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ABSTRACT 
 

ANALYSIS OF THE ELECTROMAGNETIC SCATTERING FROM 
FLAT PLATES BY USING DIFFERENT SINC-TYPE BASIS 

FUNCTIONS IN METHOD OF MOMENTS 
 

Electromagnetic scattering from three dimensional arbitrary flat surfaces 

illuminated by a plane wave is investigated by using sinc-type basis functions in the 

method of moments (MoM) in this study. Sinc-sinc based Galerkin MoM formulation is 

obtained and its fortran program is developed firstly. The number of integrals to be 

computed is decreased by using analytical properties of the sinc function in the 

formulation. Therefore, the CPU time for obtaining the coefficient matrix is decreased 

appreciably. The relative error during the generation of the main matrix elements is 

obtained between 0.058% and 0.095% for considerably large matrices. Rooftop based 

MoM formulation is developed and it is coded with a similar approach used in sinc 

based program. The accuracy and CPU time of the sinc based bistatic scattering results 

are compared with those of rooftop. The MoM formulation of the sinc-pulse (sinctop) 

basis functions with non-Galerkin case is developed to reduce the overflow problem at 

the edges. Induced surface currents and far-field results of the sinc-sinc and sinc-pulse 

based formulations are compared with those of the rooftop basis functions and with the 

ones obtained from SuperNEC. Both sinc-sinc and sinc-pulse based simulation results 

are in good agreement with the results of rooftop based and SuperNEC simulation 

results. The main purpose in this study is to obtain accurate bistatic scattering results by 

using different sinc-type basis functions in MoM procedure while filling the main 

matrix in less CPU time when compared with the well-known methods.  
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ÖZET 
 

DÜZLEMSEL YAPILARDAN ELEKTROMANYETİK SAÇILIMIN 
MOMENTLER YÖNTEMİNDE FARKLI SINC TİPİ BAZ 

FONKSİYONLARI KULLANILARAK ANALİZİ 
 

 Bu çalışmada, düzlemsel dalga ile uyarılmış üç boyut rasgele düzlemsel 

yüzeylerden saçılan elektromanyetik alan momentler yönteminde (MoM) sinc tipinde 

baz fonksiyonları kullanılarak incelenmiştir. İlk once sinc-sinc tabanlı Galerkin MoM 

formülasyonu elde edilmiş ve onun fortran programı geliştirilmiştir. Formülasyonda 

sinc fonksiyonunun analitik özellikleri kullanılarak integrallerin sayısı azaltılmıştır. 

Buna ek olarak katsayılar matrisinin hesaplanma süresi düşürülmüştür. Ana matris 

elemanlarının hesaplanmasında ortaya çıkan bağıl hata oldukça büyük matrisler için 

%0.058 ve  % 0.095 arasındadır. Rooftop tabanlı MoM formülasyonu geliştirilmiş, sinc 

tabanlı programda kullanılana benzer yaklaşımla programlanmıştır. Sinc tabanlı bistatik 

saçılım sonuçlarının doğruluğu ve hızı rooftop ile karşılaştırılmıştır. Sinc- pulse 

(sinctop) baz fonksiyonlarının Galerkin olmayan MoM formülasyonu, kenarlardaki 

taşma problemini önlemek için geliştirilmiştir. Sinc-sinc ve sinc-pulse tabanlı 

formülasyonlardan elde edilen akım ve uzak alan sonuçları rooftop ve SuperNEC 

sonuçlarıyla karşılaştırılmıştır. Sinc-sinc ve sinc-pulse sonuçlarının her ikisi birden 

rooftop ve SuperNEC ile uyumlu sonuçlar vermiştir. Bu çalışmanın asıl amacı MoM 

prosedüründe sinc tipinde baz fonksiyonlarını kullanarak diğer bilinen yöntemlere göre 

ana matrisi daha hızlı doldurmak ve doğru saçılım sonuçları elde etmektir.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Literature Review 

 

Near and far radiation fields of electromagnetic problems are investigated in [1] 

in detail. Electromagnetic scattering problem can be solved with the MoM technique by 

using different types of basis and testing functions [2-4]. In this technique, an integral 

equation (IE) is obtained to satisfy the boundary conditions on the scattering surface in 

terms of the induced surface current density. Then, the unknown current density is 

expanded approximately in MoM with different types of basis functions. Linear matrix 

system that includes impedance matrix mentioned in [5] is solved to obtain current 

density coefficients. The rooftop basis functions are used as a subdomain type basis in 

solving 3D scattering problems. In the main study [6], Rao, Wilton and Glisson (RWG) 

type basis functions are developed and used for obtaining unknown currents for 

arbitrary shaped surfaces. Also, the entire domain basis functions can be used for large 

antenna problems in order to reduce the number of the basis functions [7-8]. For 

example, Chebyshev type basis functions are used in MoM with Galerkin procedure to 

solve electromagnetic scattering problem by using parallelization technique [8]. 

Galerkin or non-Galerkin procedures can be applied in MoM. Spline functions are 

employed with different orders as basis and testing functions in [9]. Furthermore, a type 

of second-order accuracy is obtained in the backscattered far field results regardless of 

whether or not Galerkin’s method is utilized.  

Large electromagnetic scattering problems can be solved by using various 

iterative techniques with preconditioning techniques mentioned in the studies [10-21]. 

One of the iterative methods is BiCG (biconjugate gradient) method which requires to 

calculated within each iteration the multiplication between the transpose of the system 

matrix and a vector in addition to that between the system matrix and a vector [14]. 

Furthermore, the multiplication between the transpose of the system matrix and a vector 

is found to be more complicated than that between the system matrix and a vector. 

Therefore, the algorithm can stagnate and fail to produce the solution. Algorithm 
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termination is more complicated because the residuals produced at each step by the 

BiCG approach do not have a monotonically decreasing norm. TFQMR (Transpose free 

quasi-minimal residual) based on the quasi-minimal version of the CGS (Conjugate 

Gradient Squared) algorithm called TFQMR method [15-19] that smooths its 

convergence without involving A
T
 vector products. It is employed to avoid the 

complicated multiplication between the transpose of the system matrix and a vector. 

Iterative techniques with preconditioning, especially ILU (incomplete LU) 

preconditioning in the iterative algorithms are used in solving large complex valued 

dense linear systems in less CPU (computer processing unit) time [20-23]. ILU 

preconditioning can be used with the Multilevel Fast Multipole Algorithm (MLFMA) to 

solve large electromagnetic scattering problems efficiently for open and closed 

geometries as an alternative way. Different effective preconditioners again with 

MLFMA are used in solving large open and closed surfaces with efficient 

parallelization. Furthermore, iterative algorithm with a preconditioning can be used with 

parallelization in order to solve very large electromagnetic problems obtained by IE 

(integral equation) formulation for conducting surfaces in the study. Improved iterative 

algorithms are developed in the study [24] in order to solve large electromagnetic 

problems involving open surfaces with a fast convergence rate.  

The usage of different types of basis functions for solving EM (electromagnetic 

scattering) scattering problems is important for decreasing the computation time. For 

example, wavelet functions are used as expansion and testing functions in MoM for the 

efficient solution of the electromagnetic scattering from the two dimensional conducting 

geometries [25]. The effectiveness of the wavelet functions in terms of the radiation and 

receiving characteristics are analyzed again in the study [25]. Wavelet functions are 

used as expansions in MoM in solving an electromagnetic coupling problem in [26]. 

Spatio-temporal wavelet functions are used in order to solve the transient analysis of 

wire antennas by compressing impedance matrix in implicit MoM [27].  

Sinc functions are used with other functions as bases for approximations in 

numerical analysis in [28]. The approximate solution of the differential and integral 

equations, approximate evaluation of transforms and interpolation, and approximate 

evaluation of functions based on sinc functions are given in this study. All sinc based 

methods converge at an optimal rate if the singularities on the boundary are ignored. 

The theory of the inverse scattering problem are given in [29] for an inhomogeneous 

body in a homogeneous surrounded media by the use of data collected from multiple 
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detectors and multiple sources. Sinc functions are used as basis in MoM in this problem. 

The implementation and numerical evaluation of this theory is given in [30]. A test 

object is used to generate simulated scattering data. Simulated noise is added and this 

new data and the sum is used to solve the inverse scattering problem by using sinc basis 

in MoM to recover the original test object. Fast algorithm based on FFT convolution is 

developed in [31] to solve the inverse scattering problem in less CPU time than in [30]. 

The method is suggested for interpolating measurements from one detector geometry to 

a new perturbed detector geometry. An alternative algorithm is developed in [32] for the 

previous studies [29-31]. The improved algorithm reconstructs circular cylinders 

equally well when given exact scattered field data. These studies are important for the 

medical imaging, for example solving inverse scattering problems of the type 

encountered in ultrasonic computed tomography. In the literature, the sinc functions are 

also used to solve IE’s, ordinary and partial differential equations that characterize the 

initial and boundary value problems [33]. The sinc functions are classified as the quasi-

localized band-limited functions in the study [34]. They are easily implemented in the 

problems having singularities and a good accuracy is obtained by their usage. Therefore, 

sinc functions are effectively used in engineering and applied physics. For example in 

[35], the Hallen’s integral equation and the corresponding one dimensional dipole 

antenna problem with feed is solved by the sinc-collocation method. The computational 

burden is reduced by the application of the sinc function in some linear algebraic 

equations in this study. Two dimensional scattering problem for rough surfaces is 

solved in [36] by applying the sinc-type Galerkin to a simple 2D problem as a sampling 

approach. The simulated results show good agreement with the well-known solutions, 

even it can be seen for a very low-level discretization.  

Bistatic and monostatic scattering measurement results for the flat geometries 

are compared with the geometrical theory of diffraction solutions as a function of aspect 

angle in the studies [37-40]. Monostatic scattering calculations based on geometrical 

theory of diffraction is in good agreement with the measured results except at edge-on 

aspects for the flat rectangular plate [37]. Bistatic scattering for a frustum is calculated 

with the geometrical theory of diffraction again and the results obtained from that are 

compared with those of the measurement results in the study [38]. The GTD 

(geometrical theory of diffraction) is developed for the 3-7 wavelengths square plates 

illuminated with vertical polarization as a function of aspect angle and the solutions are 

compared with the MoM numerical results [39]. Both empirical and UTD formulas are 
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developed for circular disks and square plates and compared again with MoM in the 

study [40]. Accuracy of the formulas degrades while the ratio of height to width 

becomes much less than one. In the studies [37-38] the GTD solutions agree well with 

the experimental data away from grazing incidence. GTD and PO/PTD equivalent 

currents are used to predict the far field monostatic scattering from perfectly 

conducting, flat, rectangular plates in non principal plane in the study [41]. High 

frequency models are used in [42] for verification and to illustrate weaknesses that still 

exist in high frequency modeling technique for the RCS mesasurements of plate 

geometries.  

In the two dimensional scattering problem given in [43-46], the sinc functions 

and some of their mathematical properties were applied to the multi strip grating 

scattering which have been obtained by the plane wave excitation. It is used to obtain 

the approximate surface current densities and the far field patterns of the finite strip 

grating. Then, these studies are extended to simulate the multilayered structures [47] 

and so the two dimensional micro-strip geometries are successfully solved. In these two 

studies mentioned above, it is considered that the expansion of the unknown current 

density with the sinc functions includes sampling it at the peak positions on the 

scattering surface. In the study [48], the scattering from flat plates are solved by using 

Shannon’s sampling theorem in MoM with entire basis functions. Shannon’s sampling 

is applied in spectral domain, but the number of the basis functions is not much less 

than the RWG functions used in MoM, because degrees of freedom do not incorporate 

edge singular behaviors [48].  

MoM in conjunction with the asymptotic waveform evaluation (AWE) technique 

is applied to obtain the RCS of an arbitrarily shaped three-dimensional perfect electric 

conductor body over a frequency band in the study [49]. AWE results are compared 

with model based parameter estimation (MBPE). AWE is found to be superior in terms 

of CPU time to obtain the frequency response. However, the accuracy of AWE is not 

proved in this study. On the other side, AWE based on characteristic basis function 

method is investigated in [50-51] to analyze wideband electromagnetic scattering from 

multiple two dimensional PEC objects. CPU time is decreased with high accuracy 

compared with the conventional MoM.  

In this study, three dimensional electromagnetic scattering problem will be 

solved for arbitrary flat geometries using sinc-based Galerkin and non-Galerkin 

procedures. Additionally, in this 3D version of the sinc-based formulation, the 
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mathematical properties of the sinc functions are again used in the ordinary MoM 

solution. By the usage of these properties, no integrals are evaluated numerically and 

approximate analytical expressions are used under certain relative error limit. Only a 

few integrals are numerically computed for the region close to the Green’s function 

singularity. In MoM, the filling time of the main matrix is reduced appreciably but 

higher discretization is required, so the matrix size increases. This causes an increase in 

the CPU time of the solution of the matrix equation. Also, it can be said that the main 

matrix inversion is performed directly by LU decomposition method. Therefore, mainly 

we can say that the MoM matrix can be filled quickly and much of the time is spent in 

the numerical solution of the algebraic main matrix equation. TFQMR method is used 

in order to reduce the overall CPU time. 

In the sinc-sinc based MoM procedure, the multiplication of the two sinc 

functions in x and y directions are chosen [53]. Also the discretization is performed as 

the pointwise manner and it is so much easier than the complex basis functions. Our 

geometries that are studied here are arbitrary flat plates with the 90° connections at the 

corners of the plate. The ordinary rooftop formulation and its numerical solution were 

also performed. This well- known solution is used in comparison with the sinc basis 

results. SuperNEC [54] is also included in the study and used for comparison. The 

simulation results based on sinc-sinc based formulation are compared with the RCS 

calculations in the studies [55,56]. They are in good agreement. However, in the sinc-

based MoM formulation, some types of errors possibly cause incorrect results. Firstly, 

the overflow can occur near the edges close to the singularity region of surface current 

density. Therefore, new types of basis functions called sinc-pulse type are chosen [56]. 

Here the pulse function is chosen such that the surface current density brings the 

singularity parallel to the edges and the sinc functions are chosen as an approximation 

perpendicular to the edges. By this way, the surface current density is approximated 

better and overflow problem is reduced. On the other hand, the errors occurred by using 

finite difference derivative and the sinc function integral approximations are the other 

error possibilities. The finite difference derivative error can be reduced by decreasing 

the mesh size, but the error coming from the sinc function integrals are numerically 

determined as the maximum 0.0005 relative level. 

In this study, the numerical results are obtained from sinc type basis functions 

and these results are compared with the ordinary rooftop MoM and SuperNEC ones. 

However, matrix is filled with the numerical evaluation of the functions in rooftop 
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based formulations differently than in [57]. It is shown that when the matrix inversion 

time of our codes is decreased by the iterative solver with preconditioning transpose 

free quasi minimal residual (TFQMR) method, then the overall code is obtained to a 

level comparable with SuperNEC. 

All our codes are developed in Fortran [58] in a single desktop computer. 

Furthermore, in the numerical results section the accuracy of the program is verified by 

the comparison of the simulations. CPU time comparison is given for the matrix filling 

of different MoM based programs. 

 

1.2. Motivation of the Study 

 

Sinc functions are used in the literature for the electromagnetic scattering, 

radiation and inverse problems. In this study, a different application of the sinc 

functions is performed in the numerical MoM solutions. Flat plate geometry is chosen 

as an example for electromagnetic scattering problem.   

It is important to calculate accurately the power scattered in some other direction 

than back to the transmitter in order to detect an object. The main purpose in this study 

is to obtain accurate bistatic scattering results from arbitrary flat plates by using 

different sinc-type basis functions in MoM procedure with filling the main matrix in 

less CPU time when compared with the well-known methods and software in literature. 

Analytical and mathematical properties of the sinc functions will be used in order to 

obtain a compact formulation. Approximate functions will be used instead of integrals 

in MoM. Computer program will be developed in personal computer by using Fortran 

routines. It is shown that the overall CPU will be decreased by using iterative solvers in 

MoM when compared to SuperNEC and ordinary rooftop based formulation with direct 

solvers.  
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CHAPTER 2 

 

MOM FORMULATION 

 

The roots of the method of moments originate in the methods of Rayleigh, Ritz 

and Galerkin. This method involves discretization procedure such as finite element 

method, finite difference method which can be related with method of moments (MoM) 

[59- 61]. The discretization of a continuous equation by MoM involves the projection of 

the continuous linear operator onto finite-dimensional subspaces defined by the basis 

and testing functions. Almost any problem, analytical or numerical could be solved with 

method of moments such as deterministic and eigenvalue problems. Two and three 

dimensional electromagnetic field scattering and eigenvalue problems can be easily 

solved with this well-known method [2]. The main idea of this method is to reduce a 

functional equation to a matrix equation. The matrix equation is then solved by direct 

and iterative methods. The unknown current density is first expanded in terms of basis 

functions then tested by weighting functions in order to construct the main matrix 

elements in the linear system. By using the excitation vector the coefficient matrix is 

solved. 

 

2.1. Method of Moments (MoM) 

 

 The mathematical technique which reduces the functional equation to matrix 

equation is called the Method of Moments [3]. The inhomogeneous equation of the 

deterministic problem can be represented as 

 

( )( ) ( )L f x g x=                                                (2.1) 

 

where L is a linear operator, g is known, ( )x a,b∈ and f is to be determined. Let f  be 

expanded in a series of linearly independent basis functions. 

                                   ( ) ( ) �
discretization error

N

s s N

s 1

f x a B x γ
=

= +∑                                           (2.2) 
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where 
sa ∈�  and they  are constants and sB  are called basis (expansion) functions. The 

solution of f in the equation (2.2) is obtained approximately, and sB  forms a complete 

set of functions. For approximate solutions, equation (2.2) is a finite summation and 

given 

 

( ) ( )
N

s s

s 1

f x a B x
=

≅∑ .                                                 (2.3) 

 

In this equation 
s

B  represents entire domain or subdomain basis functions. From the 

linearity property of the L we can write 

 

   ( )( ) ( )
1

N

s s

s

a L B x g x
=

=∑ .                                         (2.4) 

 

After determining an inner product, a set of weighting functions, or testing functions are 

defined in the range of L. Both sides of the equation (2.4) is tested with testing function 

( )oT x . The testing procedure is applied with an inner product given as 

 

( ) ( ) ( ) ( ),

b

o o

a

T x g x T x g x dx
∗= ∫ .                                        (2.5) 

 

The inner product of the equation (2.5) must be taken with each testing functions oT  

such that 

 

( ) ( ) ( ) ( ) 1, 2,…,
N

s o s o

s 1

a T x ,LB x T x ,g x o N
=

= =∑ .                                  (2.6) 

 

The set of resulting equations can be written in matrix form such as 

 

                                                   [ ] [ ] [ ]os s ol a g=                                                           (2.7) 

 

where [ ]osl  matrix is obtained with the same procedure given in [4] 
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[ ]

[ ] [ ]

[ ] [ ] [ ] ( )( )if is nonsingular, .

1 1 1 2

os

2 1 2 2 o s

1
1

22

s o

1

s so o os os

T ,LB T ,LB ...
l

T ,LB T ,LB ...

T ,ga

T ,ga

a . g .

. .

. .

a l g l det l 0

×

−

 
=  
  

  
  
  
  = =   
  
  

    

 = ≠ 

     (2.8) 

 

The process given in (2.1)-(2.5) can be applied to a deterministic problem to 

produce approximate solution regardless of whether or not the basis and testing 

functions { } { }ands oB T form complete orthogonal sets. Generally, the basis and testing 

functions are often not orthogonal sets. If the { }oT form an orthogonal set, the 

projection of the range space onto the testing function is orthogonal and a best 

approximated solution is obtained. Even if the basis function { }sB is orthogonal, the 

projection of the domain space onto the basis functions is not guaranteed to be 

orthogonal. In any case, since N is necessarily finite for numerical calculations, the 

result obtained from (2.2) is always approximate. 

Two different procedures can be applied in MoM. When the basis and testing 

functions are identical in the problem, it is called Galerkin. In the other procedure, basis 

and testing functions are not the same functions. This procedure is called non-Galerkin. 

The choice of the basis and testing functions is the principle issue arising within a 

method of moments implementation [2]. The factors which affect the choice of sB  

(basis) and oT  (testing) are: 

• The accuracy of solution desired 

• The ease of the evaluation of the matrix elements 

• The size of the matrix that can be inverted 

• Realization of a well-conditioned matrix [2]. 

The basis and testing functions should be linearly independent and able to accurately 

approximate B  and LB , respectively. 
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2.1.1. Basis Functions 

 

Basis functions should be chosen according to their ability to represent and 

resemble the unknown function. Two types of basis functions can be classified. The first 

one is the subdomain basis functions which are nonzero only over a part of the domain 

of the function. Secondly, entire domain basis functions exist over the entire domain of 

the unknown function. Entire domain basis function expansion is similar to the well-

known Fourier series expansion method. Appropriate basis functions can be chosen in 

terms of the problem. 

 

2.1.1.1. Subdomain Functions  

 

The subdomain approach involves subdivision of the geometry of the problem 

into N nonoverlapping segments [2]. The most common subdomain basis functions are 

piecewise constant and piecewise linear. They form complete sets. 

Spline function, pulse function and triangular function are examples of the subsectional 

basis given below. N equispaced points on the interval 4 4x− ≤ ≤  are shown in Figure 

2.1. In this figure, a subinterval is defined to be of width ( )8 N 1+  centered on the nx  

where ( )nx 4,4∈ −  and N 7.=  A function which exists over only one subinterval is the 

pulse function. The pulse basis and expanded function with pulse basis are given in 

Figure 2.1. 
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(a) 

 

(b) 

 

(c) 

Figure 2.1. Subdomain basis function and functional approximation, (a) subintervals 

                  and points, (b) Pulse basis, (c) Step approximation. 

 

Pulse function is given below 

 

                  pulse
n

n n

n

a
1, x x

a a 2
( x,x ,x )

a2 2
0, x x

2

 
− <  

− + =  
 − >
  

                               (2.7) 

 

where a 1= and it is the width of the subinterval centered at nx  in terms of the Figure 

2.1. 

Triangle basis function and its piecewise linear approximation are given in 

Figure 2.2.  
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(a) 

 

(b) 

 

(c) 

Figure 2.2. Subdomain basis function and functional approximation, (a) subintervals 

                  and points, (b) Triangular basis, (c) Piecewise linear approximation. 

 

Triangle basis function is given as follows 

 

n

n

n n

n

x x
1 , x x a

tr( x; x a,x a ) a

0 , x x a

 −
− − < 

− + =  
 − > 

.                             (2.8) 

 

 Another kind of subdomain basis functions are spline functions. The equation of 

the quadratic spline is given below 

2

2

2

2 2

2

2

3
0

2

9 3 3

8 2 2 22

3 3 3

2 2 4 2 2

9 3 3

8 2 2 22

3
0

2

a
, x

xa x a a a
a , x

a a

a a x a a a
q x; , a , x

a

xa x a a a
a , x

a a

a
, x

−
≤


 − −

+ + < ≤

  

− = − − < ≤ 
  


 − + < ≤



>


.                            (2.9) 
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The subsectional quadratic spline function is given in the Figure 2.3. The spline 

functions are again used in this study as subsectional basis functions. 

 

 

      (a) 

 

       (b) 

Figure 2.3. Subsectional basis function and approximated function. (a) Spline function, 

                 (b) approximated function. 

 

2.1.1.2. Entire Domain Functions 

 

Entire domain basis functions are nonzero identically over the entire length of a 

chosen structure under investigation. No segmentation is involved in their use. The most 

common used entire domain basis set is the sinusoidal function, where 

 

                                         
(2 1)

( ) cos
2 2

n

n x l l
B x x

l

π− − 
= ≤ ≤  

                         (2.10) 

 

where l is the length of the structure. The basis functions for n 1, 2,3= are given in 

Figure 2.4. 
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    (a) 

 
    (b) 

Figure 2.4. Entire domain basis function for n=1, 2, 3.  (a) 
( )

cos
2n 1 x

l

π −
 
 

, n=1, 2, 3.  

                  (b) sum of the functions, continuous linear approximation. 

 

This basis function is useful to model the current on a wire dipole [3]. Entire 

domain cosine and sine functions are similar to the Fourier series expansion of arbitrary 

functions. Entire domain basis functions can be generated using Tschebyscheff, 

McLaurin, Legendre, and Hermite polynomials [2].  

Wavelets are used in electromagnetic scattering problems as basis functions in 

the studies [25-27]. They represent the current density within integral equation 

formulations. Wavelets produce sparse matrices because of their oscillatory nature. 
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2.1.2. Linear Solvers 

 

The inverse of the matrix [ ]osl  given in (2.7) can be evaluated by using different 

algorithms. One of the direct methods is LU factorization. In this study, LU 

factorization is used in solving linear matrix systems. This method divides the matrix 

into two parts which are lower triangular matrix and the upper triangular matrix. By 

using lower parts and upper parts of the matrix forward and backward substitutions are 

applied and the unknown coefficients are determined. An other similar algorithm is QR 

factorization. In QR factorization the system matrix can be solved by dividing the 

matrix into an orthogonal matrix and upper triangular matrix. Since QR decomposition 

involves almost twice as many operations as LU decomposition, it is not used for 

typical systems of linear equations.  

Iterative solvers are applied in large electromagnetic scattering problems for 

solving linear matrix systems. The Conjugate Gradient and the Bi-Conjugate Gradient 

(BiCG) Algorithms are nonstationary iterative techniques [10-14] that are applied to 

general linear systems. Conjugate Gradient Method is an effective method for 

symmetric positive definite systems. The method proceeds by generating vector 

sequences of iterations and residuals in terms of iterations. At the end of each iteration 

the residual is compared with the desired error. If the convergence is satisfied, the 

algorithm stops and the result is obtained. The conjugate gradient method is not suitable 

for nonsymmetric systems. BiCGA does not minimize a residual [13-14]. BiCGA has 

significant features that make it an alternative to the standard CG algorithm [14]. 

Moreover, this algorithm cannot converge and it fails then breakdown situation 

(stagnation) occurs. QMR (quasi-minimal residual) method is used to overcome 

stagnation [15]. Quasi-minimal Residual method of Freund and Nachtigal solves the 

reduced tridiagonal system in a least squares sense [15]. The convergence behavior of 

QMR is typically much smoother than for BiCG. TFQMR is used in this study in order 

to reduce the overall CPU time. TFQMR is based on the quasi-minimal version of the 

CGS algorithm called TFQMR method [15-19] that smooths its convergence without 

involving A
T
 vector products. It is employed to avoid the complicated multiplication 

between the transpose of the system matrix and a vector. 

Iterative solvers with a reasonable initial condition and a suitable 

preconditioning matrix are used in large electromagnetic scattering problems to make 
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the convergence of the solution as fast as possible [20-24]. Several integral equation 

solvers are given in the studies [20-24], which reduce computational complexity and 

memory requirements. Large electromagnetic scattering problems can be solved by 

using incomplete LU decomposition with threshold as a preconditioner in BiCG 

algorithm [20-24]. 
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CHAPTER 3 

 

RADAR CROSS SECTION (RCS) 

 

Radar cross section (RCS) is defined as the area intercepting the amount of the 

power that, when scattered isotropically, produces at the receiver a density that is equal 

to the density scattered by the actual target [3]. RCS of a target is a function of the 

polarization of the incident wave, the angle of incidence, the angle of observation, the 

geometry of the target, the electrical properties of the target, and the frequency of 

operation. The units are taken per squared wavelength in decibels ( [ ]2

RCS
10 log dB

λ
) 

in calculations. 

 

3.1. Radar Cross Section Computation of Flat Plate 

 

A radar detects or tracks a target, and sometimes can identify it, only because 

there is an echo signal. It is critical in the design and operation of radars to be able to 

quantify or otherwise describe the echo in terms of target’s characteristics such as size, 

shape, and orientation. For that purpose a target is ascribed an effective area called the 

radar cross section.  

An object exposed to an electromagnetic wave disperses incident energy in all 

directions. This spatial distribution of energy is called a scattering. The energy scattered 

back to the source of the wave constitutes the radar echo of the object. The intensity of 

the echo is described by the RCS of the object. The formal definition of radar cross 

section is [62] 

 

2

2

2
lim 4

s

R in
Rσ π

→∞
=

E

E
                                                  (3.1) 

 

where 
o

E  is the electric field strength of the incident wave impinging on the target and 

s
E  is the electric-field strength of the scattered wave at the radar. The derivation of the 



 18

expression assumes that a target extracts power from an incident wave and then radiates 

that power uniformly in all directions. RCS is therefore a comparison of scattered power 

density at the receiver with the incident power density at the target. When the electric 

field strengths in (3.1) are replaced with the magnetic field strengths, it is necessary to 

calculate the power scattered in some other direction then back to the transmitter. If the 

distance R  is measured from the target to the receiver, backscattering is defined.  

A larger RCS indicates that an object is more easily detected. An object reflects 

a limited amount of radar energy. RCS of a radar target is an effective area that 

intercepts the transmitted radar power and then scatters that power isotropically back to 

the radar receiver. The RCS of a target is the area required to intercept the transmitted 

power density at the target such that if the total intercepted power were re-radiated 

isotropically, the power density actually observed at the receiver is produced. This is 

explained by the monostatic (the transmitter and receiver are at the same location) 

scattering. When the location of the transmitter and receiver are different, then bistatic 

scattering is observed. RCS of a target is a very important parameter which gives its 

scattering properties. 

RCS is calculated from the far field components of the electric field which are 

obtained from the transverse component of the magnetic vector potential 

 

                               T

s
jω= −E A                                                (3.2) 

 

In Figure 3.1, the scattered field is shown for a flat plate with 
x y

L L×  dimension 

which is illuminated with a plane wave with the azimuth and elevation incident angles 

in
ϕ  and 

in
θ  respectively. in

Eθ  (the incident electric field is perpendicular to the plane of 

incidence), in
Eϕ  (the incident electric field is parallel to the plane of incidence) are the 

incident electric field components. The x and y components of the incident electric 

fields in

x
E  and in

yE are obtained from in
Eθ  

 

in in in injk ( x sin cos y sin sin )in

0
E E e

θ ϕ θ ϕ
θ

+=                                             (3.3) 

 

in in in injk ( x sin cos y sin sin )in

x 0 in in
E E x E e cos cos

θ ϕ θ ϕ
θ θ θ ϕ

∧ ∧
+= ⋅ =                           (3.4) 
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in in in injk( x sin cos y sin sin )in

y 0 in inE E y E e cos sin
θ ϕ θ ϕ

θ θ θ ϕ
∧ ∧

+= ⋅ = .                         (3.5) 

 

The incident electric field components, in

xE  and in

yE are obtained from in
Eϕ  

 

in in in injk( x sin cos y sin sin )in

0E E e
θ ϕ θ ϕ

ϕ
+=                                                 (3.6) 

 

( )in in in injk( x sin cos y sin sin )in

x 0 inE E x E e sin
θ ϕ θ ϕ

ϕ ϕ ϕ
∧ ∧

+= ⋅ = −                              (3.7) 

 

( )in in in injk( x sin cos y sin sin )in

y 0 inE E y E e cos
θ ϕ θ ϕ

ϕ ϕ ϕ
∧ ∧

+= ⋅ = .                            (3.8) 

 

Time dependency, j t
e

ω is used in the above equations. The scattered electric fields is 

obtained by the vector sum of the vertical and horizontal components of the electric 

field at the elevation and azimuth scattering angles 
s

θ  and 
s

ϕ  respectively.  

 

 

Figure 3.1. Field representation of the flat plate. 

 

In the far zone, the scattered electric field can be obtained as follows 

 

s s sˆ ˆE Eθ ϕθ ϕ= +E                                                       (3.9) 

 

where the vertical polarization case  is calculated as 
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( )

s

x y z

s

x s s y s s z s

ˆ ˆ ˆˆ ˆ ˆE j A A ( A x A y A z )

E j A cos cos A cos sin A sin

θ θ θ

θ

ω θ θ θ

ω θ ϕ θ ϕ θ

= − = ⋅ + ⋅ + ⋅

= − + −
,         (3.10) 

 

and the horizontal polarization  case is calculated as 

 

( )

s

x y z

s

x s y s

ˆ ˆ ˆˆ ˆ ˆE j A A ( A x A y A z )

E j A sin A cos

ϕ ϕ ϕ

ϕ

ω ϕ ϕ ϕ

ω ϕ ϕ

= − = ⋅ + ⋅ + ⋅

= − − +
,                   (3.11) 

 

The x and y directed currents on the plate constitute only x and y directed 

magnetic vector potential, so zA 0.=  The magnetic vector potential is given as in [1-4]  

 

( )
jk '

V

e
dv

4 '

µ

π

− −

=
−

∫∫∫
r r

A J r'
r r

.                                       (3.12) 

 

Far field radiation zone is represented in Figure 3.2. The distance between 

observation and source points is approximated in terms of the Figure 3.2 given below. 

 

 

Figure 3.2. Far field radiation field for a geometry. 

 

The approximated value of the '−r r can be obtained by using Taylor expansion 

method such that (at far field) 

 

( ) ( ) 2 2 ˆ' r 2 ' r' r r ' r , r r '− = = − + ≅ − >>r r r-r' r-r' r r
�

i i i              (3.13) 
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where and2 ' 2rr' cos r ' r r' cosρ γ= − = −r r r ri i . 

On the surface of the plate there is x and y directed currents, so the resulting 

magnetic vector potential can be given as 

 

                        ( )x y

S

exp( jkr )
ˆ ˆA J x J y exp( jkr' cos )ds'

4 r

µ
γ

π

−
= +∫∫
�

                       (3.14) 

 

and  

 

( ) ( )ˆ ˆ ˆ ˆ ˆ' r' cos x' x y' y x sin cos y sin sin z cos

x' sin cos y' sin sin

γ θ ϕ θ ϕ θ

θ ϕ θ ϕ

= = + + +

= +

r ri i
            (3.15) 

 

The unknown current densities xJ  and yJ  can be expanded by known basis 

functions given in the equation (2.3) as explained in the previous chapter. The unknown 

current densities defined for flat plate geometries are given 

 

( ) ( ) ( ), ,
N

x s x s
s 1

J x y a B x y
=

≅∑                                            (3.16) 

 

( ) ( ) ( ), ,
K

y s y s
s 1

J x y b B x y
=

≅∑                                           (3.17) 

 

Then, the x and y components of the magnetic vector potentials are calculated as 

 

( )
( )

( )

( )

( )

( )
in in in in

p o a a q o bjkr N
jk x' sin cos y' sin sin

x s x s
s 1 p o a a q o b b

e
A a B e dx' dy'

4 r

θ ϕ θ ϕµ

π

+−
+

= − −

= ∑ ∫ ∫               (3.18) 

 

( )
( )

( )

( )

( )

( )
in in in in

q o b b p o ajkr K
jk x' sin cos y' sin sin

y s y s
s 1 q o b b p o a a

e
A b B e dx' dy'

4 r

θ ϕ θ ϕµ

π

+−
+

= − −

= ∑ ∫ ∫                (3.19) 

 

The scattered electric fields are derived and given as  
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s

s 1 s s s 2 s s

s s

j exp( jkr ) j exp( jkr )
E a I cos cos b I cos sin

4 r 4 r
θ

ωµ ωµ
θ ϕ θ ϕ

π π

− − −   
= −   

   
∑ ∑ (3.20) 

 

s

s 1 s s 2 s

s s

j exp( jkr ) j exp( jkr )
E a I sin b I cos

4 r 4 r
ϕ

ωµ ωµ
ϕ ϕ

π π

− −   
= −   

   
∑ ∑           (3.21) 

 

where I1 and I2 are given as 

 

                ( )
( )

( )

( )

( )p o a a q o b

1 in in in inx s

p o a a q o b b

I B exp( jkx sin cos jky sin sin )dx dyθ ϕ θ ϕ
+

− −

′ ′ ′ ′= +∫ ∫       (3.22) 

 

             ( )
( )

( )

( )

( )q o b b p o a

2 in in in iny s

q o b b p o a a

I B exp( jkx sin cos jky sin sin )dx dyθ ϕ θ ϕ
+

− −

′ ′ ′ ′= +∫ ∫         (3.23) 

 

and the radar cross section parameters for co-polarized vertical-vertical (VV), 

horizontal-horizontal (HH) and cross-polarized vertical-horizontal (VH), horizontal-

vertical (HV) cases are obtained as follows 

RCS VV

2
s

2

2
R in
lim 4 R

θ

θ

π
→∞

=
E

E
                                                (3.24) 

 

RCS VH

2
s

2

2
R in
lim 4 R

θ

ϕ

π
→∞

=
E

E
                                                (3.25) 

 

                                        RCS HH

2
s

2

2
R in
lim 4 R

ϕ

ϕ

π
→∞

=
E

E
                                                (3.26) 

 

RCS HV

2
s

2

2
R in
lim 4 R

ϕ

θ

π
→∞

=
E

E
                                                (3.27) 

 

where R  is the distance between object and target. 
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In the next chapter, rooftop basis functions are used in MoM formulation. The 

scattering results for arbitrary plate geometries are obtained with the rooftop based 

MoM formulation.  
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CHAPTER 4 

 

METHOD OF MOMENTS BY ROOFTOP BASIS 

FUNCTIONS 

 

 Rooftop basis functions are used in MoM with Galerkin procedure in order to 

solve electromagnetic scattering problem. They are defined with subsectional pulse and 

triangular function. These functions are widely used for obtaining surface currents on 

planar scatterers and for expanding the surface current density on flat conducting plates. 

The coefficients of the rooftop functions represent the vector component normal to an 

edge and the expansion provides normal continuity.  

 

4.1. Rooftop Basis Functions 

 

Rooftop basis functions are constituted with the multiplication of standard 

triangle and pulse functions, which are given in [3]. Their three dimensional pictures are 

given in Figure 4.1.  

 

 

Figure 4.1. Rooftop basis functions. 
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The location of the rooftop basis functions within the rectangular-cell mesh is 

given in Figure 4.2. All cells in the model have the dimension a b×  , the rooftop 

functions are given  

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )tr pulse
x s

B x ', y ' x '; p s a a, p s a, p s a a y '; q s b b, q s b= − + − ,    (4.1) 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )tr pulse
y s

B x', y ' y '; q s b b, q s b, q s b b x '; p s a a, p s a= − + − .    (4.2) 

 

The center points of the cells 1m  and 2m  are which correspond to xB  and yB  

respectively given in the Figure 4.2. 

 

 

Figure 4.2. Location of the rooftop basis functions within the rectangular cell mesh 

                  ( ) ( )1

b
m p s a, q s b

2

 
− 

 
, 2

a
m p( s ) a , q( s ) b

2

 
− 

 
. 

 

Table 4.1. Location of the basis functions. 

Symbols Definitions 

s  Indice belong to source points (integer). 

( )p s a (meter) Location of the sinc function in x direction for xB  

( )q s b (meter) Location of the pulse function in y direction for xB  

( )p s a (meter) Location of the pulse function in y direction for yB  

( )q s b (meter) Location of the sinc function in x direction for yB  

 

The unknown current density is obtained by expanding rooftop functions with the basis 

functions given in (4.1) and (4.2) such as 
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                                         ( ) ( ) ( )
1

N

x s x s
s

J x ', y ' a B x ', y '
=

≅∑                                               (4.3) 

 

( ) ( ) ( )
1

K

y s y s
s

J x ', y ' b B x ', y '
=

≅∑ .                                              (4.4) 

 

No basis functions are used at the edges along the structure boundary, since the currents 

at the boundary must vanish in the direction perpendicular to the edge. 

 The scattered field, sE is given in frequency domain and obtained by the 

convolution terms as 

 

s jω Φ= − − ∇E A                                                        (4.5) 

where 

GandG ∗=Φ∗= ρ
ε

µ
1

JA .                                              (4.6) 

 

The convolution between current density and Green’s function is defined as 

 

( ) ( )G x', y' G x x', y y' dx' dy'
∞ ∞

−∞ −∞

∗ = − −∫ ∫J J .                               (4.7) 

 

Table 4.2. Definitions of the functions and vectors. 

Symbols Definitions 

A  Magnetic vector potential 

Φ  Scalar electric potential 

( )A mJ  Surface current density 

( )3C mρ  Volume charge density 

G Green function 

( )H mµ  permeability 

( )F mε  permitivity 

 

The IE should satisfy the boundary condition on perfectly electric conductor (PEC) 

plate as follows 



 27

( )in s

tan
0+ =E E                                                              (4.8) 

 

and it can be obtained by using continuity equation 

 

j 0.ωρ∇ ⋅ + =J                                                            (4.9) 

 

By using equations (4.5)-(4.9) the integral equations including convolution terms are 

obtained as 

 

        ( )on surface
y inx

x x

JJ1 1
j J G G G E S

j ε x x' jω x y'
ω µ

ω ε

∂ ∂∂ ∂ 
− ∗ + ∗ + ∗ = −      ∂ ∂ ∂ ∂   

        (4.10) 

 

        ( )on surface
y inx

y y

J J1 1
j J G G G E S

jω y y' jω y x'
ω µ

ε ε

∂  ∂∂ ∂  
 − ∗ + ∗ + ∗ = −     ∂ ∂ ∂ ∂  

.       (4.11) 

 

where  

                     ( )
jkR

2 2e
G r r ' , R (x x') (y y')

4πR

−

− = = − + −
� �

.                                 (4.12) 

 

and R r r '= −
� �

 is the distance between observation and source points. 

The x and y components of the integral equation are tested with and
x y

T T  

respectively, which are the same functions as the basis functions. This is required by the 

procedure used in this chapter because of the Galerkin procedure. The testing functions 

are given as 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )tr pulse
x o

T x, y x; p o a a, p o a, p o a a y; q o b b, q o b= − + −         (4.13) 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )tr pulse
y o

T x, y y; q o b b, q o b, q o b b x; p o a a, p o a= − + −         (4.14) 

 

where o as seen in (4.13)-(4.14) are observation points. 

The testing process produces ( ) ( )N K N K+ × +  system such that 
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                                           NN NK s N

KN KK s K

A B a E

C D b F

     
=     
    

                                                   (4.15) 

 

where  

 

        
1 21

1 2

x( s )

NN x( s ) x( o ) x( o )

B ( x', y') o , , N .
A j B ( x', y')* G,T G ,T

s , , N .j x x'
ωµ

ωε

∂  =∂
= − + ∗   =∂ ∂ 

…

…
    

(4.16) 

 

                       
1 21

1 2

y( s )

NK x( o )

B ( x', y') o , , N .
B G ,T

s , , K .j x y'ωε

∂  =∂
= ∗   =∂ ∂ 

…

…
   (4.17) 

 

                              
1 21

1 2

x( s )

KN y( o )

B ( x', y') o , , K .
C G ,T

s , , N .j y x'ωε

∂  =∂
= ∗   =∂ ∂ 

…

…
                   (4.18) 

 

           
1 21

1 2

y( s )

KK y( s ) y( o ) y( o )

B ( x', y') o , , K .
D j B ( x', y')* G,T * G ,T

s , , K .j y y'
ωµ

ωε

∂  =∂
= − +    =∂ ∂ 

…

…
.   

(4.19) 

 

o and s seen in (4.16)-(4.19) are the observation and source points respectively. 

Differentiation and convolution operators commute in order to obtain functions after 

convolutions and the above MoM matrix elements become 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2

1 21

1 2
NN x o x s x o x s

o , , N .
A j G,T x, y B x, y G, T x, y B x, y ,

s , , N .j x
ωµ

ωε

  =∂
= − ∗ − − + ∗ − −   =∂ 

…

…
 

(4.20) 

 

( ) ( ) ( )( )
2 1 21

1 2
NK y( s )x o

o , , N .
B G, T x, y B x, y ,

s , , K .j x yωε

  =∂
= ∗ − −   =∂ ∂ 

…

…
                   (4.21) 

 

( ) ( )( )
2 1 21

1 2
KN y( o ) x( s )

o , , K .
C G, T x, y B x', y' ,

s , , N .j y xωε

  =∂
= ∗ − −   =∂ ∂ 

…

…
                  (4.22) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2

1 21

1 2
KK y o y s y o y s

o , , K .
D j G,T x, y B ( x, y ) G, T x, y B x, y .

s , , K .j y
ωµ

ωε

  =∂
= − ∗ − − + ∗ − −   =∂ 

…

…

 

(4.23) 

 

As an example, in (4.10), the first term of the integral equation is obtained  

 

( ) ( ) ( ) ( ) ( )x o x s
G x, y T x, y B x, y dxdy

∞ ∞

−∞ −∞

 ∗ − −
 ∫ ∫ .                                 (4.24) 

 

The basis functions include symmetric functions and the convolution terms can be given 

as follows 

 

( ) ( ) ( ) ( ) ( ) ( )1 2 2
x o x s

T x, y B x, y q x; a, a tr y; b, b∗ − − = − −                               (4.25) 

 

( ) ( ) ( ) ( ) 2 2

3 3 3 3

2 2 2 2
x o y s

a a b b
T x, y B x, y q x; , q y; ,

   
∗ − − = − −   

   
                        (4.26) 

 

( ) ( ) ( ) ( ) ( ) ( )1 2 2
y o y s

T x, y B x, y q y; a, a tr x; b, b∗ − − = − −                              (4.27) 

 

( ) ( ) ( ) ( ) 2 2

3 3 3 3

2 2 2 2
y o x s

a a b b
T x, y B x, y q y; , q x; ,

   
∗ − − = − −   

   
                       (4.28) 

 

where ( ) ( )( ) ( ) ( )( )andx x p o p s a y y q o q s b= − − = − − , for andx xB T ,    

( ) ( )( ) ( ) ( )( )andx x p o p s a y y q o q s b= − − = − − , for andy yB T ,  

( ) ( )( ) ( ) ( )( )and
2 2

a b
x x p o p s a y y q o q s b= − − − = − − − , for andy xB T ,  

( ) ( )( ) ( ) ( )( )and
2 2

a b
x x p o p s a y y q o q s b= − − − = − − − , for andx yB T . 

The above functions 1q , 2q and tr are piecewise continuous and are given as 
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( )

3 2 2 3

2

3 2 3

2

1 3 2 3

2

3 2 2 3

2

0 2

6 12 8
2

6

3 6 4
0

6
2 2

3 6 4
0

6

6 12 8
2

6

0 2

, x a

x ax a x a
, a x a

a

x x a a
, a x

a
q x; a, a

x x a a
, x a

a

x ax a x a
, a x a

a

, x a

≤ −


+ + + − < ≤ −



− − +
− < ≤

− = 
− +

< ≤

 − + − +

< ≤


>

,                         (4.29) 

 

2

2

2

2 2

2

2

3
0

2

9 3 3

8 2 2 22

3 3 3

2 2 4 2 2

9 3 3

8 2 2 22

3
0

2

a
, x

xa x a a a
a , x

a a

a a x a a a
q x; , a , x

a

xa x a a a
a , x

a a

a
, x

−
≤


 − −

+ + < ≤

  

− = − − < ≤ 
  


 − + < ≤



>


 ,                                (4.30) 

 

( )

0

0

0

0

, x a

a x, a x
tr x; a,a

a x, x a

, x a

≤ −


+ − < ≤
− = 

− < ≤
 >

  .                                                     (4.31) 

 

The functions (4.29)-(4.31) obtained from the convolution terms are differentiated 

partially in the IE. Then, these terms are integrated with the Green’s function. The first 

term of the IE away from the singularity region is 

 

( ) ( ) ( )
2

1

2

b v a u

b v a u

G x, y q x u tr y v dxdy

+ +

− + − +

− −∫ ∫                                         (4.32) 

 

where ( ) ( )( ) ( ) ( )( ), u a p o p s v b q o q s= − = − . When the source and the observation 

regions are overlapped, there is singularity in the integrand which has 1 R  form. For 

0R = , the singular part of the integrand is extracted and the singular part is evaluated 

analytically as given in [3]. The remaining part is evaluated numerically. The resulting 

integral is 
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( ) ( ) ( )
( ) ( )

( ) ( )
2 2

1
1 1

2 2
2 2

4 4

b v a u b v a u

b v a u b v a u

q u tr v dxdy
G x, y q x u tr y v dxdy q u tr v

R x yπ π

+ + + +

− + − + − + − +

 − −
− − − + − − 

  + 
∫ ∫ ∫ ∫ .                      

(4.33) 

 

The singular part of the integral is evaluated by applying coordinate transformation in 

[3] with the following steps 

 

( ) ( )

( ) ( )

2

1 22 1 11
1 1

2 2
1 21 1 122

1 22 1 11
1 1

1 12 1 21

ln ln

ln ln

b v a u

b v a u

y R y Rdxdy
x x

y R y Rx y

x R x R
y y

x R x R

β β
α α

β β

α α
β β

α α

+ +

− + − +

   + + − +
= + + −   

− + + +   +

   + + − +
+ + + −   

− + + +   

∫ ∫

            (4.34) 

 

where  

 

( ) ( )2 2

22 1 1R x yα β= + + +                                                (4.35) 

 

( ) ( )2 2

21 1 1R x yα β= + + −                                                (4.36) 

 

( ) ( )2 2

11 1 1R x yα β= − + −                                                (4.37) 

 

( ) ( )2 2

12 1 1R x yα β= − + +                                                (4.38) 

 

and 

( )

( )

( )

( )

=

1 b a

1 b a

b a

b a

x x x 2

y y y 2

x x 2

y y 2

α

β

= − +

= − +

−

= −

                                                       (4.39) 

 

such that ax 2a u= − + , bx 2a u= + , ay b v= − +  and by b v= + .  

The second term of the IE away from the singularity region is given as 
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( ) ( ) ( )
2

2

b v a u

b v a u

G x, y n x u tr y v dxdy

+ +

− + − +

− − −∫ ∫                                     (4.40) 

 

where ( )
2

12
n q x u, y v

x

∂
= − −

∂
. In a similar way with the previous section, the integral 

equation for the singularity region is obtained as 

 

( ) ( ) ( )
( ) ( )

( ) ( )
2 2

2 2
2 2

4 4

b v a u b v a u

b v a u b v a u

n u tr v dxdy
G x, y n x u tr y v dxdy n u tr v

R x yπ π

+ + + +

− + − + − + − +

 − −
− − − − − − − 

  + 
∫ ∫ ∫ ∫  .                         

(4.41) 

 

The third term of IE in (4.10) can be obtained in a very similar way with the previous 

terms. The integral given below should be solved numerically away from the singular 

region 

 

( ) ( ) ( )

3 3

2 2

3 3

2 2

b a
v u

b a
v u

G x, y m x u m y v dxdy

+ +

− + − +

− − −∫ ∫                            (4.42) 

 

where ( ) ( )2m x u q x u
x

∂
− = −

∂
 and ( ) ( )2m y v q y v

y

∂
− = −

∂
. This integral is modified for the 

singularity region that includes 0R .=  It can be rewritten as 

 

( ) ( ) ( )
( ) ( )

( ) ( )

3 3 3 3

2 2 2 2

2 2
3 3 3 3

2 2 2 2

4 4

b v a u b v a u

b v a u b v a u

m u m v dxdy
G x, y m x u m y v dxdy m u m v

R x yπ π

+ + + +

− + − + − + − +

 − −
− − − − − − − 

  + 
∫ ∫ ∫ ∫

.                   (4.43) 

 

 Other terms of the equation (4.11) can be determined in a similar way. After all 

matrix elements are obtained the system will be solved by using the excitation vector. 

Once the system is solved, the coefficient column vector is obtained. The current 

density is determined by using the coefficient vector.  
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CHAPTER 5 

 

METHOD OF MOMENTS BY SINC-SINC BASIS 

FUNCTIONS 

 

 In this chapter, the MoM formulation is derived with sinc type basis functions. 

The main contribution is to obtain accurate scattering results with sinc-sinc based 

compact formulation. Reducing CPU time with sinc based formulation is another 

purpose when compared with the well known rooftop. If the sinc basis functions are 

placed at x and y directions on the plate geometry, then they are called sinc-sinc type 

basis functions. Sinc-sinc type basis functions are used in MoM with Galerkin 

procedure in order to solve scattering from flat arbitrary plate that is illuminated with a 

plane wave. The analytical properties of the sinc function are used in the formulation, so 

the number of integrals to be evaluated numerically is decreased efficiently and MoM 

matrix elements are obtained in less CPU time. The scattered field is formulated in 

terms of convolutions. Since MoM is applied with Galerkin procedure, sinc 

convolutions are obtained in the formulations. By using mathematical properties in 

Appendix B, the integral equations are solved practically. 

 

5.1. Sinc Function 

 

 The normalized sinc function [33], ( )
( )sin

sinc
x

x
x

π

π
=  and its analytical 

properties are given in the Appendix B and they are used in the applications of the 

MoM formulations. 

Sinc function is chosen as basis function in the MoM formulation. In order to 

understand the use of the sinc function its location is given for one direction in Figure 

5.1. The location of the basis function and subintervals are given for a strip 
x

L 6=  

between (-3,3) in Figure 5.1(a). The sinc function basis for the x direction is given as  

 

                                                ( )( )sinc 2x( s ) xB ( x ) W x p s= −                                             (5.1) 
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and it can be seen in Figure 5.1(b) for ( ) 1p s = . The magnitude of the sinc function tails 

rapidly go to zero while the interval goes to infinity. The linear combination of the basis 

functions for N=5 is given in the Figure 5.1(c). The approximate function given in 

Figure 5.1(c) can be obtained by the linear combination of these complete set of 

orthogonal functions with some coefficients such that  

 

                                             
1

N

x s x( s )

s

J ( x ) a B ( x )
=

≅∑ .                                           (5.2) 

 

 

Figure 5.1. Subsectional sinc basis for 500
x

W = , 5N = . (a) points and subintervals n,  

                  (b) sinc 2
x

( W x n )−  for 1n = , (c) approximated function. 
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5.2. Sinc-Sinc Basis Functions 

 

 The scattered field is obtained by the convolution terms as follows 

 

                                                      s jω Φ= − − ∇E A                                                      (5.3) 

 

where  

 

                                                  GandG ∗=Φ∗= ρ
ε

µ
1

JA .                                       (5.4) 

 

The unknown current densities can be obtained by expanding with the known basis such 

as 

 

                                                   ( ) ( ) ( )
N

x s x s

s 1

J x, y a B x, y

=

=∑                                           (5.5) 

 

                                                    ( ) ( ) ( )
K

y s y s

s 1

J x, y b B x, y

=

=∑                                          (5.6) 

 

Two sinc functions in x and y perpendicular directions are multiplied as follows 

 

  ( ) ( )( ) ( )( )sinc 2 sinc 2 1 2
x( s ) x y

B x, y W x p s W y q s s , , N .= − − = …      (5.7) 

 

      ( ) ( )( ) ( )( )sinc 2 sinc 2 1 2
y( s ) y x

B x, y W y q s W x p s s , , K.= − − = …      (5.8) 

 

where Wx and Wy are the bandwidths of the sinc functions. Three dimensional plot of the 

sinc function for W 500= , 
1

2
x y

t t
W

= =  and ( ) ( )p s q s 60= =  is given in Figure 5.2. It 

is shown in terms of location of the basis functions at x and y directions. 
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Figure 5.2. 3D plot of the sinc-sinc basis functions. 

 

The flat plate illuminated with a plane wave is solved in this study by using the 

sinc type basis functions in conventional MoM with Galerkin and non-Galerkin 

procedures. The locations of the basis functions in x and y directions are given in Figure 

5.3 such as ( )1 x ym p( s ) t ,q( s ) t , ( )2 x ym p( s ) t , q( s ) t  respectively.  

 

 

Figure 5.3. Location of the sinc-sinc basis functions within the rectangular cell mesh 

                  ( )1 x ym p( s ) t ,q( s ) t , ( )2 x ym p( s ) t , q( s ) t . 

 

The IE can be obtained by using the well-known boundary conditions on perfectly 

electric conductor (PEC) as follows 

( )in s

tan
0+ =E E .                                                             (5.9) 
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By using the continuity equation 

 

j 0ωρ∇ ⋅ + =J                                                            (5.10) 

 

the resulting integral equations can be obtained in terms of convolution terms which are 

given below 

 

     on
y inx

x x

JJ1 1
j J G G G E S

j ε x x' jω x y'
ω µ

ω ε

∂ ∂∂ ∂ 
− ∗ + ∗ + ∗ = −      ∂ ∂ ∂ ∂   

            (5.11) 

 

                 on
y inx

y y

J J1 1
j J G G G E S

jω y y' jω y x'
ω µ

ε ε

∂  ∂∂ ∂  
 − ∗ + ∗ + ∗ = −     ∂ ∂ ∂ ∂  

            (5.12) 

 

where  

 

                     ( )
jkR

2 2e
G ' , R (x x') (y y')

4πR

−

− = = − + −r r .                                 (5.13) 

 

The convolutions in equations (5.11) and (5.12) are termed as andx yH H functions given 

as  

 

                   ( ) ( )( ) ( ) ( )x x( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫                       (5.14) 

 

                   ( ) ( )( ) ( ) ( )y y( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫                     (5.15) 

 

where ( )x, y  and ( )x', y'  are the points for observation and source respectively. The IE 

can be obtained after expanding the current densities into the sinc functions series as 

follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2

1 2 22

1 11

in
s x s x s y x

N K

s s

N

s

c a H x, y, p s ,q s c a H x, y, p s ,q s c b H x, y, p s ,q s E
x yx= ==

∂ ∂
+ + = −

∂ ∂∂
∑ ∑∑

              (5.16) 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2

1 2 22
1 11

in
s y s y s x y

K N

s s

K

s

c b H x, y, p s ,q s c b H x, y, p s ,q s c a H x, y, p s ,q s E
y xy= ==

∂ ∂
+ + = −

∂ ∂∂
∑ ∑∑

              (5.17) 

 

where 1 2

1
andc j c

j
ωµ

ωε
= − = .  

The sinc functions have quasi-localized property given in [14] and this property 

increases when bandwidth W increases. While the bandwidth of the sinc function 

increases, the tails become less important in terms of amplitude. Therefore the 

derivatives that appear in the original IE can be evaluated by finite difference manner 

just considering the peak values of the sinc basis. Furthermore, in order to use 

mathematical properties of the sinc function (given in the Appendix) in the formulation 

of the problem, ( ) ( )( )xH x, y, p s , q s  given in (5.14) can be expanded in a double sinc 

series with the coefficients f ,n
d ,rhx , given in the following equation 

 

            ( )( ) ( )( )
1

sinc sinc
f ,n

x x yd ,r

N

o

H ( x, y, p( s ),q( s )) hx 2W x p o 2W y q o

=

= − −∑ .              
(5.18) 

 

where ( ) ( ),d p o r q o= = and ( ) ( ),f p s n q s= = . Since the sinc functions constitute a 

complete orthogonal set of functions the coefficients f ,n
d ,rhx  ( f ,n

d ,rhy ) is obtained easily. 

This is one of the main crucial points of the formulation. By this way, i. e. using the 

equations (5.14) and (5.18), the coefficients f ,n
d ,rhx  ( f ,n

d ,rhy ) is determined. Both sides of 

the equation above are multiplied and integrated with the sinc functions. The resulting 

coefficients are given as follows 

      

( )( ) ( )( )

( )( ) ( )( )

1
sinc sinc

sinc sinc

f ,n
x yd ,r

x y

x y

hx 2W x p o 2W y q o dxdy
t t

2W x p s 2W y' q s G( x x ', y y ') dx ' dy '

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

= − −

′× − − − −∫ ∫

∫ ∫
,     

(5.19) 

 

so the integrals are obtained by using x x' u− =  and y y' v− =  coordinate transformations. 

Then, one can use the properties of the sinc functions given in the Appendix. The 

resulting coefficients are given below  
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 ( ) ( )( ) ( ) ( )( )1
sinc sinc

f ,n
x yd ,r

x y

hx G( u,v ) 2W u p o p s 2W v q o q s dudv.
t t

∞ ∞

−∞ −∞

≅ − + − +∫ ∫  (5.20) 

 

When the difference between the locations of observation and source points 

( ) ( ) ( ) ( )2 and 2p o p s q o q s− ≥ − ≥ , i.e. far region, the above equation is approximated 

by  

 

                                ( ) ( )( ( ) ( ) )f ,n
x yd ,rhx G p o p s t , q o q s t≅ − −                                (5.21) 

 

as given in Appendix B. Otherwise, the equation (5.20) should be evaluated 

numerically. 

The approximate solution of the coefficients generally can be written in a piecewise 

manner as given below 

 

       
( ) ( ) ( )( ) ( ) ( )( )

( )

sinc 2 sinc 2 2 2x y
f ,n

d ,r

x y

G u,v W u p o p s W v q o q s dudv, L , M

hx

otherwiseG L t , M t ,

∞ ∞

−∞ −∞


 − + − + < <


≅ 



∫ ∫
 

                                                                                                                                    (5.22) 

 

where ( ) ( )L p o p s= − , ( ) ( )M q o q s= − and ( )1 2x yt t W= = . 

The coefficents f ,n

d ,r
hy  which constitute ( , , ( ), ( ))yH x y p s q s  can be obtained by the 

similar procedure given above such that 

 

( )( ) ( )( )
1

sinc sinc
f ,n

y y xd ,r

K

o

H ( x, y, p( s ),q( s )) hy 2W y q o 2W x p o

=

= − −∑           
(5.23) 

However, these coefficients f ,n
d ,rhx  and f ,n

d ,r
hy  depend on the difference between 

source and observation point coordinates, so these coefficients are equal. The f ,n

d ,r
hy  

coefficients are given as 
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( ) ( ) ( )( ) ( ) ( )( )

( )

sinc 2 sinc 2 2 2x y
f ,n

d ,r

x y

G u,v W u p o p s W v q o q s dudv, L , M

hy

otherwiseG L t , M t ,

∞ ∞

−∞ −∞


 − + − + < <


≅ 



∫ ∫
 

(5.24) 

 

where ( ) ( )L p o p s= − , ( ) ( )M q o q s= − and ( )1 2x yt t W= = . 

 In Figure 5.4 the pseudocode for obtaining the coefficients f ,n f ,n

d ,r d ,r
hx , hy  are 

given. The code is determined in terms of the equations (5.18), (5.22) and (5.24). 

 

For 1, , .s N= …  

Set ( ) ( )( )p s , q s ,  the coordinates of the source points for the xJ . 

Set ( ) ( )( )p s , q s , the coordinates of the source points for the yJ . 

For 1, , .o K= …  

Set ( ) ( )( ) ( ) ( )( )p o , q o , p o , q o  the coordinates of the observation points. 

Define ( ) ( )u p o p s= − , ( ) ( )v q o q s= −  

1N : discretization number 

For u 0,1, 2 N1= ×…  , Do 

For v 0,1, 2 N1= ×…  , Do 

If ( )u 2,v 2< < then 

Numerically compute f ,n f ,n

d ,r d ,r
hx , hy  for L 2, M 2< <  

Else 

Use the approximated function 

End if 

End do 

End do 

 

Figure 5.4. Pseudocode of determining the coefficients f ,n f ,n

d ,r d ,r
hx , hy . 

 

Since the number of the location points are not the same, 
x

H and 
y

H  functions are 

different. However the coefficients andf ,n f ,n

d ,r d ,r
hx hy , which can be computed similarly, 

depend on the difference between source and observation points. The series expansion 

in equation (5.14) with coefficient produces the first term of the integral equation. In the 

other terms, the partial derivatives couples like 
2 2

2
and ,

x x y

∂ ∂

∂ ∂ ∂
 

2 2

2
and ,

y y x

∂ ∂

∂ ∂ ∂
 will 

be handled by finite difference approach on the series expansion given in equation 
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(5.14) and (5.15) respectively. Then, the both sides of these equations will be tested by 

using same type functions as used in expansion. As in the procedure given above the 

two coupled integral equations have the following terms, 

 

( )

1 1 1 1 1 1 1 1
1 2 21 1

1 1 1

2
4

f ,n f ,n f ,n f ,nN N K
y d ,r d ,r d ,r d ,rf ,n f ,n f ,n f ,n

x y s s sd ,r d ,r d ,r d ,r
xs s s

in
x y x x y

hy hy hy hyt
c t t a hx c a hx hx hx c b

t

t t E dt ,rt

+ + − + + − − −
+ −

= = =

 − − +
  + − + +

   
 

= −

∑ ∑ ∑

             

(5.24) 

   

( )

1 1 1 1 1 1 1 1
1 2 21 1

1 1 1

2
4

f ,n f ,n f ,n f ,n
K K N

d ,r d ,r d ,r d ,rf ,n f ,n f ,n f ,nx
x y s s sd ,r d ,r d ,r d ,r

s s sy

in
x y y x y

hx hx hx hxt
c t t b hy c b hy hy hy c a

t

t t E dt ,rt

+ + − + + − − −

+ −
= = =

 − − +
   + − + +
   

 

= −

∑ ∑ ∑

                

(5.25) 

 

where 1 2

1
c j , c

j
ωµ

ωε
= − = , f  belongs to ( ) ( )( )p s ,q s  pairs, f  belongs to ( ) ( )( )p s ,q s  

pairs, 

( ) ( )and 1 2d p o r q o o , , , N ,= = = … ( ) ( )and 1 2d p o r q o o , , , K .= = = …  The 

representations ( )x y
dt , rt  and ( )x y

dt , rt  are x and y coordinates of the observation 

points. 

 The pseudocodes of obtaining MoM matrix elements are given in Figure (5.5) 

and (5.6). The detailed explanation of the symbols are given in the equations (5.24) and 

(5.25). In Figure 5.5, 
NN

A  is obtained by the coefficients obtained through co term 

calculations in terms of o and s , observation and source points respectively. On the 

other hand, 
NK

B  is obtained by applying numerical differentiation to the coefficients 

which are obtained through cross term calculations. In Figure (5.6), the MoM matrix 

elements are obtained in a similar manner with the previous pseudocode given in Figure 

(5.5). 
KK

D  is obtained by the coefficients obtained through co term calculations in 

terms of o and s , observation and source points for 
y

T  and 
y

B  respectively. On the 

other hand, 
KN

C  is obtained by applying numerical differentiation to the coefficients 
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which are obtained through cross term calculations in terms of o  and s  for 
y

T  and 
x

B . 

The horizontal and vertical components of the incident electric fields are calculated for 

each directions x and y. Then, the linear matrix system is solved by using LU 

decomposition subroutines dgefam and dgeslm given in Figure 5.7 to find the unknown 

current density coefficients. In the first subroutine dgefam the overall matrix T is 

separated into L and U factors. Then the factorized matrix is solved with excitation 

vector inc

v
E . In Figure 5.8, the pseudocode of the current density coefficients for the 

horizontal polarization case is given. The overall matrix is same but the right hand side 

of the linear matrix system is calculated for horizontal polarization in this case. 

Furthermore, linear matrix system is solved with TFQMR as an alternative way in order 

to reduce the overall CPU when compared to SuperNEC. 

 

For o 1, 2, N= …  Do 

Obtain ( ) ( )d p o , r q o= =  

For s 1, 2, K= …  Do 

Obtain ( ) ( )f p s , n q s= =  

( ) yf ,n f ,n f ,n f ,n

NN 1 x y d ,r 2 d 1,r d ,r d 1,r

x

t
A o,s c t t hx c hx 2hx hx

t
+ −

 = + − +   

End do 

For s 1, 2, K= …  Do 

Obtain ( ) ( )f p s , n q s= =  

( )
f ,n f ,n f ,n f ,n

d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

NK 2

hy hy hy hy
B o,s c

4

+ + − + + − − −
 − − +

=  
  

 

End do 

Obtain the right hand side excitation ( )
v

in

x y x x y
F t t E dt ,rt= −  and ( )

h

in

x y x x y
G t t E dt ,rt= −  

End do 

Figure 5.5. Obtaining the MoM matrix elements for the IE (5.24). 
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For o 1, 2, K= …  Do 

Obtain ( ) ( )d p o , r q o= =  

For s 1, 2, N= …  Do 

Obtain ( ) ( )f p s , n q s= =  

( )
f ,n f ,n f ,n f ,n

d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

KN 2

hx hx hx hx
C o ,s c

4

+ + − + + − − −
 − − +

=  
  

 

End do 

For s 1, 2, K= …  Do 

Obtain ( ) ( )f p s , n q s= =  

( ) f ,n f ,n f ,n f ,nx
KK 2 1 x yd 1,r d ,r d 1,r d ,r

y

t
D o ,s c hy 2hy hx c t t hy

t
+ −

 = − + +   

End do 

Obtain ( )
v

in

x y y x y
t t E dt ,rt−  and ( )

h

in

x y y x y
t t E dt ,rt−  

End do 

Figure 5.6. Obtaining the MoM matrix elements for the IE (5.25). 

 

Obtain 
NN NK

KN KK

A B
T

C D

 
=  
 

 

v

v

in

xinc

v x y in

y

E
E t t F

E

 
= − = 

  
 

( ) ( )SINIR N K= +  

Solve dgefam ( )T , SINIR,IPVT ,INFO  

Solve dgeslm ( )in

v
T ,SINIR,IPVT ,E  

Figure 5.7. Pseudocode of obtaining current coefficients for vertical polarization . 

 

Obtain 
NN NK

KN KK

A B
T

C D

 
=  
 

 

h

h

in

xinc

h x y in

y

E
E t t G

E

 
= − = 

  
 

( ) ( )SINIR N K= +  

Solve dgefam ( )T , SINIR,IPVT ,INFO  

Solve dgeslm ( )in

h
T ,SINIR,IPVT ,E  

Figure 5.8. Pseudocode of obtaining current coefficients for horizontal polarization . 

 

As seen in pseudocodes given in (5.5) and (5.6), numerical differentiation is 

applied to coefficients by using both the forward and central difference methods in this 

study. The finite difference derivative errors can be reduced by decreasing mesh size at 
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a reasonable level. The analytical properties of the sinc functions are used in the sinc-

sinc formulation. As a result, the number of integrals is decreased two times while using 

sinc functions as basis functions. By the way, accurate scattering results are obtained 

when compared with the known software SuperNEC. Only double integrals are 

evaluated in the near field regions and no integration is evaluated in the other region. 

The matrix elements and coefficients are obtained with less computational effort. By 

improving the MoM formulation in order to obtain more accurate results, different type 

of basis functions are used. Therefore, in the next section, in order to reduce the 

overflow problem the pulse type basis function is chosen parallel to the edge direction. 

By this way, better simulation results are obtained. The overflow problem at the edges 

is explained in the next chapter in details. 
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CHAPTER 6 

 

METHOD OF MOMENTS BY SINC-PULSE BASIS 

FUNCTIONS 

 

To improve the accuracy of the numerical results, different types of basis 

functions might be used. Therefore, in this section, in order to reduce the overflow 

problem, the pulse type basis function is chosen parallel to the edge direction. The main 

difference between the previous section and this one is that the pulse basis is chosen 

perpendicular to the edge direction. Sinc basis is chosen again in the parallel direction. 

Hence, the analytical properties of the sinc functions can be used only at one direction 

in the formulation. 

 

6.1. Overflow Problem 

 

 There is continuity at the parallel direction with respect to the direction of the 

current density. Problem is 

•  There exists singular behavior at the edge in the perpendicular direction with 

respect to the direction of the current density.  

Sinc functions overflow at the parallel direction of the edge of the flat arbitrary plate. In 

order to avoid overflowing of the sinc functions at the edge, pulse basis is used on the 

parallel direction of the edge instead of the sinc function. The overflow problem at the 

edge is given in Figure 6.1. 

 

6.2. Sinc-Pulse Basis Functions 

 

The approximate current density of the illuminated plate can be expanded with 

the basis functions below 

 

   ( )( ) ( ) ( )( )sinc 2 pulse 1 2
x( s ) x y y y

B W x p s y,q s t t ,q s t , s , , , N .= − − = …       (6.1) 
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   ( )( ) ( )( )sinc 2 pulse 1 2
y( s ) y x x x

B W y q s x, p( s )t t , p s t , s , , , K .= − − = …       (6.2) 

 

where N and K are the sampling points for x and y directed currents. Three dimensional 

plot of the sinc function for W 500= , 
1

2
x

t
W

=  and ( )p s 60=  is given in Figure 6.2. It 

is shown in terms of the location of the basis function at x direction.  

 

 

Figure 6.1. Overflow of the sinc function on the interval ( )x 3,3∈ − . (a) subintervals, 

                  (b) ycut overflow for ( )sinc x 2+ , (c) xcut overflow. 
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Figure 6.2. 3D plot of the sinc-pulse basis functions ( ) ( )( )sinc 2 60 pulse ,1,2
x

W x y− . 

 

The locations of the basis functions at x and y directions are given in Figure 6.3 

such as ( )1 x y ym p( s ) t ,q( s ) t t 2−  and ( )2 x x ym p( s ) t t / 2, q( s ) t− . Each cell boundaries for 

the basis functions ( )x s
B  and ( )y s

B  are given in Figure 6.3. 

 The unknown current densities in x and y directions can be expanded in terms of 

these mentioned basis functions such as 

 

( ) ( ) ( )
N

x s x s

s 1

J x, y a B x, y

=

≅∑                                                      (6.3) 

 

( ) ( ) ( )
K

y s y s

s 1

J x, y b B x, y

=

≅∑                                                     (6.4) 

 

The derivation of the sinc-sinc based MoM formulation is given in the previous 

section. The main difference between the previous section and this one is to choose 

pulse basis parallel to the edge direction. As in the equations (5.11) and (5.12) in the 

previous section, the IE is going to be solved in the same way. They can be given again 

in the equation below 

 

    on
y inx

x x

JJ1 1
j J G G G E S

j ε x x' jω x y'
ω µ

ω ε

∂ ∂∂ ∂ 
− ∗ + ∗ + ∗ = −      ∂ ∂ ∂ ∂   

       (6.5) 
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             on
y inx

y y

J J1 1
j J G G G E S

jω y y' jω y x'
ω µ

ε ε

∂  ∂∂ ∂  
 − ∗ + ∗ + ∗ = −     ∂ ∂ ∂ ∂  

       (6.6) 

 

The differentiations over the sources are applied to the Green’s function by 

using integration by parts. After they are applied to the observation parameter, they are 

taken out of the convolution integrals. The integrals above can be given as follows 

 

2 2

2

1
2 3

onin
x x y x

1 1
j J G J G J G E S

j ε jω x yx
ω µ

ω ε

∂ ∂
 − ∗ + ∗ + ∗ = −        ∂ ∂∂����	

������	 ������	

          (6.7) 

 

2 2

2

4
65

on
in

y y x y

1 1
j J G J G J G E S

jω jω y xy
ω µ

ε ε

∂ ∂
   − ∗ + ∗ + ∗ = −      ∂ ∂∂����	

������	������	

          (6.8) 

 

Each IE is constituted by three convolution terms. There are six terms totally. 

The two terms of each IE given above are obtained, since the second terms of the IE’s 

are second order derivatives of the first terms. Thus, the first and third convolution 

terms of the IE’s are derived in this section. 

 

 .  

Figure 6.3. Location of the sinc-pulse basis functions within the rectangular cell mesh 

                 ( )1 x y ym p( s ) t , q( s ) t t 2−  and ( )2 x x ym p( s ) t t / 2, q( s ) t− . 

 

6.2.1. Sinc-Pulse Formulation with Galerkin Procedure 

 

Testing functions which are applied are same with the basis functions in this 

procedure. These functions are given as 
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( )( ) ( ) ( )( )sinc 2 pulse 1 2
x( o ) x y y y

T W x p o y,q o t t ,q o t , o , , N .= − − = …     (6.9) 

 

( )( ) ( )( )sinc 2 pulse 1 2
y( o ) y x x x

T W y q o x, p( o )t t , p o t , o , , , K .= − − = …  (6.10) 

 

If the integral equation, which is constituted by basis function oriented along x 

axis, is tested with weighting function oriented along x axis, then the obtained term is 

called co-term. 

The convolutions in equations (6.7) and (6.8) are termed as andx yH H
 
  

functions given as  

 

        ( ) ( )( ) ( ) ( )x x( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫
            (6.11) 

 

           ( ) ( )( ) ( ) ( )y y( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫
            (6.12) 

 

where ( )x, y  and ( )x', y'  are the points for observation and source respectively. The IE 

can be obtained after expanding the current densities into the sinc functions series as 

follows: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2

1 2 22

1 11

in
s x s x s y x

N K

s s

N

s

c a H x, y, p s ,q s c a H x, y, p s ,q s c b H x, y, p s ,q s E
x yx= ==

∂ ∂
+ + = −

∂ ∂∂
∑ ∑∑ 
 
 


              (6.13) 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
2 2

1 2 22

1 11

in
s y s y s x y

K N

s s

K

s

c b H x, y, p s ,q s c b H x, y, p s ,q s c a H x, y, p s ,q s E
y xy= ==

∂ ∂
+ + = −

∂ ∂∂
∑ ∑∑ 
 
 


              (6.14) 

where 1 2

1
andc j c

j
ωµ

ωε
= − = .  
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In order to avoid overflowing at the edge, pulse basis is used on the parallel 

direction of the edge instead of the sinc function. 
x

H
  function is expanded to sinc and 

pulse functions and it is given as  

 

( )( ) ( ) ( )( )sinc pulse

1

f ,n
H ( x, y, p( s ),q( s )) hx 2W x p o y,q o t t ,q o tx x y y yd ,r

N

o

= − −

=
∑ 

 .(6.15) 

 

where ( ) ( )andd p o r q o= = , ( ) ( ),f p s n q s= = .  

Since the sinc and pulse functions constitute an orthogonal set of functions the 

coefficients f ,n
d ,rhx
  is obtained easily. This is one of the main crucial points of the 

formulation. By this way, i. e. using the equations (6.11) and (6.15), the coefficient 

f ,n
d ,rhx
  is determined. Both sides of the equation above are multiplied and integrated with 

the sinc and pulse functions. The resulting coefficients are given as follows 

 

( )( ) ( ) ( )( )
( )

( )

( )( ) ( ) ( )( ) ( )
( )

( )

sinc 2 pulse

sinc 2 pulse

y

y y

y

y y

o t

f ,n
x y x y y yd ,r

o t t

s t

x y y y

s t t

q

q

q

q

t t hx W x p o y,q o t t ,q o t

W x' p s y',q s t t ,q s t G x x', y y' dx' dy'dxdy

−

−

∞

−∞

∞

−∞

≅ − −

× − − − −

∫ ∫

∫ ∫




.  

(6.16) 

 

If the integrals of the same functions with the same variables are calculated, it is 

obtained that 

( ) ( )( ) ( ) ( )( )
( )

( )

( )

( )

( )( ) ( )( ) ( )

pulse pulse

sinc 2 sinc 2

y y

y y y y

o t s t

f ,n
x y y y y y y yd ,r

o t t s t t

x x

q q

q q

t t hx y,q o t t ,q o t y',q s t t ,q s t

W x' p s W x p o G x x', y y' dx' dx dydy'

− −

∞ ∞

−∞ −∞

≅ − −

× − − − −

∫ ∫

∫ ∫




.   (6.17) 

 

Let assume that andx x' u y - y' v− = = . Sinc-sinc convolution gives again a sinc function 

as given in Appendix B. Pulse-pulse convolution gives a triangular function. Using 

these properties, (6.17) becomes 
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( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )sinc

y y

y y

q o q s t t

f ,n
x y y y x xd ,r

q o q s t t

t t hx t R v q o q s t t 2W u p o p s G u,v dudv

− + ∞

−∞− −

= − − − +∫ ∫
   (6.18) 

 

where 

 

( )

o y

o
o y o

y

o
o

o o y
y

o y

0, v v t

v v
1, v t v v

t
R v v

v v
1, v v v t

t

0, v v t

< −


− + + − ≤ <



− = 
− + ≤ < +




> +

,                                (6.19) 

 

and ( ) ( )( )o yv q o q s t= − . By using the analytical properties given in Appendix B, the first 

term of the IE in (6.7) becomes, 

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )sinc

y y

y y

q o q s t t

f ,n
y xd ,r

q o q s t t

hx R v q o q s t 2W u p o p s G u,v dudv

− + ∞

−∞− −

= − − − +∫ ∫
      (6.20) 

 

and this equation is solved numerically away from the singularity region. If 

( ) ( )( ) ( ) ( )( )andp s p o q s q o≠ ≠ , the above equation is approximated to the integral  

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )
y y

y y

q o q s t t

f ,n
x y xd ,r

q o q s t t

hx t R v q o q s t G p s p o t ,v dv

− +

− −

= − − −∫
 .             (6.21) 

 

The singularity condition occurs for ( ) ( ) ( ) ( )andp s p o q s q o= =  and this 

singularity should be extracted from the integrand and it is integrated analytically by 

hand. The calculations are done on the computer. The coefficients is calculated with  

 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

sinc

y y y y

y y y y

q o q s t t q o q s t t

f ,n
xd ,r

q o q s t t q o q s t t

1 1
hx R v 2W u G u,v dudv dudv

4 R 4 Rπ π

− + − +∞ ∞

−∞ −∞− − − −

 
= − + 

 
∫ ∫ ∫ ∫
 .   (6.22) 
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The approximate solution of the coefficients generally can be written in a piecewise 

manner as given below 

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )
( ) ( )

( ) ( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

sinc

otherwise

y y

y y

y y

y y

q o q s t t

y x

q o q s t t
f ,n

d ,r
q o q s t t

x y x

q o q s t t

p o p s 1
R v q o q s t 2W u p o p s G u,v dudv,

q o q s 1

hx

t R v q o q s t G p s p o t ,v dv,

− + ∞

−∞− −

− +

− −

 − <
 − − − +
 − <


= 

 − − −



∫ ∫

∫




 

(6.23) 

 

The coefficents s
d ,rhy
  which constitute yH ( x, y, p( k ),q( k ))
  can be obtained by 

the similar procedure given above such that 

 

( )( ) ( ) ( )( )
1

sinc pulse
f ,n

y y x x xd ,r

K

o

H ( x, y, p( s ),q( s )) hy 2W y q o x, p o t t , p o t

=

= − −∑ 

  (6.24) 

 

where ( ) ( )andd p o r q o= = , ( ) ( )andf p s n q s= = . 

Testing function is oriented in the same direction (y direction) with basis function. From 

the equations (6.12) and (6.24), it is obtained that  

 

( )( ) ( ) ( )( )
( )

( )

( )( ) ( ) ( )( ) ( )
( )

( )

sinc 2 pulse

sinc 2 pulse

x

x x

x

x x

p o t

f ,n
x y y x x xd ,r

p o t t

p s t

y x x x

p s t t

t t hy W y q o x, p o t t , p o t

W y' q s x', p s t t , p s t G x x', y y' dx' dy'dxdy

−

−

∞

−∞

∞

−∞

≅ − −

× − − − −

∫ ∫

∫ ∫




. 

(6.25) 

 

If the integrals of the same functions with the same variables are calculated, it is given 

as 
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( ) ( )( ) ( ) ( )( )
( )

( )

( )

( )

( )( ) ( )( ) ( )

pulse pulse

sinc 2 sinc 2

yx

x x y y

p s tp o t

f ,n
x y x x x x x xd ,r

p o t t p s t t

y y

t t hy x, p o t t , p o t x', p s t t , p s t

W y' q s W y q o G x x', y y' dy' dy dxdx'

− −

∞ ∞

−∞ −∞

≅ − −

× − − − −

∫ ∫

∫ ∫




.   (6.26) 

 

Let assume that andx x' u y - y' v− = = . Sinc-sinc convolution gives again a sinc function 

as given in Appendix B. Pulse-pulse convolution gives a triangular function. Using 

these results, (6.26) becomes 

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )sinc

x x

x x

p o p s t t

f ,n
x y x x y yd ,r

p o p s t t

t t hy t R u p o p s t t 2W v q o q s G u,v dudv

− + ∞

−∞− −

= − − − +∫ ∫
 .  (6.27) 

 

By using the analytical properties given in Appendix B, the first term of the IE 

in (6.8) becomes  

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )sinc

x x

x x

p o p s t t

f ,n
x yd ,r

p o p s t t

hy R u p o p s t 2W v q o q s G u,v dudv

− + ∞

−∞− −

= − − − +∫ ∫
      (6.28) 

 

and this equation is solved numerically everywhere but in the singularity region. If 

( ) ( )( )p s p o≠  and ( ) ( )( )q s q o≠  the above equation is approximated to the integral  

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )
x x

x x

p o p s t t

f ,n
y x yd ,r

p o p s t t

hy t R u p o p s t G u, q s q o t du

− +

− −

= − − −∫
              (6.29) 

 

The singularity condition occurs for ( ) ( ) ( ) ( )andp s p o q s q o= =  and this 

singularity should be extracted from the integrand and it is integrated analytically. The 

coefficients can be calculated with  

 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

sinc

x x x x

x x x x

p o p s t t p o p s t t

f ,n
yd ,r

p o p s t t p o p s t t

1 1
hy R u 2W v G u,v dudv dudv

4 R 4 Rπ π

− + − +∞ ∞

−∞ −∞− − − −

 
= − + 

 
∫ ∫ ∫ ∫
 .(6.30) 
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The approximate solution of the coefficients generally can be written in a piecewise 

manner as given below 

 

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )
( ) ( )

( ) ( )

( ) ( )( )( )
( ) ( )( )

( ) ( )( )

( ) ( )( )

sinc

otherwise

x x

x x

x x

x x

p o p s t t

x y

p o p s t t
f ,n

d ,r p o p s t t

y x y

p o p s t t

p o p s 1
R u p o p s t 2W v q o q s G u,v dvdu,

q o q s 1

hy

t R u p o p s t G u, q s q o t du,

− + ∞

−∞− −

− +

− −

 − <
 − − − +
 − <


= 

 − − −



∫ ∫

∫




(6.31) 

 

a) First term: ( )

N

s xx s
s 1

j a H ,Tωµ
=

− ∑ 
  

 

The first term of the integral equation (IE) given in equation (6.7) is an example 

of a co-term and obtained with the convolution of the basis function and the Green’s 

function as given in the equation (6.11). xH
  is expanded to sinc and pulse functions 

given in (6.15). After expanding the whole IE is tested with the weighting function xT . 

The testing procedure is represented with the inner product which means double 

integration between terms andx xH T
 . The first term of the IE given in (6.7) is obtained 

as follows 

 

( ) ( ) ( ) ( ) ( )( )
N N

s x s xx s x s
s 1 s 1

N
f ,n

x y s d ,r
s 1

j a H ,T j a T x, y H x, y, p s ,q s dxdy

j t t a hx

ωµ ωµ

ωµ

∞ ∞

= = −∞ −∞

=

− = −

= −

∑ ∑ ∫ ∫

∑


 





     (6.32) 

 

Since the sinc functions and pulse functions are orthogonal functions, series sum 

of xH
  drops after testing. The pseudocode for determining the coefficients f ,n

d ,rhx
  is 

given in the Figure 6.4. Discretization numbers for x and y directions are given 1N  and 

1K  respectively, which are equal to 30 for 2λ  plate geometry (the discretization 

number is 15 for each wavelength).  
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Set ( ) ( ) ( ) ( )
1 1

p s , q s , p s , q s
2 2

   
− −   

   
 the coordinates of the source points for x 

and y directed currents respectively. 

Set ( ) ( ) ( ) ( )
1 1

p o , q o , p o , q o
2 2

   
− −   

   
 the coordinates of the observation points. 

( ) ( )

( ) ( )

u p o p s

v q o q s

= −

= −
 

1 discretization numberN =  

1 discretization numberK =  

For u 0,1, N1= …  , Do 

For v K1, ,1, K1= − … …  , Do 

If ( )u 0,v 0== == then 

Evaluate the singularity condition analytically. 

Solve the overall f ,n

d ,rhx
  numerically (eq 6.22). 

Else 

Solve the integral with Taylor series expansion analytically (eq 6.21). 

End If 

End do 

End do 

 

Figure 6.4. Pseudocode of determining the coefficients f ,n

d ,rhx .
  

 

b) Second term: ( ) ( )( )
2

2

1

1
s x x

N

s

a H x, y, p s ,q s ,T
j xωε

=

∂

∂
∑ 
  

 

The second term of the IE (6.7) is obtained by numerical differentiating over 

coefficients after testing procedure. The term is given as 

 

( ) ( ) ( )( )
2

1 1

2 2
1 1

21 1
f ,n f ,n f ,nN N

d ,r d ,r d ,r
s x x s x y

xs s

hx hx hx
a T x, y H x, y, p s ,q s dxdy a t t

j jx tωε ωε

∞ ∞
+ −

= =−∞ −∞

 − +∂
 =
 ∂  

∑ ∑∫ ∫

 
 



  

(6.33) 

 

c) Third term: ( ) ( )( )
2

1

1
s y x

K

s

b H x, y, p s ,q s ,T
j x yωε

=

∂

∂ ∂∑ 
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The third term of the IE (6.7) is an example of a cross-term. It is constituted by 

applying xT  testing functions to the near field integral constituted by yB  basis functions. 

The term is given as 

 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

sinc pulse

sinc pulse

K K K2 2
f ,n

s x y s x xd ,r

s 1 s 1 o 1

y y

f ,n f ,n f ,nK
d 1,r 1 d 1,r 1 d 1,r 1 d 1,r

s

s 1

1 1
b T x, y H x, y dxdy b hy 2W x p o x, p s ,t dx

j x y j x y

2W y q o y,q o ,t dy

hy hy hy hy1
b

j

ωε ωε

ωε

∞ ∞ ∞ ∞

= = =−∞ −∞ −∞ −∞

∞ ∞

−∞ −∞

+ + − + + − −

=

∂ ∂
= −

∂ ∂ ∂ ∂

−

− − +
=

∑ ∑ ∑∫ ∫ ∫ ∫

∫ ∫

∑






 
 
 


( )( ) ( )( ) ( )( ) ( )( )sinc pulse sinc pulse

f ,nK
1

x yo 1

x x y y

4t t

2W x p o x, p s ,t 2W y q o y,q o ,t dydx

−

=

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

− −

∑

∫ ∫ ∫ ∫

(6.34) 

 

The series sum of yH
  given in (6.24) is not dropped after testing because of the 

sinc and pulse integrals.  

The integrals in x and y directions should be calculated for each point on the 

surface and multiplied in order to construct matrix coefficients. When the matrix filling 

time is compared, it will take 150 times much time than the previous chapter explained 

sinc-sinc based results in obtaining the coefficients.  

 

Set ( ) ( ) ( ) ( )
1 1

p s , q s , p s , q s
2 2

   
− −   

   
 the coordinates of the source points. 

Set ( ) ( ) ( ) ( )
1 1

p o , q o , p o , q o
2 2

   
− −   

   
 the coordinates of the observation points. 

For s 1, N= …  , Do 

pu=1; 

For o 1, K= …  , Do 

Call ( )( ) ( )( ) ( )( )simpsonbir1 sincx, integral1x xp s 1 t , p s t , p s ,−  

( )pu integral11I , s =  

Call ( )( ) ( )( ) ( )( )simpsonbir1 sincx, integral2y yq o 1 t , q o t , q o ,−  

( )pu integral22I , o =  

pu=pu+1 

End do 

NM(s)=pu-1 

End do 

Figure 6.5. Pseudocode of obtaining only the integrals for the third term. 
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d) Fourth term: ( )

K

s yy s
s 1

j b H ,Tωµ
=

− ∑ 
  

The fourth term of the integral equation (IE) given in equation (6.8) is an 

example of a co-term and obtained with the convolution of the basis function and the 

Green’s function as given in the equation (6.12). yH
  is expanded to sinc and pulse 

functions given in (6.24). After expanding the whole IE is tested with the weighting 

function yT . The testing procedure is represented with the inner product which means 

double integration between terms andy yH T
 . The forth term in the IE given in (6.8) is 

obtained as follows 

 

( ) ( ) ( )( )
K K

f ,n
s y y x y s d ,r

s 1 s 1

j b T x, y H x, y, p s ,q s dxdy j t t b hyωµ ωµ
∞ ∞

= =−∞ −∞

− = −∑ ∑∫ ∫ 

 .            (6.35) 

 

Since the sinc functions and pulse functions are orthogonal functions, series sum 

of yH
  drops after testing. The pseudocode for determining the coefficients f ,n

d ,r
hy
  is 

given in the Figure 6.5. Gaussian quadrature is used by taking the one dimensional 

integral in the approximated case. 

 

Set ( ) ( ) ( ) ( )
1 1

p s , q s , p s , q s
2 2

   
− −   

   
 the coordinates of the source points. 

Set ( ) ( ) ( ) ( )
1 1

p o , q o , p o , q o
2 2

   
− −   

   
 the coordinates of the observation points. 

( ) ( )

( ) ( )

u p o p s

v q o q s

= −

= −
 

For u N1, ,1, N1= − … …  , Do 

For v 0,1, K1= …  , Do 

If ( )u 0,v 0== == then 

Evaluate the singularity condition analytically. 

Solve f ,n

d ,r
hy
  numerically. 

Else 

Solve the integral with Taylor series expansion.  

End do 

End do 

 

Figure 6.6. Pseudocode of determining the coefficients f ,n

d ,r
hy .
 . 
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e)Fifth term: ( ) ( )( )
2

2

1

1
s y y

K

s

b H x, y, p s ,q s ,T
j yωε

=

∂

∂
∑ 
  

 

The fifth term in the IE (6.8) is obtained by numerical differentiating over 

coefficients s

d ,r
hy
  after testing procedure. The term is given as 

 

( ) ( ) ( )( )
2

1 1

2 2
1 1

21 1
f ,n f ,n f ,nK K

d ,r d ,r d ,r
s y y s x y

ys s

hy hy hy
b T x, y H x, y, p s ,q s dxdy b t t

j jy tωε ωε

∞ ∞
− +

= =−∞ −∞

 − +∂  =
 ∂
 

∑ ∑∫ ∫

 
 



 . 

(6.36) 

 

e) Sixth term: ( ) ( )( )
2

1

1
s x y

N

s

a H x, y, p s ,q s ,T
j y xωε

=

∂

∂ ∂∑ 
  

 

The third term of the IE in Equation (6.8) is constituted by testing the integral 

constituted by xB  oriented along x axis with yT  oriented along y axis. This cross term is 

given as 

 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

sinc pulse

sinc pulse

N N K2 2
f ,n

s y x s y yd ,r
s 1 s 1 o 1

x x

f ,n f ,n f ,nN
d 1,r 1 d 1,r 1 d 1,r 1 d 1,r

s

s 1

1 1
a T x, y H x, y dxdy a hx 2W y q o y,q s ,t dy

j y x j y x

2W x p s x, p o ,t dx

hx hx hx hx1
a

j

ωε ωε

ωε

∞ ∞ ∞ ∞

= = =−∞ −∞ −∞ −∞

∞ ∞

−∞ −∞

+ + + − − + −

=

∂ ∂
= −

∂ ∂ ∂ ∂

−

− − +
=

∑ ∑ ∑∫ ∫ ∫ ∫

∫ ∫

∑






 
 
 


( )( ) ( )( ) ( )( ) ( )( )sinc pulse sinc pulse

f ,nK
1

x yo 1

y y x x

4t t

2W y q o y,q s ,t 2W x p s x, p o ,t dxdy

−

=

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

− −

∑

∫ ∫ ∫ ∫
(6.37) 

 

The series sum of xH
  given in (6.37) is not dropped after testing because of the 

sinc and pulse integrals.  

The integrals in x and y directions should be calculated for each point on the 

surface and multiplied in order to construct matrix coefficients. When the matrix filling 

time is compared, the time for solving the coefficients of the above cross terms takes 

150 times much time than the previous chapter explained sinc-sinc based formulation.  
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 The main contribution of this thesis is to obtain scattering results with a high 

accuracy in less CPU time. Another procedure that never disturbs the accuracy should 

be tried while calculating the coefficients in less CPU time than the Galerkin procedure 

mentioned. Therefore, the analytical properties of the sinc functions can be used again 

in the formulation as mentioned in the previous chapter. Equations (6.38) and (6.39) are 

given the integral equations which include coefficients for x ( )hx
 and y ( )hy
  directed 

current densities respectively. 

 

( )( ) ( )( )sinc pulse

1

f ,n f ,n f ,nN N
d 1,r d ,r d 1,rf ,n

x y s s x yd ,r 2
xs 1 s 1

f ,n f ,n f ,n f ,nK K
d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

s

x ys 1 o 1

x x

I

hx 2hx hx1
j t t a hx a t t

j t

hy hy hy hy1
b

j 4t t

2W x p o x, p s ,t

ωµ
ωε

ωε

+ −

= =

+ + − + + − − −

= =

∞ ∞

−∞ −∞

 − +
 − +
 
 

− − +
+

−

∑ ∑

∑ ∑

∫ ∫


 
 





 
 
 


���� �

( )( ) ( )( )sinc pulse

2

y y

I

2W y q o y,q o ,t dydx

∞ ∞

−∞ −∞

−∫ ∫
����� ��������	��������������������	

           (6.38) 

 

( )( ) ( )( )sinc pulse sinc

f ,n f ,n f ,nK K
d ,r 1 d ,r d ,r 1f ,n

x y s s x y 2d ,r
ys 1 s 1

f ,n f ,n f ,n f ,nN K
d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

s

x ys 1 o 1

y y x

hy 2hy hy1
j t t b hy b t t

j t

hx hx hx hx1
a

j 4t t

2W y q o y,q s ,t 2W

ωµ
ωε

ωε

− +

= =

+ + + − − + − −

= =

∞ ∞

−∞ −∞

 − +
 − +
 
 

− − +
+

−

∑ ∑

∑ ∑

∫ ∫


 
 





 
 
 


( )( ) ( )( )pulse xx p s x, p o ,t dxdy

∞ ∞

−∞ −∞

−∫ ∫

       

(6.39) 
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For o 1, 2, N= …  Do 

Obtain d , r  

( )d p o=  

( )r q o=  

For s 1, 2, N= …  Do 

Obtain ( ) ( )p s , q s  

( ) yf ,n f ,n f ,n f ,n

NN x y d ,r d 1,r d ,r d 1,r

x

t1
A o,s j t t hx hx 2hx hx

j t
ωµ

ωε
+ −

 = − + − + 

 
 
 
  

End do 

For s 1, 2, K= …  Do 

Obtain ( ) ( )p s , q s  

Sum=0 

For ( )o 1, 2, NM o= …  Do  

AT1= ( )1I o ,o ; 

AT2= ( )2I o ,o ; 

( )d p o=
  

( )r q o=
  

( )
f ,n f ,n f ,n f ,n

d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

NK

x y

hy hy hy hy1
B o ,s AT1 AT 2

j 4t tωε
+ + − + + − − −

 − − +
= × 

  


 
 
 

 
 
 

 

SUM=SUM+ NKB  

End do 

End do 

Obtain ( )
v

in

x y x x yt t E dt ,rt−  and ( )
h

in

x y x x yt t E dt ,rt−  

End do 

Figure 6.7. Obtaining the MoM matrix elements for the Galerkin MoM obtained in  

                  (6.38). 
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For o 1, 2, K= …  Do 

Obtain d , r  

( )d p o=  

( )r q o=  

For s 1, 2, K= …  Do 

Obtain ( ) ( )p s , q s  

( ) yf ,n f ,n f ,n f ,n

KK x y d ,r d 1,r d ,r d 1,r

x

t1
D o ,s j t t hy hy 2hy hy

j t
ωµ

ωε + −
 = − + − + 


 
 
 
  

End do 

For s 1, 2, N= …  Do 

Obtain ( ) ( )p s , q s  

Sum=0 

For ( )o 1, 2, NM o= …  Do  

AT1= ( )1I o ,o ; 

AT2= ( )2I o ,o ; 

( )d p o=
  

( )r q o=
  

( )
f ,n f ,n f ,n f ,n

d 1,r 1 d 1,r 1 d 1,r 1 d 1,r 1

KN

x y

hx hx hx hx1
C o ,s AT 2 AT1

j 4t tωε
+ + − + + − − −

 − − +
= × 

  


 
 
 

 
 
 

 

SUM=SUM+ KNC  

End do 

End do 

Obtain ( )
v

in

x y y x yt t E dt ,rt−  and ( )
h

in

x y y x yt t E dt ,rt−  

End do 

 

Figure 6.8. Obtaining the MoM matrix elements for the Galerkin MoM obtained in    

                  (6.39). 

 

6.2.2. Sinc-Pulse Formulation with Non Galerkin Procedure 

 

Testing functions which are applied are different from the basis functions in this 

procedure. These functions are impulsive sinc functions at x axis and y axis whose 

bandwidths are given as xW
  and . yW
  They are given as 

 

( ) ( )( ) ( )sinc sincx yx o

1
T 2W x p o 2W y q o

2

  
= − − −  

  

 
 ,                              (6.40) 
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( ) ( )( ) ( )sinc sincy xy o

1
T 2W y q o 2W x p o

2

  
= − − −  

  

 
 ,                             (6.41) 

 

The integral equations, which we apply the MoM, are the same with the ones 

detailed in (6.7) and (6.8) of the Galerkin case. The first, second, fourth and fifth terms 

of the IEs (6.7) and (6.8) are the examples for the co-terms. The third and sixth terms 

are the cross-terms.  

 

a) First term: 
N

s xx x
s 1

j a H ,Tωµ
=

− ∑  

 

The first term of the integral equation (IE) given in (6.7) is obtained with the 

convolution of the basis function and the Green’s function such as 

       

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

sinc 2 pulse

xx

x( s ) x y y y

x, y, p s ,q s

B x',y' G x x', y y' W x' p s y',q s t t ,q s t G x x',y y' dx' dy'

H

∞ ∞

∗ − −

−∞−∞

= − − − −∫ ∫
��������������������������������	

   

(6.42) 

 

where ( )x, y  and ( )x', y'  are the observation and source points. xxH  represents testing 

with xT  of the near field integral that is constituted by the basis xB . It can be expanded 

in a double series with the coefficients f ,n
d ,rhxx  multiplied with the complete orthogonal 

sinc functions set, such as 

 

            ( ) ( )( ) ( )( ) ( )
1

1
sinc 2 sinc 2

2

x

N
f ,n

xx x yd ,r

o

T

H x, y, p s ,q s hxx W x p o W y q o

=

  
= − − −  

  
∑ 
 


��������������������������������


 .          (6.43) 

 

The location of the sinc functions in x and y directions are at ( ) ( )andx y yp o t q o t t 2−  

respectively. Testing function is oriented in the same axis with the basis function. Using 

the integral (6.42) it is obtained that    
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( )( ) ( ) ( )( ) ( ) ( )( )sinc 2 pulse 2
f ,n

x y y y x y yd ,rhxx W x' p s y',q s t t ,q s t G p o t x',q o t t y' dx' dy'

∞ ∞

−∞ −∞

≅ − − − − −∫ ∫
                                                                                                                                    (6.44) 

 

and this equation is solved numerically everywhere but in the singularity region. While 

( ) ( ) ( ) ( )orp s p o 3 q s q o 3− ≥ − ≥ , the above equation can be approximated to the 

equation below 

 

                                     

2

2
4

y y
jkR

f ,n
xd ,r

y y

Mt t /

Mt t /

e
hxx t dv

Rπ

−
+

−

= ∫                                          (6.45) 

 

where ( ) ( )M q o q s= −  and ( ) ( )( )( )
2

2
xR t p o p s v= − + . The integrand in equation (6.45) 

has no singularity in the mentioned region and the exponent can be expanded to the 

Taylor series. Then, the first five terms can be computed analytically. By this way, the 

integral can be taken very fast and accurately [57]. 

While ( ) ( ) ( ) ( )andp s p o 3 q s q o 3− < − < i.e. near field region closer to singularity, 

then the double integral in equation (6.44) will be written by extracting the singularity 

given as follows 

 

  

( )( ) ( ) ( )( )

( )

( )

( ) ( )( )
( )

( )

sinc 2 sinc1

4

1 1
sinc

4

y

y

y

y

s t jkR

xf ,n

d ,r

s t y

s t

s t y

q

q t

q

q t

W x' p s e p o p s
hxx dx' dy'

R

p o p s dx' dy'
R

π

π

−∞

− −∞

∞

− −∞

 − − −
=  

  

+ −

∫ ∫

∫ ∫

    (6.46) 

 

where ( )( ) ( )( )
22

2
x y y

R p o t x' q o t t / y' .= − + − −  The equation (6.46) is written for 

( ) ( )p s p o≠  case. Under the condition that ( ) ( )p s p o= , i.e. ( ) ( )( )sinc p o p s 1− = , in 

this case the equation becomes  

 

         
( )( )

( )

( )

( )

( )
sinc 2 11 1 1

4 4

y y

s sy y y y

s st t
jkR

xf ,n
d ,r

q t t q t t

q q
W x' p s e

hxx dx' dy' dx' dy'
R Rπ π

−

− −

∞ ∞

−∞ −∞

− −
= +∫ ∫ ∫ ∫ .     (6.47) 



 64

The singularities in the equations (6.46) and (6.47) can be handled by the analytical 

solution explained in the study [2]. Additionally, the detailed calculation of the 

singularity is given in equation (4.34). After testing the IE (6.7) with 
x

T , the first term is 

obtained as 

 

( ) ( ) ( )( )
N N

s xx x s x xx
s 1 s 1

N
f ,n

x y s d ,r
s 1

j a H ,T j a T x, y H x, y, p s ,q s dxdy

j t t a hxx

ωµ ωµ

ωµ

∞ ∞

= = −∞ −∞

=

− = −

= −

∑ ∑ ∫ ∫

∑
 

    (6.48) 

where 
x

x

1
t

2W
=




, y

y

1
t

2W
=




. The series sum of 
xx

H  drops because sinc functions are 

orthogonal functions.  

 The pseudocode for solving the coefficients f ,n

d ,r
hxx  is given in Figure 6.9. 

 

Set ( ) ( ) ( ) ( )
1 1

p s , q s , p s , q s
2 2

   
− −   

   
 the coordinates of the source points for x and 

y directed current densities respectively. 

Set ( ) ( ) ( ) ( )
1 1

p o , q o , p o , q o
2 2

   
− −   

   
 the coordinates of the observation points. 

( ) ( )u p o p s= −  

( ) ( )v q o q s= −  

1N  discretization number 

1K  discretization number 

For u N1, ,1, N1= − … …  , Do 

For v K1, ,1, K1= − … …  , Do 

If ( ) ( )( )abs and absu 3 v 3< < then 

Solve double integral including singularity condition. 

Else 

Solve by using Taylor series expansion 

End if 

End do 

End do 

 

Figure 6.9. Pseudocode of determining the coefficients f ,n

d ,r
hxx . 

 

b) Second term: ( ) ( ) ( )( )
2

2

1

1
s xxx s

N

s

a H x, y, p s ,q s ,T
j xωε

=

∂

∂
∑  
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The second terms of the IE (6.7) can be obtained by differentiating over the 

coefficients f ,n

d ,r
hxx  by using central difference methods. Then, the integral equation is 

tested with the weighting function 
x

T , 

 

( ) ( ) ( ) ( )( )
2

1 1

2 2
1 1

21 1
f ,n f ,n f ,nN N

d ,r d ,r d ,r
s x x y sxx s

xs s

hxx hxx hxx
a T x, y H x, y, p s ,q s dxdy t t a

j jx tωε ωε

∞ ∞
+ −

= =−∞ −∞

 − +∂
 =
 ∂  

∑ ∑∫ ∫ 
 


 

(6.49) 

 

c) Third term: ( ) ( ) ( )( )
2

1

1
s xxy s

K

s

b H x, y, p s ,q s ,T
j x yωε

=

∂

∂ ∂∑  

 

The third terms of IE’s (6.7) is called cross term and they can be obtained by yB  

(basis oriented in y axis), xT  (testing oriented in x axis). The third term of the IE in (6.7) 

can be given as follows 

 

                                 ( ) ( ) ( )y s
B x', y' G x x', y y' dx' dy' .

x y

∞ ∞

−∞ −∞

∂ ∂
− −

∂ ∂
∫ ∫                       (6.50) 

 

The convolution between basis and Green function can be represented by 

 

( ) ( )( ) ( ) ( )xy y( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫             (6.51)  

                   

where xyH  represents testing the near field radiation of the basis function 
y

B  with 
x

T   

function. It can be expanded by using orthogonal set of sinc functions 

 

( ) ( )( ) ( )( ) ( )
1

1
sinc 2 sinc 2

2

x

N
f ,n

xy d ,r x y

o

T

H x, y, p s ,q s hxy W x p o W y q o
=

  
= − − −  

  
∑ 
 


�������������������������������


   (6.52) 

 

and the location of the sinc functions in x and y directions are at ( ) ( )andx y yp o t q o t t 2−  

respectively. The coefficients can be obtained by (6.51) and (6.52) and given as follows 



 66

( )( ) ( ) ( )( ) ( ) ( )( )sinc 2 pulse 2
f ,n

y x x x x y yd ,rhxy W y' q s x', p s t t , p s t G p o t x', q o t t y' dx' dy' .

∞ ∞

−∞ −∞

≅ − − − − −∫ ∫ 
 
 
 
 
 
 


   (6.53) 

 

The above integral is approximated to a single integral for the case 

( ) ( ) ( ) ( )andp s p o 3 q s q o 3− ≥ − ≥ by using the properties given in the Appendix B. The 

upper and lower limits are determined in terms of the location of the pulse function such 

as 

 

                  
s x

s x

x t 2 jkR
f ,n

d ,r y

x t 2

e
hxy t dx'

4 Rπ

+ −

−

= ∫                                                (6.54) 

 

where ( )( ) ( ) ( )( )
22

x y y y
R p o t x' q o t t 2 q s t= − + − −
 
 
 
 and ( )s x xx p s t t 2= −
 
 . Let 

change the variables to ( ) xu p o t x'= −
 . Then the above equation becomes 

 

( ) ( )( )

( ) ( )( ) x x

x

p o p s t t jkR
f ,n

d ,r y

p o p s t

e
hxy t dx'

4 Rπ

− + −

−

= ∫

 





                                          (6.55) 

 

where ( ) ( )( )( )
2

2

y yR u q o q s t t 2= + − −
 
 . The integral in equation (6.55) is computed 

by using Taylor series expansion procedure [57]. For the near field region, 

( ) ( )p s p o 3− <  and ( ) ( )q s q o 3− < , the singularity should be extracted from the 

integrand and evaluated analytically the same as given for co-terms. After testing the 

third term becomes 

 

( ) ( )( )

( ) ( ) ( )( )

2

2

1

1 1 1 1 1 1 1 1

1

1

1

1

1

4

s xy x

K

s x xy

s

f ,n f ,n f ,n f ,nK
d ,r d ,r d ,r d ,r

x y s

x ys

K

s

b H x, y, p s ,q s ,T
j x y

b T x, y H x, y, p s ,q s dxdy
j x y

hxy hxy hxy hxy
t t b

j t t

ωε

ωε

ωε

∞ ∞

= −∞ −∞

+ + − + + − − −

=

=

∂
=

∂ ∂

∂
=

∂ ∂

 − − +
 
 
 

∑ ∫ ∫

∑

∑


 


                      (6.56) 
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Because sinc functions are orthogonal functions the series sum of xyH drops and 

numerical differentiation is applied to the coefficients f ,n

d ,rhxy . 

 

d) Fourth term: 
K

s yy y
s 1

j b H ,Tωµ
=

− ∑  

 

The same procedure is valid for yyH ( x, y, p( s ),q( s ))  that can be expanded with 

s

d ,r
hyy  coefficients similarly. The coefficients belong to the co-terms of the equation 

(6.8). The first term of this integral equation (IE) given in (6.8) is obtained with the 

convolution of the basis function and the Green’s function such as 

 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( )

sinc 2 pulse

yy

y( s ) y x x x

x, y, p s ,q s

B x',y' G x x', y y' W y' q s x', p s t t , p s t G x x',y y' dx' dy'

H

∞ ∞

∗ − −

−∞−∞

= − − − −∫ ∫
��������������������������������	

    

(6.57) 

 

where yyH  represents the near field radiation of the basis function yB  testing with yT . It 

can be expanded in a double series with the coefficients f ,n

d ,r
hyy  multiplied with the 

complete orthogonal impulsive sinc functions set, such as 

 

          ( ) ( )( ) ( )( ) ( )
1

1
sinc 2 sinc 2

2

y

K
f ,n

yy y xd ,r
o

T

H x, y, p s ,q s hyy W y q o W x p o

=

  
= − − −  

  
∑ 
 


���������������������������������


 .           (6.58) 

 

The integral equation constituted by yB  basis is tested with yT . The coefficients, s
ohyy  is 

obtained by using (6.57) and (6.58) such that 

 

( )( ) ( ) ( )( ) ( ) ( )( )sinc 2 pulse 2
f ,n

y x x x x x yd ,r
hyy W y' q s x', p s t t , p s t G p o t t x', q o t y' dx' dy'

∞ ∞

−∞ −∞

≅ − − − − −∫ ∫ 
 
 
 
 
 


.  (6.59) 
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While ( ) ( ) ( ) ( )orp s p o 3 q s q o 3− ≥ − ≥ , the equation above can be approximated to the 

equation below 

                                     

2

2
4

x x jkR
f ,n

yd ,r

x x

Lt t /

Lt t /

e
hyy t du

Rπ

−
+

−

= ∫

 



 


                                                 (6.60) 

 

where ( ) ( )L p o p s= −  and ( ) ( )( )( )
2

2
yR t q o q s u= − +
 . The integral equation (6.60) can be 

evaluated by Taylor series expansion [56]. 

While andq( s ) q( o ) 3 p( s ) p( o ) 3− < − <  i.e. near field region closer to singularity, then 

the double integral in equation (6.59) will be written by extracting the singularity as in 

the following equation 

 

       

( )( ) ( ) ( )( )

( )

( )

( ) ( )( )
( )

( )

sinc 2 sinc1

4

1 1
sinc

4

x

x

x

x

p s t jkR
yf ,n

d ,r

p s t x

p s t

p s t x

t

t

W y' q s e q o q s
hyy dx' dy'

R

q o q s dx' dy'
R

π

π

−∞

−∞−

∞

−∞−

 − − −
 =
 
 

+ −

∫ ∫

∫ ∫



















       (6.61) 

 

where ( )( ) ( )( )
2 2

2y x xR q o t y' p o t t / x' .= − + − −
 
 
  The equation (6.61) is written for 

( ) ( )q s q o≠  case. Under the condition that ( ) ( )q s q o= , i.e. ( ) ( )( )sinc q o q s 1− = , in this 

case the equation becomes  

 

         
( )( )

( )

( )

( )

( )
sinc 2 11 1 1

4 4

x x

s sx x x x

s sp t p tjkR
yf ,n

d ,r

p t t p t t

W y' q s e
hyy dx' dy' dx' dy'

R Rπ π

−

− −

∞ ∞

−∞ −∞

− −
= +∫ ∫ ∫ ∫


 



 
 
 


.    (6.62) 

 

The singularities in the equations (6.61) and (6.62) can be handled by the analytical 

solution explained in the study [2]. Additionally, the detailed calculation of the 

singularity is given in equation (4.34). 

 Fourth term is obtained after testing procedure in an equality given below 

 

( ) ( ) ( )( )
K K

f ,n
s y yy x y s d ,r

s 1 s 1

j b T x, y H x, y, p s ,q s dxdy j t t b hyyωµ ωµ
∞ ∞

= =−∞ −∞

− = −∑ ∑∫ ∫ 
 
 .          (6.63) 
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e) Fifth term: ( ) ( )( )
2

2

1

1
s yy y

K

s

b H x, y, p s ,q s ,T
j yωε

=

∂

∂
∑  

 

The second terms of the IE (6.8), i.e. fifth term can be obtained by 

differentiating over these coefficients by using central difference methods. Then, the 

terms of integral equation are tested with yT . The series sum of yyH  drops after the 

testing procedure such as 

 

( ) ( ) ( )( )
2

1 1

2 2
1 1

21 1
f ,n f ,n f ,nK K

d ,r d ,r d ,r
s y yy x y s

ys s

hyy hyy hyy
b T x, y H x, y, p s ,q s dxdy t t b

j jy tωε ωε

∞ ∞
− +

= =−∞ −∞

 − +∂  =
 ∂
 

∑ ∑∫ ∫ 
 


. 

(6.64) 

f) Sixth term: ( ) ( )( )
2

1

1
s yx y

N

s

a H x, y, p s ,q s ,T
j y xωε

=

∂

∂ ∂∑  

 

The same procedure is valid for the third term of the IE (6.8). It can be obtained 

by xB  (basis oriented in x axis), yT  (testing oriented in y axis) pairs respectively. The 

third term of the IE in (6.8) can be given as follows 

 

                                 ( ) ( ) ( )x s
B x', y' G x x', y y' dx' dy' .

y x

∞ ∞

−∞ −∞

∂ ∂
− −

∂ ∂
∫ ∫                    (6.65) 

 

The convolution between basis and Green function can be represented by 

 

( ) ( )( ) ( ) ( )yx x( s )H x, y, p s ,q s B x', y' G x x', y y' dx' dy'

∞ ∞

−∞ −∞

= − −∫ ∫          (6.66) 

 

where yxH  is related with the near field radiation of the basis function xB  testing with 

yT . It can be expanded by using orthogonal set of impulsive sinc functions 

 

  ( ) ( )( ) ( )( ) ( )
1

1
sinc 2 sinc 2

2

K
f ,n

yx y xd ,r
o

H x, y, p s ,q s hyx W y q o W x p o
=

  
= − − −  

  
∑ 
 
   (6.67) 
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and the location of the sinc functions in x and y directions are at ( ) ( )andy x xq o t p o t t 2−  

respectively. The coefficients can be obtained by (6.66) and (6.67) and given as follows 

 

( )( ) ( ) ( )( ) ( ) ( )( )sinc 2 pulse 2
f ,n

x y y y x x yd ,r
hyx W x' p s y',q s t t ,q s t G p o t t x', q o t y' dx' dy' .

∞ ∞

−∞ −∞

≅ − − − − −∫ ∫ 
 
 
 
 
 
 


   

 (6.68) 

 

The above integral is approximated to a single integral for the case 

( ) ( ) ( ) ( )andp s p o 3 q s q o 3− ≥ − ≥ by using the properties given in the Appendix 

B. The upper and lower limits are determined in terms of the location of the pulse 

function such as 

 

                  
s y

s y

y t 2 jkR
f ,n

xd ,r

y t 2

e
hyx t dy'

4 Rπ

+ −

−

= ∫






                                           (6.69) 

 

where ( ) ( )( ) ( )( )
22

x x x yR p o t p s t t 2 q o t y'= − − + −
 
 
 
 and ( )s y yy q s t t 2= −
 
 . Let change the 

variables to ( ) yv q o t y'= − . Then the equation above becomes 

 

( ) ( )( )

( ) ( )( ) y y

y

q o q s t t jkR
f ,n

xd ,r

q o q s t

e
hyx t dv

4 Rπ

− + −

−

= ∫

 





                                          (6.70) 

 

where ( ) ( )( )( )
2

2

x xR v p o p s t t 2= + − −
 
 . For the near field region, ( ) ( )p s p o 3− <  

and ( ) ( )q s q o 3− < , the singularity should be extracted from the integrand and 

evaluated analytically following the same procedure as in co-terms. Numerical 

differentiation is applied to the coefficients and the term is tested with yT . 

( ) ( ) ( )( )
2

1

1 1 1 1 1 1 1 1

1

1

1

4

N

s y yx

s

f ,n f ,n f ,n f ,nN
d ,r d ,r d ,r d ,r

x y s

x ys

a T x, y H x, y, p s ,q s dxdy
j y x

hyx hyx hyx hyx
t t a

j t t

ωε

ωε

∞ ∞

= −∞ −∞

+ + + − − + − −

=

∂
=

∂ ∂

 − − +
 
 
 

∑ ∫ ∫

∑
 

                           (6.71) 
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The resulting equation with these coefficients are given as follows 

      

( )

2 1 1 1 1 1 1 1 1
1 21 12

1 1 1

2
4

2

f ,n f ,n f ,n f ,n
x y d ,r d ,r d ,r d ,rf ,n f ,n f ,n f ,n

x y s s x y sd ,r d ,r d ,r d ,r
x yx

in
x y x x y y

N N K

s s s

c t t hxy hxy hxy hxy
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where 1 2

1
c j , c

j
ωµ

ωε
= − = , x

x

1
t

2W
=




, y

y

1
t

2W
=




, f belongs to ( ) ( )( )p s ,q s  pairs, f  

belongs to ( ) ( )( )p s ,q s  pairs, ( ) ( )and 1 2d p o r q o o , , , K ,= = = …  

( ) ( )andd p o r q o= =  and 1 2o , , , N= … . The representations ( )x ydt ,rt  and ( )x ydt ,rt  

are x and y coordinates of the observation points. Obtaining of the MoM matrix 

elements are shown in Figure 6.10.  

Numerical differentiation is applied to coefficients by using forward and central 

difference methods given in Appendix A. These finite difference derivative errors can 

be reduced by decreasing mesh size at a reasonable level. Also, the overflow problem is 

tried to be reduced by this selection of the basis functions as sinc-pulse. The main 

difference from the previous section is choosing pulse basis parallel to the edge of the 

plate. Analytical properties of the sinc function given in Appendix B are used in the 

integral calculations. Since the sinc function approximation is used in the integral 

solutions, an error occurs in the coefficient matrix elements. The relative error coming 

from main matrix elements will be discussed in the next section. Some numerical results 

of the proposed formulations such as bistatic scattering from flat arbitrary plate at 

different observation angles are obtained and compared with the well known rooftop 

and SuperNEC in the next section.  
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For o 1, 2, N1= …  Do 
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Figure 6.10. Obtaining the MoM matrix elements for the IE’s (6.72) and (6.73). 
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CHAPTER 7 

 

NUMERICAL RESULTS 

 

The current densities and bistatic scattering results are given for arbitrary flat 

geometries which are illuminated with a uniform electromagnetic plane wave coming 

from ( )i i,θ ϕ  direction which is shown in Figure 7.1. The numerical results of the 

proposed sinc-sinc and sinc-pulse based MoM formulations are given for different 

incident and observation directions. The bandwidth of the sinc function, W, is taken 500 

and the halfwidth of the subintervals, tx, is taken ( )1 2W in the simulations. Simulations 

are carried out on a personal computer, which has Intel (R) CPU 1.8 GHz processor 

with 2.49 GB RAM on the windows operating system. After simulations it has been 

observed that at least 15 discretizations for each wavelength are enough in the 

numerical modeling to get accurate and convergent results. The Fortran90 computer 

codes are developed for sinc-sinc and sinc-pulse based formulations. The pseudocodes 

of the programs are given in chapter 5 and chapter 6. The main subroutines which are 

used in codes are given in Appendix C. The simulation results obtained from the sinc 

based formulations are in good agreement with those obtained from SuperNEC and 

ordinary rooftop. The bistatic scattering are presented here for co-polarized and cross-

polarized cases.  

 

7.1. Square Flat Plate 

 

 The geometry of the square flat plate illuminated with a plane wave with the 

incident elevation angle iθ  and azimuth angles inϕ  are shown in Figure 7.1. Galerkin 

sinc-sinc and Galerkin rooftop based MoM simulation results are compared with those 

of the non-Galerkin pulse-sinc based results. The x directed current densities of rooftop, 

sinc-sinc and sinc-pulse based formulations are given in Figure 7.2 for 1λ×1λ  square 

plate at the vertical polarization with the angles i in45 , 0θ ϕ= =� �  respectively.  
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Figure 7.1. Flat plate illuminated with a plane wave. 

 

One can observe from the Figure 7.2 that the results obtained from sinc based 

formulations are similar with those of rooftop basis. The relative error between the 

solutions of the current densities obtained from sinc pulse based and rooftop is 1%, 

while the relative error between sinc-sinc and rooftop results remains at 10% even in the 

high discretization levels. The current densities are compared for ycut ( )x 0=  and xcut 

situations in Figure 7.3. The x directed current density results of those of the sinc-pulse 

are more similar to those of the rooftop than the sinc-sinc based results. The x directed 

current densities of 2 2λ λ×  flat square plates for the vertical polarization are given in 

Figure 7.4. The ycut ( )x 0=  and xcut ( )y 0= situations of the x directed current density 

for 2 2λ λ×  flat plate is given in Figure 7.5. The maximum discretization number is 30, 

and 1, 2, , 30xn = …  and 1, 2, , 30.yn = …  Sinc-pulse and sinc-sinc based results are similar 

to rooftop based results. Vertically polarized y directed current densities of sinc-sinc, 

sinc-pulse and rooftop based formulations are given in Figure 7.6. Sinc-pulse based 

current densities are similar to rooftop based simulation results. When the ycut ( )x 0=  

and xcut ( )y 0= situations of the y directed current density for 2 2λ λ×  flat plate is 

compared in Figure 7.7, it is seen that they are generally following the same plot each 

other.  
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(a) rooftop 

 

(b) sinc-sinc 

 

(b) pulse-sinc 

Figure 7.2. x directed current densities at the vertical polarization for 1λ×1λ square flat 

                  plate with andi in x y

1
45 , 0 , t t W 500.

2W
θ ϕ= = = = =� �  

 

The vertically polarized x directed current densities for 4 4λ λ× , 5 5λ λ× , 

6 6λ λ×  square flat plates are given in Figure 7.8 for the rooftop based simulation 
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results. The ripples at x and y directions are increasing while the dimension of the 

geometry increases. 

 

 

(a) 

 
          (b) 

Figure 7.3. Comparison of the current densities at i in45 , 0θ ϕ= =� � . (a) ycut, (b) xcut. 
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(a) rooftop 

 

(b) sinc-sinc 

 

(c) sinc-pulse 

Figure 7.4. x directed current densities at the vertical polarization for 2 2λ λ× square flat 

                   plate with i in45 , 0θ ϕ= =� � . 
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(a) 

 

(b) 

Figure 7.5. Compare of the vertically polarized x directed current densities at 

                  i in45 , 0θ ϕ= =� �  for 2 2λ λ×  square flat plates. (a) ycut, (b) xcut. 
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(a) 

 

(b) 

 

(c) 

Figure 7.6. Vertically polarized y directed current densities at i in45 , 0θ ϕ= =� �  for  

                  2 2λ λ×  square flat plates. (a) rooftop, (b) sinc-sinc, (c) sinc-pulse. 
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/ xx t  

(a) 

 

/ yy t  

(b) 

Figure 7.7. Comparison of the vertically polarized y directed current densities at 

                 i in45 , 0θ ϕ= =� �  for 2 2λ λ×  square flat plates. (a) ycut, (b) xcut. 
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Figure 7.8. The vertically polarized x directed current densities of square flat plates at  

                 i in45 , 0θ ϕ= =� � : 4 4λ λ× , 5 5λ λ× , 6 6λ λ× . 

 

The numerical results for bistatic RCS values are given in Figure 7.9 and Figure 

7.10 for the λλ 44 ×  square flat plate shown in Figure 7.1. The results are in good 

agreement with those of the rooftop and SuperNEC ones. The results are nearly same 
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for all observation elevation angles. In the Figure 7.1, the plate is illuminated with 

incident angles, 60 and 45in iϕ θ= =� � and bistatic scattering is observed at an angle 

s 60ϕ = �  for cross- (vertical-horizontal, horizontal-vertical) and co-polarized (vertical-

vertical, horizontal-horizontal) cases in terms of observation elevation angle sθ , which 

changes between 0 :1 : 360� � � . The observation plane incudes the specular reflection 

direction so the field is maximum for the co-polarized cases. The angle sθ  is 220
°
 and 

320
°
 for the specular reflection. The RCS level is low for the cross-polarized cases.  

CPU time comparisons in seconds between the methods for flat square plates 

with different wavelengths are given in Table 7.1. It is observed that the matrix filling is 

faster in sinc based algorithms than those of the rooftop and SuperNEC. The 

mathematical properties of the sinc function is used in the formulations and matrix can 

be filled in less time by using the approximate functions given in (5.22) and (5.24). The 

matrix dimensions for the corresponding plate size are given in Table 7.2. The 

dimensions of the main matrices change, because discretization number changes in 

terms of the basis function and its step size. While the size of the main matrices 

increases, this difference in filling time also increases. If the linear matrix system is 

solved by using LU decomposition method, the overall time takes nearly two times of 

those of the SuperNEC for those of the sinc based. If an iterative solver is used by 

solving linear system equation, the overall time is decreased drastically. It is observed 

clearly that the use of the TFQMR increases the decrease in overall cpu time while the 

dimension of the problem increases when compared in terms of the LU decomposition. 

The overall time is decreased nearly the half of the time of that of SuperNEC. The 

overall CPU time of sinc based algorithms is faster than those of the well-known 

rooftop based Galerkin MoM formulation although their matrix dimensions are nearly 

the same. The λλ 44 ×  square flat plate scattering problem cannot be solved in hours 

with the optimum commercial code SuperNEC. Because of the dimension of the 

problem with these discretization (15 discretization for each wavelength) is out of the 

limit of the SuperNEC conditions. SuperNEC requires segments to be about a tenth of 

wavelength in length. Therefore, the sinc based algorithms can obtain the scattering 

results within hours. The sinc based algorithms fill the matrix in a shorter time and they 

can solve in less overall CPU time when compared to SuperNEC and rooftop.  
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           sθ  

          (a) 

 
           sθ  

          (b) 

Figure 7.9. Bistatic scattering solutions of the λλ 44 × square flat plate (g1) at 

                 60 and 45 60 while 0 : 360in i s s, .ϕ θ ϕ θ= = = =� � � � � (a) co-polarized (vertical- 

                  vertical), (b) cross-polarized case (vertical-horizontal). 
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Figure 7.10. Bistatic scattering solutions of the λλ 44 × square flat plate (g1) at 

                    60 and 45 60 while 0 : 360in i s s, .ϕ θ ϕ θ= = = =� � � � � (a) cross-polarized (horizontal- 

                    vertical), (b) co-polarized case (horizontal-horizontal). 
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Table 7.2. Matrix dimensions of the problems ( ) ( )( )N K N K+ × +  

 Sinc-sinc  Sinc-pulse  SNEC  Rooftop  

1λ 448 x 448 420 x 420 480 x 480 420 x 420 

2λ 1798 x 1798 1740 x 1740 1860 x 1860 1740 x 1740 

3λ 4048 x 4048 3960 x 3960 4140 x 4140 3960 x 3960 

3.6λ 5830 x 5830 5724 x 5724 5940 x 5940 5724 x 5724 

4λ 7198 x 7198 7080 x 7080 7320 x 7320 7080 x 7080 

 

7.2. Error Analysis in the MoM Matrix Elements 

 

 The approximation of the integral of Sinc functions with Green’s function is 

used by calculating the matrix elements in MoM. The approximated integral is shown in 

the below equation 

 

              ( ) ( ) ( )

21

1
sinc 2 sinc 2

4
x y x y

x y

II

W u L W v M G(u,v )dudv G L t , M t error
W W

∞ ∞

−∞ −∞

− − = +∫ ∫
����������	��������������������	

      (7.1) 

 

where ( ) ( )L p o p s= − , ( ) ( )M q o q s= −  and ( )1 2x yt t W= = . The bandwidths of the sinc 

functions in x and y directions are given as xW  and yW  respectively so it is given 

x yW W W= = in  (7.1). The error is calculated with the difference of the integrals between 

I1 and I2. The relative error is the ratio of this difference to the exact value of I2. For 

2 and  2L M< < , the double integral are evaluated numerically without any problem. 

The approximated value shown in (7.1) is used for 2 and 2L M≥ ≥ .  

The MoM matrix elements are computed by using the analytical properties of 

the sinc functions given in (7.1). The approximated sinc integrals in the equations that 

constitute the matrix coefficients are therefore evaluated with an error. The relative 

error given in the Table 7.3 is calculated by using the difference between actual and 

approximated value of the integral given in equation (7.1) according to the distance 
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between source and observation points. Numerical integration technique, Simpson rule 

with 5000 subdivisions is used to evaluate the left hand side integral equation I1 given in 

(7.1) over the interval [-0.1 0.1]. The numerical solutions for different L and M values 

are given in Table 7.3. The bandwidth of the sinc function is taken x yW W W= =  and 

changes between 250 and 1000 where L and M increase which are the difference 

between observation and source points at x and y directions respectively. One can 

observe from Table 7.3 that the relative error in the computed matrix decreases while L 

and M increase, the observation and source points are getting far from each other. As 

can be seen from Table 7.3 that the relative error in the computed matrix elements 

decreases while W  increases. The relative error values for L=2 and M=3 are same 

while the bandwidth of the sinc function increases. The relative error decreases while L 

and M increases for the bandwidths greater and equal than 500. In summary, for 1L >  

and 1M >  the approximate integral equation of the sinc function shown in (7.1) as I2 

can be used in obtaining matrix elements for the bandwidths greater and equal to 500.  

 

Table 7.3. Relative error in the computed matrix elements (%). 

 

 

 

 

 

 

 

               

                 L, M  

       W 
(1)

  

2,  2 2, 3 3, 2 3, 3 

250 0.103 0.070 0.070 0.093 

300 0.098 0.071 0.071 0.077 

500 0.095 0.071 0.071 0.061 

750 0.095 0.071 0.071 0.059 

1000 0.095 0.071 0.071 0.058 
(1) ( )0 015 1 2x y. m, t t Wλ = = = . 
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7.3. Arbitrary Flat Plate Geometries 

 

 The flat arbitrary geometries are given in Figure 7.11. The plates are illuminated 

with a plane wave and their bistatic scattering results are given at different observation 

angles.  

 

 

(a) 

 

(b) 

 

 

 

 

(c) 

Figure 7.11. Arbitrary flat plate geometries. (a) g2, (b) g3, (c) g4.  

 

In the Figures 7.12 and 7.13, the incident azimuth and elevation angles are given 

as 30 and 45in iϕ θ= =� �  for the geometry shown in Figure 7.11(a). Also the observation 

plane is defined as 30sϕ = �  and the scattering results are obtained for the variational 

observation angles o o0 :360sθ = . It is seen from Figures 7.12 and 7.13 that they are 

similar with those of SuperNEC and rooftop solutions. The scattering results are in good 

agreement nearly at all observation angles. In this case, the observation plane has the 
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specular reflection direction. The RCS level is high like in Figures (7.9) and (7.10) for 

co polarized cases. 

 

 

 

Figure 7.12. Bistatic scattering of the arbitrary geometry g2 for 

                    30 and 45 30in i s,ϕ θ ϕ= = =� � �while o o0 :360sθ = . (a)co-polarized (vertical- 

                     vertical) results, (b) cross-polarized (vertical-horizontal) results.  
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     (a) 

 

     (b) 

Figure 7.13. Bistatic scattering of the arbitrary geometry g2 for 30 and 45 30in i s,ϕ θ ϕ= = =� � �  

                    while 0 :360sθ = � � . (a)co-polarized (horizontal-horizontal) results, (b) cross- 

                    polarized (horizontal-vertical) results.  

 

The bistatic scattering solutions of the geometry shown in Figure 7.11(b) are 

given in Figures 7.14. and 7.15. The RCS comparison is made for the incident angles 

given as 60 and 45in iϕ θ= =� � while 30sϕ = � and 60sϕ = �  cases. The results are again 

reasonably in good agreement with the SuperNEC and rooftop solutions. In part (a) of 

the figure, the nonspecular case is presented. Even though it does not include the 

specular reflection direction (the RCS level is low) the results show that it is again in 

good agreement. In the part (b) of the same figure, the specular observation plane is 

studied and it is seen that the results are again good even it presents cross-polarized 

components.  
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Figure 7.14. Compare of the RCS results for arbitrary geometry g3 for 

                    in i60 , 45ϕ θ= =� �while o o0 :360sθ = . (a) RCS VV co-polarized case 30sϕ = � , 

                    (b) RCS VH cross-polarized case 30sϕ = � . 
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Figure 7.15. Compare of the RCS results for arbitrary geometry g3 for in i60 , 45ϕ θ= =� �  

                    while o o0 :360sθ = . (a) RCS HH co-polarized case 30sϕ = � , (b) RCS HV 

                    cross-polarized case 30sϕ = � . 
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Figure 7.16. Compare of the RCS results for arbitrary geometry g3 for in i60 , 45ϕ θ= =� �   

                    while o o0 :360sθ = . (a) RCS VV co-polarized case 60sϕ = � , (b) RCS VH 

                    cross-polarized case 60sϕ = � . 
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Figure 7.17. Compare of the RCS results for arbitrary geometry g3 for 

                   in i60 , 45ϕ θ= =� � , o o0 :360sθ = . (a) RCS HH co-polarized case 60sϕ = � , (b) 

                    RCS HV cross-polarized case 60sϕ = � . 

 

The bistatic scattering results of an arbitrary geometry given in Figure 7.11(c) 

illuminated with the incident angles 0 and 45in iϕ θ= =� � shown in Figure 7.18. In the part 

(a) of the figure, the results are obtained for the plane including the specular direction 

and it is seen that the good agreement is obtained in the part (b) of the same figure, 

again the co-polarized results are presented and again the results are reasonably good 

even though the RCS level is lower.  
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Figure 7.18. Bistatic scattering results of the arbitrary geometry g4 

                            
o o o o0 45 0 :360in i s, ,ϕ θ θ= = = (a) co- polarized (vertical-vertical) at specular 

                    reflection direction 0sϕ = � , (b) co-polarized (vertical-vertical) at nonspecular 

                    reflection direction 30sϕ = � . 

 

 The bistatic scattering results obtained by sinc-based formulations are in good 

agreement with those of rooftop and SuperNEC. An error occurs in the approximated 

sinc integrals during obtaining matrix coefficients. However, this error stays under 

0.061% for the bandwidth that is used in simulations. Additionally, less CPU time is 

spent in sinc-based formulation than those of the rooftop, while the coefficient matrix is 

filled. Large geometries can not be solved with SuperNEC on the personal computer 

because of the software limits, although they can be solved with developed fortran 

program including sinc formulation. Furthermore, overall CPU time of the program 

developed by sinc-based formulation is decreased by using iterative algorithms.  
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CHAPTER 8 

 

CONCLUSIONS 

 

Three dimensional electromagnetic scattering from flat arbitrary plates 

illuminated by a plane wave is numerically solved by using different sinc type basis 

functions in MoM. The sinc based formulations are obtained with Galerkin and non-

Galerkin procedures. The formulation highly depends on the mathematical properties of 

the sinc functions. Easy implementation of the sinc functions provides fast and accurate 

results during simulations. The pseudocodes for sinc based algorithms are given in 

related chapters. Fortran computer language is used for programming. 15 discretizations 

per λ  is taken in the simulations.  

The effective rooftop based Galerkin algorithm is employed. Rooftop based 

formulation is well-known and mostly used in MoM. The unknown current densities are 

solved here with the subsectional basis functions such as triangular and pulse. The 

MoM matrix elements are evaluated numerically, not analytically as mentioned in [56]. 

The proposed sinc-sinc based results in the study are compared with those of the rooftop 

and SuperNEC in terms of accuracy and CPU time. 15 discretizations are used in the 

simulations. Current densities and bistatic scattering results of the rooftop based 

formulations at specular and nonspecular directions for flat plates are used for 

comparisons. 

Sinc-sinc based MoM Galerkin formulation is developed with an effective 

algorithm. The formulation depends on the mathematical properties of the sinc 

functions such as convolution and interpolation. The accuracy of the program is tested 

with those of rooftop and the well-known software SuperNEC. Bistatic scattering 

results of the proposed sinc based solution method for specular reflection direction are 

compared with those of the well known MoM method for different observation 

elevation angles. Maximum field is obtained at the specular reflection direction for co-

polarized cases. However, the RCS level is low for the cross-polarized cases. All results 

are in good agreement with those of the SuperNEC. 

Sinc-pulse Galerkin and non-Galerkin MoM formulations are employed for flat 

geometries. In order to reduce the overflow problem at the edges, the pulse type basis 
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function is chosen perpendicular to the edge direction. Even the sinc-pulse based 

formulation is totally different from the sinc-sinc based formulation, their results are the 

same as those of the rooftop and SuperNEC. The RCS level obtained from pulse-sinc 

based formulation is the same as those of rooftop and SuperNEC.  

Fortran is used in the numerical simulations. Our main goal is to obtain accurate 

bistatic scattering solutions in less CPU time. Using the mathematical properties of the 

sinc function in the formulation provides easy and fast computing, so the codes of the 

sinc based algorithms fill the main matrices quite faster than the other known ordinary 

methods. However, the overall running time is just slightly better than the rooftop 

MoM. Also our basis functions are in the sinc type and so their inclusion to the 

formulation is easier than the other complex basis functions like given in the equations 

(5.22) and (5.24). The overall CPU is decreased by using iterative solvers in solving 

MoM matrix elements. TFQMR method is used with preconditioning in solving linear 

matrix system and the overall CPU time is decreased when compared with those of 

SuperNEC and rooftop.  

The relative error that occurred during the calculation of the MoM matrix 

elements is at a reasonable level. The error decreases appreciably while the bandwidth 

of the sinc function increases.  

 Linear algebraic equation system is solved iteratively using preconditioning, so 

the overall running time of the sinc based algorithms is reduced highly. 
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APPENDIX A 

 

NUMERICAL DIFFERENTIATION 

 

A.1. First Order Derivative Approximations 

 

 Let ( )f x is continuous on I (interval), h is a step size and 0 1h< < . Taylor 

expansion is applied to the function such that 

 

( ) ( ) ( ) ( )
2

2

h
f x h f x hf ' x f '' x

!
+ = + + +…                                  (A.1) 

 

( )
( ) ( ) ( )

remainder term

2

f x h f x hf '' x
f ' x

h

+ −
= − …

������	
                                     (A.2) 

 

If the remainder terms are not taken then the approximated value of the first order 

derivative can be calculated with 

  

( )
( ) ( )

( ) is the forward difference approximation.
f x h f x

f ' x , O h
h

+ −
≅       (A.3) 

 

Error occurs because of removing the remainder terms such as 

 

( )error=
2

h
f '' , x x h.ζ ζ− < < +                                    (A.4) 

 

 Backward difference can be calculated in a similar manner with (A.3) given 

below 
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( ) ( ) ( ) ( )

( )
( ) ( )

( )

2

ignore it

2

2

h
f x h f x hf ' x f '' x

!

f x f x h h
f ' x f '' x

h

− = − + +

− −
= + +

…

…

����������


                                 (A.5) 

 

and 

 

( )
( ) ( )

backward difference
f x f x h

f ' x ,
h

− −
≅ ,                             (A.6) 

 

( )error=
2

h
f '' , x h x.ζ ζ− < <                                         (A.7) 

 

By substracting ( ) ( )from  f x h f x h− + the below central difference approximation is 

obtained. 

 

( )
( ) ( )

central difference
2

f x h f x h
f ' x ,

h

+ − −
≅                                (A.8) 

 

A.2. Second Order Derivative Approximation 

 

 The second order derivatives can be calculated approximately with the below 

formulations 

( )
( ) ( ) ( )

2

2 2
forward difference

y x h y x h y x
y '' x ,

h

+ − + +
≅                         (A.9) 

 

( )
( ) ( ) ( )

2

2 2
backward difference

y x h y x h y x
y '' x ,

h

− − − +
≅                      (A.10) 

 

( )
( ) ( ) ( )

2

2
central difference

y x h y x y x h
y '' x ,

h

+ − + −
≅ .                      (A.11) 
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APPENDIX B 

 

SINC FUNCTION 

 

The normalized sinc function is defined on the real line [62], x−∞ < < ∞ ,  

 

                                  ( )

( )sin
0

sinc

1 0

x
, x

x
x

, x

π

π


≠


= 
 =


.                                          (B.1)   

                                    

The analytical properties of the sinc functions: 

1. Sinc functions are complete orthogonal set of functions, such as 

 

                        ( ) ( )
1

sinc sinc 2

0

, n m
2Wx n 2Wx m dx .W

, n m

∞

−∞


=

− − = 
 ≠

∫                              (B.2) 

 

2. The convolution of the two sinc functions are again gives a sinc function. 

  

            ( ) ( )( ) ( )

2

1
sinc sinc 2 sinc

1 3g (x') g (x)g ( x x ')

2Wx' n W x x ' m dx' 2Wx n m
2W

∞

−∞ −

− − − = − +∫ ������	 ��������	����������	
             (B.3) 

where (B3) can also be written as 

                                            1 2 3

1
g (x) g ( x) g (x)

2W
∗ − = .                                           (B.4) 

 

3. Sinc interpolation + error 

 

                          ( )
1

sinc
2

m
2Wx m g(x)dx g error
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APPENDIX C 

 

SUBROUTINES 

 

C1. LU Decomposition 

 

SUBROUTINE DGEFAM (A,N,IPVT,INFO) 

!input 

!A is the matrix with (N,N) dimension 

!N dimension of the matrix 

!IPVT is the pivot vector 

!INFO is the integer (default 0) 

INTEGER LDA,N,IPVT(N),INFO 

DOUBLE COMPLEX A(N,N) 

INTEGER I,J,K,KP1,L,NM1 

DOUBLE COMPLEX T 

IPVT(N) = 1 

INFO = 0 

NM1 = N-1 

IF (NM1 .LT. 1) GO TO 100 

      DO 90 K=1,NM1 

         KP1 = K+1 

         L = K 

         DO 10 I=KP1,N 

            IF (CDABS(A(I,K)) .GT. CDABS(A(L,K))) L = I 

10    CONTINUE 

         IPVT(K) = L 

         IF (CDABS(A(L,K)) .EQ. 0.0D0) GO TO 70 

         IF (L .EQ. K) GO TO 20 

         T = A(L,K) 

         A(L,K) = A(K,K) 

         A(K,K) = T 
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20    CONTINUE 

         T = 1.0D0/A(K,K) 

         DO 30 I=KP1,N 

            A(I,K) = T*A(I,K) 

30    CONTINUE 

         DO 60 J=KP1,N 

            T = A(L,J) 

            IF (L .EQ. K) GO TO 40 

            A(L,J) = A(K,J) 

            A(K,J) = T 

40       CONTINUE 

            DO 50 I=KP1,N 

               A(I,J) = A(I,J)-T*A(I,K) 

50       CONTINUE 

60    CONTINUE 

         GO TO 80 

70    CONTINUE 

         INFO = K 

80    CONTINUE 

90   CONTINUE 

100  CONTINUE 

      IPVT(N) = N 

      IF (CDABS(A(N,N)) .EQ. 0.0D0) INFO = N 

      RETURN 

      END subroutine dgefam 

SUBROUTINE DGESLM (A,N,IPVT,B) 

!input 

!A is the LU matrix with (N,N) dimension 

!N dimension of the matrix 

!IPVT is the pivot vector 

!B is the right hand side vector for Ax=B with dimension N 

!output 

!B is the solution vector 

      INTEGER LDA,N,IPVT(N) 
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      DOUBLE COMPLEX A(N,N),B(N) 

      INTEGER I,K,KB,KM1,KP1,L,NM1 

      DOUBLE COMPLEX T 

      IF (N .EQ. 1) GO TO 60 

      NM1 = N-1 

      DO 30 K=1,NM1 

         KP1 = K+1 

         L = IPVT(K) 

         T = B(L) 

         IF (L .EQ. K) GO TO 10 

         B(L) = B(K) 

         B(K) = T 

10    CONTINUE 

         DO 20 I=KP1,N 

            B(I) = B(I)-T*A(I,K) 

20    CONTINUE 

30 CONTINUE 

      DO 50 KB=1,NM1 

         K = N+1-KB 

         KM1 = K-1 

         B(K) = B(K)/A(K,K) 

         T = -B(K) 

         DO 40 I=1,KM1 

            B(I) = B(I)+T*A(I,K) 

40    CONTINUE 

50 CONTINUE 

60 CONTINUE 

      B(1) = B(1)/A(1,1) 

      RETURN 

      END 
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C2. Matrix Multiplication 

 

SUBROUTINE MMUL (NA,NB,NC,L,M,N,A,B,C) 

!     *****PARAMETERS: 

      integer NB,N,NA,NC,L,M 

      DOUBLE complex A(NA,N),B(NB,L),C(NC,L) 

!     *****LOCAL VARIABLES: 

      INTEGER I,J,K 

!     *****SUBROUTINES CALLED: 

!     None 

!     *****PURPOSE: 

!THIS SUBROUTINE COMPUTES THE MATRIX PRODUCT A*B AND STORES 

THE 

!RESULT IN THE ARRAY C.  A IS M X N, B IS N X L, AND C IS 

!        M X L.  THE ARRAY C MUST BE DISTINCT FROM BOTH A AND B. 

!     *****PARAMETER DESCRIPTION: 

!     ON INPUT: 

!        NA    ROW DIMENSION OF THE ARRAY CONTAINING A AS DECLARED 

!              IN THE CALLING PROGRAM DIMENSION STATEMENT; 

! 

!        NB    ROW DIMENSION OF THE ARRAY CONTAINING B AS DECLARED 

!              IN THE CALLING PROGRAM DIMENSION STATEMENT; 

! 

!        NC    ROW DIMENSION OF THE ARRAY CONTAINING C AS DECLARED 

!              IN THE CALLING PROGRAM DIMENSION STATEMENT; 

! 

!        L     NUMBER OF COLUMNS OF THE MATRICES B AND C; 

!        M     NUMBER OF ROWS OF THE MATRICES A AND C; 

! 

!        N     NUMBER OF COLUMNS OF THE MATRIX A AND NUMBER OF 

ROWS 

!              OF THE MATRIX B; 

! 
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!        A     AN M X N MATRIX; 

! 

!        B     AN N X L MATRIX. 

! 

!     ON OUTPUT: 

! 

!        C     AN M X L ARRAY CONTAINING A*B. 

! 

      DO 40 J=1,L 

         DO 10 I=1,M 

            C(I,J)=0.0D0 

10       CONTINUE 

         DO 30 K=1,N 

            DO 20 I=1,M 

               C(I,J)=C(I,J)+A(I,K)*B(K,J) 

20          CONTINUE 

30       CONTINUE 

40    CONTINUE 

      RETURN 

! 

!     LAST CARD OF MMUL 

! 

      END 

 

C3. Inverse of the Matrix 

 

SUBROUTINE GAUJOR (N,A)  

! GAUJOR COMPUTES THE INVERS OF THE MATRIX A(N,N) WITH THE HELP 

OF 

! GAUSS-JORDAN-ALGORITHM, ....! 

! COMMON /MATRIX/ .... 

 

      INTEGER IP(81) 
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      real ZMAX,Z 

      COMPLEX A(N,N),HV(80),HR 

      DO 10 I=1,N 

10 IP(I)=I 

      DO 100 J=1,N 

      ZMAX=CABS(A(J,J)) 

      IR=J 

      IF (J.EQ.N) GOTO 200 

      JJ=J+1 

      DO 20 I=JJ,N 

      Z=CABS(A(I,J)) 

      IF (Z.LE.ZMAX) GOTO 20 

      ZMAX=Z 

      IR=I 

20 CONTINUE 

      ! NOTATION FOR SINGULAR MATRIX 

200 IF (ZMAX.LE.1.E-37) THEN 

      PRINT*,'ZMAX= ',ZMAX 

      PRINT*,'NOTATION ON MATRIX SINGULARITY%' 

      ENDIF 

      IF (ZMAX.LE.1.E-37) STOP 9999 

      IF (IR.LE.J) GOTO 40 

      DO 30 K=1,N 

      HR=A(J,K) 

      A(J,K)=A(IR,K) 

30 A(IR,K)=HR 

      IHI=IP(J) 

      IP(J)=IP(IR) 

      IP(IR)=IHI 

40 HR=CMPLX(1.E0,0.E0)/A(J,J) 

      DO 50 I=1,N 

50 A(I,J)=HR*A(I,J) 

      A(J,J)=HR 

      DO 70 K=1,N 
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      IF (K.EQ.J) GOTO 70 

      DO 60 I=1,N 

      IF (I.EQ.J) GOTO 60 

      A(I,K)=A(I,K)-A(I,J)*A(J,K) 

60 CONTINUE 

      A(J,K)=-HR*A(J,K) 

70 CONTINUE 

100 CONTINUE 

      ! COLUMN PERMUTATION 

      DO 150 I=1,N 

      DO 110 K=1,N 

110 HV(IP(K))=A(I,K) 

      DO 120 K=1,N 

      A(I,K)=HV(K) 

120 CONTINUE 

150 CONTINUE 

999 CONTINUE 

      RETURN 

      END 

 

C4.One Dimensional Integration 

 

SUBROUTINE SIMPSONBIR(CFF,XA,XB,p,CVAL) 

IMPLICIT NONE 

EXTERNAL CFF 

complex SUMN,SUMY,PART1,PART2 

complex CFF 

complex CVAL 

real XA,XB,NX,X1,X2,H 

INTEGER IJ 

integer nxx 

integer p 

NX=400 
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nxx=400; 

H=(XB-XA)/(2*NX); 

SUMN=(0,0); SUMY=(0,0); 

      DO IJ=1,nxx-1 

      X1=XA+(2*IJ)*H; 

      SUMN=SUMN+CFF(X1,p); 

      END DO 

      PART1=(2*H/3)*SUMN; 

      DO IJ=1,nxx 

      X2=XA+(2*IJ-1)*H; 

      SUMY=SUMY+CFF(X2,p); 

      END DO 

      PART2=(4*H/3)*SUMY; 

      CVAL=PART1+PART2+((H/3)*(CFF(XA,p)+CFF(XB,p))) 

      RETURN 

      END 

 

C5. Two Dimensional Integration 

 

SUBROUTINE SIMPSONIKI(CE, YA, YB, XA, XB, uint,vint,CTV) 

IMPLICIT NONE 

external CE 

 DOUBLE COMPLEX CE 

DOUBLE COMPLEX CTV 

 DOUBLE COMPLEX 

SUMNP,SUMYP,PART1N,PART2N,CVAL1,CVAL2,RES1,RES2 

DOUBLE PRECISION YA,YB,NY,YY1,YY2,XA,XB,H,uint,vint 

INTEGER IJ 

integer nyy 

 nyy=150; 

NY=150.d 0 

H=(YB-YA)/(2*NY); 

SUMNP=0; SUMYP=0; 
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      DO IJ=1,nyy-1 

      YY1=YA+(2*IJ)*H; 

CALL SIMPSONBIR(CE,YY1,XA,XB,uint,vint,CVAL1) 

      SUMNP=SUMNP+CVAL1; 

      END DO 

      PART1N=((2*H)/3)*SUMNP; 

      DO IJ=1,nyy 

      YY2=YA+(2*IJ-1)*H; 

CALL SIMPSONBIR(CE,YY2,XA,XB,uint,vint,CVAL2) 

      SUMYP=SUMYP+CVAL2; 

      END DO 

      PART2N=(4*H/3)*SUMYP; 

CALL SIMPSONBIR(CE,YA,XA,XB,uint,vint,RES1) 

CALL SIMPSONBIR(CE,YB,XA,XB,uint,vint,RES2) 

      CTV=PART1N+PART2N+((H/3)*(RES1+RES2)); 

      RETURN 

      END 

SUBROUTINE SIMPSONBIR(CF,Y,XA,XB,uint,vint,CVAL) 

IMPLICIT NONE 

EXTERNAL CF 

DOUBLE COMPLEX SUMN,SUMY,PART1,PART2 

DOUBLE COMPLEX CF 

DOUBLE COMPLEX CVAL 

DOUBLE PRECISION XA,XB,Y,NX,X1,X2,H,uint,vint 

INTEGER IJ 

integer nxx 

NX=150.D0 

nxx=150; 

H=(XB-XA)/(2*NX); 

 SUMN=0; SUMY=0; 

      DO IJ=1,nxx-1 

      X1=XA+(2*IJ)*H; 

      SUMN=SUMN+CF(X1,Y,uint,vint); 

      END DO 
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      PART1=(2*H/3)*SUMN; 

      DO IJ=1,nxx 

      X2=XA+(2*IJ-1)*H; 

      SUMY=SUMY+CF(X2,Y,uint,vint); 

      END DO 

      PART2=(4*H/3)*SUMY; 

      CVAL=PART1+PART2+((H/3)*(CF(XA,Y,uint,vint)+CF(XB,Y,uint,vint))) 

      RETURN 

      END 
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