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ABSTRACT

AUTOMATIC IDENTIFICATION OF ABNORMAL REGIONS IN DIGITIZED
HISTOLOGY CROSS-SECTIONS OF COLONIC TISSUES AND

ADENOCARCINOMAS USING QUASI-SUPERVISED LEARNING

In this thesis, a framework for quasi-supervised histopathology image texture identi-

fication is presented. The process begins with extraction of texture features followed

by a quasi-supervised analysis. Throughout this study, light microscopic images

of the hematoxylin and eosin stained colorectal histopathology sections containing

adenocarcinoma were quantitatively analysed. The quasi-supervised learning algo-

rithm operates on two datasets, one containing samples of normal tissues labelled

only indirectly and in bulk, and the other containing an unlabelled collection of

samples of both normal and cancer tissues. As such, the algorithm eliminates the

need for manually labelled samples of normal and cancer tissues commonly used for

conventional supervised learning and significantly reduces the expert intervention.

Several texture feature vector datasets corresponding to various feature calculation

parameters were tested within the proposed framework. The resulting labelling and

recognition performances were compared to that of a conventional powerful super-

vised classifier using manually labelled ground-truth data that was withheld from

the quasi-supervised learning algorithm. That supervised classifier represented an

idealized but undesired method due to extensive expert labelling. Several vector

dimensionality reduction techniques were evaluated an improvement in the perfor-

mance. Among the alternatives, the Independent Component Analysis procedure

increased the performance of the proposed framework. Experimental results on col-

orectal histopathology slides showed that the regions containing cancer tissue can

be identified accurately without using manually labelled ground-truth datasets in a

quasi-supervised strategy.
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ÖZET

KOLOREKTAL DOKU VE KOLOREKTAL ADENOKARSİNOM SAYISAL
HİSTOLOJİ KESİTLERİNDEKİ ANORMAL BÖLGELERİN YARI-GÜDÜMLÜ

ÖĞRENME KULLANILARAK OTOMATİK BELİRLENMESİ

Bu çalışmada histopatolojik görüntülerdeki desenlerin yarı-güdümlü öğrenme

yardımıyla tanınması amacıyla bir metodoloji geliştirilmiştir. Sözkonusu metodoloji,

desen vektörlerinin hesaplanması ve sonrasında uygulanan yarı-güdümlü öğrenme

aşamalarından oluşmaktadır. Bu çalışma kapsamında, adenokarsinom içeren hema-

toksilen ve eosin boyama uygulanmış kolorektal histopatoloji kesitleri analize tabi

tutulmuştur. Yarı-güdümlü öğrenme yöntemi, biri dolaylı yolla sağlıklı olarak be-

lirlenmiş, diğeri üzerinde hiç bir işaretleme yapılmamış sağlıklı/kanserli örnekler ol-

mak üzere iki ayrı vektör grubu üzerinde çalışır. Bu sayede, yarı-güdümlü öğrenme

yöntemi geleneksel güdümlü öğrenme yöntemlerinin ihtiyaç duyduğu sağlıklı ve

kanserli bölgelerin teker teker işaretlemesine gerek duymaz ve dolayısıyla uz-

man müdahelesi ihtiyacını önemli ölçüde azaltır. Önerilen yöntem, çeşitli desen

vektör hesaplama parametreleri kullanılarak elde edilmiş desen vektör veri kümeleri

üzerinde kullanılmıştır. Önerilen yöntemin desen tanıma başarımları, tümü elle

işaretlenmiş desenleri kullanan kabul görmüş bir güdümlü öğrenme yöntemi ile

karşılaştırılmıştır. Sözkonusu güdümlü öğrenme yöntemi fazla uzman müdahelesi

gerektirdiği için alternatif sunduğumuz güdümlü yöntemlerinden birisidir. Bu

çalışmada önerilen yöntemin tanıma başarımını arttırmak amacıyla çeşitli vektör

boyut azaltma yaklaşımları denenmiştir. Bu yaklaşımlardan Bağımsız Bileşenler

Analizi yöntemi önerilen yönteme ait desen tanıma başarımını arttırmıştır. Sonuç

olarak, kolorektal histopatoloji kesitleri üzerinde yapılan deneyler, kanserli bölgeler

içeren doku kesitlerinin tek tek elle işaretlenmiş verileri kullanmadan başarılı bir

şekilde tanındığını göstermiştir.
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CHAPTER 1

INTRODUCTION

Improvements in image analysis and machine learning techniques allowed

researchers to address the ultimate goal of supporting pathologists in disease detec-

tion and grading. Increasing number of complex patterns that need to be checked

by pathologists and rapidly growing histopathology slide databases, keep the sub-

ject of automated quantitative analysis of histopathology slides indispensable today.

Computerized analysis of histopathology slides has been a very attractive research

topic with the recent advances in computational power.

Histopathology refers to the microscopic examination of tissue in order to

study the manifestations of disease. Specifically, in clinical medicine, histopathology

refers to the examination of a biopsy or surgical specimen by a pathologist, after

the specimen has been processed and histological sections have been placed onto

glass slides. The diagnosis from a histopathology image still remains the standard

in diagnosing considerable number of diseases including almost all types of cancer

(Rubin et al. 2011).

Recent developments in histopathology increased the importance of digital

storage and processing of tissue slides in computerized environments. The de-

velopment of full-automated image analysis systems that scan and segment nor-

mal/abnormal tissue profiles in recorded digital histology slides also became an

appealing topic.

Cancer is a disease that can easily be identified by abnormal tissue profiles.

Generally, heterogeneous cancerous regions can easily be identified in homogeneously

distributed tissue profiles. Colorectal cancer is one of the commonest malignant

tumors worldwide and represented the fifth cause of cancer-related death in 2008

(World Health Organization 2008). In Turkey, colorectal cancer was the fourth cause

of cancer-related death due to 2008 statistics. Practically, colon or rectum cancer is

characterized as separate cancer instances. Colorectal cancer is a composite name

for colon and rectum cancer. It is the uncontrolled growth of tissue cells in either the
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colon or rectum which causes the colorectal cancer. The vast majority of colorectal

cancer is an adenocarcinoma (nearly 85%) because the colon has numerous glands

within the tissue (Lanza et al. 2011).

In a supervised pattern classification algorithm, which is usually a part of

the automated disease detection, an expert should individually check and label all

the training features into several categories in order to have a ground truth dataset.

Manual processing effort of the biomedical data might be very time consuming espe-

cially for today’s rapidly growing image databases. In addition, objective decisions

held for some features may have a negative effect on the performance of the su-

pervised classifier used. Especially, for multi-user platforms or for a system that is

implemented in a distributed architecture, suppression of the expert objectivity be-

comes widely important. In computational analysis of histology slides, for instance,

a pathologist can easily identify tissue cross-sections that are free from cancerous

abnormalities. However, such abnormalities may occur amid tissue that is benign in

appearance and have to be either painstakingly labelled by an expert pathologist.

The main objective of our study is to perform automated detection of col-

orectal adenocarcinomas in a set of light microscopic histopathology slide images by

minimising the prior expert intervention by a quasi-supervised learning algorithm.

Quasi-supervised Learning (QSL) is a statistical learning algorithm that contrasts

two datasets by computing estimates for the posterior probabilities of their samples

of belonging in either dataset (Karaçalı 2010). Therefore, the QSL method is suit-

able for a cancer disease identification problem whether the labelled samples would

have been available from one class only, which is healthy, and, a second, unlabelled

dataset could also be provided containing a mixture of samples from both reference

and target classes, which are healthy and cancer, respectively.

Hence, we have constructed a histopathology image dataset including images

of healthy tissues only, defined as non-neoplastic colorectal (NNCR), and images

partially containing CRCa tissues. We also organised the histopathology image

dataset as two separate histopathology image groups; the reference group containing

only healthy images and the unlabelled mixed group having either the healthy images

or images having CRCa tissues partially. From the perspective of feature class labels,

we had two data groups, the reference group including features of class label NNCR

2



and the mixed group including features of both class labels, either NNCR and CRCa.

QSL algorithm is to be applied to the reference and mixed feature data groups

and the disease identification is to be carried out by contrasting the unlabelled mixed

dataset samples to the reference dataset. QSL selects those that are dissimilar from

the reference samples beyond a statistical significance level as target samples.

Vector dimensionality reduction is a mathematical transformation to repre-

sent a vector dataset in a relatively lower dimension. In a classification problem,

the dimensionality reduction is usually performed to improve the classification per-

formance and the computation time.

In this study, to detect heterogeneous target texture profiles, multi-

dimensional textural feature vectors are to be calculated using the local histogram

based first order texture features and features derived from co-occurrence matrices

which are known as Haralick features (Haralick et al. 1973).

This study is basically focused on the evaluation of QSL on various feature ex-

traction parameter configurations and different dimensionality reduction approaches

that is applied to the original data. It is also very important to gather the com-

parative information of a new method against other off the shelf vector classifiers

on the same texture feature vector datasets in order to comment about the perfor-

mance as an alternative approach. In order to obtain an independent evaluation of

the labelling and target classification performances, we have used a Support Vector

Machine (SVM) classifier trained on the ground-truth label data that was withheld

from the quasi-supervised labelling strategy (Cortes and Vapnik 1995, Vapnik 1998,

Burges 1998).

1.1 Organization Of The Thesis

This dissertation is organized as follows; Chapter 2 is dedicated to the de-

scription of the problem with details on histopathology science and disease to be

evaluated (i.e. colorectal adenocarcinoma). A literature review will follow in Chap-

ter 3 summarizing the research previously done on quantitative histopathological im-

age analysis and quasi-supervised learning. In Chapter 4, the technical background

information for the elementary parts of the proposed framework is presented. In
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addition, the proposed framework is described in the form of a graphical abstract.

The experimental setup of our study along with the results of the experimental exe-

cution is described in Chapter 5. Furthermore, Chapter 6 consists of the conclusions

of the thesis research and a discussion about future projections that may follow this

research effort.
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CHAPTER 2

PROBLEM DESCRIPTION

This chapter basically describes our study. The main idea of the study was to

perform automated detection of a specific disease by minimising the need for prior

expert intervention, by a quasi-supervised learning algorithm. The problem defini-

tion could be specified more by selecting light microscopy histopathology imaging as

modality and selecting a specific disease; human colorectal adenocarcinoma (CRCa)

which originates in colon tissues.

To have a mature problem definition, we should first introduce the

histopathology science and histology of the colon. In addition, colorectal cancers

which have increasing incidence and mortality rates in recent years, are to be de-

scribed below.

2.1 Histopathology

Histopathology (compound of three Greek words: histos “tissue”, pathos

“disease-suffering”, and logia) refers to the microscopic examination of tissue in order

to study the manifestations of disease. Specifically, in clinical medicine, histopathol-

ogy refers to the examination of a biopsy or surgical specimen by a pathologist, after

the specimen has been processed and histological sections have been placed onto

glass slides. In contrast, cytopathology examines free cells or tissue fragments.

Histopathological examination of tissues starts with surgery, biopsy or au-

topsy. The tissue is removed from the body or plant, and then placed in a fixative

which stabilizes the tissues to prevent decay. The most common fixative is formalin

that is 10% formaldehyde in water.

The tissue is then prepared for viewing under a microscope using either chem-

ical fixation or frozen section which will be discussed in the following sections.
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Chemical Fixation

In chemical fixation, the samples are transferred to a cassette, a container

designed to allow reagents to freely act on the tissue inside. This cassette is immersed

in multiple baths of progressively more concentrated ethanol, to dehydrate the tissue,

followed by toluene or xylene and finally extremely hot liquid (usually paraffin).

During this 12 to 16 hour process, paraffin will replace the water in the tissue,

turning soft, moist tissues into a sample miscible with paraffin, a type of wax. This

process is known as tissue processing.

The processed tissue is then taken out of the cassette and set in a mold.

Through this process of embedding, additional paraffin is added to create a paraffin

block which is attached to the outside of the cassette.

The process of embedding then allows the sectioning of tissues into very thin

(2 - 7 micrometer) sections using a microtome. The microtome slices the tissue

ready for microscopic examination. The slices are thinner than the average cell, and

are layered on a glass slide for staining.

Frozen Section Processing

The second method of histopathology processing is called frozen section pro-

cessing. In this method, the tissue is frozen and sliced thinly using a microtome

mounted in a below-freezing refrigeration device called the cryostat. The thin frozen

sections are mounted on a glass slide, fixed immediately and briefly in liquid fixa-

tive, and stained using the similar staining techniques as traditional wax embedded

sections. The advantages of this method is rapid processing time, less equipment

requirement, and less need for ventilation in the laboratory. The disadvantage is

the poor quality of the final slide. It is used in intra-operative pathology for deter-

minations that might help in choosing the next step in surgery during that surgical

session (e.g., to preliminarily determine clearness of the resection margin of a tumor

during surgery).
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Staining of the Processed Histopathology Slides

In order to see the tissue under a microscope, the sections are stained with

one or more pigments. The aim of staining is to reveal cellular components; counter-

stains are used to provide contrast. The majority of stains only absorb light, and

the stained slides are therefore viewed using a microscope with a light illuminating

the sample from below. If no stain is present, all of the light will pass through,

appearing bright white. Areas where the stain has adhered to a substance in the

tissue will absorb some of the light. The amount of light absorbed depends on many

factors. For a given unit of stain, a certain amount of light in each spectrum will be

absorbed.

The most commonly used stain in histopathology is a combination of hema-

toxylin and eosin (often abbreviated H&E). Hematoxylin is used to stain nuclei

blue, while eosin stains cytoplasm and the extracellular connective tissue matrix

pink. Due to the long history of H&E, well-established methods, and a tremendous

amount of data and publications, there is a strong belief among many pathologists

that H&E will continue to be the common practice over the next 50 years (Fox

2000).

There are hundreds of various other techniques which have been used to se-

lectively stain cells. Other compounds used to color tissue sections include safranin,

Oil Red O, congo red, silver salts and artificial dyes.

Interpretation

The histological slides are examined under a microscope by a pathologist, a

medically qualified specialist who has completed a recognised training programme.

This medical diagnosis is formulated as a pathology report describing the histological

findings and the opinion of the pathologist. In the case of cancer, this represents

the tissue diagnosis required for most treatment protocols. In the removal of cancer,

the pathologist will indicate whether the surgical margin is cleared, or is involved

(residual cancer is left behind).
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2.2 Histology Of The Colon

The colon is the upper part of the large intestine tube while the rectum is the

lower part. The colon is the last part of the digestive system in most vertebrates; it

extracts water and salt from solid wastes before they are eliminated from the body,

and is the site in which flora-aided (largely bacterial) fermentation of unabsorbed

material occurs. Unlike the small intestine, the colon does not play a major role in

absorption of foods and nutrients. However, the colon does absorb water, sodium

and some fat soluble vitamins.

Basic histological parts of the colon include;

• Mucosa within which exists the epithelium, the intestinal glands (glands of

Lieberkühn), lamina propria and muscularis mucosa.

– lamina propria - (lamina propria mucosae), the layer of loose connective

tissue beneath the gastrointestinal tract epithelium and with the epithe-

lium form the mucosa.

– muscularis mucosa - thin layer of smooth muscle outside the lamina pro-

pria and separating it from the submucosa of the gastrointestinal tract,

this layer ends at the recto-anal junction.

• Submucosa is dense irregular connective tissue that supports the mucosa.

• Muscularis externa; containing inner circular and outer longitudinal smooth

muscle layers.

• Lymphatic nodules in the lamina propria and submucosa.

• A myenteric (Auerbach) nerve plexus (parasympathetic) exists between the

muscularis externa layers.

• The outermost serosa which is the outermost connective tissue layer covering

the gastrointestinal tract in regions where it passes through body cavities.

Figures 2.1 - 2.6 illustrate the histological parts on several H & E stained

colon sections.

8



(a) (b)

Figure 2.1. Colon histology.
(Source: UNSW Embryology website.)

(a) (b)

Figure 2.2. Crypts of Lieberkühn - (intestinal gland, intestinal crypt) (a) longitudi-
nal, (b) transverse. (Source: UNSW Embryology website.)
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Figure 2.3. Colon cross section histological view.
(Source: Notes On Gastrointestinal Histology, University of Ottawa)

Figure 2.4. Low power magnification view of the colon with glands cut obliquely.
(cr) crypts or glands, (*) muscularis mucosae, (subm) submucosa, (circ)
inner circular layer of muscularis externa. (Source: Notes On Gastroin-
testinal Histology, University of Ottawa )
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Figure 2.5. Higher power magnification view of mucosa of colon. (cr) crypts or
glands, (LP) lamina propria, (ln) lymph nodule, (*) muscularis mucosae,
inside one gland, (∧) shows change in sectioning from straight (top) to
more oblique. (Source: Notes On Gastrointestinal Histology, University
of Ottawa )

Figure 2.6. Low power magnification view of muscularis externa with tenia coli.
(circ) inner circular layer, (CT) connective tissue separating circular
and longitudinal muscle layer, (long) outer longitudinal layer, (TC) part
of a tenia coli. (Source: Notes On Gastrointestinal Histology, University
of Ottawa )
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2.3 Adenocarcinoma

Adenocarcinoma is a cancer of an epithelium that originates in glandular

tissue. Epithelial tissue includes, but is not limited to, the surface layer of skin,

glands and a variety of other tissue that lines the cavities and organs of the body.

Epithelium can be derived embryologically from ectoderm, endoderm or mesoderm.

To be classified as adenocarcinoma, the cells do not necessarily need to be part of

a gland, as long as they have secretory properties. This form of carcinoma can

occur in some higher mammals, including humans. Well differentiated adenocar-

cinomas tend to resemble the glandular tissue that they are derived from, while

poorly differentiated adenocarcinomas may not. By staining the cells from a biopsy,

a pathologist can determine whether the tumor is an adenocarcinoma or some other

type of cancer. Adenocarcinomas can arise in many tissues of the body due to the

ubiquitous nature of glands within the body. While each gland may not be secret-

ing the same substance, as long as there is an exocrine function to the cell, it is

considered glandular and its malignant form is therefore named adenocarcinoma.

Endocrine gland tumors, such as a VIPoma, an insulinoma, a pheochromocytoma,

etc., are typically not referred to as adenocarcinomas, but rather, are often called

neuroendocrine tumors. If the glandular tissue is abnormal, but benign, it is said to

be an adenoma. Benign adenomas typically do not invade other tissue and rarely

metastasize. Malignant adenocarcinomas invade other tissues and often metastasize

given enough time to do so.

2.3.1 Colorectal Adenocarcinoma

Practically, colon or rectum cancer is characterized as separate cancer in-

stances. Colorectal or bowel cancer is a composite name for colon and rectum

cancer. It is the uncontrolled growth of tissue cells in either the colon or rectum

which causes the colorectal cancer.

Epithelial tumors of the colon and rectum are frequent pathologic entities.

Colorectal cancer is one of the commonest malignant tumors worldwide and rep-
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resented the fifth cause of cancer-related death in 2008, please see (World Health

Organization 2008). In order to see the estimated worldwide incidence and mortality

rates please refer to Figures 2.7 and 2.8.

Figure 2.7. Estimated age-standardised incidence and mortality rates, for both
sexes: 2008, Worldwide. (Source: World Health Organization)

In Turkey, colorectal cancer was the fourth cause of cancer-related death

due to 2008 statistics. Figures 2.9 and 2.10 present the corresponding estimated

incidence and mortality rates.

The vast majority of colorectal cancer is an adenocarcinoma (nearly 85%)

(Lanza et al. 2011). This is because the colon has numerous glands within the

tissue. Normal colonic glands tend to be simple and tubular in appearance with a

mixture of mucus secreting goblet cells and water absorbing cells. These structures

are called glands because they secrete a substance into the lumen of the colon, this

substance being mucus. The purpose of these glands are twofold. The first is to

absorb water from the feces back into the blood. The second purpose is to secrete

mucus into the colon lumen to lubricate the now dehydrated feces. This is crucial as

a failure to lubricate the feces can result in colonic damage by the feces as it passes

towards the rectum.

When these glands undergo a number of changes at the genetic level, they
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(a)

(b)

Figure 2.8. Estimated age-standardised (a) incidence and (b) mortality rates, for
both sexes: 2008, Worldwide. (Source: World Health Organization)
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Figure 2.9. Estimated age-standardised incidence and mortality rates, for both
sexes: 2008, Turkey. (Source: World Health Organization)

proceed in a predictable manner as they move from benign to an invasive, malignant

colon cancer. In their research paper “Lessons from Hereditary Colorectal Cancer”,

Vogelstein, et al., suggested that colon cells lose the APC tumor suppressor gene

and become a small polyp (Kinzler and Vogelstein 1996). Next, they suggested that

k-Ras gene becomes activated and the polyp becomes a small, benign, adenoma.

The adenoma, lacking the “carcinoma” attached to the end of it, suggests that it

is a benign version of the malignant adenocarcinoma. The gastroenterologist uses a

colonoscopy to find and remove these adenomas and polyps to prevent them from

continuing to acquire genetic changes that will lead to an invasive adenocarcinoma.

Volgelstein et al. went on to suggest that loss of the DCC gene and of p53 tumor

suppressor protein result in a malignant adenocarcinoma.

Grossly, one will see a mass that looks of a different color than the surround-

ing tissue. Bleeding from the tumor is often apparent as the tumor tends to grow

blood vessels into it in a haphazard manner via secretion of a number of angio-

genesis promoting factors such as VEGF. Histologically, tumor resembling original

structures are classified as well differentiated. Tumor cells, that have lost any resem-

blance to original tissue, both in appearance and structure form are denoted as poor

differentiated tumor cells. Regardless of the grade, malignant tumors tend to have
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(a)

(b)

Figure 2.10. Estimated age-standardised (a) incidence and (b) mortality rates, for
both sexes: 2008, Turkey. (Source: World Health Organization)
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a large nucleus with prominent nucleoli. There will also be a noticeable increase in

the incidence of mitoses, or cell divisions.

Colorectal adenocarcinoma is histologically characterised with any one of the

following conditions;

• Usually significant architectural and/or cytologic atypia is/are observed.

• Desmoplastic stroma exists.

• Glands not accompanied by lamina propria.

• Tumor invades submucosa.

• Tumor invades muscularis propria.

• Tumor invades through the muscularis propria into the subserosal adipose

tissue or the nonperitonealized pericolic or perirectal soft tissues.

• Tumor penetrates to the surface of the visceral peritoneum (serosa).

• Tumor is usually infiltrative, non-circumscribed.

In Figure 2.11, two histopathology slides containing colorectal adenocarci-

noma are presented. In addition, there are severeal future reference histopathlogy

slides for colorectal adenocarcinoma are available in Figures 5.1 , 5.14(b) and 5.20.

2.3.2 Overview Of Colorectal Adenocarcinoma Diagnosis
Methods

There are several different methods available in order to diagnose colorectal

cancer, please see (Society 2012) and (Medical 2012) . These methods are discussed

below;

• Blood tests: Colorectal adenocarcinoma can be diagnosed or even previously

diagnosed cases can be monitored by certain blood tests. These blood tests

include;

17



(a)

(b)

Figure 2.11. Two histopathology slides containing colorectal adenocarcinoma.
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– Fecal occult blood test (FOBT): FOBT is a test for blood in the stool.

Two types of tests are used for detecting occult blood in stools i.e. gua-

iac based (chemical test) and immunochemical. The sensitivity of im-

munochemical testing is superior to that of chemical testing without an

unacceptable reduction in specifity.

– Complete blood count (CBC): CBC is performed to detect anemia (too

few red blood cells). Some people with colorectal cancer become anemic

because of prolonged bleeding from the tumor.

– Liver enzymes: Since colorectal cancer can spread to the liver, a blood

test is performed to check the liver functions.

• Tests to look for colorectal cancer or colorectal polyps:

– Digital rectal exam (DRE): The doctor inserts a lubricated, gloved finger

into the rectum to feel for abnormal areas. It only detects tumors large

enough to be felt in the distal part of the rectum but is useful as an initial

screening test.

– Endoscopy. If symptoms or the results of the physical exam or blood

tests suggest that colorectal cancer might be present, the doctor may

recommend more tests. This most often is colonoscopy, but sometimes a

sigmoidoscopy or an imaging test.

∗ Sigmoidoscopy: A lighted probe (sigmoidoscope) is inserted into the

rectum and lower colon to check for polyps and other abnormalities.

∗ Colonoscopy: A lighted probe called a colonoscope is inserted into the

rectum and the entire colon to look for polyps and other abnormal-

ities that may be caused by cancer. Colonoscopy is a good option

because it allows doctors to inspect the entire length of the colon

with a little camera. Colonoscopy has the advantage that if polyps

are found during the procedure they can be immediately removed.

Tissue can also be taken for biopsy.

– Biopsy: Usually if a suspected colorectal cancer is found by any diagnostic

test, it is biopsied during a colonoscopy. In a biopsy, the doctor removes a
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small piece of tissue with a special instrument passed through the scope.

Less often, part of the colon may need to be surgically removed to make

the diagnosis. No colon cancer diagnosis is final until the tissue sample

from the colon is analyzed in a laboratory and found to contain cancer

cells.

– Lab tests of samples: Biopsy samples (from colonoscopy or surgery) are

sent to the lab where a pathologist, a doctor trained to diagnose cancer

and other diseases in tissue samples, looks at them under a microscope.

Other tests may suggest that colorectal cancer is present, the only way to

determine this for certain is to look at the samples under a microscope.

– Stool DNA testing is an emerging technology in screening for colorectal

cancer. Premalignant adenomas and cancers shed DNA markers from

their cells which are not degraded during the digestive process and remain

stable in the stool. Capture, followed by Polymerase Chain Reaction

(PCR) amplifies the DNA to detectable levels for assay. Clinical studies

have shown a cancer detection sensitivity of 71%-91%.

• Imaging tests by using different modalities: Imaging tests use sound waves, x-

rays, magnetic fields, or radioactive substances to create pictures of the inside

of the human body. Imaging tests may be done for a number of reasons,

including to help find out whether a suspicious area might be cancerous, to

learn how far cancer may have spread, and to help determine if treatment has

been effective.

– Computed tomography (CT or CAT) scan. The CT scan is an x-ray test

that produces detailed cross-sectional images of your body. Instead of

taking one picture, like a regular x-ray, a CT scanner takes many pictures

as it rotates around a patient who is lying on a table. A computer then

combines these pictures into images of slices of the part of your body

being studied. Unlike a regular x-ray, a CT scan creates detailed images

of the soft tissues in the body. This test can help tell if colon cancer has

spread into your liver or other organs.

– Ultrasound. Ultrasound uses sound waves and their echoes to produce a
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picture of internal organs or masses. A small microphone-like instrument

called a transducer emits sound waves and picks up the echoes as they

bounce off body tissues. The echoes are converted by a computer into a

black and white image that is displayed on a computer screen. This test

does not expose any radiation to the patient.

Abdominal ultrasound can be used to look for tumors in your liver, gall-

bladder, pancreas, or elsewhere in your abdomen, but it can’t look for

tumors of the colon. For the exam, you simply lie on a table and a techni-

cian moves the transducer along the skin overlying the part of your body

being examined.

Two special types of ultrasound exams are sometimes used to evaluate

colon and rectal cancers:

∗ Endorectal ultrasound: This test uses a special transducer that is

inserted directly into the rectum. It is used to see how far through

the rectal wall a cancer may have penetrated and whether it has

spread to nearby organs or tissues such as lymph nodes.

∗ Intraoperative ultrasound: This exam is done during surgery after

the surgeon has opened the abdominal cavity. The transducer can

be placed against the surface of the liver, making this test very useful

for detecting the spread of colorectal cancer to the liver.

– Magnetic resonance imaging (MRI) scan. Like CT scans, MRI scans

provide detailed images of soft tissues in the body. But MRI scans use

radio waves and strong magnets instead of x-rays. The energy from the

radio waves is absorbed by the body and then released in a pattern formed

by the type of body tissue and by certain diseases. A computer translates

the pattern into a very detailed image of parts of the body. A contrast

material called gadolinium is often injected into a vein before the scan to

better see details.

MRI scans are sometimes useful in looking at abnormal areas in the liver

that might be due to cancer spread. They can also help determine if rectal

cancers have spread into nearby structures. To improve the accuracy of

the test, some doctors use endorectal MRI. For this test the doctor places
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a probe, called an endorectal coil, inside the rectum.

– Positron emission tomography (PET) scan. For a PET scan, a form of

radioactive sugar (known as fluorodeoxyglucose or FDG) is injected into

the blood. The amount of radioactivity used is very low. Cancer cells in

the body grow rapidly, so they absorb large amounts of the radioactive

sugar. After about an hour, the patient will be moved onto a table in the

PET scanner. The patient lies on the table for about 30 minutes while

a special camera creates a picture of areas of radioactivity in the body.

The picture is not finely detailed like a CT or MRI scan, but it provides

helpful information about the whole body.

A PET scan can help give the doctor a better idea of whether an abnormal

area seen on another imaging test is a tumor or not. If one has already

been diagnosed with cancer, the doctor may use this test to see if the

cancer has spread to lymph nodes or other parts of the body.

– X-ray double contrast barium enema (DCBE): In this method, firstly, an

overnight preparation is taken to cleanse the colon. An enema containing

barium sulfate is administered, then air is insufflated into the colon, dis-

tending it. The result is a thin layer of barium over the inner lining of the

colon which is visible on x-ray films. A cancer or a precancerous polyp

can be detected this way. This technique can miss the (less common) flat

polyps.

2.4 Objectives Of The Study

The main objective of the study was to perform automated detection of

colorectal adenocarcinomas in a set of light microscopic histopathology slide images

by minimising the prior expert intervention by QSL algorithm.

In a supervised pattern classification algorithm, which is usually a part of

the automated disease detection, an expert should individually check and label all

the training features into several categories in order to have a ground truth dataset.

Ground truth datasets are then used as the basis for statistical learning, specifically
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to construct a classification rule using one of the methods; support vector ma-

chines (Cortes and Vapnik 1995, Vapnik 1998), nearest neighbour classifiers (Cover

and Hart 1967), neural networks (Haykin 2008), discriminant functions (McLachlan

2004).

Manual processing effort of the biomedical data might be very time consum-

ing especially for today’s rapidly growing image databases. In addition, objective

decisions held for some features may have a negative effect on the performance of

the supervised classifier used. Especially, for multi-user platforms or for a system

that can be implemented in a distributed architecture, suppression of the expert ob-

jectivity becomes widely important. In computational analysis of histology slides,

for instance, a pathologist can easily identify tissue cross-sections that are free from

cancerous abnormalities. However, such abnormalities may occur amid tissue that

is benign in appearance and have to be either painstakingly labelled by an expert

pathologist.

Quasi-supervised Learning (QSL) is a statistical learning algorithm that con-

trasts two datasets by computing estimates for the posterior probabilities of their

samples of belonging in either dataset (Karaçalı 2010). Therefore, the QSL method

is suitable for a our disease identification problem whether the labelled samples

would have been available from one class only, which is healthy. A second, unla-

belled dataset could also be provided containing a mixture of samples from both

reference and target classes, which are healthy and cancer, respectively. Hence, we

should set up a histopathology image dataset including images of healthy tissues

only and images including CRCa tissues. We will also organise the histopathology

image dataset as two separate histopathology image groups; the reference group

containing only healthy images and the unlabelled mixed group having either the

healthy images or images having CRCa tissues partially. From the perspective of

feature class labels, we will have two data groups, the reference group including

features of class label NNCR and the the mixed group including features of both

class labels NNCR and CRCa.

QSL algorithm is to be applied to the reference and mixed feature groups and

the disease identification is to be carried out by contrasting the unlabelled mixed

dataset samples to the reference dataset, and selects those that are dissimilar from
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the reference samples beyond a statistical significance level as target samples.

In this study, we decided to use local image texture characteristics other than

object level identifiers. We plan to perform tests with various texture characteris-

tics and to determine which characteristics will be the most discriminative for the

proposed methodology. Especially, in cases where the data do not allow perfect

separation of the both classes, the algorithm is expected to outperform off-the-shelf

classification algorithms as it is a model-free alternative to existing techniques and

it will not search for a separation boundary optimized according to some criteria.

In order to have performance comparison, a supervised classifier will be applied to

the same feature datasets and the resultant classification results will be reviewed.

On the other hand, several dimensionality reduction algorithms used in au-

tomated pattern classification schemes will also be tested in our methodology to

capture if there is a better data characterisation and related performance improve-

ment in accurate texture identification.
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CHAPTER 3

LITERATURE REVIEW

This chapter presents an overview of the existing literature on the fields of

automated diagnosis and quantitative histopathological image analysis. The en-

try part makes an introduction with the history of the computer-assisted diagnosis

(CAD) researches. In the first section, a specialised adoption of CAD, the quanti-

tative histopathological image analysis, is reviewed. In the review of quantitative

histopathological image analysis studies, firstly, several studies are described by

focusing corresponding tissues of interest. In its following subsections, the stud-

ies are presented in a separate subsection per each main functional stages of a

histopathological image analysis framework (i.e color normalisation, segmentation,

feature extraction and classification). In the later section, resultant classification

accuracies reported in several image analysis studies are listed. These accuracy lev-

els given in percentage terms enable readers to compare with our output labelling

and classification performances. In the last section, which describes the literature on

“Quasi-supervised Learning”, we present several recent researches on QSL paradigm

and along with their outputs.

Computer-assisted diagnosis research can be traced back to the 1980s (Dia-

mond et al. 1982, Hallouche et al. 1992). Furthermore, the widespread use of CAD

has started with the emergence of digital mammography in the early 1990s (Sahiner

et al. 1996, Mendez et al. 1998). Currently, CAD has become one of the major

research subjects in medical imaging and diagnostic radiology.

With the recent advances in digitized histological archives caused by high-

throughput tissue banks, it now became possible to use histological tissue patterns

with computer-aided image analysis to perform disease classification. There is also

an expanding need for CAD to relieve the workload on pathologists by detecting

obviously benign areas, so that the pathologist can focus on the more suspicious

cases. As an example, approximately 80% of prostate biopsies performed in the

U.S. every year are benign; this suggests that prostate pathologists are spending
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most of their time examining benign tissue. (Gurcan et al. 2009)

A large focus of pathological image analysis has been on the automated

analysis of cytology imagery, since, cytology imagery often results from the least

invasive biopsies (e.g., the cervical Pap smear). Additionally, the characteristics

of cytology imagery, namely the presence of isolated cells and cell clusters in the

images and the absence of more complicated structures such as glands make it easier

to analyse these specimens compared to histopathology.

On the other hand, histopathology slides, provide a more comprehensive view

of a disease and its effects, since the underlying tissue architecture is preserved by the

preparation process. Therefore, some disease characteristics, such as lymphocytic

infiltration of cancer, may be deduced only from a histopathology image. In addition,

the diagnosis from a histopathology image still remains the standard in diagnosing

considerable number of diseases including almost all types of cancer (Rubin et al.

2011).

3.1 Quantitative Histopathological Image Analysis

This section presents an overview of the literature in the field of histopatho-

logical image analysis. The first part makes an introduction to histopathological

image analysis researches held from the tissue of interest, disease to be diagnosed or

to be graded point of view. In the following subsection, past researches on color nor-

malisation, which is very important for the cases including unbalanced histopathol-

ogy slide images are discussed. Following this subsection, various feature extraction

procedures taking part in histopathological image analysis are described. The later

subsection is the literature review of the studies grouped by classification paradigms,

or using the general terminology, the machine learning algorithms. Subsection 3.2 is

reserved for the review of colonic histopathological image analysis researches held,

since we also deal with the same tissue type in our thesis.

Computerized analysis of histopathology slides has been a very attractive

research topic with the recent advances in computational power. Meanwhile, im-

provements in image analysis and machine learning techniques allowed researchers

to address the ultimate goal of supporting pathologists in diagnosis, disease detec-
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tion and grading. Increasing number of complex patterns that need to be checked

by pathologists and rapidly growing histopathology slide databases keep the subject

of automated quantitative analysis of histopathology slides indispensable today.

There have been many histopathology studies conducted for automated de-

tection of regions possessing the characteristics of a specific disease. The diseases

taken into usual consideration in this respect include renal cell carcinoma (Waheed

et al. 2007), breast (Sahiner et al. 1996), cervical cancer (Hallouche et al. 1992) and

prostate cancer (Diamond et al. 1982, Pitts et al. 1993, Doyle et al. 2006, 2007).

Researches performed investigating colon tissues are detailed in a dedicated section

(see Section 3.2).

3.1.1 Color Normalisation In Histopathological Image Anal-
ysis

Inconsistencies in the preparation of histology slides make it difficult to per-

form quantitative analysis. Researchers provided various algorithms for overcoming

many of the known inconsistencies in the staining process, thereby bringing slides

that were processed or stored under very different conditions into a common, nor-

malized space to enable improved quantitative analysis.

In many biological fields, the sections are stained with one or more pigments

in order to see the tissue under a microscope. The aim of staining is to reveal

cellular components; counter-stains are used to provide contrast (for more detail

please see Section 2.1). The overall amount of light absorbed also varies between

slides prepared differently. The two most prominent factors that affect the intensity

of a slide are the relative amounts of stain added and the subsequent storage and

handling of the slide, as stains can fade when exposed to light.

Most histology slides are examined in isolation by a pathologist. These ex-

aminations focus on relative color differences and morphology of biological features.

Therefore, the pathologist need to compare different slides seldom. On the other

hand, several software tools that perform correction for spectral and spatial illu-

mination variations is becoming a standard package provided by most bright field

manufacturers. This is an essential step for automated algorithms that heavily de-
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pend on color space computations. This process reduces the differences in tissue

samples due to variation in staining and scanning conditions. The illumination can

be corrected either using calibration targets or estimating the illumination pattern

from a series of images by fitting polynomial surfaces (Can et al. 2008). Another

approach is to match the histograms of the images.

A simple algorithm was presented to obtain stain saturation values when the

stain vectors describing how the color is affected by the stain concentration (Ruifrok

and Johnston 2001). The remaining issue was determining which stain vectors

should be used. Previously calculated approximations for each type of stain exist

but these approximations ignore variations between specific stains. The proposed

method in the original paper requires manual selection of an area on the slide that

contains only one stain, and then calculates an average stain vector from this area.

In order to avoid contamination, it was recommended that a slide be stained with

only one stain at a time. Obviously, individually staining a slide is not a viable

option for slides that have already been processed or when only a scan of the slide

is available. This leaves the inferior option of manually selecting an area with a

minimal amount of other stains. Although this approach will lead to better results

than using a pre-calculated approximation, it is very tedious for large datasets.

Rabinovich et. al. proposed non-negative matrix factorization (NMF) to

solve the general color un-mixing problem (Rabinovich et al. 2004). This study

was motivated by the high levels of user interaction needed to determine the stain

vectors. Yang et. al. proposed another robust color-based segmentation algorithm

for histological structures that used image gradients estimated in the LUV color

space to deal with issues of stain variability (Yang et al. 2005). Wang et. al.,

in their oral cancer tissue classification scheme, used a color normalisation scheme

proposed by Reinhard et. al. (Reinhard et al. 2001, Wang et al. 2007). The method

used was a simple statistical analysis to impose one image’s color characteristics on

another. The researchers stated that one can achieve color correction by choosing

an appropriate source image and applying its characteristic to another image.

Macenko et. al. performed a study of color normalisation in optical density

space using H&E stained slides of melanomas and nevi (Macenko et al. 2009). The

authors stated that the method was applicable to other histologic stains and tissues.
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The algorithm for obtaining the optimal stain vectors has been evaluated on slides

with various stain combinations satisfactorily. However, when three or more stains

were present in a slide, results were sometimes found inconsistent.

In another color normalisation study, Magee et. al. presented a couple of

colour normalisation algorithms for digital histology images, evaluated against linear

normalisation in Lab colour space (Magee et al. 2009). These procedures mapped

the colour distribution of an over/under stained image to that of a well stained tar-

get image. The first method was based on the linear normalisation in Lab colour

space method, extended to multiple pixel classes using a probabilistic (Gaussian

Mixture Model based) colour segmentation method. Linear normalisation was ap-

plied separately for each pixel class (where class membership is defined by a pixel

being coloured by a particular chemical stain, or being uncoloured i.e. background).

This approach assumed an additive colour model. The second method presented

was based on normalisation in a stain specific colour deconvolution representation

(Ruifrok and Johnston 2001). In this representation, each dimension represents the

amount by which a pixel is stained by a particular chemical stain. There were two

variants of the procedure; a linear normalisation was applied in this representation,

and, separate transforms were defined for foreground and background. Magee et.

al. concluded that the segmentation based approach, while producing good results

on the majority of images, was less successful than the colour deconvolution method

for a significant minority of images as robust segmentation was required to avoid

introducing artefacts.

3.1.2 Histopathological Image Feature Extraction

This section lists the previous approaches to feature extraction in quantitative

histopathological image analysis. In order to provide easy consideration, Gurcan et.

al divided feature extraction methodologies into basic groups as; object level, multi-

scale and spatially related (Gurcan et al. 2009). We here followed the same structure

for the review of feature extraction.
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Object Level Feature Extraction

Commonly, an object in image analysis is defined as a connected group of

pixels satisfying some similarity criteria. Object-level histopathological analysis de-

pends greatly on some underlying segmentation mechanism. Despite the main focus

is often on the segmentation of nuclei, there exists little work that explicitly using

features of cytoplasm and stroma. Naik et al. used cytoplasmic and stromal features

to automatically segment glands in prostate histopathology (Naik et al. 2007). In

that study, the classification performance in distinguishing between different grades

of prostate cancer was found to be comparable using manual and automated gland

and nuclear segmentation. Moreover, it appeared that histologic objects may not

need to be perfectly segmented to be properly classified when a list of comprehensive

features was used in a feature selection scheme (Boucheron 2008). These results sug-

gested that the perfect segmentation is not necessarily a prerequisite for a successful

classification.

The definitions for object level features can be found in (Boucheron 2008).

These features were compiled from a comprehensive literature search on cytopathol-

ogy and histopathology image analysis. Object-level features can be categorized as

belonging to one of four categories: size and shape, radiometric and densitometric,

texture, and chromatin-specific.

In addition, various statistical measures for any of the vector quantities were

also proposed. Thus, the statistical measures; mean, median, minimum, maximum,

standard deviation, skewness, and kurtosis were calculated for all vector features.

Another approach that semantically describes histopathology images using

model based intermediate representation (MBIR) and incorporates low-level color

texture analysis was presented in (Sertel et al. 2009). In this approach, basic cyto-

logical components in an image were first identified using an unsupervised clustering

in the Lab color space. The connected components of nuclei and cytoplasm regions

were modelled using ellipses. An extensive set of features can be constructed from

this intermediate representation to characterize the tissue morphology as well as tis-

sue topology. Using this representation, the relative amount and spatial distribution

of these cytological components can be measured. In the application of follicular
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lymphoma grading, where the spatial distribution of these regions varies consid-

erably between different histological grades, MBIR provides a convenient way to

quantify the corresponding observations.

In this thesis, the second order texture features were calculated by using

co-occurrence matrices and the first order texture features were generated from

local histograms either in gray level or Lab planes separately. The mathematical

background and the implementation are described in detail in Section 4.1 and Section

5.3.

Multi-scale Feature Extraction

Resulting from the density of the data and the fact that pathologists tend to

employ a multi-resolution approach to analyse histopathology data, feature values

are strongly related to the viewing scale or resolution. For instance, at low scales,

color or texture cues are commonly used and at medium scales architectural ar-

rangement of individual histological structures (glands and nuclei) start to become

resolvable. It is only at higher resolutions that morphology of specific histological

structures can be discerned.

In a couple of studies, a multi-resolution approach has been used for the

classification of high-resolution whole-slide histopathology images (Kong et al. 2009,

Sertel et al. 2009). The proposed multi-resolution approach mimics the evaluation of

a pathologist such that image analysis starts from the lowest resolution, correspond-

ing to the lower magnification levels in a microscope and uses the higher resolution

representations for the regions requiring more detailed information for a classifica-

tion decision. To achieve this, images were decomposed into multi-resolution rep-

resentations using the Gaussian pyramid approach (Burt and Adelson 1983). This

was followed by color space conversion and feature construction followed by feature

extraction and feature selection at each resolution level. Once the classifier was

confident enough at a particular resolution level, the system assigned a classifica-

tion label (e.g., stroma-rich, stroma-poor or undifferentiated, poorly differentiating,

differentiating) to the image tile. The resulting classification map from all image

tiles forms the final classification map. The classification of a whole slide image is
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achieved by dividing into smaller image tiles and processing each image tile inde-

pendently in parallel on a cluster of computer nodes.

In this thesis, a multi-scale feature extraction approach which we called “hier-

archical texture feature vector calculation” was also evaluated. Our main approach

was to bond all scale features together rather than decomposing and into separate

resolution levels. For the mathematical background and specific in-house implemen-

tation, see Section 4.1.

Spatially Related Feature Extraction

Graphs are also efficient data structures to represent spatial data and an ef-

fective way to represent structural information by defining a large set of topological

features. The use of spatial-relation features for quantifying cellular arrangement

was proposed in the early 1990s (Albert et al. 1992). Graphs have now been con-

structed for modelling different tissue states and to distinguish one state from an-

other by computing metrics on these graphs and classifying their values. Overall,

the use of spatial arrangement of histological entities (generally at low resolutions)

is relatively new, especially in comparison to the wealth of research on nuclear fea-

tures (at higher resolutions). Definitions for all graph structures and features can be

found in (Boucheron 2008). The total number of spatial-relation features extracted

was approximately 150 for all graph structures.

Doyle et. al. constructed the Voronoi diagram from a set of seed-like points

that denote the centers of each structure of interest which is nuclei (Doyle et al.

2007). From the Voronoi diagram, two more graphs of interest can be constructed;

the Delaunay triangulation, which is created by connecting points that share an

edge in the Voronoi diagram, and the minimum spanning tree, which is the series

of lines that spans the set of points such that the Euclidean sum of the lengths of

the lines is smaller than any other spanning tree. From each of these three graphs,

a series of features are calculated that captures the size, shape, and arrangement of

the structures of the nuclei.
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3.1.3 Classification In Histopathological Image Analysis

In histopathology image imagery, unlike some other applications of image

analysis, one of the primary considerations in the choice of a classifier is its ability

to deal with large, highly dense datasets.

Machine learning algorithms are basically divided into two groups as su-

pervised and unsupervised classifiers. The common machine learning approach in

almost all of the histopathology studies was the use of a supervised classification

procedure to label the tissue regions of interest. To perform supervised classifi-

cation studies, manually labelled training data were needed for the corresponding

classifier training. In the following part, we have reviewed several histopathologi-

cal image analysis articles indicating hosted supervised/unsupervised classification

approaches.

In an example of unsupervised classification approach, Onder et. al. per-

formed k-means clustering algorithm following a dimensionality reduction proce-

dure, to discriminate basic texture characteristics in renal histopathology specimens

(Önder and Karaçalı 2009).

As explained before, supervised machine learning algorithms were usually

evaluated in histopathological image analysis. We now present a quick review of

various supervised procedures and its applications;

Support vector machine (SVM) was one of the mostly used supervised clas-

sifier algorithms as reviewed in Section 4.3 in detail. We visited several histopatho-

logical image analysis articles based on SVM classifier; SVM was used to carry out

discrimination between normal and malignant colon tissue cells (Nasir et al. 2004,

Masood et al. 2006). Nasir et.al. and Masood et.al. used an SVM classifier, to carry

out discrimination between normal and malignant colon tissue cells. SVM has also

been used to differentiate colon adenocarcinoma histopathology images from benign

ones (Rajpoot and Rajpoot 2004). A commonly used kernel known as the radial

basis function has been employed to distinguish between three different prostate

tissue classes in (Doyle et al. 2007). In another histopathological image analysis

scheme, SVM has been also used to classify four different subtypes of meningioma

(Qureshi et al. 2008). For more detailed background and evaluation of SVM please
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visit Section 4.3.

Among the classification strategies put to the task, both linear discriminate

function and k-nearest-neighbour non-parametric classifiers were separately used to

identify cancerous colonic mucosa (Esgiar et al. 1998b), automated classification

of colorectal dysplasia, aspecific and ulcerative colitis were experimented by using

discriminant analysis method (Hamilton et al. 1997, Ficsor et al. 2008).

Filippas et. al. focused on the identification of normal and cancerous colonic

mucosa using a genetic algorithm (Filippas et al. 2003). Nwoye et. al. used a

fuzzy neural network classifier to detect adenomas and adenocarcinomas in col-

orectal tissue slides (Nwoye et al. 2006). Doyle et. al. performed studies for auto-

mated prostatic adenocarcinoma detection and for prostate cancer grading using Ad-

aboost, decision trees and SVM classifiers (Doyle et al. 2006, 2007). Computer-aided

histopathological classification of renal cell carcinoma using a multi-class Bayesian

decision rule that assumes multivariate Gaussian distributions for the feature vectors

was also studied (Waheed et al. 2007).

3.2 Quantitative Histopathological Image Analysis In Col-
orectal Tissues

This section is particularly reserved for the comprehensive review of colonic

histopathological image analysis researches held, since we analysed the same tissue

pattern in our thesis study. The choice of discriminating features, the classifiers

evaluated and the resultant classification accuracy values are presented together for

each research.

One of the first attempts to computer-aided histopathological classification

was carried out by Hamilton (Hamilton et al. 1987) in colorectal tissue slides. In

that study, the authors used semi-automated image analysis methods to classify

normal colorectal mucosa and adenocarcinoma, while in another paper automated

image analysis was used (Hamilton et al. 1997). Hamilton et al. introduced an image

texture analysis method to locate dysplastic fields in colorectal samples (Hamilton

et al. 1997). The automatic identification of focal areas of colorectal dysplasia was

based on cooccurrence matrix and optical density at low power microscopic images.
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This study also showed that the combination of automated localization at low mag-

nification and knowledge-based image segmentation at high magnification creates

an automated tool for supporting diagnostic decision making. Using image texture

analysis the authors achieved 83% accuracy in correctly classifying mucosa either

as normal or dysplastic. The following studies attained an even higher accuracy

of success, reaching 90%, or more (Esgiar et al. 1998b,a). Among the classification

strategies put to the task, both linear discriminate function and k-nearest-neighbour

non-parametric classifiers were separately used to identify cancerous colonic mucosa

(Esgiar et al. 1998b).

In another study, Esgiar et. al. used gray level co-occurrence matrices, like

many other studies, with non-overlapping square windows along an image and for

each window, four co-occurrence matrices were calculated at four angles (0◦, 45◦,

90◦, and 135◦) from each image (Esgiar et al. 1998a).

Esgiar et. al. continued the study of classifying tissues samples taken from

colons with colorectal cancer or diverticulosis calculating fractal dimensions (Esgiar

et al. 2002). They discussed that fractal analysis did add a small improvement

to the results obtained using correlation and entropy alone. They also reported

that the reason for the relatively small improvement was that fractal dimension

had been shown to be highly coupled with both correlation and entropy features.

Hence, they concluded that, their research highlighted the need for researchers to

find techniques which add independent value to other analysis techniques, such as,

additional image sections, e.g. those transverse image sections perpendicular to

those normally examined and the analysis of color.

Esgiar et. al. used a “leave-one-out” approach to obtain nearly unbiased

estimates of classification error rates. This method removes one observation from

N observations and treats the remaining N − 1 as a training set. The one left

out is then classified. This technique is then repeated for the N training obser-

vations. Classification was achieved using the “nearest neighbour non-parametric”

classification analysis with k = 2.

In another study, Filippas et. al. focused on the identification of normal and

cancerous colonic mucosa using a genetic algorithm (Filippas et al. 2003). Filippas

et. al. performed classification on three different family of features; histogram based
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features, features derived from grey-level difference statistics and co-occurrence ma-

trices. This study had very promising accuracy results, 100% accuracy in the clas-

sification of the images in the training set and up to 91% in that of the test set. On

the other hand, it should also be notified that these experiments were performed

with 31 images in total (20 images in the training set and 11 images images in a

test set) and increasing the number of images in the experimental dataset would

probably change the resultant accuracy levels.

In a couple of following colon histopathology studies, hyperspectral imagery

data was processed (Nasir et al. 2004, Masood et al. 2006). The microscopic level

images of human colon tissue cells were acquired using hyperspectral imaging tech-

nology at contiguous wavelength intervals of visible light. Note that, while hyper-

spectral imagery data provides a wealth of information, its large size normally means

high computational processing complexity.

Nasir et.al. and Masood et.al. used a support vector machine (SVM) clas-

sifier, to discriminate between normal and malignant colon tissue cells. Nasir et.

al. performed segmentation for the parts of the colon tissue i.e. nuclei, cytoplasm,

lamina propria, and lumen. They performed SVM classification on morphological

and several statistical features separately. They acquired classification performances

from 86% to 89% in various experiments. Similarly, Masood et.al. segmented the

parts of the colon tissue into four parts; nuclei, cytoplasm, gland secretions and

lamina propria. Furthermore, they calculated the morphological features that de-

scribe the shape, size, orientation and other geometrical attributes of the cellular

components. Masood et.al. reached classification accuracy levels equal to or above

90%.

Nwoye et. al. used a fuzzy neural network classifier to perform differentiation

between normal colon polyps and adenocarcinomas in colorectal tissue slides (Nwoye

et al. 2006). They reached accuracy level up to 96.5% by using both spectral and

gray scale statistical co-occurrence matrix analysis of the microscopic cell images.

Fourier spectral extraction parameters measured in that study included spectral

entropy, energy and inertia, while from co-occurrence matrix the statistical features,

statistical contrast, entropy, moment and correlation were calculated. The authors

reported that the novelty of the algorithm was the independence of the feature
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extraction procedure adopted which is also the one of the highlights of our proposed

framework.

Ficsor et. al. experimented automated classification of normal, colorectal

dysplasia, aspecific colitis and ulcerative colitis for routinely processed H&E stained

high resolution (0.24 mm/pixel) histological sections (Ficsor et al. 2008). They per-

formed detection of nuclei, tissue components, and structures yielding several cy-

tometric morphological parameters. They experimented leave-one-out discriminant

analysis method for classification of the sample groups. They found out that cel-

lular morphometric features showed no significant differences in these benign colon

alterations, however, gland related morphological differences for normal mucosa, ul-

cerative colitis, and aspecific colitis did. As a result, they reached to the overall

classification accuracy of 88%.

Finally, a preliminary form of this thesis research being based on a limited

number of colon histopathology slide image database was published (Önder et al.

2010).

3.3 Classification Accuracy Evaluation

In this section, the output classification accuracy levels obtained in several

histopathological image analysis studies are listed. The resultant classification ac-

curacy levels are evaluated separately as colon based studies and studies on other

tissue types.

3.3.1 Accuracy Evaluation In Colon Tissues

The classification accuracy levels obtained in several studies performed on

colonic tissues reached up to; the 83% of test images were correctly classified to

locate dysplastic fields in colorectal samples (Hamilton et al. 1997), the overall

classification accuracy of 88% in the classification of normal, colorectal dysplasia,

aspecific colitis and ulcerative colitis was achieved (Ficsor et al. 2008) .

Being specific to the colorectal cancers, accuracy levels reached up to; the
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results were confirmed with the test set an overall accuracy of 90.2% (Esgiar et al.

1998b), up to 89% (Nasir et al. 2004), Masood et.al. reached classification accuracy

levels equal to or above 90% (Masood et al. 2006), the 96.5% overall classification

rate was achieved (Nwoye et al. 2006) In addition, (Filippas et al. 2003) reported

very promising accuracy results, 100% accuracy in the classification of the images

in the training set and up to 91% in that of the test set.

These accuracy levels of colon tissue researches could also be compared with

our resultant labelling and classification performances presented in Section 5.7.5 and

Section 5.10.

3.3.2 Accuracy Evaluation In Non-colonic Tissues

Features derived from segmented nuclei and glands from histopathology are

usually a prerequisite to extract higher level information regarding the state of

the disease. For instance, the grading of prostate cancer by Jafari-Khouzani and

Soltanian-Zadeh yielded 97% accuracy for H&E stained imagery based on features

derived from nuclear structures in (Jafari-Khouzani and Soltanian-Zadeh 2003).

The classification of histopathology imagery using spatial architecture in-

formation as presented in Weyn et al. resulted with 88.7% - 96.8% accuracy in

the diagnosis of lung cancer, 94.9% accuracy in the typing of malignant mesothe-

lioma, and 80.0% - 82.9% accuracy in the prognosis of malignant mesothelioma for

Feulgen-stained lung sections (Weyn et al. 1998).

Analysis of Feulgen-stained breast tissue sections by Van de Wouwer et al.

reached 67.1% accuracy in classifying nuclei as benign or malignant, but 100% clas-

sification on patient level (Wouwer et al. 2000). Tabesh et al. found 96.7% accuracy

in discriminating between prostate tissue slides with cancer and no cancer, and 81%

accuracy in the discrimination between low and high Gleason grades in the same

imagery (Tabesh et al. 2007).

The analysis of H&E stained brain tissue by Demir et al. gave 95.5% - 97.1%

accuracy in the discrimination between benign and cancerous tissue (Demir and

Yener 2006). In another research, Keenan et al. reported accuracies of 62.3% -
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76.5% in the grading of H&E stained cervical tissue (Keenan et al. 2000).

3.4 Review Of The Quasi-supervised Learning

Quasi-supervised Learning (QSL) is a statistical learning algorithm that con-

trasts two datasets by computing estimates for the posterior probabilities of their

samples of belonging in either dataset (Karaçalı 2010). The QSL method addresses

a target identification problem where labelled samples are available from one class

only, in a control dataset. A second, unlabelled dataset is also provided and contains

a mixture of samples from both control and target classes.

For biomedical data analysis tasks, it is quite easy to collect dataset of control

samples easily while representative abnormalities require laborious manual identifi-

cation. Therefore, the proposed strategy accommodates the biomedical data analysis

task well.

In performance evaluation experiments on synthetic target detection data,

QSL method outperformed alternative strategies based on SVM classification and

minimum spanning trees for varying dataset size, overlap, and dimensionality

(Karaçalı 2010).

QSL algorithm has been successfully used in the preliminary research of this

dissertation, based on a limited number of colon histopathology slide image database

(Önder et al. 2010). Köktürk also studied the separation of the electroencephalog-

raphy data recorded under different visual stimuli by using the quasi-supervised

learning algorithm (Köktürk 2011). The data used in that study contained multiple

channel EEG recording under six different visual stimuli in random successive order.

Köktürk identified condition-specific EEG profiles in different comparison scenarios

by using standard binary QSL and also extending its M-ary version. The results

revealed that QSL algorithm was efficient in capturing the distinction between the

experimental data samples.

QSL could also have application in many other areas rather than biomedical

data analysis. Güven has performed a study on aerial images using the contrasted

information between natural and man-made structures (Güven 2010). The main

purpose of that study was the detection of man-made structures or differences on
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the terrain as a result of habitation. Güven has calculated Haralick texture features

based on gray level co-occurrence matrices. The results showed that QSL algorithm

was able to identify the indicators of human presence in a region such as houses, roads

and objects that are not likely to be observed in areas free from human habitation.
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CHAPTER 4

METHODS

In this chapter, the background information for the elementary parts of the

proposed framework is presented. The first section introduces the feature vectors

and details the feature extraction geometry. In the second section, the core algorithm

of our proposed framework, QSL, is presented with basic derivations in a sequenced

manner. The third section devoted to the SVM supervised classifier along with a

concrete implementation of SVM, SVM light. In the later section, several alternative

methods of vector dimensionality reduction are described. Following the major

feature selection methodologies, several dimensionality reduction methods based on

feature extraction, namely, Principal Component Analysis, Isomap, Locally Linear

Embedding and Independent Component Analysis including FastICA algorithm

are detailed. In the last section, the basic overview of the proposed methodology is

presented as an integrated labelling system.

4.1 Texture Feature Vector Extraction

One of the classical approaches to texture classification is to use texture

features derived from co-occurrence matrices (Haralick et al. 1973). A co-occurrence

matrix is a local approximation to the joint distribution of gray level values of

pixel pairs at specified distances and orientations. In our study, the entry of a

co-occurrence matrix MI,d(i, j) at the i’th row and the j’th column is calculated by;

MI,d(i, j) =

∑
p,qεBr(x)

1{I(p) = i, I(q) = j, ρ(p, q) = d}∑
p,qεBr(x)

1{ρ(p, q) = d}
(4.1)

where I is the gray level image in consideration, d is the pairwise distance of pixels

and Br(x) defines the neighbourhood of radius r centered at an image pixel x.

Furthermore, p and q represent two pixels in the image and ρ(p, q) represents the

Euclidean distance between them. In the definition above, no direction specific
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relation was enforced between p and q though the formalism allows for incorporating

such considerations into the representation. The function 1{·} is a binary function

that takes the values 1 or 0 when its argument is true and false, respectively.

Although it is theoretically possible to calculate texture feature vectors

around every pixel of an image under consideration, it is not computationally fea-

sible. Therefore, we have assumed that the co-occurrence matrix varied smoothly

across the image, and carried out feature vector computation for points on a regular

grid with a spacing of r. Furthermore, the labelling decision made for a feature vec-

tor of a grid point was generalized to the square image region of size r× r centered

at that point. The sketch for the calculation geometry is presented in Figure 4.1.

Figure 4.1. Texture feature vector calculation geometry.

Texture features that characterize the appearance of an image square are

composed of the first order and the second order characteristics. The first order

texture features were generated using local histograms, whereas the second order

features were generated from co-occurrence matrices calculated in a local image

region. The list of texture features used in this study is given below. The second

order texture feature characteristics except (2.n) are known as Haralick features

(Haralick et al. 1973).

1. First Order Features (Pratt 1991, Gonzalez and Woods 1992)

(a) Mean Value of Pixels,

(b) Variance,
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(c) Skewness,

(d) Kurtosis,

(e) Entropy,

(f) Energy,

(g) Maximum Value of Histogram,

(h) Corresponding Pixel Value for Maximum Value of Histogram

(CPVMVH).

2. Second Order Features

(a) Angular Second Moment,

(b) Contrast,

(c) Correlation,

(d) Sum of Squares: Variance,

(e) Inverse Difference Moment,

(f) Sum Average,

(g) Sum Entropy,

(h) Sum Variance,

(i) Entropy,

(j) Difference Variance,

(k) Difference Entropy,

(l) Information Measures of Correlation 1 (IMC1),

(m) Information Measures of Correlation 2 (IMC2),

(n) Maximum Probability (maximum co-occurrence matrix element).

For a local image square, each texture feature in the list above constitutes a

component of the corresponding texture feature vector. It should be noted that for

a local image square, various second order texture features can be calculated for co-

occurrence matrices generated using different pairwise pixel distance d values. The

second order feature vector components calculated using different d values can then

be combined with the first order features to form a more detailed feature vector.
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Another strategy to enrich the set of texture features is to use a hierarchical

organization. In a hierarchical computation of texture features, a set of radius values

that are multiples of r is used to define a nested set of neighbourhoods. Texture

feature vector extraction is performed separately for each neighbourhood and these

vectors are then concatenated in order to have a higher dimensional texture feature

vector. In this strategy, the (i, j)’th entry of a co-occurrence matrix of a hierarchical

level h = 1, 2, .., H is calculated by:

MI,h,d(i, j) =

∑
p,qεBr×h(x)

1{I(p) = i, I(q) = j, ρ(p, q) = d}∑
p,qεBr×h(x)

1{ρ(p, q) = d}
, (4.2)

similar to Equation 4.1. The difference is the size of neighbourhood Br×h(x). Note

that h = 1 corresponds to non-hierarchical texture feature extraction. The idea

behind hierarchical texture feature vectors is to identify small scale texture charac-

teristics together with those present at larger scales. The geometry of hierarchical

texture feature calculation for h = {1, 2} is shown in Figure 4.2.

Figure 4.2. Hierarchical texture feature vector calculation geometry for h = {1, 2}.

4.2 Quasi-supervised Learning

Quasi-supervised Learning (QSL) is a statistical learning algorithm that con-

trasts two datasets by computing estimates for the posterior probabilities of their
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samples of belonging in either dataset (Karaçalı 2010). The QSL method addresses

for a target identification problem where labelled samples are available from one

class only, in a control dataset. A second, unlabelled dataset is also provided and

contains a mixture of samples from both control and target classes. Identification

is carried out using a computational algorithm that contrasts the unlabelled mixed

dataset samples to the control dataset, and selecting those that are dissimilar from

the control samples beyond a statistical significance level as target samples.

The lack of class labels other than the control dataset changes this problem

more towards unsupervised learning rather than semi-supervised learning (Chapelle

et al. 2006). For biomedical data analysis tasks, it is typically very easy to collect a

dataset of control samples while representative abnormalities require laborious man-

ual identification. Therefore, the proposed strategy accommodates the biomedical

data analysis task well. In computational analysis of histology slides, for instance,

a pathologist can easily identify tissue cross-sections that are free from cancerous

abnormalities. However, such abnormalities may occur amid tissue that is benign

in appearance and have to be painstakingly labelled by an expert pathologist.

In a wider perspective, estimation of posterior probabilities from available

data makes QSL algorithm suitable for classification as a model-free alternative

to existing techniques. Especially, in cases where the data do not allow perfect

separation of the different classes, the algorithm can be expected to outperform

off-the-shelf classification algorithms as it will not search for a separation boundary

optimized according to some criteria. In performance evaluation experiments on

synthetic target detection data, the QSL method outperformed alternative strategies

based on Support Vector Machine classification and minimum spanning trees for

varying dataset size, overlap, and dimensionality (Karaçalı 2010).
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4.2.1 Likelihood Ratio Estimation Via The Nearest Neigh-
bour Rule

Given a reference set R = {xi, yi} of points xi ∈ X and their respective class

labels yi ∈ {0, 1} for i = 1, 2, . . . , `, a nearest neighbour classifier is defined by

FR(x) = yi0 where i0 = argi=1,2,...,` min d(x,xi) (4.3)

for x ∈ X, and where d(., .) denotes the metric on X.

The nearest neighbour classifier in Equation 4.3 has been a benchmark clas-

sification method in the pattern recognition literature. It is quite simple and has

asymptotic properties linking its error rate to that of the optimal Bayes rate (Duda

et al. 2000). Indeed, it can be shown that the asymptotic error rate of the nearest

neighbour classifier is bounded from above by twice the Bayes rate.

Now, the ratio of the classification decisions, for a point x will be considered

during the course of successive classifications each time using a different reference

set, as the number of classifications grows large.

Let {Rj}, j = 1, 2, . . . ,M, be a collection of independent and identically

distributed reference sets, consisting of n points from each of the two classes. Define

f0(x) and f1(x) by

f0(x) =

∑M
j=1 1(FRj

(x) = 0)

M
(4.4)

and

f1(x) =

∑M
j=1 1(FRj

(x) = 1)

M
(4.5)

where 1(statement) is 1 if statement holds and 0 otherwise. The critical observation

is that for sufficiently large M ,

f0(x) ' p(x|x ∈ C0)

p(x|x ∈ C0) + p(x|x ∈ C1)
(4.6)

and

f1(x) ' p(x|x ∈ C1)

p(x|x ∈ C0) + p(x|x ∈ C1)
(4.7)
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providing
f0(x)

f1(x)
' p(x|x ∈ C0)

p(x|x ∈ C1)
(4.8)

where p(x|x ∈ C0) and p(x|x ∈ C1) represent the class conditional probability

densities for the classes C0 and C1, respectively (Fukunaga and Hostetler 1975,

Duda et al. 2000).

Note also that since the inclusion of an equal number of samples from each

class in the reference set leads to equal prior probabilities for C0 and C1, in ef-

fect, f0(x) and f1(x) in Equations 4.6 and 4.7 compute estimates of the posterior

distributions of the classes C0 and C1 at the point x.

This observation suggests that given a point x ∈ X, the likelihood ratio as

well as the posterior probabilities of the two classes at x can be estimated based

on a dataset {xi, yi} by carrying out multiple nearest neighbour classifications on x

using randomly chosen reference sets from {xi} with equal representation from both

classes, and keeping track of the number of times x is assigned to C0 and to C1.

The accuracy of the above estimate of the log-likelihood ratio at a point x

clearly depends on M , the number of successive random nearest neighbour classi-

fications. With n points from each class in the reference set, the total number of

distinct reference sets of size 2n is given by

(
`0
n

)(
`1
n

)
(4.9)

where `0 and `1 denote the number of points in the set {xi} belonging to the respec-

tive classes. Even for modest reference set sizes, say of 100 samples each, the number

of distinct nearest neighbour classifications that should be carried out reaches levels

over 1050, well beyond the performance of the present day computing equipment.

While carrying out an exhaustive evaluation of all possible random nearest

neighbour classifications is not feasible, it is still possible to compute the average

number of times a given point would be assigned to either class at the end of such

an evaluation.

Consider the distances di = d(x,xi) between a given point x and each xi for

i = 1, 2, . . . , `. Let d(i) denotes the ordered sequence of all {di} with d(1) ≤ d(2) . . . ≤

d(`) and {x(i)} and {y(i)} be such that d(i) = d(x,x(i)) and y(i) is the class label of
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x(i). After an exhaustive nearest neighbour analysis, f0(x) represents the probability

Pr(y = 0) of assigning x to the class C0 based on a reference set R with n points

from both classes selected randomly from the {xi},

f0(x) = Pr(y = 0) (4.10)

Note that the term Pr(y = 0) can be decomposed conditionally on whether

or not the point x(1) is in R in as

f0(x) = Pr{x(1) ∈ R}1(y(1) = 0) + Pr{x(1) /∈ R}Pr{y = 0|x(1) /∈ R} (4.11)

since Pr{y = 0|x(1) ∈ R} is 1 if y(1) = 0 and 0 otherwise. For notational simplicity,

we can define Ek as the joint event x(1),x(2), . . . ,x(k) /∈ R. Carrying the same

decomposition strategy further to Pr{y = 0|E1} provides;

Pr{y = 0|E1} = Pr{x(2) ∈ R|E1}1(y(2) = 0) +

Pr{x(2) /∈ R|E1}Pr{y = 0|E2} (4.12)

and in general:

Pr{y = 0|Ek−1} = Pr{x(k) ∈ R|Ek−1}1(y(k) = 0) +

Pr{x(k) /∈ R|Ek−1}Pr{y = 0|Ek} (4.13)

Furthermore R must have at least 2n data points the decomposition does not

need to be carried out beyond some k∗ given by

k∗ = max{k|
∑̀
k′=k

1(y(k′) = 0) ≥ n and
∑̀
k′=k

1(y(k′) = 1) ≥ n} (4.14)

since Pr{x(k∗) ∈ R|Ek∗−1} = 1 and Pr{x(k∗) /∈ R|Ek∗−1} = 0. The algebraic

development above can be repeated for f1(x) in an identical manner.

The following algorithm elucidates the computation all steps of fL(x) when

L ∈ {0, 1} and x is based on {xi, yi} where i = 1, 2, . . . , ` and a fixed n.

1. Calculate di = d(x,xi).
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2. Sort {di}, d(1) ≤ d(2) . . . ≤ d(`) and determine the {xi} and {yi} according to

sorted distances.

3. Determine k∗ in 4.14 and set Pr{y = L|Ek∗−1} = 1(y(k∗) = L).

4. Calculate Pr{y = L|Ek} = Pr{x(k) ∈ R|Ek}1(y(k+1) = L) + Pr{x(k) /∈

R|Ek}Pr{y = L|Ek+1} for k = k∗ − 1, k∗ − 2, . . . , 1.

5. Calculate fL(x) = Pr{x(1) ∈ R}1(y(1) =) + Pr{x(1) /∈ R}Pr{y = L|E1}

Note that Pr{x(k) ∈ R|Ek−1} can be calculated by

Pr{x(k) ∈ R|Ek−1} = 1− Pr{x(k) /∈ R|Ek−1} = 1−
(
`k+1
0
n

)(
`k+1
1
n

)(
`k0
n

)(
`k1
n

) (4.15)

where `k0 represents the number of points that belong to C0 in the set

{x(k),x(k+1), . . . ,x(`)} and denotes the number of points in the same set that belong

to C1 with,

`k0 =
∑̀
i=k

1(y(i) = 0), `k1 =
∑̀
i=k

1(y(i) = 1) (4.16)

Since for y(k) = 0 we have `k+1
0 = `k0 − 1 and `k+1

1 = `k1, and similarly for

y(k) = 1`k+1
0 = `k0 and `k+1

1 = `k1 − 1, we obtain:

Pr{x(k) ∈ R|Ek−1} =


n
`k0

if y(k) = 0

n
`k1

if y(k) = 1

(4.17)

4.2.2 Class Overlap Measures

In classification problems, class-overlap measures provide information about

the separability of the classes. A successful classification, in particular, can be

constructed with smaller class overlap measures.

There are several measures of class overlap that can be computed using the

estimated posterior probabilities. One of them is MLLR(x) that computes the log-
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likelihood ratio of two classes at a point x ∈ χ, given by

MLLR(x) = log(
f0(x)

f1(x)
) (4.18)

using the expressions for f0(x) and f1(x) given in Eqn. 4.6 and 4.7 for all x with

f0(x) 6= 0 and f1(x) 6= 0. When the two classes are mostly overlap the ratio

f0(x)/f1(x) goes to 1 and MLLR(x) goes to 0. The major benefit of the MLLR(x) is

it gives opportunity to determine which class xi belongs to among two classes C0 or

C1.

Another way of measuring the class-overlap or similarity between distribu-

tions is using the Henze-Penroze affinity measure, the measure that computes the

integral, ∫
x

2p1(x)p2(x)

p1(x) + p2(x)
dx (4.19)

for any given probability distributions p1(x) and p2(x) (Henze and Penrose

1999, Neemuchwala and Hero 2005). The integral goes to 1 when p1(x) = p2(x)

for all x. We define the measure MHP−like(x) for a sample x as a variant of the

integrand above by

MHP−like(x) = f0(x)f1(x) ' p(x|x ∈ C0)p(x|x ∈ C1)

(p(x|x ∈ C0) + p(x|x ∈ C1))2
(4.20)

Note that over the regions of overlap, f0(x) ' f1(x) ' 1/2 and MHP−like(x)

approaches 1/4. Conversely, for points that are highly specific to one or the other

class, MHP−like(x) is near zero.

A final measure of overlap can be computed using the difference of f0(x) and

f1(x) by

MDiff (x) = f0(x)− f1(x) ' p(x|x ∈ C0)− p(x|x ∈ C1)

p(x|x ∈ C0) + p(x|x ∈ C1)
(4.21)

This measure is similar to MLLR(x) in the sense that the points of strong overlap

are also given by the set of points for which MDiff ' 0. On the other hand, MDiff

can be computed for any x, even those for which f0(x) = 0 or f1(x) = 0.
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4.2.3 Selection Of The Optimal Reference Set Size

The accuracy of the algorithm that estimates posterior distributions is related

to reference set size, because the samples in the reference set have a role in the

determination of the posterior distributions. Recall that n denotes the number

of samples from each class in the reference set. Ideally; the best n provides the

minimum class overlap, equivalently, maximal class separation. In addition, n must

be chosen as small as possible to avoid too flexible nearest neighbour classification

and to reduce estimation noise (Karaçalı and Krim 2003, Karaçalı et al. 2004). In

light of these considerations, the following cost functional is proposed;

E(n) = 4
∑
i

(p0(x)p1(x)) + 2n (4.22)

to be minimized with respect to n. The first term in this cost functional represents

the penalty for the large class overlaps, while, the second term represents the pref-

erence for smaller n to achieve better generalisation with nearest neighbourhood

classification. The scaling of the first term by a factor of 4 ensures that the costs

incurred in the two marginal scenarios where, at the one end, MHP−like = 1/4 for all

xi indicating complete overlap, and at the other n = `/2 when the reference sets are

as large as they can be (assuming `0 = `1), are equal. The experimental verification

of the cost functional was given in great detail in (Karaçalı 2010).

4.3 Support Vector Machines

The Support Vector Machine (SVM) is a concept in statistics and computer

science for a set of related supervised learning methods that analyze data and rec-

ognize patterns, used for classification and regression analysis (Cortes and Vapnik

1995, Vapnik 1998, Burges 1998). The standard SVM, a non-probabilistic binary

linear classifier, takes a set of input data and assigns the sample in question to one

of the two possible categories. Given a set of training examples, each marked as

belonging to one of two categories, an SVM training algorithm builds a model that

assigns new examples into one category or the other. An SVM model is a repre-
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sentation of the examples as points in space, mapped so that the examples of the

separate categories are divided by a clear gap that is as wide as possible.

More formally, SVM constructs a hyperplane in a high or infinite dimensional

space, which can be used for classification, regression, or other tasks. Intuitively,

a good separation is achieved by the hyperplane that has the largest distance to

the nearest training data point of any class (so-called functional margin), since in

general the larger the margin the lower the generalization error of the classifier.

The next section details the problem of classification for linearly separable

data and introduces the concept of margin and the essence of SVM margin max-

imization. The methodology of SVM is then extended to data which is not fully

linearly separable and to the non-linear case.

4.3.1 Linearly Separable Binary Classification

Suppose we have L training points, where each input xi has D attributes (i.e.

is of dimensionality D) and is in one of two classes yi = -1 or +1, i.e our training

data is of the form: {xi, yi} where i = 1, . . . , L, yi{−1, 1}, x ∈ RD

It is assumed that the data is linearly separable, meaning that a line can

be drawn on a graph of x1 versus x2 separating the two classes when D = 2 and

a hyperplane on graphs of x1, x2, . . . xD for when D > 2. This hyperplane can be

described by w · x + b = 0 where;

1. w is normal to the hyperplane.

2. · operator represents the inner product of two vectors.

3. b
‖w‖ is the perpendicular distance from the hyperplane to the origin.

Support Vectors are the examples closest to the separating hyperplane and

the aim of Support Vector Machines (SVM) is to orientate this hyperplane in such

a way as to be as far as possible from the closest members of both classes, as

represented in Figure 4.3. In this diagram, circles represent the Support Vectors.

Referring to the figure, implementing an SVM boils down to selecting the
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Figure 4.3. Hyperplane through two linearly separable classes.

variables w and b so that our training data can be described by;

xi ·w + b ≥ +1 for yi = +1 (4.23)

xi ·w + b ≤ −1 for yi = −1 (4.24)

which also can be combined into:

yi(xi ·w + b)− 1 ≥ 0 ∀i (4.25)

Considering the points that lie closest to the separating hyperplane, i.e. the

Support Vectors (shown in circles in the diagram), then the two planes H1 and H2

that these points lie on can be described by:

xi ·w + b = +1 for H1 (4.26)

xi ·w + b = −1 for H2 (4.27)

Referring to Figure 4.3, we define d1 as being the distance from H1 to the

hyperplane and d2 from H2 to it. The hyperplane’s equidistance from H1 and H2

means that d1 = d2 that is a quantity known as the SVM’s margin. In order to

orient the hyperplane to be as far from the Support Vectors as possible, this margin

is to be maximised.

Simple vector geometry shows that the margin is equal to 1
‖w‖ and maximizing
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it subject to the constraint in Equation 4.25 is equivalent to finding: minimum ‖w‖

such that yi ·w + b− 1 ≥ 0 ∀i.

Minimizing ‖w‖ is equivalent to minimizing 1
2
‖w‖2 and the use of this term

makes it possible to perform Quadratic Programming (QP) optimization later on.

Therefore it should be found:

min
1

2
‖w‖2 s.t. yi(xi ·w + b)− 1 ≥ 0 ∀i (4.28)

Now, the Lagrangian formulation of the problem has to be considered. There

are two reasons for this; the first is that the constraint in Equation 4.25 will be

replaced by constraints on the Lagrange multipliers themselves, which will be much

easier to handle. The second is that in this reformulation of the problem, the training

data will only appear (in the actual training and test algorithms) in the form of dot

products between vectors. This is a crucial property which will allow us to generalize

the procedure to the non-linear case (Section 4.3.3).

Thus, it is introduced that the positive Lagrange multipliers αi, i = 1, . . . , L,

one for each of the inequality constraints 4.25. Recall that the rule is that for

constraints of the form ci ≥ 0, the constraint equations are multiplied by positive

Lagrange multipliers and subtracted from the objective function, to form the La-

grangian. For equality constraints, the Lagrange multipliers are unconstrained. This

gives Lagrangian:

LP =
1

2
‖w‖2 −

L∑
i=1

αi(yi(xi ·w + b)− 1) (4.29)

=
1

2
‖w‖2 −

L∑
i=1

αiyi(xi ·w + b) +
L∑
i

αi (4.30)

with the Lagrange multipliers α, where αi ≥ 0 ∀i .

We wish to find the w and b which minimizes, and the α which maximizes

Equation 4.30 (whilst keeping αi ≥ 0 ∀i). This can be performed by differentiating
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LP with respect to w and b and setting the derivatives to zero:

∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi (4.31)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (4.32)

Substituting Equation 4.31 and 4.32 into 4.30 gives a new formulation which, being

dependent on α, we need to maximize:

LD =
L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (4.33)

=
L∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij = yiyjxi · xj (4.34)

=
L∑
i=1

−1

2
αTHα s.t. αi ≥ 0 ∀i,

L∑
i=1

αiyi = 0 (4.35)

This new formulation LD is referred to as the dual form of the primary LP .

It is worth noting that the dual form requires only the dot product of each input

vector xi to be calculated, this is important for the Kernel Trick described in Section

4.3.3. Having moved from minimizing LP to maximizing LD is a convex quadratic

optimization problem, and a QP solver is run which will return α and Equation 4.31

will give us w. What remains is to calculate b.

Any data point satisfying Equation 4.32 which is a Support Vector xs will

have the form: ys(xs ·w) + b. Substituting in Equation 4.31 yields;

ys(
∑
m∈S

αmymxm · xs + b) = 1 (4.36)

where S denotes the set of indices of the Support Vectors. S is determined by finding

the indices i where αi > 0. Multiplying through by ys and then using y2s = 1 from
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Equations 4.23 and 4.24:

y2s(
∑
m∈S

αmymxm · xs + b) = ys (4.37)

b = ys −
∑
m∈S

αmymxm · xs (4.38)

Instead of using an arbitrary Support Vector xs, it is better to take an average

over all of the Support Vectors in S;

b =
1

NS

∑
m∈S

(ys − αmymxm · xs) (4.39)

where the NS is the number of Support Vectors. We now have the variables w and

b that define our separating hyperplane’s optimal orientation and hence the SVM.

Summarising the steps to be performed in order to use an SVM to solve a

linearly separable, binary classification problem:

• Create H, where Hij = yiyjxi · xj.

• Find α so that
∑L

i=1 αi −
1
2
αTHα is maximized, subject to the constraints

αi ≥ 0 ∀i and
∑L

i=1 αiyi = 0. This is performed using a QP solver.

• Calculate w =
∑L

i=1 αiyixi.

• Determine the set of Support Vectors S by finding the indices such that αi > 0.

• Calculate b = 1
NS

∑
m∈S(ys − αmymxm · xs).

• Classify each new point x′ by evaluating y′ = sgn(w · x′ + b).

4.3.2 Binary Classification For Non-separable Data

In order to extend the SVM methodology to handle data that is not fully

linearly separable (soft margin SVM, see Figure 4.4), the constraints for Equations

4.23 and 4.24 are relaxed slightly to allow for misclassified points. This is done by
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introducing a positive slack variable ξi, i = 1, . . . , L;

xi ·w + b ≥ +1 for yi = +1− ξi (4.40)

xi ·w + b ≤ −1 for yi = −1 + ξi (4.41)

which can be combined into:

yi(xi ·w + b)− 1 + ξi ≥ 0 where ξi ≥ 0 ∀i (4.42)

Figure 4.4. Hyperplane through two non-linearly separable classes.

In this soft margin SVM, data points on the incorrect side of the margin

boundary have a penalty that increases with the distance from it. As we are trying

to reduce the number of misclassifications, a sensible way to adapt our objective

function Equation 4.28 is to find;

min
1

2
‖w‖2 + C

L∑
i=1

ξi s.t. yi ·w + b− 1 + ξi ≥ 0 ∀i (4.43)

where the parameter C controls the trade-off between the slack variable penalty and

the size of the margin. Reformulating as a Lagrangian gives;

LP =
1

2
‖w‖2 + C

L∑
i=1

ξi −
L∑
i=1

αi(yi(xi ·w + b)− 1 + ξi)−
L∑
i=1

µiξi (4.44)
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that should be minimized with respect to w, b and ξi and maximized with respect

to α (where αi ≥ 0, µi ≥ 0). Differentiating with respect to w, b and ξi and setting

the derivatives to zero:

∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi (4.45)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (4.46)

∂LP
∂ξi

= 0⇒ C = αi + µi (4.47)

Substituting these in, LD has the same form as Equation 4.35 before. However

Equation 4.47 together with µi ≥ 0 ∀i, implies that α ≤ C. Therefore;

max
α

(
L∑
i=1

αi −
1

2
αTHα) s.t. 0 ≤ αi ≤ C ∀i and

L∑
i=1

αiyi = 0 (4.48)

should be found. b is then calculated in the same way as in Equation 4.28 before,

though in this instance the set of Support Vectors used to calculate b is determined

by finding the indices i where 0 ≤ αi ≤ C.

Summarising the steps to be performed in order solve a binary classification

problem for data that is not fully linearly separable:

• Create H, where Hij = yiyjxi · xj

• Find α so that
∑L

i=1 αi −
1
2
αTHα is maximized, subject to the constraints

0 ≤ αi ≤ C ∀i and
∑L

i=1 αiyi = 0. (This is performed by using a QP solver.)

• Calculate w =
∑L

i=1 αiyixi

• Determine the set of Support Vectors S by finding the indices such that 0 ≤

αi ≤ C.

• Calculate b = 1
NS

∑
m∈S(ys − αmymxm · xs).

• Classify each new point x′ by evaluating y′ = sgn(w · x′ + b).
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4.3.3 Non-linear Support Vector Machines

This section describes the generalisation of the above methods to the case

where the decision function is not a linear function of the data. It was stated that a

rather old trick, which is known as the Kernel Trick (Aizerman et al. 1964), can be

used to accomplish this in a straightforward way (Boser et al. 1992). Whereas the

original problem may be stated in a finite dimensional space, it often happens that

the sets to discriminate are not linearly separable in that space. For this reason,

it was proposed that the original finite-dimensional space be mapped into a much

higher dimensional space, presumably making the separation easier in that space.

First notice that the only way in which the data appears in the training problem,

Equation 4.48, is in the form of dot products, xi · xj . Now suppose the data is

first mapped to some other (possibly infinite dimensional) Euclidean space, using a

mapping which we will call Φ : x 7→ Φ(x)

Then, the training algorithm would only depend on the data through dot

products in Φ(x), i.e. on functions of the form Φ(xi) · Φ(xj). Now if there were a

kernel function K such that K(xi,xj) = Φ(xi) · Φ(xj) , we would only need to use

K in the training algorithm, and would never need to explicitly even know what Φ

is.

An example is a function known as a Radial Basis Kernel:

K(xi,xj) = exp
−‖xi − xj‖2

2σ2
(4.49)

In this particular example, Φ(x) is infinite dimensional, so it would not be very easy

to work with Φ explicitly. However, if one replaces xi ·xj by K(xi ·xj) everywhere in

the training algorithm, the algorithm will fortunately produce an SVM which lives

in an infinite dimensional space, and furthermore take roughly the same amount of

time it would take to train on the unmapped data. All the considerations of the

previous sections hold, since linear separation is still performed, but in a different

space. In that case, w that will live in Φ(x) (see Equation 4.45). However, an SVM

is used in test phase by computing dot products of a given test point x with w, or
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more specifically by computing the sign of

f(x) =
∑
m∈S

αmymΦ(xm) · Φ(x) + b =
∑
m∈S

αmymK(xm,x) (4.50)

for all Support Vectors in S. Therefore, we can avoid computing Φ(x) explicitly and

use the K(xm,x) = Φ(xm) · Φ(xm) instead.

When applying the SVM to linearly separable data we have started by cre-

ating a matrix H from the dot product of our input variables:

Hij = yiyjxi · xj = xi
Txj (4.51)

where the kernel function K(xi,xj) = xi
Txj is known as linear kernel. The set of

kernel functions is composed of variants of Equation 4.49 in that they are all based

on calculating inner products of two vectors. This means that if the functions can

be recast into a higher dimensionality space by some potentially non-linear feature

mapping function Φ : x 7→ Φ(x) , only inner products of the mapped inputs in the

feature space need be determined without explicitly calculating Φ. The reason that

this Kernel Trick is useful is that there are many classification/regression problems

that are not linearly separable/regressable in the space of the inputs x, which might

be in a higher dimensionality feature space given a suitable mapping.

Some common kernel functions include:

• Polynomial (homogeneous): K(xi,xj) = (xi · xj)
d

• Polynomial (inhomogeneous): K(xi,xj) = (xi · xj + 1)d

• Gaussian Radial Basis Function: K(xi,xj) = exp
−‖xi−xj‖2

2σ2

• Hyperbolic tangent: K(xi,xj) = tanh(κxi ·xj + c), for some (not every) κ > 0

and c < 0

An example dataset that is not linearly separable in the two dimensional

data space becomes separable in the non-linear feature space defined implicitly by

non-linear Radial Basis Kernel function (Equation 4.49) shown in Figure 4.5.
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Figure 4.5. Dichotomous data re-mapped using Radial Basis Kernel.

Parameter selection

The effectiveness of SVM depends on the selection of kernel, the kernel’s

parameters, and soft margin parameter C. A common choice is a Gaussian kernel,

which has a single parameter σ. Best combination of C and σ is often selected by

a grid-search with exponentially growing sequences of C and σ, for example, C ∈

{2−5, 2−3, . . . , 213, 215}, 1/2σ2 ∈ {2−15, 2−13, . . . , 21, 23}. Typically, each combination

of parameter choices is checked using cross validation, and the parameters with best

cross-validation accuracy are picked. The final model, which is used for testing and

for classifying new data, is then trained on the whole training set using the selected

parameters.

4.3.4 A Support Vector Machine Realisation

SVM light is an implementation of Vapnik’s Support Vector Machine (Cortes

and Vapnik 1995) for the problem of pattern recognition, for the problem of regres-

sion, and for the problem of learning a ranking function. The optimization algo-
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rithms used in SVM light are described in (Joachims 2002, 1999a). The algorithm

has scalable memory requirements and can handle problems with many thousands

of Support Vectors efficiently.

The software also provides methods for assessing the generalization perfor-

mance. It includes two estimation methods for both error rate and precision/recall.

By selecting one of the estimation methods, which is known as XiAlpha, estimates

can be computed at essentially no additional computational expense, but they are

conservatively biased (Joachims 2002). Almost unbiased estimates are provided

by the leave-one-out cross-validation. SVM light exploits the fact that the results

of most leave-one-outs (often more than 99%) are predetermined and need not be

computed.

The code has been used on a large range of problems, including text classifi-

cation (Joachims 1999b, 1998), image recognition tasks, bioinformatics and medical

applications. Many tasks have the property of sparse instance vectors. This imple-

mentation makes use of this property which leads to a very compact and efficient

representation.

SVM light is an implementation of Support Vector Machines (SVMs)

in C programming language and available for download in the website

(http://svmlight.joachims.org/).

4.4 Vector Dimensionality Reduction

Vector dimensionality reduction is a mathematical transformation to repre-

sent a vector dataset in fewer dimensions. In a classification problem, the dimen-

sionality reduction is usually performed to improve the classification performance

and reduce the computation time.

Researchers are commonly faced with intrinsically low-dimensional structures

hidden in very high-dimensional spaces in many areas of science. Finding these

meaningful low-dimensional structures from large amounts of data is the problem of

dimensionality reduction.
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4.4.1 The Curse Of Dimensionality

The curse of dimensionality is a term coined in 1961 that refers to the prob-

lems associated with multivariate data analysis as the dimensionality increases (Bell-

man 1961). In practice, the curse of dimensionality means that, for a given sample

size, there is a maximum number of features above which the performance of our

classifier will degrade rather than improve, as illustrated in Figure 4.6. In most

cases, the information lost by discarding some features is compensated by a more

accurate mapping in the lower dimensional space.

Figure 4.6. The curse of dimensionality for a classifier performance.

4.4.2 Feature Selection And Feature Extraction

There are two basic approaches are available for dimensionality reduction:

1. Feature selection; choosing a subset of all the features (the ones that are more

informative), see Equation 4.52.

2. Feature extraction; creating a subset of new features via combinations of the

existing features, see Equation 4.53.
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The problem of feature extraction can be stated as finding a mapping f :

Rp −→ Rm with m < p such that the transformed feature vector f(x) ∈ Rm preserves

(most of) the information or structure in Rp.

In general, the optimal mapping y = f(x) will be a non-linear capturing

the manifold that covers the dispersion of the data. On the other hand, there is no

systematic way to generate optimal feature-reducing non-linear transforms. In other

words, the selection of a particular subset of transforms is problem dependent. For

this reason, feature extraction is commonly limited to linear transforms: y = Wx

in which, y is a linear projection of x. A very widely used linear approach is metric

Multidimensional Scaling (MDS) (Kruskal 1964, Shepard 1962). It aims to represent

the data points in a lower dimensional space while preserving as much of the pairwise

similarities between the data points as possible.

In our study, we have considered several vector dimensionality reduction

methods, namely, Individual Feature Selection, Principal Component Analysis

(PCA) (Jolliffe 2002), Isomap (Tenenbaum et al. 2000) as well as Independent Com-

ponent Analysis (ICA) that are described in the following sections.
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4.4.3 Feature Selection

The Individual Feature Selection evaluates each texture feature separately.

The advantage of individual search is high speed. It is therefore useful for pre-

selection of a candidate feature subset from a large set of features. Note, however,

that individually poor features may yield high class separability when used together.

Feature selection is a methodology where a subset of features is selected from

the complete feature dataset, according to a defined selection rule or a criterion. The

best subset contains the fewest number of dimensions that contribute to the recogni-

tion accuracy the most; while the remaining, unimportant dimensions are discarded.

The purpose of the feature selection for a classifier is to have better classification

performance using a secondary feature vector dataset of lower dimension. Another

use of the feature selection is to visualize the data of interest where applicable.

Feature selection methods are grouped as optimal and suboptimal methods

(Jain and Zongker 1997);

1. Optimal methods.

(a) Exhaustive Selection.

(b) Branch and Bound method.

2. Suboptimal methods.

(a) Sequential methods.

i. Forward Selection.

ii. Backward Selection.

iii. Variants: Variants of both Forward Selection and Backward Selec-

tion.

(b) Genetic algorithms.

and described as:

Exhaustive Selection should be considered as an idealized feature selection

method where all possible feature combinations are formed and the classifier per-

formances evaluated for each feature combination. However, such an exhaustive
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approach requires examining all possible subsets of a feature set. The number

of possibilities grows exponentially, making exhaustive search impractical for even

moderate values of dimensionality. Therefore, Exhaustive Selection is generally not

applicable for many classifiers as in our texture classification problem since the num-

ber of texture feature combinations and the total processing time are considerably

high.

The Branch and Bound (BB) feature selection algorithm can be used to

find the optimal subset of features much more quickly than an exhaustive search

(Narendra and Fukunaga 1977). One drawback is that the Branch and Bound

procedure requires the feature selection criterion function to be monotone. This

means that the addition of new features to a feature subset can never decrease the

value of the criterion function. On the other hand, as is known from the curse of

dimensionality phenomenon that in small sample size situations this may not be

true. Furthermore, the Branch and Bound method is still impractical for problems

with very large feature sets, because the worst case complexity of this algorithm is

exponential.

The sequential methods begin with a single solution (a feature subset) and

iteratively add or remove features until some termination criteria is met. These are

the most commonly used methods for feature selection. They can be divided into

two categories, those that start with the empty set and add features (the forward

methods) and those that start with the full set and delete features (the backward

methods). Note that since they don’t examine all possible subsets, these algorithms

are not guaranteed to produce the optimal result. Indeed, it was shown that no

non-exhaustive sequential feature selection procedure can be guaranteed to produce

the optimal subset (Cover and Campenhout 1977).

A Forward Selection algorithm starts with no features and add them one

by one, at each step adding the one that decreases the error the most, until any

further addition does not significantly decrease the error. On the other hand, a

Backward Selection algorithm starts with all the variables and remove them one by

one, at each step removing the one that decreases the error the most (or increases

it only slightly), until any further removal increases the error significantly. The

sequential algorithms known as Variant Algorithms are the mixtures of both Forward
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Selection and Backward Selection algorithms that at each step, consider all additions

and removals of each feature, and select the best combination. Kittler published a

comparative study of these algorithms and the optimal branch-and-bound algorithm

using a synthetic two-class Gaussian dataset (Kittler 1978).

Genetic Algorithms (GA) were introduced for feature selection by (Siedlecki

and Sklansky 1989). In a GA approach, a given feature subset is represented as a

binary string (chromosome) of length p, with a zero or one in position i denoting

the absence or presence of feature i in the set. Note that p represents the total

number of available features. Each chromosome is evaluated to determine its fitness

which determines how likely the chromosome is to survive and breed into the next

generation. New chromosomes are created from old chromosomes by the processes

of:

1. Crossover; where parts of two different parent chromosomes are mixed to create

offspring,

2. Mutation; where the bits of a single parent are randomly perturbed to create

a child. The chromosome that survive after many generations then represent

the feature combinations that produce high classification performance.

4.4.4 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical multivariate data

analysis method that uses an orthogonal transformation to convert a set of obser-

vations of possibly correlated variables into a linearly uncorrelated set of variables

called principal components. This representation can be considered as the transfor-

mation of the original data into a new vector space where the basis vectors are actu-

ally a linear combination of the original data vectors. PCA can be briefly described

as the projection of the multivariate data on the eigenvectors of the covariance ma-

trix of the original data (Jolliffe 2002). The amount of variance preserved by the

projected data in a certain principal component (eigenvector) direction is given by

the eigenvalue corresponding to that direction.

Suppose that we have a dataset measured in the x− y coordinate system as
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shown in Figure 4.7(a). The principal direction in which the data varies is shown

by the u axis and the second most important direction is the v axis orthogonal

to it. If the u − v axes are placed at the mean of the data it gives us a compact

representation. If each (x,y) coordinate is transformed into its corresponding (u, v)

value, the data becomes de-correlated, meaning that the correlation between the

u and v variables is zero. Thus, for a given dataset, PCA finds the axis system

defined by the principal directions of variance. In this example, the directions u

and v are called the principal components.

(a) (b)

Figure 4.7. PCA for (a) data representation, (b) dimensionality reduction.

Let us also consider how PCA offers a way of reducing the dimensionality of

a dataset. Consider two variables that have an almost linear relation as shown in

Figure 4.7(b). As in Figure 4.7(a) the principal direction in which the data varies is

shown by the u axis, and the secondary direction by the v axis. However, in this case

all the v coordinate values are all spread around zero. Therefore, it may be assumed

that they are caused by noise. Thus, in the u− v axis system, the data set can be

represented by one variable u discarding the variable v, reducing the dimensionality

of the problem by 1.

Generalising this example, PCA dimensionality reduction can be defined as

the optimal approximation of a random vector x ∈ Rp by a linear combination of M

independent vectors with M < p that is obtained by projecting the random vector x

onto the eigenvectors Φi corresponding to the largest eigenvalues λi of the covariance

matrix.
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In the implementation of the PCA method, since the variance depends on the

scale of the variables, it is customary to first standardize each variable to have mean

zero and standard deviation one. After the standardization, the original variables

with possibly different units of measurement are all in comparable units. Assuming

a standardized data with the empirical covariance matrix

Σpxp =
1

n
X XT (4.54)

assuming there are n observations and x is a p dimensional random variable where

x = (x1, . . . , xp)
T and the observation matrix is X = {xi,j : 1 ≤ i ≤ p, 1 ≤ j ≤ n}.

We can use the spectral decomposition theorem to write covariance matrix Σ as

Σ = UΛUT (4.55)

where Λ = diag(λ1, . . . , λp) is the diagonal matrix of the ordered eigenvalues λ1 ≤

. . . ≤ λp and U is a p× p orthogonal matrix containing the eigenvectors. It can be

shown that the principal components are given by the p rows of the p×n matrix S,

where (Mardia et al. 1995)

S = UTX (4.56)

4.4.5 Isomap And Locally Linear Embedding

In this section, two core distance-preserving methods, Isomap and Locally

Linear Embedding are summarized. In addition, the Isomap algorithm is presented

in detail since this algorithm was used in the experiments presented in Section 5.7.3.

It should be noted that the real-world data usually incorporates non-linear

structures rather than linear compositions. Taking this into account, two promis-

ing distance-preserving methods, Isomap and Locally Linear Embedding, have been

proposed and successfully applied (Friedrich 2002, Roweis and Saul 2000, Tenen-

baum et al. 2000). The Isomap algorithm extends MDS by a sophisticated distance

measurement to achieve non-linear embeddings. It builds a graph on the data con-

sisting of local connections only, and then measures pairwise distances by the length
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of the shortest path on that graph. This computes an approximation to the distance

between points measured within the underlying manifold. Finally, MDS is used to

find a set of low-dimensional points with similar pairwise distances.

The Locally Linear Embedding (LLE) algorithm computes the best coeffi-

cients to approximate each point by a weighted linear combination of its neighbours,

and then try to find a set of low-dimensional points, which can be linearly approxi-

mated by its neighbours with the coefficients determined from the high-dimensional

points (Roweis and Saul 2000).

Both these core algorithms are simple to implement, have a very small num-

ber of free parameters, and do not get trapped in local minima like many other

popular learning algorithms. Furthermore, both have been shown to yield impres-

sive results on artificial and real datasets in comparison to some other non-linear

methods such as the Self-Organizing Map (SOM) and Generative Topographic Map-

ping (GTM) (Bishop et al. 1998, Kohonen 1990).

When reducing the dimensionality of a high-dimensional dataset using these

algorithms, only the local neighbourhood structure between the data points re-

mains. This means that Euclidean distances are only meaningful between nearby

points. LLE exploits this by describing each point only by its neighbours and find-

ing the best neighbourhood-preserving lower-dimensional representation. On the

other hand, Isomap measures the distance on the manifold and tries to obtain a

lower-dimensional embedding with these approximated geodesic distances. Figure

4.8 llustrates the Euclidean and the geodesic distance metrics. The difference be-

tween Euclidean and geodesic distance is exemplified by two points in a spiral (Lee

et al. 2002). The spiral is embedded in a two-dimensional space, but clearly its

intrinsic dimension is only one, because one parameter suffices to describe the spi-

ral (Fukunaga 1982). The Euclidean distance in (a) in the higher-dimensional space

does not reflect the intrinsic similarity of the two points, as measured by the geodesic

distance in (b) along the manifold.

The Isomap algorithm flow is as follows.

1. Firstly, the neighbourhood for each point is calculated in the original high

dimensional space. The neighbourhood of a point may be either the k nearest

points or the set of points within a radius of ε.
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(a) (b)

Figure 4.8. Difference between Euclidean and geodesic distance, (a) Euclidean dis-
tance, (b) Geodesic distance.

2. After the neighbourhoods are determined, a graph is constructed by linking all

neighbouring points and labelling all arcs with the Euclidean distance between

the corresponding linked points.

3. The geodesic distance between any two points is approximated by the sum

of the arc lengths along the shortest path linking both points. To compute

the shortest paths, a more efficient algorithm was suggested that exploits the

sparse structure of the neighbourhood graph, presented in (Kumar et al. 1993).

4. Finally classical metric MDS is applied on the approximated geodesic distance

matrix, i.e. their largest eigenvectors are computed. The eigenvectors give the

coordinates of the data points in the lower-dimensional projection space.

4.4.6 Independent Component Analysis

The Independent Component Analysis (ICA) is a statistical and computa-

tional technique for revealing hidden factors that underlie sets of random variables,

measurements, or signals. In ICA, the goal is to find a linear representation of

non-Gaussian data so that the components are statistically independent, or as in-

dependent as possible. Such a representation captures the essential structure of the

data in many applications, including feature extraction and signal separation.

ICA defines a generative model for the observed multivariate data, which is
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typically given as a large database of samples. In the model, the data variables are

assumed to be linear mixtures of some unknown latent variables, and the mixing

system is also unknown. The latent variables are assumed to be non-Gaussian for

identifiability purposes and mutually independent, and they are referred to as the

independent components of the observed data. These independent components, also

called sources or factors can be determined by ICA.

ICA can also be viewed as a vector dimensional reduction approach that

seeks to express a multi-variate distribution as a linear combination of statistically

independent non-Gaussian random variables (Comon 1994, Hyvärinen et al. 2001),

(http://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml). The ICA method is widely

used in the areas of signal source separation and feature extraction.

The technical challenge behind ICA can be expressed by the famous cocktail-

party problem; imagine that you are in a room where two people are speaking simul-

taneously and two microphones are recording the time signals at different locations

(Haykin and Chen 2005). The recordings can be defined as the time signals x1(t)

and x2(t) and each of these recorded signals is a weighted sum of the speech signals

emitted by the two speakers, which are denoted by s1(t) and s2(t). These mixed

speech signals can be formulated as

x1(t) = a11s1(t) + a12s2(t) (4.57)

x2(t) = a21s1(t) + a22s2(t) (4.58)

where a11, a12, a21, and a22 are parameters that are related to the distances of the

microphones to the speakers. The goal is to estimate the two original speech signals

s1(t) and s2(t), using only the recorded signals x1(t) and x2(t).

In a more general setting, we can observe linear mixtures of n independent

components where

xj = aj1s1 + aj2s2 + ...+ ajnsn for j = 1, . . . , n (4.59)

in which the time index t is now dropped in the model, therefore, each mixture xj

as well as each independent component sk is assumed as a random variable, instead
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of a proper time signal.

Let x denote the random vector whose elements are the mixtures x1, . . . , xn

and likewise s denote the random vector with elements s1, . . . , sn. Let also A be the

matrix of mixture elements aij. Using the matrix notation, Equation 4.59 can be

revised as

x = As (4.60)

This ICA model is a generative model, which means that it describes how the

observed data are generated by mixing the components si. Since the independent

components cannot be directly observed, they are latent variables. Also the mixing

matrix A is assumed to be unknown. All that is available is the random vector x,

and both the sources s are to be estimated using it. Therefore, after estimating the

de-mixing matrix W, the sources can be computed simply by:

s = Wx (4.61)

4.4.7 Principles Of The Independent Component Analysis

In this section, the principles of the Independent Component Analysis are

described.

Independence Of Non-Gaussian Distributions

Basically, ICA model estimation is based on the mixing variables having

non-Gaussian distributions. This is the basic system identifiability condition on the

ICA problem (Hyvärinen et al. 2001). The distribution of a sum of independent

random variables tends toward a Gaussian distribution, under certain conditions by

the Central Limit Theorem. Thus, the sum of two independent random variables

usually can be expected to have a distribution that is closer to a Gaussian than the

two original random variables.
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Measures Of Non-Gaussianity

To use non-Gaussianity in ICA estimation, a quantitative measure of non-

Gaussianity of a random variable, say y, should be devised. Several non-Gaussianity

measures are detailed below.

Kurtosis

Kurtosis can be described as the degree of peakedness of a distribution. Kur-

tosis is the fourth-order classical measure of non-Gaussianity defined by

kurt(y) = E{y4} − 3(E{y2})2 (4.62)

Note that, for a Gaussian random variable y, the fourth moment equals to 3(E{y2})2,

and hence, the kurtosis is zero.

Typically non-Gaussianity is measured by the absolute value of kurtosis. The

square of kurtosis can also be used. These measures tend to zero for a Gaussian

variable, and greater than zero for most non-Gaussian random variables. There are

non-Gaussian random variables that have zero kurtosis, but they can be considered

very rare.

On the other hand, kurtosis has also some drawbacks in practice, when its

value has to be estimated from a measured sample. The main problem is that

kurtosis can be very sensitive to outliers (Huber 1985). In that case, kurtosis values

may depend on only a few marginal observations in the tails of the distribution,

which may generate erroneous or irrelevant values. In other words, kurtosis is not a

robust measure of non-Gaussianity. Thus, other measures of non-Gaussianity might

be better than kurtosis in some situations.
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Negentropy

Negentropy is considered to be a better non-Gaussianity measure than kur-

tosis, whose properties are rather opposite to those of kurtosis. Entropy is the one

of the basic concepts of information theory. The entropy of a random variable can

be interpreted as the degree of information that the observation of the variable

provides. The more unpredictable and unstructured the variable is, the larger its

entropy. The entropy H of a random variable Y is defined as

H(Y ) = −
∑
i

P (Y = ai) log(P (Y = ai)) (4.63)

where the ai are the possible values of Y (Cover and Thomas 1991, Papoulis 1991).

This very well-known definition can be generalized for continuous-valued random

variables and vectors, in which case it is often called differential entropy. The dif-

ferential entropy H of a random vector y with density f(y) is defined as (Cover and

Thomas 1991, Papoulis 1991)

H(y) = −
∫
f(y) log(f(y))dy (4.64)

A fundamental result of information theory is that a Gaussian variable has

the largest entropy among all random variables of equal variance (Cover and Thomas

1991, Papoulis 1991). This means that entropy could be used as a measure of non-

Gaussianity. In fact, this shows that the Gaussian distribution is the “most random”

or the least structured of all distributions.

To obtain a measure of non-Gaussianity, a slightly modified version of the

definition of differential entropy, called negentropy, is used. Negentropy J is defined

as

J(y) = H(ygauss)−H(y) (4.65)

where ygauss is a Gaussian random variable of the same covariance matrix as y. Due

to the above-mentioned properties, negentropy is always non-negative, and it is zero

if and only if y has a Gaussian distribution.

The main disadvantage of negentropy is the computational cost, because
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the computation of negentropy requires the estimation of the probability density

function. For some practical approximations to this, please see (Hyvärinen and Oja

2000).

Minimization Of Mutual Information

Another approach for ICA estimation, inspired again by information theory,

is minimization of mutual information. This approach leads essentially to the same

principle of finding he most non-Gaussian sources as was described above.

Using the concept of differential entropy, the mutual information I between

m random variables, yi for i = 1, . . . ,m is defined as follows:

I(y1, y2, ..., ym) =
m∑
i

H(yi)−H(y) (4.66)

Mutual information is a natural measure of the dependence between random

variables. It is always non-negative, and zero if and only if the variables are sta-

tistically independent. Thus, the mutual information takes into account the whole

dependence structure of the variables, and not only the covariance, like PCA and

the other related methods.

An important property of mutual information for an invertible linear trans-

formation is given by y = Wx (Papoulis 1991, Cover and Thomas 1991) :

I(y1, y2, ..., ym) =
m∑
i

H(yi)−H(x)− log | det(W) | (4.67)

Considering that yi are constrained to be uncorrelated and of unit variance

provides E{yyT} = WE{xxT}WT = I, which implies

det I = 1 = det(WE{xxT}WT ) = (det W)(detE{xxT})(det WT ), (4.68)

and this also implies that detW must be constant. Moreover, for yi of unit variance,
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entropy and negentropy differ only by a constant, and the sign. Thus,

I(y1, y2, ..., ym) = C −
∑
i

(J(yi)) (4.69)

where C is a constant that is independent of W. This equation shows the funda-

mental relation between the negentropy and the mutual information.

Since mutual information is the natural information-theoretic measure of the

independence of random variables, it can be used as a criterion for finding the

ICA transform. In an alternative approach, the ICA of a random vector x can

be defined as an invertible transformation as in Equation 4.61, where the matrix

W is determined so that the mutual information of the transformed components

si is minimized. It is now obvious from Equation 4.69 that finding an invertible

transformation W that minimizes the mutual information is roughly equivalent to

finding directions in which the negentropy is maximized. Rigorously speaking, this

shows that ICA estimation by minimization of mutual information is equivalent to

maximizing the sum of non-Gaussianities of the estimates, when the estimates are

constrained to be uncorrelated. The constraint of uncorrelatedness is in fact not

necessary, but simplifies the computations considerably, as one can then use the

simpler form in Equation 4.69 instead of the more complicated form in Equation

4.67.

It can also shown that maximum likelihood estimation is essentially equiv-

alent to minimization of mutual information and can be used in estimating the

suitable ICA model.

It is possible to formulate directly the likelihood in the noise-free ICA model,

as was done by (Pham et al. 1992), and then estimate the model by a maximum like-

lihood method. Denoting the matrix A−1 by W = (w1, . . . , wn)T , the log-likelihood

takes the form:

L =
T∑
t=1

n∑
i=1

log fi(w
T
i x(t)) + T log | det(W) | (4.70)

where the fi are the density functions of the si (here assumed to be known), and

the x(t), t = 1, . . . , T are the realizations of x (Papoulis 1991).
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Preprocessing For ICA

Before applying an ICA algorithm to the data, it is usually very useful to

do some preprocessing. In this section, some preprocessing techniques, namely,

centering and whitening, that make the problem of ICA estimation simpler and

better conditioned are discussed.

Centering

The most basic and necessary preprocessing is to center x, i.e. to subtract

its mean vector m = E{x} so as to make x a zero-mean variable. This implies that

s is zero-mean as well, which can be seen by taking expectations of both sides of

Equation 4.60.

This preprocessing is made solely to simplify the ICA algorithms. After

estimating the mixing matrix A with centered data, one can complete the estimation

by adding the mean vector of s back to the centered estimates of s. The mean vector

of s is given by A−1m, where m is the mean that was subtracted in the preprocessing.

Whitening

Another useful preprocessing strategy in ICA is first to whiten the observed

variables after centering. This means that before the application of the ICA al-

gorithm, the centered vector x is transformed linearly so that a new vector x̃ is

obtained that is white, hence, its components are uncorrelated and their variances

equal to unity. In other words, the covariance matrix of x̃ equals the identity matrix,

expressed by

E{x̃x̃T} = I (4.71)

It should be noted that the whitening reduces the number of parameters to

be estimated. Instead of having to estimate the n2 parameters that are the elements

of the original matrix A, we only need to estimate the new, orthogonal mixing
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matrix Ã. Note that, an orthogonal matrix contains n(n− 1)/2 degrees of freedom.

Therefore, whitening essentially solves half of the problem. Because the whitening is

a very simple and standard procedure, much simpler than any of the ICA algorithms,

it is a very good idea to reduce the complexity of the problem.

4.4.8 The FastICA Algorithm

The FastICA algorithm (http://research.ics.tkk.fi/ica/fastica) is a popu-

lar ICA method that uses a fixed point iteration scheme to maximise the non-

Gaussianity of the unknown sources (Hyvärinen and Oja 1997, Hyvärinen 1999). In

independent experiments, FastICA has been found to be 10-100 times faster than

conventional gradient descent based ICA methods.

In the preceding sections, different measures of non-Gaussianity, i.e. objective

functions for ICA estimation or contrast functions as commonly referred to were

introduced. In practice, an algorithm for maximizing the contrast function is also

needed. In this section, the very efficient FastICA method is introduced.

As the preliminary part of the FastICA, it is assumed that the data first has

been preprocessed by centering and whitening as explained above. For simplicity of

notation, we denote the preprocessed data just by x, and the transformed mixing

matrix by A, omitting the tildes.

The FastICA learning rule is to find a direction, i.e. a unit vector w such

that the projection wTx maximizes non-Gaussianity. Non-Gaussianity is measured

by the approximation of negentropy J(wTx). Recall that the variance of wTx must

here be constrained to unity; for whitened data this is equivalent to constraining

the norm of w to be unity. The FastICA is based on a fixed-point iteration scheme

for finding a maximum of the non-Gaussianity of wTx, see (Hyvärinen and Oja

1997, Hyvärinen 1999). It can be also derived as a Newton iteration. Let g be the

derivative of a non-quadratic non-linearity; valid choices are

g1(u) = tanh(a1u), g2(u) = u exp(−u2/2) (4.72)
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where the corresponding non-quadratic functions are

G1(u) =
1

a1
log(cosh(a1u)), G2(u) = − exp(u2/2) (4.73)

where 1 ≤ a1 ≤ 2 is some suitable constant, often taken as a1 = 1. The basic form

of the FastICA algorithm is as follows (Hyvärinen and Oja 2000):

1. Choose an initial (e.g. random) weight vector w.

2. Let w+ = E{xg(wTx)} − E{g′(wTx)}w

3. Let w+ = w+/ ‖ w+ ‖

4. If not converged, go back to Step 2.

The convergence is achieved when the old and new values of w point in the

same direction, i.e. their dot-product is almost equal to 1. It is not necessary that

the vector converges to a single point, since w and −w define the same direction.

The derivation of FastICA is as follows. First note that the maxima of

the approximation of the negentropy of wTx are obtained at certain optima of

E{G(wTx)}. According to the Kuhn-Tucker conditions (Luenberger 1969), the

optima of E{G(wTx)} under the constraint E{(wTx)2} =‖ w ‖2= 1 is obtained at

points where

E{xg(wTx)} − βw = 0 (4.74)

Denoting the function on the left-hand side of Equation 4.74 by F and solving

this equation by the Newton’s method, its Jacobian matrix JF (w) is obtained as

JF (w) = E{xxTg′(wTx)} − βI (4.75)

To simplify the inversion of this matrix, it is decided to approximate the first

term in Equation 4.75. Since the data is sphered, a reasonable approximation is

given by

E{xxTg′(wTx)} ≈ E{xxT}E{g′(wTx)} = E{g′(wTx)}I (4.76)

Thus the Jacobian matrix becomes diagonal, and can easily be inverted. Then, the
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following approximative Newton iteration is obtained :

w+ = w− (E{xg(wTx)} − βw)/(E{g′(wTx)} − β) (4.77)

This algorithm can be further simplified by multiplying both sides of Equation

4.77 by (E{g′(wTx)} − β) which gives, after algebraic simplification, the FastICA

iteration (Hyvärinen and Oja 2000).

Properties of the FastICA Algorithm

The FastICA algorithm and the underlying contrast functions have a number

of desirable properties when compared with existing methods for ICA (Hyvärinen

and Oja 2000);

1. The convergence is cubic (or at least quadratic), under the assumption of the

ICA data model (Hyvärinen 1999). This is in contrast to ordinary ICA algo-

rithms based on (stochastic) gradient descent methods, where the convergence

is only linear. This means a very fast convergence.

2. FastICA algorithm is easy to use contrary to gradient-based algorithms since

there is no step size parameter to choose.

3. The algorithm finds directly independent components of (practically) any non-

Gaussian distribution using any non-linearity g. This is in contrast to many

algorithms, where some estimate of the probability distribution function has

to be first available, and the non-linearity must be chosen accordingly.

4. The performance of the method can be optimized by choosing a suitable non-

linearity g. In particular, one can obtain algorithms that are robust and/or of

minimum variance.

5. The independent components can be estimated one by one, which is roughly

equivalent to doing projection pursuit. This is useful in exploratory data

analysis, and decreases the computational load of the method in cases where

only some of the independent components need to be estimated.
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6. The FastICA has most of the advantages of neural algorithms: It is par-

allel, distributed, computationally simple, and requires little memory space.

Stochastic gradient methods seem to be preferable only if fast adaptivity in a

changing environment is required.

4.5 Proposed Framework

In the above sections of this chapter, the detailed background information

on the elementary blocks of the proposed framework was presented. Now, the main

framework integrating these blocks is summarized. The proposed framework is de-

scribed in the form of the flow diagrams in Figure 4.9. The QSL texture labelling

and the QSL target texture classification methodology are presented separately.

4.5.1 Texture Labelling By The Quasi-supervised Learning

The first block of the proposed framework is texture feature extraction as

explained in Section 4.1. In this block, the texture feature vectors are calculated

using the histopathology images from the reference and the mixed image groups .

Each feature vector takes the initial label of its source image group; either reference

or mixed.

The block following the texture feature extraction is the vector dimensionality

reduction block (for the background see Section 4.4). As corresponding experimental

results will be presented in Section 5.7, the only dimensionality reduction method

that improved the texture labelling performance was the ICA procedure.

Following the dimensionality reduction, all of the reduced feature vectors

are then fed to the QSL algorithm. The QSL algorithm calculates the posterior

probability p0(xi) for each texture feature vector xi, defined as the probability of it

being assigned to the reference label. At the same time, the optimum reference set

size nopt for these texture vector datasets are also calculated (see Section 4.2.3).

After p0(x) values are calculated for all feature vectors xi, the threshold Topt

is to be determined in order to set resultant texture vector labels. The feature
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(a)

(b)

Figure 4.9. Graphical abstract of the proposed framework (a) QSL texture labelling,
(b) QSL target texture classification.
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vectors x that satisfy the condition p0(x) ≥ Topt are assigned to the label reference,

whereas, all other vectors are assigned to the label of contrast. The meaning of

the contrasted label may vary due to the experimental setup but it is basically the

contrasted characteristics between reference and unlabelled mixed image groups. In

our study, the reference image label corresponds to the healthy regions (NNCR)

whereas contrasted label, i.e. the contrast between mixed and the reference groups,

means cancer (CRCa) or any other unknown local characteristics specific to mixed

image group.

To display the labelling results, all local image regions are framed as an over-

lay onto the original histopathology images by using two different colors. The green

color represents textures labelled as healthy and the red color represents textures

labelled as cancer-related.

4.5.2 Classification Of Target Textures By The Quasi-
supervised Learning

The methodology that was graphically abstracted in Figure 4.9(a) is an ana-

lytical use of the QSL algorithm for texture labelling. In addition to the analytical

use, the QSL algorithm was also extended to classify the texture feature vectors

observed after the original dataset. This is the predictive use of the QSL algorithm

which we call target texture classification. The flow diagram of the proposed pre-

dictive methodology is shown in Figure 4.9(b). This diagram is very similar to the

first flow diagram except for the additional target images at the vector data input

part. Another difference is the nopt input that is to be identified as a result of the

analytical learning on the original texture feature vector.

In the proposed method all texture feature vectors were calculated for all

image regions in the histopathology images from the reference, mixed and the target

image groups. The feature vectors are then fed to the QSL algorithm that calculates

the posterior probability p0(x) for each target feature vector x against the reference

and mixed vectors using the provided optimum set size nopt.

After the p0(x) values are determined for each target feature vector x, a

threshold Topt is determined in a fashion that is similar to the texture labelling
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case. Finally, the target feature vectors x that satisfy the condition p0(x) ≥ Topt are

assigned to the reference label and all other target vectors are assigned to the label

of contrast.

The labels of the image regions are then displayed as before, overlaid on the

color histopathology images.
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CHAPTER 5

EXPERIMENT SETUP AND RESULTS

This chapter presents the setup of our study along with the results of the

experimental execution. Firstly, the histopathological digital image database of

the study, the Histopathological Image Library (HIL) is introduced. Secondly, the

preferred approach for the performance evaluation of the QSL labelling and classi-

fication is explained together with the ground truth data extraction tool. Following

the performance evaluation, the texture information base used throughout this study

which are texture feature vector datasets calculated using various extraction param-

eters are detailed. Then, the resultant labelling performances of the QSL procedure

applied to the reference and the mixed vector groups were presented along with the

corresponding experimental details. Next, the effects of varying texture extraction

parameters to the labelling performance were investigated. The study performed

in order to have performance comparative information of the QSL method against

a powerful supervised classifier is explained in Section 5.6. Next, the studies per-

formed to determine the QSL algorithm response to vector dimensionality reduction

are presented. The following two sections are dedicated to synthetic validation of

the QSL labelling and to background segmentation techniques. The last sections

are concerned with the predictive use of the QSL algorithm on the feature vectors

of unknown origin.

5.1 Histopathological Image Library

In this study, the Histopathological Image Library (HIL), consisting of 257

light microscopic images was constructed to be used in the texture classification ex-

periments. This set of digital light microscopic images was taken from hematoxylin

and eosin (H&E) stained sections of formalin-fixed paraffin embedded tissue sec-

tions of non-neoplastic colorectal (NNCR) and colorectal carcinoma (CRCa) tissues

from radical colectomy or rectum resection specimens by a digital camera (Olympus

86



DP70, Olympus Optical Co. Ltd., Tokyo, Japan) connected to a light microscope

(Olympus BX51, Olympus Optical Co. Ltd., Tokyo, Japan) at an original magnifi-

cation of ×4.

All images in the library have 256 level RGB planes, 4080 × 3720 pixel

dimensions and approximately 1 micron per pixel resolution. The images were

acquired using fixed capture and illumination parameters; (the microscope light

exposure was manually set to 6 from a scale of 0 to 6). In this thesis study, 4 × 4

pixels regular grid sampling was applied to all original primary images to get smaller

size that yielded relatively shorter computation times in feature extraction stage.

Thus, the secondary histopathological images used throughout this research had

4 micron per pixel resolution.

The images in the HIL were divided into two groups, namely, the training

(as reference and mixed) and target image groups. The training image set was used

in the QSL texture labelling performance evaluation. On the other hand, the target

image set were never included in the QSL training phase, but only queried against

the training set in order to measure the performance of the classification. The 27

of the images were assigned as target images while the remaining 230 images were

assigned as training images.

The training image group of the library was also divided into two groups, as

NNCR and unlabelled mixed; the latter possessing an unlabelled mixture of NNCR

and CRCa images. The rule for group assignment was as follows; when an expert

observed no carcinoma regions throughout an image, that image was labelled as

NNCR and assigned to the first group (NNCR). For the second group, the term

“mixed” is used in order to indicate that these images are composed of features

associated with both NNCR and CRCa tissues. This separation of the image data

into two groups by a pathology expert was a very simple task compared to manual

labelling of isolated colorectal carcinoma regions and it was supposed to be much

less operator dependent task. The NNCR group had 127 images and the mixed

group had 103 images in total.
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5.2 Texture Labelling Performance Evaluation

This section describes the strategy that uses ground truth texture information

in order to evaluate the labelling performance of the proposed framework.

5.2.1 Histopathological Image Atlas

Texture feature vector datasets and corresponding group labels as reference

or unlabelled mixed were fed to the QSL algorithm and the resulting labels com-

pared with the ground-truth vector label data available in the Histopathological

Image Atlas to measure the labelling performance. In order to obtain the ground-

truth atlas data, a software tool, the Histopathological Image Atlas Editor (HIAE)

was developed in C++ with a Graphical User Interface for the Windows operating

system (Microsoft Corporation, USA). The HIAE retrieves selected images from the

Histopathological Image Library and allows an expert to mark the cancer regions by

mouse. Each image in the library was divided into a grid of 128.0 microns and the

labelling was done for each square block manually by a pathology expert using the

HIAE. This data constitutes the ground-truth data used to evaluate the performance

of the proposed method.

A screen snapshot of the HIAE is presented in Figure 5.1. In this figure, the

main window of the HIAE displaying an histopathology slide under examination is

presented. Individual square regions that were marked by the expert were merged

and framed onto the image and also the coverage percentage of the markings was pre-

sented by a pie chart. The HIAE also provides easy navigation in the histopathology

image database for rapid access to the image data. The atlas data prepared using

the HIAE, overlaid on two colorectal histopathology images are shown in Figure

5.14(a), 5.14(b).

An important point to emphasize here is that the ground-truth data was

collected and used for the purpose of evaluating the performance of the proposed

histopathology slide labelling method. While such datasets are required for train-

ing conventional supervised classification methods, the quasi-supervised learning
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Figure 5.1. Histopathological Image Atlas Editor (HIAE) software tool screen snap-
shot.

paradigm adopted here is designed explicitly to remove the need for ground-truth

training datasets. Hence, the ground-truth dataset was withhold from the quasi-

supervised learning in the experiments.

5.2.2 Receiver Operating Characteristics Curve

In order to asses the separation of the NNCR and CRCa tissue regions,

receiver operating characteristics (ROC) curves were constructed. An ROC curve

is a graphical plot of the true positive rate versus the false positive rate achieved in

a recognition experiment. The true positive rate, PTP , denotes the probability of

successful labelling of all ground-truth cancer features vectors. Similarly, the false

positive rate, PFP , denotes the probability of labelling NNCR features as cancer.

In order to generate an ROC curve, we have computed PFP on the reference vector

dataset and PTP on the unlabelled vector dataset, and plotted them for varying

threshold T ranging from 0.0 to 1.0.

We have evaluated the recognition performance of an ROC curve following
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two separate strategies:

1. The optimum recognition point on the ROC curve: The optimum threshold

Topt is selected on the knee point of a continuous ROC curve where its slope

equals to 1.0. In the ideal case, the ROC curve would be the unit step function

and the optimum recognition point on this curve would be at the (0.0, 1.0)

point. This ideal point means that there is no false alarm with full true

detection. After Topt is determined, the final labelling of the images was carried

out using this threshold value and the corresponding PFP and PTP values were

registered as the performance measures of that labelling experiment.

2. The area under the ROC curve: The area under the ROC curve is another

performance measure in which a larger area means a better separation of the

NNCR and CRCa tissue regions. In the ideal case described above, the area

under the ROC curve would be equal to 1.0.

When comparing the results of the experiments, the one with the optimum

recognition point (PFP , PTP ) closest to ideal point (0.0, 1.0) was identified as achiev-

ing a better identification performance. If two experiments had very close optimum

recognition points, then the one with larger area under its ROC curve was accepted

as offering more successful identification.

5.3 Texture Feature Vector Datasets

Throughout this study, various texture feature vector datasets were gener-

ated in order to evaluate the corresponding texture labelling and recognition per-

formances. A texture feature dataset is differentiated with the parameters used in

the feature vector extraction. Texture extraction configuration parameters used in

this study are listed in groups as below:

1. The image plane,

(a) Gray level image plane,

(b) Lab color image planes.
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2. Basic radius r of the texture feature calculation geometry,

3. Pairwise pixel distance d,

(a) Single d value,

(b) Multiple d values.

4. Hierarchical feature computation,

(a) Single neighbourhood (H = 1),

(b) Multiple nested neighbourhoods (H ≥ 2).

In the experiments, both the gray level and the color information obtained

from the histopathological images were processed in parallel. In case of color image

processing, the original images were transformed into the Lab image planes using the

well-known RGB to Lab color transformation using a white point of (255, 255, 255)

in the RGB space, and each image plane was processed as a separate gray scale image

(CIE 1986, Schwarz et al. 1987). Specifically, for an image region, texture feature

vectors were calculated for each of L, a and b planes were then concatenated to

produce a single texture feature vector. Therefore, a texture feature vector generated

from an Lab image had three times the dimension as the one obtained from a gray

level image. In addition, uniform scalar quantization of the original 8-bit intensity

levels was carried out into 16 quantized intensity levels on each image plane of

interest before calculating the co-occurrence matrices to limit the number of possible

image intensity pairs.

There have been several limitations in selecting a radius value r for the feature

calculation geometry. Firstly, the radius value was to match the discriminative local

texture characteristics. Large radius values yield fewer feature vectors in total than

the smaller radius values and sustain difficulties in defining the regions of texture

transition. On the other hand, smaller radius values provide relatively higher sepa-

ration in texture transition regions but make the labelling problem labour intensive

due to a greater number of texture feature vectors. Last but not least, the choice

of r had to take into account the smallest artefact observed in the Histopathological

Image Library that is the cell nucleus ranging between 15− 20 microns in diameter.

As a result, several different r values; 32, 48, 64 and 128 pixels were used in the
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texture extraction configuration. Matching values were taken into consideration for

the pairwise pixel distance d.

Finally, the level of hierarchy H was selected as either 1 or 2, limiting the

feature vector computations to neighbourhoods of radii r and 2r. The case with

H = 1 is also regarded as the “no hierarchy” case.

The resulting texture feature vector datasets of this study are listed in Table

5.1 with their respective texture feature extraction parameters and the corresponding

vector dimensions:

Table 5.1. Texture feature vector datasets with corresponding texture extraction
parameters.

Texture
Features

Image
Planes

r H d Dimension

Dataset 1 Gray 64 2 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61} 296
Dataset 2 Lab 64 2 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61} 888
Dataset 3 Lab 64 1 {1, 3, 5, 9, 13, 17, 21, 41, 51, 61} 444
Dataset 4 Lab 48 2 {1, 3, 7, 13} 384
Dataset 5 Lab 64 2 {1} 132
Dataset 6 Lab 32 2 {1, 3, 7, 13} 384
Dataset 7 Lab 48 2 {1} 132
Dataset 8 Lab 48 1 {1, 3, 7, 13} 192

5.4 Texture Labelling By The Quasi-supervised Learning

In our study, the QSL algorithm was operated on the texture feature vectors

corresponding to the reference and mixed image groups and the subsequent labelling

of the corresponding image regions were determined along with the optimal QSL

reference set size nopt.

The procedure provides the posterior probability estimates p0(x) and p1(x)

for all feature vectors in both groups computed for the optimal reference set size

nopt, with p0(x) + p1(x) = 1 for all feature vectors x. In the labelling of a feature

vector x, a high p0(x) value means that the vector in question is more similar to
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those observed over NNCR tissues in the reference dataset. In turn, a low p0(x)

value means that the vector in question is different from the NNCR feature vectors

and by construction associated with CRCa.

In addition, during the computation of the posterior probabilities, the feature

vectors obtained from the same image as the vector in consideration were left outside

of the analysis in order to prevent biasing the analysis results due to the possible

similarity between feature vectors obtained from the same histopathology slide.

5.4.1 Calculation Of The Optimal Reference Set Size

It should be highlighted again that the accuracy of the QSL algorithm is

closely related to the reference set size n, which denotes the number of selected

samples from each QSL group, to construct the random reference sets for the ensu-

ing nearest neighbour classifier. In all of the texture labelling experiments, the first

task was to determine the nopt value among all possible n’s that minimizes the cost

functional E(n) given in Equation 4.22. Using the nopt value, the posterior proba-

bilities corresponding to each texture feature vector were calculated, as detailed in

Section 4.2.1.

It was experimentally observed that the characteristics of the cost functional

E(n) with respect to n was quite similar to the curve represented in Figure 5.2

in all of the texture labelling experiments operated on the Histopathological Image

Library. For this E(n) curve, an almost linear curve segment is observed for n values

beyond the global minimum point. This means that for these n values, an accurate

class separation was achieved but the penalty was being incurred primarily due to

the increasing reference set size. In contrast, for n values that are less than the

optimum value, the class overlap was relatively higher, and thus, the first term of

the cost functional was dominant.

It is very clear that it is not feasible to calculate all E(n) values for all possible

n and determine the optimum value. On the other hand, the smooth nature of the

E(n) curve as illustrated above, allows determining nopt by using a Steepest-Descent

algorithm. The algorithm starts from an initial estimate of n and moves in the
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Figure 5.2. Common characteristics of cost functional E(n) versus n.

negative direction of the gradient until no change occurs. The iterations starts with

an initial estimate n0 and the next reference set size value is calculated by

nk+1 = nk − λ
dE(n)

dn
for k = 0,1,2, . . . (5.1)

where nk and nk+1 are the values in two successor iterations and λ is a small positive

coefficient that adjusts the convergence ratio. The algorithm is terminated when

the absolute tangent of the E(n) curve is below some predefined threshold, that

was experimentally set to 0.05. Please also note that, due to the characteristics of

the E(n) curve the convergence would be faster if the initial n values are selected

relatively small since the curve is quite steep for small n values.

The optimal reference set sizes determined for the QSL experiments per-

formed on texture feature vectors Dataset 1 - 8 are given in the Table 5.2. For each

texture feature vector dataset, the number of vectors in the reference group and the

unlabelled mixed group, denoted by `0 and `1 respectively, are also shown in order

to allow comparison in terms of the optimal reference set size nopt.

5.4.2 Texture Labelling Performances

This section presents the texture labelling performances of the QSL labelling

experiments for original texture feature vector datasets. The ROC curves obtained
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Table 5.2. Optimum reference set size (nopt) versus texture feature vector datasets.
`0 and `1 represent the number of vectors in control group and mixed
groups respectively.

Texture Feature Dataset nopt `0 `1
Dataset 1 738 12192 9888
Dataset 2 966 12192 9888
Dataset 3 1401 17780 14420
Dataset 4 2266 27432 22248
Dataset 5 1025 12192 9888
Dataset 6 8143 71120 57680
Dataset 7 2115 27432 22248
Dataset 8 2621 35560 28840

by the QSL algorithm operated on Datasets 1-6 are given in Figure 5.3. According

to the texture labelling performance comparison rules described in Section 5.2 the

best recognition performance was acquired with the texture vector Dataset 2. It

was also observed that better optimum recognition was associated with larger ROC

curve area.

Among the various datasets corresponding to different feature extraction pa-

rameters, the output labelling performance of the QSL method was the lowest when

applied to Dataset 1 (see Table 5.1) constructed using the gray level image infor-

mation. Conversely, the color texture feature information extracted from the Lab

color space offered the best characterization of the NNCR and CRCa features. The

QSL algorithm labelling performances calculated using these ROC curves were also

given in Table 5.3.

In this table, (PFP , PTP ) pairs are listed along with the area under ROC curve

values. In terms of the ROC areas the worst texture labelling rate was obtained for

Dataset 1 which is based on the gray level image information. The area under ROC

values for vector datasets except Dataset 1 are very close to each other indicating

very similar labelling performances. The optimum recognition points (PFP , PTP )

also support this observation.

In general, PTP rates are quite satisfactory reaching the values up to 84%,

while, the PFP rates are somewhat high. This phenomenon is referred to as the

“malign tendency” of the algorithm, implying a general bias towards labelling NNCR
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Figure 5.3. ROC curves (Dataset 1 - 6).

texture vectors as CRCa.

5.5 Texture Labelling Performances Versus Texture Extrac-
tion Parameters

This section presents the impact of the texture feature extraction parameter

selection to the texture labelling performances. There are four different texture

feature extraction parameters available as stated in Section 5.3. In this study, only

one of the feature extraction parameters was changed while the other texture feature

extraction parameters kept constant in order to observe its effects on the texture

labelling performances.

In order to observe the effect of texture feature extraction parameter H on

the texture labelling performance, several QSL experiments were carried out on the

texture feature datasets corresponding to H = 1 and 2, but for fixed r and d. Texture

labelling performances calculated for Dataset 2 versus Dataset 3 and Dataset 4
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Table 5.3. Labelling performances of the QSL method for original texture feature
vector datasets.

Texture Features (PFP , PTP ) ROC Area
Dataset 1 (0.25, 0.79) 0.84
Dataset 2 (0.19, 0.84) 0.88
Dataset 3 (0.19, 0.82) 0.88
Dataset 4 (0.20, 0.83) 0.88
Dataset 5 (0.21, 0.83) 0.87
Dataset 6 (0.23, 0.84) 0.87
Dataset 7 (0.22, 0.84) 0.87
Dataset 8 (0.20, 0.82) 0.88

versus Dataset 8 were compared via several QSL experiments. The resulting ROC

curves obtained for these experiments are given in Figure 5.4. By examining these

ROC curve pairs and the corresponding QSL texture labelling performances given in

Table 5.3, it can be concluded that varying values of parameter H did not have any

significant influence on the QSL texture labelling performance, with only a minor

performance improvement of PTD values for H = 2.

In order to observe the effects of texture feature extraction parameter r on

the texture labelling performance, several QSL experiments were performed on the

texture feature datasets corresponding to varying r but fixed H and d. To this end,

texture labelling performances for Dataset 4 versus Dataset 6 and Dataset 5 versus

Dataset 7 were compared. To this end, r took the values of 48 and 32 for Datasets

4 - 6 and took the values of 64 and 48 for Datasets 5 - 7. Resulting ROC curves

are given in Figure 5.5. By examining this ROC curve pairs and the corresponding

QSL texture recognition performances given in Table 5.3, it can be concluded that

varying r across the set {32, 48, 64} did not have any significant influence on the

QSL texture labelling performance.

Similarly, in order to observe the effects of texture feature extraction param-

eter d on the texture recognition performance, several QSL experiments were carried

out on the texture feature datasets corresponding to varying d but fixed H and r.

Now, we describe two sample labelling experiment couples; in the first couple, the

experiments were carried out on features vectors Dataset 2 and Dataset 5. In the

first experiment of this couple, texture feature vectors were calculated on Dataset
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Figure 5.4. Comparisons of ROC curve pairs for variable texture feature extraction
parameter H.
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Figure 5.5. Comparisons of ROC curve pairs for variable texture feature extraction
parameter r. (For corresponding feature extraction parameters see Table
5.1)
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2 for d ∈ {1, 3, 5, 9, 13, 17, 21, 41, 51, 61}. In the second experiment, texture feature

vectors were calculated on Dataset 5 for d = 1. In these two experiments, H = 2

and r = 64 values kept the same.

For the next experiment couple, the two experiments were carried out on

Dataset 4 and Dataset 7 separately. In the first experiment of this couple, texture

feature vectors on Dataset 4 were calculated for d ∈ {1, 3, 7, 13}. In the other

experiment, texture feature vectors on Dataset 7 were calculated for d = 1. In both

experiments, H = 2 and r = 48 values kept unchanged.

The resulting ROC curves for two experiment couples are shown in Figure 5.6.

Examining the ROC curve pair given in Figure 5.6(a), it can easily be seen that the

QSL labelling performance calculated for Dataset 2 is much better than of Dataset

5. In addition, the ROC curve pair shown in Figure 5.6(b) states that Dataset 4

had higher labelling performance compared to Dataset 7 but the improvement was

relatively minor compared to the other experiment pair.

Dataset 2 experiment resulted with a larger area under the ROC curve com-

pared to Dataset 5 (0.88 versus 0.87) and had successful optimum recognition point

(0.18, 0.84) versus (0.21, 0.83); providing lower PFA coupled with a higher PTD.

Dataset 4 experiment also resulted with a larger area under ROC compared to

Dataset 7 (0.88 versus 0.87) and a lower PFA value at the optimum labelling thresh-

old. For the performance measures please refer to Table 5.3.

As a result of the comparisons detailed above, it can be concluded that

QSL labelling performances for texture feature vector datasets calculated combining

multiple inter-pixel distances were better than that calculated for d = 1 only. This

means that including one or more inter-pixel distance values in addition to d = 1

increased the separation among healthy and cancer texture feature vectors.

5.6 Comparative Labelling Case: A Support Vector Ma-
chine Recognition

It is very important compare the QSL method against other off-the-shelf vec-

tor classifiers on the same texture feature vector datasets in order to comment about

the labelling performance of QSL. In order to obtain an independent evaluation of
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(a)

(b)

Figure 5.6. Comparisons of two ROC curve pairs corresponding to varying texture
feature extraction parameter d. (For corresponding feature extraction
parameters see Table 5.1)
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the labelling performance, we have used a Support Vector Machine (SVM) classifier

trained on the ground-truth label data that was withheld from the quasi-supervised

labelling strategy (Cortes and Vapnik 1995, Vapnik 1998, Burges 1998).

In order to perform the SVM classification experiments, we constructed the

NNCR and CRCa vector groups using ground-truth atlas information. Group vec-

tors took labels +1 and −1, depending on whether they belong to the NNCR group

or not. An SVM classifier training vector set was then constructed by randomly

selecting 90% of these vectors along with a control vector set constructed by the re-

maining 10%. The training feature vector set was used to obtain the classifier model

that was then operated on the control feature vector set. The SVM classifier out-

put obtained for the vectors in the control set was compared with the ground truth

labels in the Histopathological Image Atlas to calculate the resulting classification

performance.

Since a relatively smaller number of texture vectors was used in the control

set for an individual SVM experiment, the performance measures obtained were

not expected to represent the actual classifier performance well. To address this

issue, multiple independent SVM classification experiments (40 in our study) were

performed for a specific texture vector dataset and the resulting classification per-

formances were used to determine the corresponding statistics via their means and

their variances. The mean and the variance statistics determined the performance

of the SVM classifier on a specific texture vector dataset.

In the SVM classification experiments, we have used a third party implemen-

tation, SVM light (http://svmlight.joachims.org). For the background on SVM light

please see Section 4.3.4.

In the SVM classifier construction, we have used a Gaussian Radial Basis

function kernel (see Equation 4.49) where the scale parameter σ was determined by

minimizing the number of Support Vectors in the training phase via a line search. In

order to take into account the non-separable cases, the Lagrange multipliers of the

quadratic optimization were bound from above by 100.0 during training, producing a

soft-margin classification. The recognition performance of the samples in the control
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dataset was carried out by thresholding the classifier underlying function

h(x) =
∑
i

yiβiK(x, xj) + b (5.2)

by a threshold T ∈ (−∞,+∞), yi being +1 or −1 based on whether xi belongs to the

NNCR or CRCa groups respectively, with βi and b obtained during the training of

the classifier. The control dataset samples for which h(x) ≥ T were then recognized

as NNCR.

The QSL algorithm labelling performances and the SVM classifier perfor-

mances for texture feature Datasets 1-6 are presented in Table 5.4. Note that, while

labelling performance measure values are given directly for the QSL experiments, the

classification performance statistics are given for the SVM experiments as explained.

It can be observed that the SVM classifier probability of false positive (PFP ) values

are distributed around relatively lower values compared to that of QSL. while the

probability of true positive (PTP ) values follow each other very closely. Note, how-

ever, that as the SVM classifier was trained on the atlas data, it represents an upper

bound to the QSL labelling performance in the QSL application, since there is no

ground-truth data to be used in learning. The results in Table 5.4 indicate that the

QSL strategy attains a labelling performance that is close to this upper bound in

terms of true positive rate without the benefit of a ground-truth learning dataset.

Table 5.4. Performances of the QSL method with the SVM classifier performance
statistics.

QSL SVM

Texture
Features

(PFP , PTP ) PFP (µ, σ2) PTP (µ, σ2)

Dataset 1 (0.25, 0.79) (0.15, 0.01) (0.87, 0.01)
Dataset 2 (0.19, 0.84) (0.03, 0.00) (0.96, 0.00)
Dataset 3 (0.19, 0.82) (0.03, 0.00) (0.94, 0.00)
Dataset 4 (0.20, 0.83) (0.04, 0.02) (0.86, 0.26)
Dataset 5 (0.21, 0.83) (0.04, 0.03) (0.84, 0.40)
Dataset 6 (0.23, 0.84) (0.02, 0.00) (0.96, 0.00)
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5.7 Vector Dimensionality Reduction

As explained in detail in Section 4.4, vector dimensionality reduction is a

mathematical transformation to represent a vector dataset in a relatively lower di-

mensional space. One of the advantages of a reduced dimensionality is alleviating

the Curse of Dimensionality (see Section 4.4.1), leading to better classification per-

formances and reduced computation times.

This section presents the dimensionality reduction strategies performed on

the texture feature datasets and the experimental results obtained using the reduced

datasets. The main purpose of this work was to evaluate all possible dimensionality

reduction strategies along with their adaptation parameters. However, because of

the high number of texture feature vectors and the high texture feature vector di-

mensions, it was not possible to evaluate all the dimensionality reduction procedures

explained in Section 4.4. In addition, it was also not possible to evaluate all the

variations for a specific dimensionality reduction method, such as, selecting various

subsets for feature subset selection procedure and selecting various target dimen-

sionalities for PCA procedure. Despite these limitations, a comprehensive study was

conducted by evaluating the following dimensionality reduction methods;

1. Individual Feature Selection,

2. Principal Component Analysis,

3. Isomap,

4. Independent Component Analysis,

presented in detail in the following sections.

5.7.1 Individual Feature Selection

Individual feature selection is a methodology where a subset of features is

selected individually from the complete feature dataset according to a defined selec-

tion criterion (see Section 4.4.3). In our study, the purpose of the subset selection
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was to have higher QSL classification performances using the reduced feature vector

datasets. In an ideal feature selection case, exhaustive selection would be performed,

in other words all possible feature combinations would be selected and the QSL per-

formances would be evaluated for each of them. However, this strategy is generally

not applicable since the number of distinct texture feature combinations and hence

the total processing time is typically very high. As a result, a much more limited

approach was conducted in this study, only a finite number of combinations of tex-

ture features were selected and the QSL method was carried out on them. The main

idea here was to detect texture features that provided a higher separation between

the reference and the mixed groups individually and to use several combinations of

these components instead of the original set of texture features.

In our study, the first step was to calculate the level of separation for each

individual component of an original texture feature vector dataset. A measure of

separation si for the i’th texture feature vector component was defined as;

si =
|µiR − µiM |
σ2
iR + σ2

iM

(5.3)

where µiR and µiM denote the mean values and σiR and σiM the standard deviations

of the i’th feature vector component for the reference and the mixed vector groups

respectively. The measure of separation implies that the statistical distribution of

the two observations are well separated if the mean distance of these observations

is relatively larger, together with a smaller observation-specific variances.

Suppose that, between two different texture features t1 and t2 ,t1 has a better

separated distribution than t2 for healthy and cancer labels; by means of its larger

distance between group means and by means of smaller group variances. Consid-

ering the QSL experiment groups, which are healthy and mixed, the mixed group

vector component distribution would be equal to the sum of partial distributions

of observations from both healthy and cancer feature vectors. On the other hand,

the reference group would have only a healthy vector component distribution for
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components t1 and t2. This implies that

|µt1R − µt1M | > |µt2R − µt2M | (5.4)

σ2
t1R

< σ2
t2R

(5.5)

σ2
t1M

< σ2
t2M

(5.6)

resulting with :

st1 > st2 (5.7)

In order to examine the separation of texture features in a feature vector

dataset, the criterion in Equation 5.3 was calculated for each individual texture fea-

ture and these features are sorted in a descending order. By this sorted list, texture

feature characteristics and the corresponding texture feature extraction parameters

could be compared with each other and the parameters that yielded higher separa-

tions could be determined. The texture feature components from Datasets 2, 5 and

1 (see Table 5.1) that have best and worst ten measures of separation are listed in

Table 5.5 - 5.10.

By examining all of the lists of the best ten texture vector components, it

can be summarized that:

1. All of the best texture vector components are second order texture feature

characteristics. There is no first order texture feature characteristic in the list.

2. For the texture features extracted using the Lab color planes, texture feature

vector components calculated using color plane a were better.

3. The majority of these texture features were calculated for d = 1.

The texture feature characteristics that exhibited higher measures of separa-

tion were;

1. Inverse difference moment,

2. Difference variance,

3. Difference entropy.
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Table 5.5. The texture feature characteristics (from Dataset 2) that have the highest
ten measure of separation and corresponding texture extraction parame-
ters.

Image Plane H r d FOS SOS Texture Features
a 2 128 1

√
Inverse Diference Moment

a 2 128 1
√

Difference Variance
a 2 128 1

√
Difference Entropy

b 2 128 1
√

Difference Entropy
L 2 128 1

√
Inverse Difference Moment

b 2 128 1
√

Difference Variance
b 2 128 3

√
Difference Entropy

b 2 128 1
√

Inverse Difference Moment
b 2 128 1

√
Entropy

b 2 128 3
√

Difference Variance

Table 5.6. The texture feature characteristics (from Dataset 2) that have the lowest
ten measure of separation and corresponding texture extraction parame-
ters.

Image Plane H r d FOS SOS Texture Features
a 1 64

√
CPVMVH

L 1 64
√

Kurtosis
L 1 64 61

√
IMC2

a 1 64 41
√

IMC2
L 1 64 51

√
IMC2

L 2 128
√

CPVMVH
a 1 64 61

√
IMC1

b 1 64 41
√

IMC1
L 1 64

√
CPVMVH

a 1 64 51
√

IMC1
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Table 5.7. The texture feature characteristics (from Dataset 5) that have the high-
est first ten measure of separation and corresponding texture extraction
parameters.

Image Plane H r d FOS SOS Texture Features
a 2 128 1

√
Inverse Diference Moment

a 2 128 1
√

Difference Variance
a 2 128 1

√
Difference Entropy

b 2 128 1
√

Difference Entropy
L 2 128 1

√
Inverse Difference Moment

b 2 128 1
√

Difference Variance
b 2 128 1

√
Inverse Difference Moment

b 2 128 1
√

Entropy
L 2 128 1

√
IMC1

a 1 64 1
√

Difference Entropy

Table 5.8. The texture feature characteristics (from Dataset 5) that have the low-
est last ten measure of separation and corresponding texture extraction
parameters.

Image Plane H r d FOS SOS Texture Features
a 2 128

√
CPVMVH

b 1 64
√

Kurtosis
b 2 128

√
CPVMVH

L 2 128
√

Kurtosis
b 2 128

√
Kurtosis

b 1 64
√

CPVMVH
a 1 64

√
CPVMVH

L 1 128
√

Kurtosis
L 2 128

√
CPVMVH

L 1 64
√

CPVMVH
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Table 5.9. The texture feature characteristics (Dataset 1) that have the highest first
ten measure of separation and corresponding texture extraction parame-
ters.

Image Plane H r d FOS SOS Texture Features
Gray Level 2 128 1

√
Inverse Diference Moment

Gray Level 2 128 1
√

Difference Entropy
Gray Level 2 128 1

√
Difference Variance

Gray Level 2 128 1
√

IMC1
Gray Level 1 64 1

√
Difference Entropy

Gray Level 2 128 1
√

Entropy
Gray Level 1 64 1

√
Inverse Difference Moment

Gray Level 2 128 3
√

Difference Entropy
Gray Level 1 64 1

√
Difference Variance

Gray Level 2 128 3
√

Inverse Difference Moment

Table 5.10. The texture feature characteristics (Dataset 1) that have the lowest
last ten measure of separation and corresponding texture extraction
parameters.

Image Plane H r d FOS SOS Texture Features
Gray Level 1 64 61

√
Angular Second Moment

Gray Level 1 64 61
√

IMC1
Gray Level 2 128

√
Kurtosis

Gray Level 1 64 51
√

IMC1
Gray Level 1 64

√
Kurtosis

Gray Level 1 64 41
√

IMC2
Gray Level 1 64 51

√
IMC2

Gray Level 2 128
√

CPVMVH
Gray Level 1 64

√
CPVMVH

Gray Level 1 64 61
√

IMC2
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Similarly, by examining the lists of the worst ten texture vector components,

it can be summarized that:

1. Most of the worst texture vector components are first order texture features

characteristics.

2. All of these texture feature vector components were extracted using relatively

larger values of d, such as d = {41, 51, 61}.

The texture feature characteristics which have poor measure of separation

were;

1. Corresponding Pixel Value for Maximum Value of Histogram (CPVMVH),

2. Kurtosis,

3. Information Measures of Correlation 1 (IMC1),

4. Information Measures of Correlation 2 (IMC2).

Since the second order feature characteristics have higher measures of sep-

aration, QSL experiments were repeated using only the second order feature char-

acteristics. The resulting labelling performances were compared to each other as

follows:

1. A baseline experiment was carried out on the original complete texture feature

vector dataset.

2. A second experiment was carried out on only the first order features.

3. A third experiment was carried out on only the second order features.

The resulting ROC curves are given in Figure 5.7. The ROC curve obtained from

the second order features is above the one obtained using the first order features,

supporting the observation on the superior separability of the two regions using

ordered measures of separation. On the other hand, the ROC curve obtained from

the second order feature characteristics alone is surpassed by the original ROC curve.

This means that better labelling performance was reached by concatenating both the

first order and the second order texture feature vector feature subsets as opposed
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to using them individually. In all other texture feature vector datasets the same

phenomenon was observed, hence, the ROC curves obtained using datasets other

than Dataset 5 are not represented.
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Figure 5.7. ROC curves for only the first order, only the second order and all char-
acteristics together (Dataset 5).

In order to put these observations into a perspective, let us assume that a

texture feature vector dataset has a well separated distribution between the refer-

ence and the mixed groups. This means that, this texture feature vector dataset can

provide high QSL labelling performance. Another individual texture feature may

also have a high separation performance and may potentially improve the overall

QSL performance when concatenated to the first feature. However, the second in-

dividual texture feature may also carry redundant information to the first one, in

which case the overall QSL labelling performance may stay more-or-less the same

or may even decrease due to the increase in vector dimensionality due to the Curse

of Dimensionality (see Section 4.4.1). Alternatively, the second texture feature may

have lower separation performance and cause a drop in the overall recognition per-

formance when it is concatenated to the original vector dataset.
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In order to test this behaviour, several QSL experiments were performed

and the results were compared to each other. These experiments were composed

of a baseline experiment carried out on an original texture feature vector dataset

followed by several related experiments in which the QSL algorithm was operated

on different texture the feature subsets.

In a sample baseline experiment, which that was carried out on Dataset 5,

the number of texture features was 132. After measure of separation values were

calculated for the features, the first highest 10, 45, 80 and 120 components were

selected in order to obtain secondary texture feature vector subsets with reduced

dimensions. Subsequently, the QSL method was operated on each vector subset and

the labelling results were compared to each other. The corresponding ROC curves

are given in Figure 5.8 where the first 10 components with the largest separation

scores achieved the worst classification performance of all. As the dimensions of

the vector component subset increased, the ROC curves moved towards the ROC

curve of the baseline experiment but never exceeded it. The same behaviour was

also experimentally observed for several other vector datasets whose results are not

shown here due to their similarity to this experiment.

5.7.2 Dimensionality Reduction By The Principal Compo-
nent Analysis

Several texture classification experiments were performed to test whether the

PCA procedure improved the labelling performance of the QSL method. As an ex-

ample, QSL method was operated on several reduced texture feature vector datasets

were generated using the PCA features. Next, the ROC curves were compared with

each other.

The reduced vector datasets of dimensionality 1, 2, 4, 8, 16, 32 and 64 were

calculated by PCA algorithm. Resultant ROC curves obtained for the baseline and

the reduced dimensionality experiments are provided in Figure 5.9.

The results indicate that PCA dimensionality reduction method did not im-

prove the QSL labelling performance. The ROC curve of the baseline experiment

exceeded all other ROC curves obtained using PCA features. Another observa-
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Figure 5.8. ROC curves for the original and subset of texture features obtained
by selecting the list of the ones corresponding to higher measure of
separation (Dataset 5).
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Figure 5.9. ROC curves for the original and PCA applied texture feature vectors
(Dataset 5).
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tion was that the minimum PCA dimensionality, which was 1 in this case, resulted

with the worst labelling performance. As the PCA dimensionality increased, the

ROC curves moved closer to the ROC of the baseline experiment but never reaching

it. The same behaviour was also experimentally observed for other feature vector

datasets.

5.7.3 Dimensionality Reduction By The Isomap Algorithm

Several texture labelling experiments were performed in order to assess if the

Isomap dimensionality reduction approach improved the labelling performance of

the QSL method. The methodology was, as usual, to operate the QSL method on

the reduced texture feature vector datasets via the Isomap algorithm and to compare

the resulting ROC curves with the one obtained on the original data previously.

The reduced vector datasets of dimensionality 3, 5, 8, 12 and 16 were calcu-

lated by the coordinates generated for the original data at the respective dimensions

by the Isomap algorithm. The resultant ROC curves are shown in Figure 5.10 along

with the ROC curve of the baseline experiment.

These results show that the Isomap dimensionality reduction method did

not improve the QSL labelling performance either. The ROC curve of the baseline

experiment bounded all other ROC curves from above. Furthermore, the minimum

Isomap dimensionality, which was 3, produced the worst labelling performance. As

the Isomap dimensionality increased, the ROC curves moved towards the ROC of the

baseline experiment. Again, the same behaviour was also experimentally observed

for several other texture feature vector datasets.

5.7.4 Visualisation Of The Texture Feature Vectors

While it would be very useful to investigate texture vectors visually in a vec-

tor space it is quite difficult due to high vector dimensionality. Visual investigation

may give us ideas about the structure of the texture data and about the degree of

the separation among specific vector labels. In the problem studied here, we used
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Figure 5.10. ROC curves for the original and Isomap applied texture feature vectors
(Dataset 5).

the Isomap dimensionality reduction method to visually observe the distribution of

texture feature vectors due to its topology preserving behaviour when a high dimen-

sionality original texture feature vector dataset is reduced to a lower dimensionality

(see Section 4.4.5). In particular, the embedding of the feature vector data to a

three dimensional space allowed us to observe the feature vector distribution even

though it still required some degree of manual graphical operations to highlight the

local separation of the feature vectors and to observe the vectors in occluded areas.

As a result simpler views were generated by Isomap dimensionality 2 that embeds

the high dimensional texture feature vector space into thee x− y plane.

Firstly, the texture feature vectors generated from the mixed group images

were investigated in a two dimensional embedding. Since the mixed group images

had CRCa tissues marked by an expert pathologist using the HIAE tool, it was

possible to plot the ground-truth cancer vectors and the NNCR vectors differently.

A plot of CRCa texture vectors and the rest for the mixed group is provided in

Figure 5.11. The figure shows a partial overlap between the texture feature vectors

of adenocarinoma and the rest in spite of a clear differentiation between them in the

manual labelling.
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Secondly, all texture vectors from both groups, namely, the reference and the

mixed groups were plotted (see Figure 5.12). The figure shows the ground-truth

information, the NNCR vectors from both the reference and the mixed groups and

the CRCa vectors of the mixed group. Naturally, the partial overlap between NNCR

and cancerous vectors are still observed.

5.7.5 Dimensionality Reduction By The Independent Com-
ponent Analysis

In these experimentals, the original texture feature vector datasets were con-

verted to reduced dimension feature vector datasets using the FastICA method (see

Section 4.4.8). The reduced vector datasets were then fed to the QSL algorithm and

the results were compared to those of the baseline experiments.

The baseline and ICA features vector dimensionality values together with

labelling performances evaluated in experiments on Datasets 1 through 6 are pre-

sented in Table 5.11. The results indicate that in all of the ICA operated exper-

iments, except the one on the Datasets 6, the ICA method improved the baseline

labelling performance; increased the areas under the ROC curves and the optimum

recognition points on the ROC curves moved closer towards the ideal point.

Table 5.11. Labelling performances of the QSL method for original and the ICA
applied texture feature vector datasets.

Original ICA

Texture
Features

Dim. (PFP , PTP ) ROC
Area

Dim. (PFP , PTP ) ROC
Area

Dataset 1 296 (0.25, 0.79) 0.84 279 (0.21, 0.84) 0.89
Dataset 2 888 (0.19, 0.84) 0.88 805 (0.22, 0.88) 0.90
Dataset 3 444 (0.19, 0.82) 0.88 402 (0.21, 0.86) 0.89
Dataset 4 384 (0.20, 0.83) 0.88 341 (0.18, 0.86) 0.91
Dataset 5 132 (0.21, 0.83) 0.87 119 (0.19, 0.88) 0.91
Dataset 6 384 (0.23, 0.84) 0.87 362 (0.32, 0.98) 0.86
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Figure 5.11. Dimensionally reduced texture feature vectors of the mixed group ob-
tained by the Isomap algorithm. Red points represent CRCa, green
points represent NNCR.
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Figure 5.12. Dimensionally reduced texture feature vectors of the reference and the
mixed groups generated by the Isomap algorithm. Red points represent
CRCa, green points represent NNCR.
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The ROC curves obtained from the baseline and the ICA experiments are

given in Figure 5.13. In contrast to all previously considered dimensionality reduc-

tion techniques, the ROC curves obtained from the ICA vector datasets resulted

with higher labelling performances compared to the baseline ROC curve. Similar

improvements were also observed on the other texture feature vector datasets.
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Figure 5.13. ROC curve pairs for the baseline and the ICA applied vector datasets.
The baseline and the reduced vector dimensions for (a) Dataset1 are
296 and 279 (b) Dataset5 are 132 and 119.

A sample labelling of the QSL method following the ICA procedure overlaid

on the histopathology images is presented in Figure 5.14(c), 5.14(d). In these figures,

individual square regions that were identically labelled were merged and framed as

an overlay onto the underlying histopathology images. The ground truth atlas data

corresponding to these images are also presented in Figure 5.14(a), 5.14(b) and can

be compared with the automated labelling results

5.8 Synthetic Validation Of The Quasi-supervised Learning
Algorithm

To assess the QSL texture labelling performance on well separated healthy

and cancer vector datasets, several experiments were carried out on the synthetic

texture feature vectors. The synthetic feature vector components for NNCR and
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Figure 5.14. QSL labelling results with the ground truth information. Two sam-
ple histopathology images with overlaid ground truth atlas data, (a)
completely consists of NNCR, (b) has both NNCR and CRCa tissues.
QSL labelling results following the ICA (c),(d) . Regions bounded by
dashed green lines imply NNCR and solid red lines imply CRCa tissue
regions.
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CRCa vectors were generated using two different Gaussian distributions separately.

The synthetic texture feature vectors were generated for a fixed measure of separa-

tion between NNCR and CRCa vector groups. The measure of separation si for the

i’th texture feature vector component was defined as;

si =
|µiN − µiC |
σ2
iN + σ2

iC

(5.8)

where µiN and µiC denote the mean values and σiN and σiC the standard deviations

of the i’th feature vector component for NNCR and CRCa vectors respectively.

In this study, two synthetic texture feature vector datasets were generated by

setting σiN = σiC = 20.0 and selecting µiN and µiC so that si took values 40.0 and

4.0 respectively. This means that the vector dataset provided with si = 40.0 was well

separated NNCR and CRCa vectors compared to the one provided with si = 4.0.

These synthetic texture feature vectors had the same vector dimensionality and the

same number of vectors with the feature vectors of Dataset 5 to provide experimental

compatibility (see Table 5.1). Hence, again, the synthetic vector dimensionality was

132 and the number of vectors was 22080 in this case.

The resulting labelling performances for both of the synthetic feature vector

datasets were calculated as (PFP , PTP ) = (0.00, 1.00) and the ROC Area as 1.0. The

ROC curves obtained from the experiments operated on synthetic feature vectors

are given in Figure 5.15. These ROC curves, both, represent the ideal labelling case

in which the area under the ROC curve equals to 1.0. Therefore, it can be stated

that the QSL algorithm could perform very successful classification in case of well

separated input texture feature vector distributions.

5.9 Segmentation Of The Background Regions

The background regions in histopathology cross section images can be defined

as the regions that do not have any stained tissues in the examined specimen. Gen-

erally, all background regions are segmented out in the earlier stages of quantitative

analysis of histopathology images so that all subsequent operations can focus on

the data of interest and any negative effects that may be caused by the background
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Figure 5.15. ROC curves obtained on synthetic feature vector datasets of dimen-
sionality 132 and the number of vectors is 22080. σiN = σiC = 20.0
and the measure of separation is (a) 40.0, (b) 4.0.

regions can thus be eliminated.

In the QSL experiments presented so far, the background segmentation was

not performed based on the assumption that both the reference and the mixed groups

have feature vectors corresponding to the background regions and the QSL algorithm

would label these common features as ’normal’. In order to text the validity of

this assumption, a simple background segmentation algorithm was implemented

and the feature vectors corresponding to the background regions were taken out of

the original datasets prior to automated labelling by the QSL algorithm. Finally,

the QSL labelling performances obtained from the original texture feature vector

datasets and the reduced datasets were compared to each other. The results of

these experiments shown below vindicated this assumption; : The removal of the

background regions task did not bring any major change to the original QSL labelling

performances.

5.9.1 Histopathology Image Background Atlas

Histopathology Image Background Atlas is an automatically generated data

carrying the local information of being background or foreground for the images in
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the Histopathological Image Library. Histopathology Image Background Atlas was

used to detect background texture feature vectors and hence to remove them from

the subsequent analysis. Similar to the Histopathological Image Atlas (see Section

5.2.1), each histopathology image in the Histopathological Image Library was di-

vided into a square grid and each square was automatically labelled as background

or foreground. For a grid square to be labelled as background, the sum of local

gray level histogram values h corresponding to brighter pixels (equal or greater than

gray level a preset B) was required to be larger than a predefined threshold T as

formulated,
255∑
i=B

h(i) > T (5.9)

where, i stands for the gray level histogram bins. Successful background identifica-

tion results were obtained when B = 195 and T = 0.95 as determined experimen-

tally. The background grid square size was 256 microns. The total number and the

percentages of background grid squares calculated for the images in the Histopatho-

logical Image Library are given in Table 5.12. In addition, the total number of

background grid squares and the percentages to all available squares for both the

reference and mixed image groups are also listed. It can be observed that the back-

ground region percentage is higher in the reference group (NNCR) compared to the

mixed image group (NNCR + CrCa).

Table 5.12. The total number and percentages of background squares (of square grid
dimension 256 microns) in the Histopathology Image Background Atlas
for the reference (NNCR), the mixed groups (NNCR + CrCa) and total.

Images Total Background Percentage (%)
Reference 22860 1507 6.59
Mixed 18540 299 1.61
All 41400 1806 4.36

Several examples of background segmented images from the Histopathological

Image Library are given in Figure 5.16 with both the background and the foreground

regions onto each image.
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Figure 5.16. Background segmented images by the proposed segmentation method.
Regions bounded by green lines imply foreground and red lines imply
background regions.
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Several texture labelling experiments were performed in order to assess how

the removal of the background regions affected the labelling performance of the QSL

method. The original texture feature datasets and the segmented texture feature

vector datasets were used as QSL inputs and the resulting ROC curves were com-

pared. In the baseline experiment which operating on texture feature vector Dataset

5, the number of texture feature vectors was 22080. The secondary vector dataset

had 20836 texture feature vectors due to the removal of 1244 vectors by the back-

ground segmentation. The resulting ROC curves for the baseline and the background

segmented experiments were very close to each other (see Figure 5.17). This sug-

gests that the proposed methodology does not require any preliminary background

segmentation tasks.

Figure 5.17. ROC curves for the original and background segmented texture feature
vectors (Dataset 5).
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5.10 Target Texture Classification By The Quasi-supervised
Learning Algorithm

This section describes the predictive classification of the target texture vec-

tors following the QSL labelling phase. In target texture classification experiments,

a small portion of the Histopathological Image Library images were reserved for

testing purposes; 27 of them were selected against 230 training images.

The QSL predictive classifier used nopt values calculated in the prior QSL

labelling experiments of the corresponding feature vector datasets (see Sections 4.2.3

and 5.4.1). The QSL classifier computed the posterior probabilities p0(x) and p1(x)

for all feature vectors in a target vector dataset for the optimal reference set size nopt

with respect to the texture feature vectors from the training images. Using these

p0(x) values, the ROC curves were plotted and the optimum threshold Topt value

was determined. Subsequently, using this Topt value, corresponding resulting texture

labels were determined and the texture recognition performances were calculated by

comparing the results with the ground truth labels of the Histopathological Image

Atlas.

The labels of the regions in the target images were determined in accordance

with the labels of their texture feature vectors predicted by the QSL algorithm.

5.10.1 Performance Evaluation For The Target Texture
Classification

In order to assess the separation of the NNCR and CRCa tissue regions in

a target texture vector dataset, the receiver operating characteristics (ROC) curves

were constructed. Similar to the QSL labelling case, the false positive rates PFP

were computed on the corresponding training reference vector dataset. However,

PTP values were not calculated on the unlabelled mixed vector dataset this time;

instead, the probability of detection (PD), in other words, probability of positives

were calculated on the target vector dataset. Thus, this version of the ROC curves

was changed to a graphical plot of the positive detection rate for the target vector

group versus the false positive rate for the reference vector group. To generate an
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ROC curve, we have computed PFP on the reference vector dataset and PD on the

target vector dataset and plotted both for varying threshold values of T ranging

from 0.0 to 1.0. Similarly, the T value that corresponds to the knee point of the

continuous ROC curve where the tangent equals to 1.0 was selected as the optimum

threshold value Topt.

The ROC curves obtained by the QSL target classifier operated on Datasets

1-6 are given in Figure 5.18. According to the performance comparison rules de-

scribed in Section 5.2 it was observed that the worst texture recognition perfor-

mance was acquired with texture vector Dataset 1 corresponding to the gray level

information (see Table 5.1 ).

The QSL target recognition performances for texture feature datasets,

Datasets 1-6 are presented in Table 5.13 in which the optimum posterior proba-

bility threshold values Topt and the areas under the ROC curves are listed with

the resultant true positive and false positives calculated using the ground truth

Histopathological Image Atlas labels. It was observed that according to the “ROC

Area” criterion, the worst recognition rate was obtained for Dataset 1 which is based

on gray level image information.

In general, the false positive rates are quite high, though the true positive

rates reach up to 92%. This phenomenon is referred to the “malign tendency” and

was also observed in the analytical labelling experiments as explained in Section

5.4.2.

Two QSL target classification results as the resultant vector class labels over-

laid onto histopathology images are presented in Figure 5.19 and Figure 5.20. These

figures are the histopathology images with the ground truth atlas data and the re-

sultant QSL classification labels overlaid onto original images. Figure 5.19 has two

histopathology images consisting of only NNCR tissues. The QSL classifier results

with predicted CRCa labels as shown in Figure 5.19(b) and Figure 5.19(d), clearly,

are false positive results.
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Figure 5.18. ROC curves obtained for the predictive classification of the target tex-
ture feature vectors (Dataset 1-6). Positive detection rate PD for the
target vector groups are plotted versus the false positive rate PFP for
the training reference vector group.
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(a) (b)

(c) (d)

Figure 5.19. QSL target classification results along with the ground truth infor-
mation. Two histopathology images completely consisting of NNCR
tissues, with overlaid ground truth atlas data (a), (c). The same
histopathology images with overlaid QSL target classification results
(b), (d). Regions bounded by dashed green lines imply NNCR and
solid red lines imply CRCa tissue regions.
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(a) (b)

(c) (d)

Figure 5.20. QSL target classification results along with the ground truth informa-
tion. Histopathology images having both NNCR and CRCa tissues,
with overlaid ground truth atlas data (a), (c). QSL target classifica-
tion results overlaid (b), (d). Regions bounded by dashed green lines
imply NNCR and solid red lines imply CRCa tissue regions.
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5.11 Comparative Target Texture Classification By The
Support Vector Machine Classifier

In order to obtain an independent evaluation of the QSL target texture recog-

nition performance, a Support Vector Machine (SVM) classifier was used. The

SVM classifier was trained on the ground-truth label data that was withheld from

the quasi-supervised labelling strategy similar to the comparison of training perfor-

mances as explained in Section 5.6. In order to perform the SVM target classification

experiments, the texture vector datasets were divided into training and target sets.

The target texture vectors were extracted from the fixed 27 target HIL images. The

rest of the HIL images were left as the training images, hence, as training texture

vector source. In order to set up the SVM training setup, we constructed both the

NNCR and CRCa vector groups using ground-truth atlas information. The group

vectors took labels +1 and −1, regarding to the condition if they belong to NNCR

group or not.

The training feature vector sets were used to obtain the SVM classifier model,

and this classifier model was applied to the target feature vector set. The SVM

classifier output obtained for the vectors in the target datasets was then compared

with the ground truth labels in the Histopathological Image Atlas to calculate the

resultant classifier performances.

The SVM classifier target recognition performances for texture feature

Datasets 1-6 are presented along with the QSL performance values in Table 5.13.

In the table, the resultant true positive and false positive rates were also listed.

The worst PFP value was obtained for Dataset 1 but with the highest PTP

value of all. For all of the texture vector datasets, the SVM classifier resulted with

lower PFP values compared to the QSL. However, the QSL had larger PTP values

except for the value of Dataset 1 which was very close to that of the SVM. It should

be kept in mind, however, that the QSL algorithm produced predictions without the

benefit of a ground-truth dataset from the atlas in contrast to the SVM classifier.
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Table 5.13. Target texture recognition performances of the QSL and the SVM clas-
sifier.

QSL SVM

Texture
Features

Topt ROC
Area

(PFP , PTP ) (PFP , PTP )

Dataset 1 0.53 0.74 (0.50, 0.86) (0.21, 0.90)
Dataset 2 0.41 0.82 (0.54, 0.89) (0.09, 0.75)
Dataset 3 0.48 0.83 (0.60, 0.91) (0.10, 0.79)
Dataset 4 0.51 0.83 (0.62, 0.92) (0.13, 0.79)
Dataset 5 0.49 0.83 (0.65, 0.89) (0.16, 0.73)
Dataset 6 0.55 0.83 (0.65, 0.92) (0.11, 0.76)

5.12 Target Texture Classification And Dimensionality Re-
duction By The Independent Component Analysis

In these experiments, the original texture feature vector datasets were con-

verted to reduced dimensionality feature vector datasets using the FastICA method

(see Section 4.4.8). The reduced vector datasets were then fed to the QSL algorithm

and the results generated were compared to the results of the baseline experiments.

The classification performance measures for the baseline and the ICA applied

experiments on Dataset 1-5 are presented in Table 5.14. The results indicated that

for Dataset 1 and 5, the ICA method improved the classification performances;

increased the areas under the ROC curves and the optimum recognition points on

the ROC curves moved closer towards the ideal point.

A couple of ROC curves obtained from the baseline and the ICA-applied

target classification experiments are given in Figure 5.21. It can be observed that

the ROC curves obtained from the ICA applied vector datasets resulted with higher

classification performances compared to the baseline ROC curves.

132



Table 5.14. Target classification performances of the QSL method for original and
the ICA applied texture feature vector datasets.

Original ICA

Texture
Features

(PFP , PTP ) ROC Area (PFP , PTP ) ROC Area

Dataset 1 (0.50, 0.86) 0.74 (0.48, 0.95) 0.80
Dataset 2 (0.54, 0.89) 0.82 (0.35, 0.88) 0.74
Dataset 3 (0.60, 0.91) 0.83 (0.48, 0.95) 0.75
Dataset 4 (0.62, 0.92) 0.83 (0.28, 0.78) 0.64
Dataset 5 (0.65, 0.89) 0.83 (0.75, 0.96) 0.88
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Figure 5.21. ROC curve pairs for the baseline and the ICA applied vector datasets.
The baseline and the reduced vector dimensions for (a) Dataset1 are
296 and 279, (b) Dataset5 are 132 and 119.
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis presents an evaluation of a quasi-supervised learning method-

ology in quantitative histopathology image analysis and biomedical feature data

classification.

Experimental results in Section 5.6 has showed that, the QSL method

achieved satisfactory accuracy levels in texture labelling. Since there is no

histopathology image texture benchmark database providing a comparison of ac-

curacies achieved by other classification schemes, it was unfortunately not possible

to check our results with the other methods from the literature. Yet, in experiments

against an SVM classifier using a ground-truth training dataset lacking in a quasi-

supervised setting, the QSL method proved itself with accuracy levels close to the

upper bounds provided by the idealized SVM classification. The probability of false

positive values by the SVM classifier were relatively lower compared to those by the

QSL algorithm. On the other hand, the probability of true positive values were very

close for both methods.

In Section 5.3, we have described the computation of several different texture

feature vector datasets. The texture features were calculated in a directionally

invariant manner. To this end, we have derived the first order texture features

using the local color histograms and the second order texture features from co-

occurrence matrices. The different feature vector datasets corresponding to different

feature extraction configurations allowed us to perform many QSL experiments and

to compare the resulting labelling performances.

Among the various datasets corresponding to different feature extraction pa-

rameters, the labelling performance of the QSL method was found the poorest when

operated on the dataset constructed using the gray level image information. The
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color texture feature information derived from the Lab color space offered the best

characterization of the NNCR and CRCa features.

It was also observed that using multiple-scale feature vectors did not have

any significant influence on the QSL texture labelling performance. The varying val-

ues of the hierarchical computation scale parameter H did not have any significant

impact on the QSL texture labelling performance either, only a minor performance

improvement of true positive values was observed for H = 2 at the optimum perfor-

mance points.

In the labelling performance comparisons, the QSL labelling performances

for texture feature vector datasets calculated using a range of inter-pixel distances

d were better than the one calculated for only d = 1. This means that combined

texture features from several inter-pixel distance values improved the separation

between healthy and cancer texture features vectors.

In this study, we have experimented with several dimensionality reduction

procedures in Section 5.7, to determine if reducing the texture vector dimensional-

ities would lead better classification performances. Among these procedures, only

the ICA method improved the labelling performance. One of the possible reasons

for the improvement is that ICA could extract the valuable vector component infor-

mation despite their low variances and also suppresses the redundant data. In the

other dimensionality reduction procedures, Individual Feature Selection, Principal

Component Analysis, and Isomap, the labelling accuracy of the baseline experi-

ments on the original datasets were higher than the reduced dimensionality vector

datasets. For all of these methods, the labelling accuracy started with lower values

for smaller target dimensions, and as target dimensionality increased, the accuracy

levels moved closer to that of the baseline experiment but never exceeded it. This

behaviour implies that the QSL method was robust to the Curse Of Dimensionality

phenomenon and this was a very profound contribution of this study.

Next, we have evaluated the first order and the second order texture features

separately in Section 5.7.1. In experiment results, the ROC curves obtained from

the second order feature characteristics were above the ones obtained from the first

order feature characteristics. On the other hand, the ROC curves obtained from the

second order feature characteristics alone were bounded by the original ROC curves.
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This means that better labelling performances were reached by concatenating both

the first order and the second order texture feature vector subsets in comparison to

the performances obtained by using them individually.

We have then performed a background segmentation algorithm to take fea-

ture vectors corresponding to the background regions out of the analysis as ex-

plained in Section 5.9. The background regions correspond to transparent parts of

the histopathology slides which contain no valuable textural information. In experi-

ments, the background segmentation task did not bring any major change to original

QSL labelling performances. This result reinforces that the proposed methodology

does not need any pre-requisite background segmentation task because, in essence,

both the reference and the test groups are expected to have almost equal amounts

of background regions.

Finally, we have evaluated the predictive behaviour of the QSL via several

target classification experiments in Section 5.10. Similar to the texture labelling

case, we ave performed performance comparison with the SVM classifier using a

ground-truth training dataset. The probability of false positive values by the SVM

classifier were relatively lower compared to those by the QSL algorithm. On the

other hand, the probability of true positive values by the QSL algorithm were higher

than that of SVM classifier except the experiment operated on gray level texture

information. In addition, we have experimented with the ICA dimensionality reduc-

tion procedure to determine if reducing the texture vector dimensionalities would

lead better target classification performances compared to the baseline experiments

as observed in most of the texture labelling experiments. The result is that, in some

of the experiments, the ICA method improved the classification performances as

presented in Section 5.12.

6.2 Future Study

Despite the high performance levels obtained in the form of true positives,

we have faced a phenomenon referred to as “malign tendency ” which came up with

high false positive rates, implying a general bias towards labelling NNCR texture

vectors as CRCa, observed especially in the mixed labelled test group. We believe
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that this phenomenon is due to severely complicated local structures in colonic

tissues and the resulting weak separation of normal and cancer feature vectors in

the multidimensional vector space. Moreover, we have checked this assumption by

performing several QSL experiments on synthetic vector data. We have generated

statistically well differentiated random feature vectors for both NNCR and CRCa

tissues in high dimensional space and obtained excellent QSL labelling performances.

This evidence showed us that in order to increase the QSL accuracy, different texture

feature characteristics must be incorporated into the automated labelling framework.

A feature extraction scheme using co-occurrence matrices calculated by the pixel

pairs of a specified orientation could be tested. There are also several alternatives

to the features used in this study as described in Section 3.1.2 and the comparison

of their labelling performances with the QSL accuracies remains to be evaluated for

the optimum configuration. Some examples to alternative texture features can be

listed as;

• Fractals,

• Gabor based features,

• Morphological features,

• Zernike moments,

• Fourier spectral characteristics.

As stated before, the histopathological slides used in our experiments were

well balanced in terms of the stains absorbed by tissues and the images in the

Histopathological Image Library (HIL) were acquired using fixed capture and illu-

mination parameters. Thus, our assumption was that these images were assumed

to share similar visual standards and lack artefacts that can occur due to variations

in the sample preparation or image acquisition procedures. However, whether these

images possessed a variation imperceptible to the naked eye in the H&E staining

process that might be affecting the computerised analysis remains an open ques-

tion. Another research can thus be carried out by performing a color normalisation

method in the early stage of the proposed framework using one of the methods

described in Section 3.1.1 prior to statistical analysis using the QSL method.
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In this research, many dimensionality reduction procedures were experi-

mented and the ICA method was found to be the only one improving the labelling

accuracy. However, several other feature selection or extraction algorithms lead-

ing to dimensionality reduction could not be evaluated due to long computation

times required by these methods for the texture feature vector datasets used in this

study. In the future, these algorithms, such as Exhaustive Selection and Branch

and Bound method described in Section 4.4.3 can be applied to the existing feature

vector datasets provided that they can be carried out within limits of computational

feasibility.
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