natural vent., cooling set point t., window area: west, length of building, 

window area: east, window area: north, air infiltration, window: SHGC-east, window: 

SHGC-west, thickness:ins-roof, width of building, window: SHGC-south, space height, 

window area: south and window: SHGC-north.  

Almost the same design parameters are significant in 2080 compared to 

dominant parameters in current situation, 2020 and 2050 except for type of insulation 

material and window area on south in ground floor. There is only small difference in 

order of design parameters. Natural ventilation and air infiltration rate are more 

effective parameters compared to the previous years. Again, SHGC value of glazing and 

window area are effective design parameters. In addition to this, length and width of 

building and space height are significant but these are related to size of the external wall 

area exposed to outdoor conditions and volume of the spaces. Insulation material on 

external walls, thickness of insulation on external walls, color, U value of windows are 

not so effective as other design parameters. 
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Figure 4.16. Sensitivity of the selected design parameters in 2080
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CHAPTER 5 

 

PREPARATION OF THE PRACTICAL GUIDE 

 
5.1. Approaches to Support Building Design Process in terms of 
       Energy Performance 
 

Increasing of energy demand and decreasing of energy sources in the world are 

leading to compulsory usage of energy efficiently in every sector. One of the main 

sectors consumed high energy is buildings. Thus, design of buildings and their energy 

performance are a critical issue for designers today (Petersen and Svendsen, 2010). The 

design process can be defined as ongoing activities and decisions need to be taken by 

designers and should be governed to manage new artefacts depending on their 

experience, knowledge, talent, and creativity (Mardjono, 2002). The design process 

covers different objectives and scopes under the designer’s consideration. According to 

RIBA (Royal Institute of British Architects) (1995), design process consists of three 

main stages: 

1. Outline design stage: it consists of the feasibility studies and includes gathering 

of information about the site, function, circulation, mass of building, spaces and 

their relations,  

2. Scheme design stage: it starts after approving the outline design stage by 

customer and contains site layout, planning and spatial arrangements, elevation 

treatment, construction and environmental systems. 

3. Detailed design stage: it starts after approving the scheme design stage by 

customer. Technical drawings are prepared with collaboration of other team 

members such as civil and mechanical engineers. Drawings generally cover 

fittings, equipment and finishes.  

Design of buildings which have high energy performance is a complex and iterative 

process. Performance evaluation of buildings is important and requires a multiplicity of 

views but each team member during the design process usually takes decisions 

depending on his or her own professional view (Mora, Bédard and Rivard, 2008). 

Moreover, analysis of energy performance to support design process is mostly made for 
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buildings which are to be considered for certification such as LEED but it is generally 

performed after the design process. Maybe reasons of this are that architects are not 

aware of significance of early design process, performance evaluation and usage of 

energy simulation tools for this purpose. In addition, the architects mostly focus on 

limited characteristic features of buildings like shape during the design consideration. If 

energy performance is considered, decision-making process should be supported during 

the early design stage (Schlueter and Thesseling 2009). This process can be supported 

with collaboration of different approaches such as building energy analysis tools, 

different professionals, and paper-based documents because decisions taken in design 

stages are usually depending on incorrect, incomplete or highly complex knowledge (de 

Groot, 1999) and it can lead to buildings which does not meet the expected energy 

performance targets.  

 

5.1.2. Building Energy Analysis Tools  
 

Energy analysis is very important topic since 1970s and lots of computer based 

tools has been developed to support design of products or buildings until now. Clarke 

and Maver (1991) has evaluated this duration under the four sections. In the first 

generation, tools were handbook oriented and they could not show the real energy and 

mass flow paths in buildings. Their objective was to present general energy 

performance of buildings. Second generation simulation tools started to appear in the 

mid-seventies. There was an attempt to model the real physical conditions in buildings 

such as multilayered contractions in this period. Third generation tools started to be 

used in the mid-eighties. Thermal, visual, and acoustic performances of buildings were 

evaluated together. In the fourth generation which began in the mid-nineties, knowledge 

based on user interfaces, application of quality control and user training systems were 

developed for simulation tools. In the first times, usage of the simulation tools was easy 

but modeling of the real world was difficult. In the following generations, modeling 

closed to the real world conditions but tools had more complex structure. 

Evaluation of energy performance for buildings is not an easy task during the 

design process. Thus building energy simulation tools has an important role because of 

their powerful abilities such as modeling lots of possibilities in a short time for passive 

or active systems. However, most of the available tools are still not common among 
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designers, architects or engineers, for they do not have enough ability and background 

to assist them during the decision-making process (Sebastian and Ledoux 2009). In 

addition, most of the energy analysis tools are not well suitable to support early building 

design process because there are various difficulties. Some of them can be summarized 

as follows (Xia, Zhu and Lin, 2008, Hobbs et. al. 2003): 

• Most of the current tools are needed all of the detailed information to predict 

energy performance of buildings. 

• Simulation tools are usually designed for engineers. Therefore, the inputs or 

outputs are not consistent for an architect’s background. 

• Creation of a thermal model for complex buildings is not easy and mostly 

possible. 

• The architects have poor understanding about simulation and energy modeling. 

• Extra workload and time are essential for designers and it leads to extra cost.  

Another important point is that one simulation tool is not enough to evaluate energy 

performance together for heating or cooling, lighting and ventilation. For that reason, 

designers should select one or more appropriate tools for defined problems. The 

following criterias can be used for selection of tools (Hong, Chou and Bong, 2000): 

• Computing capability: it is defined as core algorithm, application scope, 

computing speed and accuracy.  

• Usability: it should be understandable to learn and user friendly and should also 

include a well-written user manual.  

• Data exchange capability: preparation of input data for tools is a time 

consuming task and lots of error can happen in this process. Thus they should 

have a feature to import and export data from different simulation tools.   

• Database support: these kinds of tools require many data such as building 

materials, HVAC components, weather data and etc. Thus they should allow 

database transfer.   

After selection of energy analysis tool, integration of the tool into the design process is 

difficult and very significant. There are a few work related to integration of simulation 

tools into the building design stages. Nytsch-Geusen et al. (2003)  integrated two energy 

simulation tools (SMILE and CFD) into a CAAD-program to optimize energy 

requirements in design stage and the generated software packages was tested 

successfully for several 3D building constructions. Furthermore, Morbitzer (2003) was 
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developed a concept to support different design stages defined in the Royal Institute of 

British Architects Design Plan of Work. In this study, interfaces were developed for 

usage of an advanced energy analysis tool throughout the design process. In addition, 

several studies about overview of energy simulation tools are available in literature. For 

example, Hong et al. (2000), Haapio and Viitaniemi (2008), Al-Homoud (2001) and 

Crawley et al. (2008) investigated available simulation tools and building energy 

analysis techniques.    

Some of the building energy analysis tools commonly used is defined as follows 

(Crawley et al. 2008): 

 

DOE-2.1: It can be used to calculate the hourly energy usage and energy costs for 

buildings. 

ECOTECT: The most important advantages of this tool is that it has a powerful visual 

interface for architects and includes a lot of calculation features such as thermal, energy, 

shading, solar, acoustic, lighting, and costs at the same time. In addition, results of the 

volumetric and spatial analysis can be shown as 3D. 

Energy 10: It is developed to analyze the energy performance of buildings in the early 

design stage of buildings. By using this tool, many strategies can be assessed related to 

building envelope such as insulation, glazing, shading, and etc. and system efficiency 

options like daylighting, photovoltaic and etc.    

EnergyPlus: It is a powerful tool for mostly engineers, architects, and researchers to 

analyze energy (heating, cooling, lighting, ventilation, thermal comfort and etc.) and 

water usage in buildings. One of the disadvantages for especially architects that 

EnergyPlus does not have a user-friendly interface.    

eQUEST: It is designed to perform detailed comparative analysis for building design 

and technologies. It can be used to calculate energy cost, daylighting system control and 

automatic application of energy efficient measures. It is also capable to make multiple 

simulations for evaluating alternative recommendations. 

ESP-r: It is a simulation tool to address thermal, visual and acoustic performance of 

buildings, energy consumption and gaseous emissions. It also supports early design 

stage of buildings and enables integrated performance evaluation. 
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 IES: It is helpful to investigate impact of energy efficient strategies, 

passive/hybrid/renewable strategies, the impact of daylight and solar and etc. It consists 

of different modules for different purposes. 

Tas: It is usable to evaluate thermal performance of new and existing buildings. It 

consists of three main modules as 3D modeler, building simulator and results viewer. 

DesignBuilder: it is the comprehensive user interface to the EnergyPlus software.  

 

5.1.3. Professionals 
 

During the building design process, collaboration of different specialists such as 

architect, project manager, mechanical, electrical and civil engineer for different 

purposes (landscaping, acoustics, daylighting, and etc.) is necessary according to 

complexity of the project. However, today the design process is still architect dominated 

and most of the specialists join into the design process after completion of architectural 

design process. Ideally, during the design stages architects should take decisions 

together with necessary specialist because every specialist can produce a lot of 

information about own responsibility to increase building performance and every 

decision can affect the other decisions taken by different discipline (Intelligent Energy, 

2009). For instance, architect takes a decision to maximize usage of natural daylighting 

but it can impact decisions of all specialists like that (Energy Design Resource, 2009): 

• The architect updates building envelope for maximum daylight, 

• Cost consultant assess effect of the new situation, 

• The civil engineer evaluates constructability possibilities for proposed changes, 

• The electrical engineer determines suitable lighting alternatives and their 

control, 

• The mechanical engineer calculates the quantity of solar radiation, heat losses 

and gains and glazing type according to the local climate, 

• Energy modeler and sustainability consultant consider energy performance of 

building and indoor quality according to determined glazing area. 

 

Under the integrated design process, a few studies have been made about importance of 

cooperation of all disciplines in design process of buildings. One of them is INTEND  
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which is a European Union supported project. Its objective is to improve integrated 

energy design as European practice and determine a new standard in view of the 

European Commission Directive on energy performance of buildings. One of the 

significant parts of the project is inter-disciplinary study between architects, civil, 

electric, management engineers, and etc. from starting of the design duration (Synnefa, 

Karlessi and Santamouris, 2008).  

 

5.1.4. Paper-based Documents 
 

Paper based documents can be grouped as special papers, national codes and 

standards. They are essential tools for countries since construction industry cannot 

guarantee minimum standards for energy performance in buildings every time.  In 

addition, construction industry usually does not take into consideration operation costs 

for heating, cooling, ventilating and lighting energy in buildings because they assume 

that homebuyers are responsible from the operating costs. Therefore they usually do not 

focus on energy efficient design and solutions.  

 

5.1.4.1. Special Papers 
 

For designer, there are various sources in literature which do not provide 

predictions about energy performance of buildings. They usually include best practice 

examples, recommendations and compulsory requirements to provide possible energy 

efficient design solutions.  

These kinds of documents to support design process can be summarized as published 

textbooks, best practice publications, databases, web-based, media publications, 

professional journals, statutory instruments, design research, refereed papers and 

journals, manufacturer’s literature, and precedent (Tunstall, 2006). If this kinds of 

documents lead to awareness about importance of energy consumption in buildings for 

designer, it may be accepted that it has succeed its major purpose. After that design 

team can focus or investigate on appropriate energy efficient strategies for own 

buildings.  

One of the important documents is guidelines for supporting design process. 

They are usually developed by consultancy companies, institutions, and special 
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organizations such as ASHRAE, CIBSE and etc.  Bay (2001) stated that design 

guidelines for sustainable and climate conscious building design can be used in 

analogical, pre-parametric and qualitative design thinking process.  

 

5.1.4.2. National Codes and Standards 
 

Codes and standards related to energy performance of buildings usually covers 

different recommendations to minimum energy requirements for building design. They 

can be mandatory or preferable in national level. Codes are written in mandatory by 

states or local governments. Standards are prepared by various organizations and are a 

kind of national recommendations depending on local climate (Bartlett, Halverson and 

Shankle, 2003).  

The most important reasons to use building energy codes or standards defined by 

U.S. Department of Energy are as follows (U.S. Department of Energy, 2010): 

1. Excessive energy consumption can be reduced for heating, cooling, lighting, 

ventilating, and providing hot water. 

2. Rate of the emissions can be limited. 

3. New job and opportunities can be increased. 

4. Energy efficiency requirements can be learned. 

5. Cost-effective solutions can be shared. 

6. New building technologies and design strategies can be developed, 

7. Common actions and solutions can be supported. 

 

Therefore, many countries have different building codes and standards for new or 

existing buildings. For example, today almost all OECD countries have building codes 

and standards supporting minimum energy efficiency requirements in buildings. In 

addition developing countries such as China and India investigates extra ways to 

improve thermal comfort conditions and to decrease rapid increase in energy 

consumption (Laustsen, 2008).  
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5.1.5. Decision Support Techniques 
 

Making a decision can be defined as selecting one among multiple alternatives. 

Thus we can need to techniques to make right selection which means taking optimum 

benefits as a result of the final choice.  According to a study made in 1980 by Alter 

decision support systems is grouped into seven types: 

1. File drawer systems, 

2. Data analysis systems, 

3. Analysis information systems, 

4. Accounting and financial models, 

5. Optimization models, 

6. Representation models, 

7. Suggestion models.  

 

In this part, optimization models commonly used techniques to support energy efficient 

building design are investigated. Different techniques can be used to generate the best 

possible solutions in terms of maximum energy efficiency together with user, occupant, 

owner demands, social and financial factors in buildings (Diakaki, Grigoroudis and 

Kolokotsa, 2008). These techniques are usually related to multi-criterion optimization 

problems. One of them is multi-criteria based decision making.  

The general aim of the multi-criteria decision making is to support people while 

taking decision about selection of the best alternative among lots of possible alternatives 

depending on several criteria and priorities (Jankowski and Richard, 1994). The multi-

criteria decision making can also be used to optimize final solution by considering 

preferred all criterias such as energy performance, initial cost, thermal comfort and etc. 

during the design process.  

Today several studies are available about multi-criteria techniques used to improve 

energy performance in literature. Diakaki et al. (2008) examined feasibility of multi-

objective optimization methods for development of energy performance of buildings in 

2008. Diakaki and her friends (2010) evaluated lots of possible alternative measures 

based on annual primary energy consumption, the annual carbon dioxide emissions and 

the initial investment costs to develop energy performance of a building by using a 

multi-objective decision model. Hamdy et al. (2011) was used a modified multi-
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objective optimization approach to minimize the carbon dioxide equivalent emissions 

and the initial cost investment for a two-storey house and its HVAC system. Modified 

multi-objective optimization approach consists of genetic algorithm and a building 

performance simulation (IDA ICE). Flourentzou and Roulet (2002) and Rey (2004) 

used multicriteria analysis approach to help experts in generating retrofitting 

alternatives. Blondeau et al. (2002) determined the most appropriate ventilation strategy 

on a university building for summertime by using multicriteria analysis methods.  

Another decision support method is genetic algorithm. It is used for mostly 

multi-criterion optimization problems. Genetic algorithm is a kind of heuristic search 

that simulates the process of natural evolution (Ivashkov, 2004). Genetic algorithms can 

be used for various energy optimization processes such as energy efficient building 

design, solar hot water systems, and etc (Znouda et. al. 2007). There are limited 

resources about multi-criteria decision based on genetic algorithm related to buildings in 

the published work. Tuhus-Dubrow and Krarti (2010) developed a simulation-

optimization tool to find optimum building shape and envelope features. Magnier and 

Haghighat (2010) showed a fast and efficient multi-objective optimization approach 

including genetic algorithm, artificial neural network and TRNYS simulation. This 

approach was used to optimize the energy consumption and thermal comfort of a 

residential building. Znouda et al. (2007) generated an optimization algorithm based on 

genetic algorithm to determine the best configurations in terms of energetic and 

economic points of view. Wright et al. (2002) investigated feasibility of a multi-

criterion genetic algorithm to optimize energy costs caused by HVAC system operation 

and size and thermal comfort in buildings.   

 

5.2. Proposed Approach to Develop the Practical Guide  
 

A general issue in terms of energy performance of buildings during the design 

phases is that there are many different design alternatives and materials and also major 

decisions should be taken in early stages to design buildings consumed low energy. In 

the late design process, reduction of energy consumption is possible but interventions 

can remain in the limited level because many design decisions already have taken. 

Therefore, interventions can lead to waste of time and resource. 
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 There are different ways to overcome this problem. One of them is to use 

appropriate approaches to support design process to provide information about general 

effects of design and material alternatives on energy performance during the design 

process. For example, guidelines can be used for that purpose because they can include 

knowledge about probable impacts of design parameters on energy performance and can 

lead to easily creation of alternatives by design teams. Moreover, extra data from 

simulations could also be considered and used. In addition, guidelines can be helpful to 

spread scientific knowledge to the professionals. In other words, it can also be a source 

to integrate scientific information into the practical design process. The practical 

capacity of scientific knowledge depends on two preconditions: results of the scientific 

knowledge should be problem oriented and it should be admitted in the practical field 

(Pregernig, 2000). For that reason, findings of scientific studies should be 

understandable by professionals. However, statements preferred in the scientific and 

practical studies are generally different. For instance, while the term ‘energy efficient 

buildings’ are usually used in scientific researches, ‘green buildings’ are used for the 

same expression among professionals in Turkey. Thus, terms used in practical life 

should be preferred. Generally, while scientific studies are examined and read by 

academicians and researchers, professionals mostly prefers to examine documents and 

journals related to practical conditions.  

In this dissertation, a practical guide is developed to convert findings of thesis to 

practical life. Original language of the practical guide was determined as Turkish 

because it is intended to use by architects in Turkey. The practical guide was developed 

by following four steps explained below (Figure 5.1): 
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Figure 5.1. The four steps for practical guide 
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used to improve energy performance and reduce negative environmental effects of 

energy consumption. Thus, architects are the main audience of the practical guide. 

The aim of the guide should be specific and narrow and should not be too 

general because there already several sources like books for different subjects and 

climatic conditions. Thus, basic objective of the guide is to support architects while 

improving design alternatives and taking decisions in order to reduce cooling demand of 

low-rise apartment buildings in Izmir located in hot-humid climatic region of Turkey. In 

other words, it shows potential impacts of selected building design parameters on 

annual cooling energy load for the time period of today, 2020s, 2050s, and 2080s. 

Cooling loads in low-rise apartment blocks in hot-humid climate is bigger problem than 

heating because annual cooling loads is usually more than heating loads in that region 

and while heating loads would decrease, cooling loads would increase depending on 

magnitude of the global warming over time.  

The practical guide provides recommendations and rules-of-thumb to reduce 

cooling requirements of low rise apartment buildings located in hot-humid climatic 

region of Turkey in design stage. Design of a low-rise apartment block based on the 

practical guide is lead to low energy consumption for cooling when compared to the 

same apartment buildings designed based on the minimum requirements defined in TS 

825-Thermal Insulation Regulation in Buildings. It should be noted that the guide does 

not cover other aspects required for energy efficient building design such as heating, 

lighting, and water usage or hot water requirements. In addition, knowledge in the guide 

cannot be applied to all climatic conditions and all kind of building by architects.  

Existing studies depending on determined aim and scope of the practical guide 

are reviewed. Literature review is necessary to collect and summerize existing sources 

about building design parameters and methods which can be used in development phase 

of the practical guide. Another reasons to make literature review can be summurized as 

follows (Hart, 1998): 

• Investigation of significant points related to the subject, 

• Gain of a unifying and new perspective, 

• Definition of relations between ideas and practices, 

• Constitute of the coherence of the subject, 

• Rationalizing of the importance of the problem, 

• Investigation of relating ideas and theory to apply, 
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• Discovering of the metholodigies used before. 

There are several guidelines about improvement of energy performance in buildings, 

which were constituted by various institutions and organizations. Here a few of the 

outstanding guidelines were only summarized.    

 ASHRAE GreenGuide: The Design, Construction, and Operation of Sustainable 

Buildings were developed by American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE, 2006). It is mainly focuses on technical aspect of 

high performance design and teamwork and also close coordination between 

professionals. There is only one part about effects of architectural design on energy 

performance.  

 The ASHRAE Advanced Energy Design Guides are a series of guidelines 

including recommendations to save energy more than minimum requirements of 

ANSI/ASHRAE/IESNA Standard 90.1. The guidelines are for small hospitals and 

healthcare facilities, highway lodging, small warehouses and self-storage buildings, K-

12 school buildings, small retail buildings, and small office buildings. They were 

produced with energy professionals from ASHRAE, the American Institute of 

Architects, the Illuminating Engineering Society of North America, and the U.S. Green 

Building Council and also it is supported by the Department of Energy. The most 

important feature of these guidelines is that they have different recommendations 

depending on the eight U.S. climates zones. All recommendations are tested by using 

building hourly energy analysis software by using a prototype building in different 

climatic regions of U.S. Then the results are compared to buildings designed based on 

Standard 90.1-1999 (ASHRAE, 2011).  Lastly,  The ASHRAE was published a new 

guideline in 2011 for small to medium office buildings to succeed 50% energy savings 

more than the minimum code requirements of ANSI/ASHRAE/IESNA Standard 90.1-

2004. Its method is the same with previous guidelines.  

 Environmental design is a guideline developed by The Chartered Institution of 

Building Services Engineers (CIBSE). CIBSE is an institution which publishes different 

guidance and codes related to improvement of building energy performance. The 

guideline was developed by a group of professionals. Its main aim is to provide 

information about design, installation, commissioning, operation and maintenance of 

building services (CIBSE, 1999).   
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 Multifamily Green Building Guidelines was produced by Green Building in 

Alameda County and Build It Green. It consists of cost-effective recommendations to 

minimize construction –related waste and to reduce operating costs for owners. In 

addition, it shows methods to reduce impact of buildings on environment in California 

communities (Build It Green, 2008). There are lots of similar guidelines for different 

cities and building types in literature. 

Step 2: The second step is to constitute an interview. Interview is preferred because of 

the limited reliable existing data about how to prepare a guideline in literature. This part 

is important because it is helpful to obtain information on a specific topic or a specific 

area to be researched. Type of interview can be structured or unstructured depending on 

the subject. One of important points in this process is to determine participants and their 

number for interview. Participants should be selected among professionals who have 

experience about determined subject and is located determined region because the guide 

is used by architects who working in Izmir and do not have enough background in that 

subject. They are also main audience of practical guide. Therefore, architects who have 

enough information should formalize first draft of the guide. Interview is organized to 

constitute feedback for practical guide and find out audience’s necessitates and 

considerations depending on scope of the guide.  

The interview was conducted in spring 2010 to find out considerations of 

architects about four topics as follows: 

• Energy for heating or cooling which is mostly needed in apartment buildings 

during the one year in Izmir, 

• Architectural measures to reduce energy consumption for cooling in apartment 

buildings in Izmir, 

• Information which is necessary to develop and integrate architectural measures 

into the design process to reduce energy consumption for cooling in apartment 

buildings, 

• Source which is necessary to get that information (book, journal, internet and 

etc.). 

Another objective of the interviews is to constitute a general feedback for practical 

guide.  
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Therefore, at the end of each interview, interviewees were asked to comment on what 

you consider about necessity of a practical guide related to reduction of energy 

consumption for cooling in apartment buildings in Izmir.  

The respondents are consists of five architects who worked at national level, on 

commercial architectural projects in Izmir and are considered as experts on energy 

efficiency in buildings. Thus the sample size is admitted as enough and satisfactory 

because there are no lots of special architects and if the number of the respondents 

increases, data gathered from respondents can start to become similar. The probable 

reason of this is that importance of energy performance in buildings in terms of cooling 

requirements is still a new issue among architects in Izmir and they have lack of 

information about that.  The interviews can be categorized as qualitative semi-structured 

and were performed face to face.   

 The responses shown here are limited with issues related to the questions. Five 

interviewees are coded as A, B, C, D and E in order. 

Responds for question 1: There is no common perception among the interviewees about 

the amount of the annual heating and cooling loads but a part of the interviewees agrees 

that mainly cooling requirements is more than heating or they are equal. Heating loads 

are greater than cooling is only opinion of the one interviewer.  

• It is stated that cooling loads is more than heating loads in apartment buildings 

in Izmir (A). 

• Both the heating and cooling requirements are almost the same in apartment 

buildings but heating degree days (HDD) are less than cooling degree days 

(CDD). In addition, the need for cooling in apartment buildings is an emerging 

occupancy demand in terms of comfort was also emphasized (B).  

• Although cooling requirement is more than heating there is no too much 

difference between them was called (C).  

• Cooling loads are greater than the heating loads and cooling is a major problem 

in apartment buildings because individual measures can be taken to be protected 

from the negative impacts of low temperature in winter. However individual 

measures to be protected from the negative impacts of high temperature are 

limited in summer (D).  
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• Heating need is more than cooling demand in apartment buildings. Furthermore, 

cooling requirement in terms of comfort conditions is a new expectation by 

owners (E).   

Responds for question 2: Most of the interviewees have the similar opinion that 

orientation, usage of thermal insulation and material choice are common measures. In 

addition, there is almost no chance to select appropriate orientation for apartment 

buildings because of the high density especially in city center was strongly emphasized 

by all interviewees.     

• Shading, orientation and insulation are important measures but architects usually 

do not prefer shading devices which do not add aesthetical advantages to 

building.  Moreover, the usage of plants, natural ventilation and wind catchers 

can be used to reduce cooling loads in apartment buildings (A). 

•  It is difficult to take benefit from the orientation in city center, and shading 

device and insulation are helpful. Furthermore, it was expressed that though 

natural ventilation is an effective measure for cooling, configuration of windows 

is not easy in apartment buildings. The choice of the material is another 

important measure which is easily applicable (B).  

• Insulation is necessary to reduce both heating and cooling demands in residential 

buildings. Therefore, the regulation, Thermal Insulation in Buildings (TS 825) 

should be known very well by architects but it is not easily understandable. It is 

also stated that the use of appropriate material is important measure for cooling 

in apartment buildings (C). 

•  Wind direction should be considered during the design process and, shading 

device and usage of thermal insulation are significant factors to reduce cooling 

demand (D). 

•  Orientation is the most important measure for cooling. Material selection and 

especially usage of the ecological materials are other effective measures. In 

addition, space organization is also helpful to decrease cooling loads (E).    

Responds for question 3: all respondents consider that local climatic data and 

information about the ecological materials are needed.  
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Responds for question 4: The interviewees believe that necessary information can be 

provided from mostly internet, journals, magazines, and seminars organized by different 

institutions.   

• Information is accessible from internet, journals, and seminars. In addition, 

experience is so important and it was stated that undergraduate courses are still 

useful in professional life (A).     

• Most knowledge can get from internet, material catalogs and journals (B).  

• It was expressed that seminars about thermal insulation organized by Chamber 

of Architects and journals are helpful to obtain adequate information. Today, 

search engines are also easy way to reach all knowledge (C).  

• Cooperation with mechanical engineer is an effective way. Seminars organized 

by Chamber of Architects are helpful. Sectoral trade fairs and journals are 

another ways to access knowledge (D).  

• Magazine and internet are easy way to access desired information (E).  

Another subject in discussion was the practical guide. All interviewees answered that 

practical guide should cover local climatic data and they should be explained with 

graphics to easy understand. In addition, shapes and complementary texts to express any 

kind of information in practical guide can improve intelligibility is general belief among 

interviewees. A number of interesting conclusions resulted from the interviews are as 

follows: 

• Cooling in residential buildings is a new requirement for comfort conditions. 

• Directed to appropriate orientation is usually not possible to increase energy 

performance in dense cities.   

• Thermal insulation is very well known measure but another measures related to 

color usage, glazing selection, thermostat temperature, air infiltration and etc. 

have not been emphasized and called by interviews.  

• Major source to get information is search engines in internet and other common 

source is journals. Any book name could not given by interviews. 

Step 3: Chapters for practical guide were determined according to aim of the practical 

guide and results of interviews. Then essential information was used to constitute 

chapters of first draft of practical guide.  

Chapters were mostly developed by using current chapters of thesis. Therefore, Chapter 

2 and 4 of the thesis were reorganized by using common words used in building sector 
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in Turkey. Additional data was created to show rate of heating and cooling loads in low-

rise apartment blocks in the future. It was calculated by using energy analysis tool, 

EnergyPlus. In addition, possible variations in annual cooling energy loads obtained by 

changing values of some design parameters were investigated. Outcomes of these 

analyses are shown in APENDIX A. A brief outline of each chapter for first draft of 

practical guide is as follows: 

Chapter 1 is an introductory part covering basic information about audience, aim, 

content and limitations in the practical guide. 

Chapter 2 shows general information related to climatic features of Izmir, effects of 

global warming on annual cooling and heating energy loads. Thus energy loads for 

cooling and heating of selected existing low-rise apartment block was calculated for the 

time periods of today, 2020s, 2050s, and 2080s.  

Chapter 3 consists of short explanations of major building design parameters which 

have impact on annual energy loads for cooling in low-rise apartment buildings. Design 

parameters summarized in practical guide were taken from second chapter of the thesis.   

Chapter 4 is the main part of the practical guide. In this part, effects of the selected 

building design parameters such as main external wall material, insulation material, 

thickness of the insulation on external wall, roof, and ground floor, window to wall area 

ratio, heat transfer coefficient of glazing, solar heat gain coefficient of glazing on annual 

cooling energy loads are showed and discussed. In addition, possible variations in 

annual cooling loads as percentage based on change in each selected design parameter 

was indicated and examined.  

Step 4: After development of first draft of the practical guide preparation process 

continues with a series of mock-up presentations and meetings together with four 

academicians (three architects and one mechanical engineer) who are expert on energy 

efficiency in buildings to evaluate and constitute final draft of the practical guide. In 

addition, individual meetings were also made with four academicians. During this 

process, a PowerPoint slides showing was made to all academicians before completing 

final draft. The results of the conservations and presentation can be summarized as 

follows: 

• More graphs should be used in practical guide and they should be very clear and 

easy understandable for audience. Explanation of the graphs is important and 

necessary.  
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• Words used in practical guide should be selected from practical life.  

• The length of the practical guide should not be long. It should give all 

information directly.  

• Visual design of practical guide is significant issue but extra help can be taken 

from professional about journal designer.  

• In brief, it is expected that the practical guide can help architects in the design 

process   

According to results of these meetings and presentation first draft of practical guide was 

improved and final draft was completed (See Figure 5.2). 

 

 

 
 

Figure 5.2. Examples from the final version of the developed practical guide 
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CHAPTER 6 

 

CONCLUSIONS 

 
6.1. Concluding Remarks 

 
 Global warming may require new considerations for the built environment 

because it is projected that cooling demand in buildings can increase especially in 

warmer parts of the world over time. In addition to this, expectation of high living 

standards in apartment buildings has raised usage of air conditioning devices and energy 

consumption for cooling. For that reason, necessity for climatically responsive buildings 

which consume low energy for cooling has increased but design of them is not possible 

every time since architectural design is generally a complex issue and process. 

Moreover, effective and efficient design to keep up the energy performance in 

satisfactory level is not an easy work during the design process. Collaboration with 

other professionals such as mechanical engineer is limited and application of passive 

design strategies cannot always be possible in dense cities.  Thus, design process is 

usually architect dominated and building design parameters may have an important 

effect to provide desired energy performance in apartment buildings.     

 For that reason, the dissertation firstly explores the most significant building 

design parameters which affect annual cooling energy loads in low-rise apartment 

blocks in the hot-humid climatic region of Turkey by using global sensitivity analysis 

technique. In addition, change in annual cooling energy loads due to the uncertainty 

caused by building design parameters and global warming is investigated. Moreover, 

hourly climatic data for the time horizons of 2020s, 2050s, and 2080s is generated to 

examine impact of global warming on the sensitivity of building design parameters and 

to investigate variations in annual cooling energy loads.  Conclusions of sensitivity and 

uncertainty analysis can be stated as follows, but it should not be forgotten that the 

results can change for different climatic conditions: 

1. Major architectural design solutions should be determined based on the 

dominant energy requirements in low-rise apartment blocks, because the 
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sensitivity of building design parameters can mainly vary depending on the 

annual heating and cooling energy loads. 

2. The amount of the energy for cooling can change according to which floor is 

considered. Thus, thermal models of apartment blocks should be prepared by 

subdividing them into ground, intermediate and top floors to evaluate energy 

performance in detail. Such a procedure also provides feedback for clients to 

select flats which need low energy. 

3. The annual cooling energy loads are mostly affected by the features of the 

windows (such as the area, and SHGC value depending on orientation), building 

length and width, natural ventilation, air infiltration, thickness of ground and 

roof insulation, zone height, and cooling set point temperature in hot-humid 

climatic region of Turkey. Other design parameters have little impact on annual 

cooling energy loads compared to the most sensitive design parameters.  Thus, 

design team should mostly focus on the most sensitive design parameters to 

improve the energy performance of low-rise apartment buildings in the early 

design stage. According to the global warming order of the design parameters 

can change but almost the same parameters are the most important design 

parameters for all the time periods.  

4. It is clear that natural ventilation is one of the most important design parameter 

after the window area on east and west direction at present and its importance is 

increasing in 2020s, 2050s, and 2080s. In other words, it is a critical factor in 

low-rise apartment blocks in terms of annual cooling energy load. If the natural 

ventilation rate is increased, especially when outside temperature is higher than 

inside temperature during the day, it can lead to increase in energy consumption 

for cooling. In those times, natural ventilation should be reduced. However, 

night ventilation can be helpful to reduce annual cooling energy loads because of 

the low temperature at night, for it can decrease heat stored in the building mass 

during the day. Therefore, size and location of windows on the plan and section 

for natural ventilation should be one of the significant design decisions for 

architects. Windows should be designed to allow controllable ventilation in 

buildings during the day and night.   

5. Windows have very important impact on annual cooling energy load in hot-

humid climates. In general, a decrease in window area results in reduction of 
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annual cooling energy loads because of the low solar radiation. It can also be 

seen that east and west facing windows are more significant than south and north 

facing windows. It may be related to that east and west facing windows receive 

excessive solar radiation in the morning and afternoon in summer. In addition, 

solar radiation comes with very low angle towards the east and west facing 

windows.  Therefore, the control of the sun is difficult on those orientations. 

Windows facing east and west can be smaller than south and north facing-

windows to reduce solar radiation.  

6. Thermophysical properties of glazing have influence on the energy performance 

of buildings. However, the results showed that only low SHGC value can 

provide significant energy reduction in annual cooling energy load in the hot-

humid climate and its importance varies depending on orientation. Low SHGC 

means that low solar radiation enters into the building from windows. In winter 

it can increase heating demand. Hence, solar radiation can also be blocked using 

shading device but shading devices are mostly beneficial on windows facing 

south. The glazing with low SHGC should be preferred for east and west facing 

windows or window size can be decreased if possible.  U value of windows has 

too small impact on annual cooling energy load. In other words, it does not have 

a deterministic role in design process in that climate.  Selection of glazing 

should mostly be made according to the SHGC value in hot-humid climate. This 

value provides advantages to easily reduce annual cooling energy load especially 

if window area is high. 

7. Building shape can influence the rate of benefits taken from the local climatic 

conditions. Thus it is described with building length and width in this study. In 

real situation, building shape usually is defined based on lots of factors 

considered by architects. It is found that building length has more impact than 

building width on annual cooling energy load and its importance is increasing in 

the future. Reason of this may be related to orientation that building length 

including facades is directed to east and west. These directions exposure to high 

solar radiation in summer. Thus the amount of these facades should be little than 

facades facing north and south but it cannot be possible or not preferable every 

time for architects.  
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8. Thermal insulation is an easy and cost effective solution, thus, should be first 

measure for energy conservation in buildings, but features of the climate and 

dominant energy demand should be taken into account while determining 

thickness of thermal insulation. Increasing of insulation thickness on external 

walls has a relatively small effect on annual cooling energy loads for all the time 

periods in hot-humid climate. Therefore, insulation thickness for external walls 

should be determined depending on annual heating demand and mandatory 

regulations. Increasing insulation thickness should not be preferred as the first 

energy efficient measure in order to reduce annual cooling energy loads. Firstly, 

the most sensitive design parameters should be used to reduce annual cooling 

energy load. Ground insulation has relatively high influence on annual cooling 

energy loads compared to insulation on external walls but an increase in 

insulation thickness on ground is lead to more energy consumption for cooling. 

One reason for this may be that the ground surface is cooler than the above-

ground space in summer because of the low soil temperature, and high insulation 

thickness can reduce heat losses from inside to the ground. Minimum insulation 

thickness shown by mandatory regulations is enough on the ground in terms of 

cooling demand in hot-humid climates.  It can also be concluded that insulation 

on floors is an essential measure in multistory buildings because insulation on 

ground floor has a significant impact on annual cooling load of a nine storey 

building.  Insulation is also one of the effective ways on the roof than external 

wall because the roof surface is exposed to high solar radiation during the all 

day in summer. Insulation thickness on the roof can be increased to reduce 

annual cooling energy loads in hot-humid climate.  

9. The infiltration in buildings is usually related to quality of construction process 

and materials. It is clear that rate of the infiltration affects annual cooling 

demand in buildings. Increasing infiltration rate can lead to high cooling demand 

in buildings. It is mostly due to the high outdoor temperature in summer. Its 

sensitivity is also rising in the following years because mean outdoor 

temperature can be higher than today because of the global warming. For that 

reasons, airtight buildings should be designed to reduce uncontrolled air flow. It 

can be derived that airtightness is a significant design parameter to provide low 

cooling requirement in buildings in hot-humid climate.   
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10. Zone height directly affects volume of the space and it changes cooling demand. 

Therefore, floor height should be minimized for low cooling requirement 

depending on architectural and technical necessities. In addition, its sensitivity is 

almost the same for all the time periods.  

11. There are different external wall and insulation materials in construction 

industry. Thus the architects can select one of them in design process. In terms 

of cooling demand, the external wall and insulation materials are not one of the 

sensitive parameters in low-rise apartment blocks. It means that changing of 

insulation or external wall materials does not affect so much cooling 

requirement in hot-humid climates. Their sensitivity is almost the same for other 

time periods.  

12. The color of building envelope has minimum influence on annual cooling 

energy load but it can be observed that light color and light colored materials are 

suitable for external walls and roof in hot-humid climates. 

13. Design decisions related to color, insulation thickness, thermophysical feature of 

glazing, window size and etc. should be specific to the orientation to take high 

benefits from these parameters in low-rise apartment blocks. 

14. Global warming has a significant impact on the uncertainty in the annual cooling 

energy loads.  

15. The uncertainty in the annual cooling energy loads is relatively high and it rises 

because of the global warming.  Therefore, min. and max. values of especially 

sensitive building design parameters may be determined by compulsory 

regulations. As a result of this, architects cannot select values which can lead to 

excessive annual cooling energy load in low-rise apartment blocks. These 

limitations can provide high energy performance in buildings in a short time.    

16. Sensitivity analysis can also be used for retrofitting of existing buildings because 

the most effective measures can be determined easily depending on results of 

sensitivity analysis.  

17. The sensitivity of building design parameters and possible ranges in annual 

heating and cooling energy demands for different climatic conditions can be 

determined easily by applying the process discussed in the present thesis.  
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As a result, the findings of thesis can provide more consciousness and flexibility 

for architects in the early design process of low-rise apartment blocks in the hot-humid 

climate. Firstly, by considering considerable reductions in energy consumption for 

cooling, to know the most important building design parameters before the building is 

constructed can affect material, dimensional, functional or visual choices of architects in 

more energy-efficient way. Secondly, since the rate of the seasonal energy consumption 

for cooling varies based on ground, intermediate and top floors, it gives an opportunity 

to develop specific energy performance improvement and optimization strategies for 

particular lateral zones of low-rise apartment blocks, which provide more flexibility in 

design of both building itself and its cooling systems.  Lastly, early information 

provided by global sensitivity and uncertainty analysis can be used easily in the 

architectural practice. In other words, sensitivity and uncertainty analyses can be helpful 

to improve the energy performance of buildings in early stage of the building design.  

A practical guide was developed to integrate produced information in thesis into 

the architectural practice for Izmir. This part of the study shows an approach to develop 

a practical guide about reduction of energy consumption in buildings located in a city or 

climatic region. Suggested approach consists of the following steps: literature review 

about case-specific subject, interviews with main audience of the guide, determination 

of chapters for practical guide, and mock-up presentations and meetings with 

professionals to constitute final draft of guideline. It can be concluded that (1) this type 

of approach needs a long process to obtain extensive and reliable data, but it is feasible 

and easily applicable for a region or city; (2) the global sensitivity analysis with the 

defined approach is helpful to develop a practical guide showing sensitive and robust 

design parameters; (3) this kind of practical guide provides helpful information to assess 

relevance and importance of design parameters for architects in the early design 

process; (4) low energy consumption in buildings compared to buildings designed based 

on the mandatory regulations defined by countries can be possible by designing them in 

view of a specific guide. Furthermore, the global sensitivity and uncertainty analysis 

can be used to generate case-specific information for guidelines. 
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6.2. Recommendations for Future Work 

 
 As a further step, the methods to find the most important building design 

parameters, which is used in this study, can be developed as a tool to increase usability 

for architects. Simulation tools are not widely used by designers in Turkey because they 

are not familiar with simulation tools due to their complexity and the lack of 

information about building physics. This research may be a beginning point towards 

better understanding of importance of building design parameters, simulation tools and 

sensitivity and uncertainty analysis in the building sector of Turkey. Several practical 

guides to reduce heating, lighting, ventilation energy can be developed for different 

building types by using the approach showed in this thesis.   
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APPENDIX A  

 

ADDITIONAL INFORMATION FOR PRACTICAL GUIDE 

 
 Here, additional information used in practical guide is summarized. This 

information is added to emphasize importance of sensitive design parameters and to 

ease understanding of reader.  

 Annual heating and cooling energy loads and also the range of influence of only 

sensitive design parameters on annual cooling energy consumption are indicated for 

today, 2020s, 2050s, and 2080s. The existing low-rise apartment block is defined in 

Chapter 4 in detail. It is admitted that the building has a central cooling system because 

generation of a general schedule for cooling is not easy for each flat because of the 

different behavior and daily activities of occupancies. Set point temperature is 26°C for 

cooling and 21°C for heating. In addition, heating system is turned on between 7 and 24 

in winter season. Air-conditioner is turned on between 11 and 24 during the summer 

season. Furthermore, constant air infiltration rate is accepted as 1ach in all calculations.  

 

A.1. Annul Cooling and Heating Loads in Existing Low-Rise 
Apartment Block 

  
 Figure A.1 and A.2 shows annual heating and cooling energy loads based on 

ground, intermediate and top floors. It is clear that average annual heating loads can be 

less than today. Percentage decrease for heating would be 20% in 2020s, 36% in 2050s, 

and 56% in 2080s compared to today. It can be seen that annual cooling load would be 

more than 32% in 2020s, 68% in 2050s, and 230% in 2080s compared to today.  
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Figure A.1. Annual heating loads according to years 

 

 

 
Figure A.2. Annual cooling loads according to years 

 

 

A.2. Relative Effect of Sensitive Design Parameters on Annul Cooling 
Loads  

 

All values are calculated by using existing low-rise apartment block and annual 

cooling loads are shown for all floors.   

 

A.2.1. Set Point Temperature  
  

 When set point temperature decreases from 26°C to 23°C, annual cooling load 

would be more than 69% today. Percentage increase in annual cooling load would be 

28% in 2020s, 73% 2050s, and 235% in 2080s.  

1 2 3 

1 2 3 
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Figure A.3. Influence of set point temperature on annual cooling load 

 

A.2.2. Window 
 

 Windows are one of the important parameters affecting cooling load. Thus, 

decreased window area in all orientations improves energy performance in terms of 

cooling.   

 If window area is reduced, cooling load can be decreased and reduction rate can 

change based on the directions. For example, if window area on south direction is 

designed as 30% instead of 50%, annual cooling load in existing low-rise apartment 

block can be 13% less today, 10.8% less in 2020s, 8.8% less in 2050s, and 7.2% less in 

2080s (Figure A.4).    

 If window area on east direction is design as 20% instead of 40%, 11% today, 

9.6% in 2020s, 8.2% in 2050s, and 6.5% annual cooling  energy load in 2080s can be 

saved (Figure A.5).    

 If window area on west direction is design as 30% instead of 50%, annual 

cooling load in existing low-rise apartment block can be 11% less today, 9.6% in 2020s, 

8.2% in 2050s, and 6.5% in 2080s (Figure A.6).   
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Figure A.4. Influence of window area (on south) on cooling load  
 

 
  

Figure A.5. Influence of window area (on east) on cooling load  
 

 
 

Figure A.6. Influence of window area (on west) on cooling load 

  

Another important feature is glazing on windows since its thermal properties such as 

SHGC value can influence the amount of energy consumption. When a glazing which 

has 0.4 SHGC value instead of 0.6 is preferred in windows at only south direction in 

existing low-rise apartment block, 8.7% reduction of cooling consumption today, 7.4% 
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reduction of cooling consumption in 2020s, 6.2% reduction of cooling consumption in 

2050s, and 5.3% reduction of cooling consumption in 2080s can be possible (Figure 

A.7).   On east direction, when glazing which has 0.4 SHGC value is used, percentage 

decrease in cooling load would be 8.9% today, 7.8% in 2020s, 6.6% in 2050s, and 5.7% 

in 2080s (Figure A.8). On west direction, percentage reduction in cooling load would be 

9.3% today, 7.9% in 2020s, 6.4% in 2050s, and 5.9% in 2080s (Figure A.9).  

 

 
  

Figure A.7. Influence of SHGC value of glazing (on south)  on cooling load  
 

 

 
 

Figure A.8. Influence of SHGC value of glazing (on east)  on cooling load 
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Figure A.9. Influence of SHGC value of glazing (on west)  on cooling load 

 

 

A.2.3. Natural Ventilation 
 

 Natural ventilation is one of the effective parameters on cooling load in low-rise 

apartment blocks. If natural ventilation rate is increased four times during the day when 

especially outside temperature is so high from inside temperature, the energy necessity 

for cooling would rise 16% today, 26% in 2020s, 35% in 2050s, and 44% in 2080s 

(Figure A.10). 

   

 
 

Figure A.10. Influence of natural ventilation rate  on cooling load (during the day) 

 

 However, energy saving with natural ventilation is possible at night, for outside 

temperature is usually lower than inside temperature.  If natural ventilation rate is 
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increased three times during the night, the energy requirement for cooling would 

decrease 4.8% today, 10% in 2020s, 13% in 2050s, and 17% in 2080s (Figure A.11). 

 

 
 

Figure A.11. Influence of night ventilation rate  on cooling load 

 

A.2.4. Building Geometry 
 

 Building geometry is evaluated with building width and length. Therefore, 

firstly impact of building length on cooling is investigated. When length of a low-rise 

apartment block reduces from 24.6m to 22.6m, cooling load can be less 9% today, 8.6% 

in 2020s, 6.5% in 2050s, and 5.3% in 2080s (Figure A.12).   

 

 
 

Figure A.12. Influence of building length on cooling load 

 

Secondly, influence of building width on cooling is assessed. When width of a low-rise 

apartment block reduces from 23.3m to 21.3m, cooling load can be less 7.7% today, 

5.7% in 2020s, 5.1% in 2050s, and 5.6% in 2080s (Figure A.13).   
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Figure A.13. Influence of building width  on cooling load 

 

A.2.5.Thermal Insulation 
 

 Insulation thickness on ground and roof are among the sensitive design 

parameters but they have mostly considerable impact on cooling load in ground and top 

floor. Therefore, cooling load in only ground and top floor is examined in this part.  If 

insulation thickness on ground floor is increased from 4cm to 7cm, cooling load can 

increase 16% today, 12% in 2020s, 10% in 2050s, and 7.8% in 2080s. It may be due to 

low temperature on ground. Thus heat loss should be more from the ground in summer 

season (Figure A.14).     

 

 
 

Figure A.14. Influence of insulation thickness (on ground)  on cooling load 

 

If insulation thickness on roof is increased from 7cm to 10cm, cooling load can decrease 

1.8% today, 2% in 2020s, 2.2% in 2050s, and 2.7% in 2080s (Figure A.15).   

 



110 

 

 
  

Figure A.15. Influence of insulation thickness (on roof)  on cooling load 
 

 

A.2.6. Zone Height 
 

 Zone height affects directly volume of cooling space. For that reason, it has 

important impact on cooling load in low-rise apartment block.  When only zone height 

is increased from 2.8m to 3m, cooling load can increase 2.5% today, 2.4% in 2020s, 

2.7% in 2050s, and 4.3% in 2080s (Figure A.16).  

 
 

 
 

Figure A.16. Influence of zone heaight  on cooling load 

 

A.2.7. Air Infiltration 
 

 The general reason of air infiltration is quality of construction in buildings but its 

influence is significant on energy consumption for cooling.   
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Thus, it should be minimized in low-rise apartment blocks. When air infiltration rate 

increased from 0.7ach to 1, cooling load can increase 2.5% today, 2.9% in 2020s, 3.2% 

in 2050s, and 3.7% in 2080s (Figure A.17).  

 

 
 

Figure A.17. Influence of air infiltration rate  on cooling load 
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