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ABSTRACT

AUTOMATIC TRANSCRIPTION OF TRADITIONAL TURKISH ART
MUSIC RECORDINGS: A COMPUTATIONAL ETHNOMUSICOLOGY

APPROACH

Music Information Retrieval (MIR) is a recent research field, as an outcome of

the revolutionary change in the distribution of, and access to the music recordings.

Although MIR research already covers a wide range of applications, MIR methods are

primarily developed for western music. Since the most important dimensions of music

are fundamentally different in western and non-western musics, developing MIR

methods for non-western musics is a challenging task. On the other hand, the discipline

of ethnomusicology supplies some useful insights for the computational studies on non-

western musics. Therefore, this thesis overcomes this challenging task within the

framework of computational ethnomusicology, a new emerging interdisciplinary

research domain. As a result, the main contribution of this study is the development of

an automatic transcription system for traditional Turkish art music (Turkish music) for

the first time in the literature. In order to develop such system for Turkish music,

several subjects are also studied for the first time in the literature which constitute other

contributions of the thesis: Automatic music transcription problem is considered from

the perspective of ethnomusicology, an automatic makam recognition system is

developed and the scale theory of Turkish music is evaluated computationally for nine

makamlar in order to understand whether it can be used for makam detection.

Furthermore, there is a wide geographical region such as Middle-East, North Africa and

Asia sharing similarities with Turkish music. Therefore our study would also provide

more relevant techniques and methods than the MIR literature for the study of these

non-western musics.
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ÖZET

GELENEKSEL TÜRK SANAT MÜZİĞİ KAYITLARININ OTOMATİK
OLARAK NOTAYA DÖKÜLMESİ: BİR HESAPLAMALI

ETNOMÜZİKOLOJİ YAKLAŞIMI

Müzik Bilgi Erişimi (MBE) müzik kayıtlarına dair erişim ve dağıtımda gerçekleşen

devrimci değişimlerin sonucu ortaya çıkan yeni bir araştırma alanıdır. MBE

araştırmaları şimdiden geniş bir uygulama alanını kapsamasına rağmen, yöntemleri

temel olarak batı müziği için geliştirilmiştir. Batı müziği ve batı-dışı müzikler arasında

ise müziğin en önemli boyutlarında temel farklılıklar olduğu için, batı-dışı müzikler için

MBE yöntemleri geliştirmek oldukça güçtür. Diğer yandan etnomüzikoloji disiplini

batı-dışı müzikler üzerine hesplamalı çalışmalar yapmak için önemli araçlar

sunmaktadır. Bu anlamda bu tez yeni ortaya çıkan disiplinlerarası bir araştırma alanı

olan hesaplamalı etnomüzikoloji çerçevesi içinde bu güçlüğün üstesinden gelmektedir.

Sonuç olarak bu tezin ana katkısı literatürde ilk kez Geleneksel Türk Sanat Müziği

(Türk müziği) için otomatik bir notaya dökme sistemi geliştirilmesidir. Bu sistemin

geliştirilebilmesi için yine literatürde ilk kez çalışılmış olan çeşitli konular ele

alınmıştır. Bu çalışma konuları da tezin diğer katkılarıdır. İlk olarak otomatik notaya

dökme problemi etnomüzkoloji disiplininin perspektifinden tartışılmıştır. İkinci olarak

bir otomatik makam tanıma sistemi geliştirilmiştir. Üçüncü olarak da Türk müziğinin

dizi kuramı, makam tanımada kullanılıp kullanılamayacağını anlamak üzere dokuz

makam  için hesaplamalı olarak değerlendirilmiştir. Ayrıca, Orta-Doğu, Kuzey-Afrika

ve Asya gibi çok geniş bir coğrafyanın müzikleri Türk müziği ile önemli benzerlikler

göstermektedir. Çalışmamız bu batı-dışı müziklerin çalışılması için de varolan MBE

yöntemlerine göre daha kullanışlı araçlar sunacaktır.
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CHAPTER 1

INTRODUCTION

Automatic music transcription (AMT) is roughly defined as the conversion of

acoustic music signals into symbolic music format (e.g. MIDI) in the literature and

mainly applied for music information retrieval (MIR). However, the problem definition,

in other words the meaning of transcription is not well-defined within the AMT

literature. Automatic transcription is usually considered as the automatization of manual

transcription procedure. However, while music is visually represented by staff notation

for performance or analysis in manual transription, AMT applications generally are not

developed for either performance or analysis and thus do not require staff notation.

Ellingson (2011) lists conventional meanings of transcription as follows:

 Transfer of a work from one notation system to another.

 Arrangement such as adaptation of a score from orchestra to piano.

 Writing down a musical piece from a live or recorded performance.

The common point of all three meanings is the visual representation of music for

either performance or analysis. On the other hand, main focus of AMT as a research

domain within MIR is developing systems for the retrieval of musical pieces from large

music databases. These systems require symbolic representation of musical information

which mainly consists of pitch, onset time, and duration information both for the query

and the database. Therefore symbolic representation of music need not to be in visual

form for music information retrieval. Since the conventional meanings of transcription

is based on visual representation of music for the performance or analysis, it can be said

that a new meaning of transcription occurs by the AMT where the music is neither

represented visually nor used for performance or analysis.

Similar to MIR studies, AMT studies also cover a wide range of applications.

Thus the meaning of transcription and the output vary depending on the kind of

application. Naturally, the representation of reference data for evaluation varies

accordingly. In this sense, applications of AMT can be roughly grouped as follows:

 Query-by-humming (QBH)/singing/whistling/playing an instrument



2

 Melody and/or bass line extraction from polyphonic recordings

 Automatic transcription of polyphonic/monophonic recordings

 Automatic music tutors/ Audio to score alignment

The form of transcription ranges from simple pitch track such as f0 curve to

western staff notation depending on the kind of application. However, only very few of

these applications try to obtain western staff notation which requires additional

information such as note names, tonality and rhythm. In this sense, automatic music

tutors and few of the studies on automatic transcription of polyphonic/monophonic

recordings try to obtain western staff notation. The meaning of transcription in such

studies are close to the third conventional meaning of transcription in the sense the

music is represented visually for the performance.

Transcription applications for automatic music tutors aims to match the

performance of the user with the original notation in order to help the music student to

align her/his performance visually which is also called as audio to score alignment

(Mayor et al. 2009). Few of the automatic transcription of polyphonic/monophonic

music applications also aim to help amateur musicians without proper music education

to write down their musical compositions (Wang et al. 2003).

Despite the varying meanings of transcription in AMT, the transcription is

usually defined in the literature as if the conventional meanings are used without

mentioning the specific aim of the application. It is clear that the meaning and output of

an automatic transcription task are quite different for retrieval applications and music

tutor applications. While the representation of music makes no sense for the user in the

former case, the representation of music should be conventional (eg. western staff

notation) for the latter case.

However, AMT studies mostly deal with a general automatic transcription

problem as the conversion of acoustic music signals into symbolic music format (e.g.

MIDI) and presents only their method leaving the decision of application domain to the

reader;  QBH, music tutor, musicological analysis, audio coding etc. (e.g. Bello et al.

2000; Monti and Sandler 2000; Ryynanen and Klapuri 2004; Kriege and Niesler 2006;

Typke 2011; Faruqe 2010; Argenti et al. 2011 etc.).

Ambiguity in the problem definition of AMT reveals itself especially when the

evaluations of transcription systems are considered. Automatic transcription of a

musical performance independent from the kind of application is usually compared with

either original notation or manual transcription. Furthermore many studies even did not
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specify the source of the reference data (e.g. original notation or manual transcription)

used for evaluation, also (e.g. McNab and Smith 2000; Wang et al. 2003; Paiva et al.

2004; Bruno and Nesi 2005; Fonsesca and Ferreira 2009 etc.). The problem is whether

the original notation or the manual transcription can exactly match with performance

due to personal interpretations of both performer and transcriber. However this point

especially becomes a problem when automatic transcription is defined as obtaining

original notation from performance as a kind of reverse-engineering (Klapuri 2004).

Only very few of the studies accept that original notation and transcription of a

performance significantly differs (Dixon 2000, Orio 2010) and define automatic

transcription as obtaining a human readable description of performance (Cemgil et al.

2004; Hainsworth 2003) which is more reasonable. Hainsworth (2003) within MIR

literature figure out that manual transcription strategies can be quite different resulting

various degrees of divergence from the original performance. Similarly the study of

Cemgil (2004) shows that there is no unique ground truth for manual transcription even

among well-trained musicians.

Finally, this thesis presents automatic transcription of monophonic instrumental

audio recordings of traditional Turkish art music (shortly Turkish music). Output of our

transcription system is conventional staff notation which can be used for performance

and education. Therefore, our study can be considered within the context of

conventional meaning of transcription. However, it should be mentioned that our aim is

not to obtain original notation from performance as formulated by Klapuri (2004) as

reverse engineering, rather we try to obtain a human readible description of

performance as stated by Cemgil (2004).

Besides the ambiguity in the definition of automatic music transcription

problem, there are serious challenging problems for developing a AMT system for

Turkish music. The most challenging problem is about the fact that current techniques

and methods of AMT studies are mainly developed for western music. In this sense the

quality and quantity of AMT studies on non-western musics can be neglible in

comparison to studies on western music. Therefore application of current techniques

and methods of AMT directly to Turkish music, as a non-western music, is a

challenging task based on following factors:

 Differences between western music and Turkish music in terms of  pitch

space, rhythm and tonality/modality.

 Divergence of theory and performance in Turkish music.
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 Problems of notation system in Turkish music.

 Lack of robust MIR methods on non-western musics.

The first subsection, “Problems of developing an AMT system for Turkish

music”, discuss these factors, briefly. Following subsections sketch the framework of

the study which also presents the outlines of the thesis, as follows:

1.2 A framework of computational ethnomusicology (CE): CE supplies necessary

approaches for AMT of non-western musics which current MIR literature lacks.

1.3 Automatic makam recognition and tonic pitch detection: makam and tonic pitch

of a given recording are crucial for automatic transcription. It is not possible to find

a reference pitch without the determination of tonic pitch, and in order to find tonic

pitch it is necessary to find the makam of the piece in Turkish music.

1.4 Evaluation of scale theory of Turkish music: Western music theory plays a

crucial role in current MIR methods. Therefore we investigate whether the scale

theory of Turkish music can provide a basis for MIR studies on Turkish music in a

similar way western music theory provides for the current MIR studies.

1.5 Automatic transcription of Turkish music: Segmentation and quantization of f0

curve, determination of pitch intervals, note labelling and quantization of duration.

1.1. Problems of Developing an AMT System for Turkish Music

A number of recent studies discuss the challenging aspects of applying current

MIR methods to non-western musics. With a focus on musics of Central Africa,

Moelants et al. (2006; 2007) mentions three differences of African musics from western

music in terms of pitch space: absence of a fixed tuning system, variable and

distributional characteristic of pitches and absence of octave equivalence. Such aspects

which are similar to Turkish music are also discussed by Gedik and Bozkurt (2010) in

detail in a recent special issue on “ethnic music”. In the same issue, Cornelis et al.

(2010) and Lidy et al. (2010) discuss the challenges in a broader MIR spectrum

considering the access and classification issues of non-western musics, in turn.

More specifically, the problems of applying current MIR methods to Turkish

music can be shortly summarized, since they are considered in detail by Gedik and

Bozkurt (2009; 2010). Figure 1.1  enables to compare the pitch-classes defined in

Turkish and western music theories. While 24 pitch-classes are defined in Turkish
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music theory, there are 12 pitch-classes defined in western music theory as can be seen

from the figure.

Figure 1.1. The pitch-classes defined in Arel Theory are represented at a chromatic
clavier obtained by Scala software (T24 Turkish notation system of Arel-
Ezgi). 1

However, in contrast to western music, there is a divergence between theory and

practice in Turkish music. The pitch interval values and the number of pitch-classes

between the practice and theory of Turkish music are not in a complete accordance. It is

still an open debate how many pitches per octave –propositions vary from 17 to 79 – are

necessary to conform to musical practice in Turkish music. Therefore the proper

representation of the pitch space is an important problem for Turkish music. Bozkurt

(2008) proposed a pitch-frequency histogram representation of pitch space of Turkish

music.

An example of pitch-frequency histogram is presented in Figure 1.2. Although

the cent (obtained by the division of an octave into 1200 logarithmically equal

partitions) is the most frequently used unit in western music analysis, it is common

practice to use the Holderian comma (Hc) (obtained by the division of an octave into 53

logarithmically equal partitions) as the smallest intervallic unit in Turkish music

1 http://www.xs4all.nl/~huygensf/scala/, Version 2.24j, Command language version 1.86i,
Copyright Manuel Op de Coul, 2007
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theoretical parlance. Therefore a pitch-frequency histogram of a recording is

represented in terms of Hc as shown in Figure 1.2.

Instead of a tonal structure as in western music, Turkish music has a modal

structure. While simple transpositions of two tonalities, major and minor, constitute the

basis for the MIR studies on western music, there are most frequently used 30 distinct

modalities (historically 600 makamlar) called as makam in Turkish music. The pitch

frequencies in Turkish music are not based on fixed tuning as in western music (e.g.

A4= 440 Hz). However only the knowledge of modality of a piece supplies a relative

reference pitch name (tonic name) and thus the pitch intervals with respect to tonic. In

other words, a piece from a certain modality can have different performances with

different reference pitch frequencies, but the pitch intervals may remain the same. The

knowledge of modality also supplies accidental signs which are necessary for the

automatic transcription.
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Figure 1.2. Pitch-frequency histogram of an uşşak performance by Niyazi Sayın.

Therefore, important differences in pitch spaces between western and Turkish

music can be simply observed by an example of pitch histogram from Turkish music as

shown in Figure 1.2. The figure presents pitch-frequency histogram of an uşşak

performance by Niyazi Sayın. The number of pitches and the pitch interval sizes are not

clear. The pitch intervals are not equal, implying a non-tempered tuning system. The

performance of each pitch shows a continous space in contrast to western music where

pitches are performed in fixed frequency values.
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The rhythmic structure of Turkish music, involving such rhythms 7/4, 9/8, 10/4,

15/8 etc., is also much more complicated than the rhythmic structure of western music.

Another important difference between Turkish and western music is about the  notation

system. Since notation system of Turkish music is a direct reflection of theory, the

relation of notation and performance is highly problematic even for the manual

transcription of Turkish music. A final important difference between Turkish and

western music is the frequent use of ornamentations and performance styles as one of

most the important characteristics of Turkish music which makes pitch space musch

more complicated than western music. Furthermore these characteristics are not

represented in notation which makes transcription more challenging for Turkish music.

Although there are few MIR studies on AMT of non-western musics, they are

also far from presenting a solution for the challinging aspects of applying current MIR

methods to non-western musics. A recent study reported that although there is a slight

increase in the number of papers on non-western musics presented at the most important

symposium of MIR community, ISMIR, within last 9 years, the percantage of non-

western studies is only 5.5 % in total (Cornelis et al. 2010: 1011). Among them, only 6

papers are about the transcription of non-western musics which corresponds to less than

1 % of the papers in total. Only one paper (Nesbit et al. 2004) presents transcription of

Australian Aboriginal music, consist of two simple accompaniment instruments, while

other 5 papers explore specific facets of transcription problem.

These studies usually either converge the pitch space to western music or simply

do not mention the characteristics of pitch space of non-western music considered.

Nesbit et al. (2004) presents a very simple case of transcription of Australian Aboriginal

music without facing any pitch space problem. A percussion instrument, clapstick and

an accompaniment instrument producing only fundamental and several harmonic

pitches, didjeridu are transcribed in this study. Since this traditional music of

Indigenous Australians has no written notation, the study aims to provide a tool for

ethnomusicological study.

Out of ISMIR, there are not much studies on automatic transcription of non-

western musics. Al-Tae et al. (2009) considers 2 types of woodwind flute-like

instrument, nay nawa and nay shabbaba from Arabian music, for a MIR system of

query-by-playing within a database of Jordanian music. Although the pitch space is

quite different from the western music, the system is based on approximation of all

pitches to nearest pitch-classes in western music. Similarly a pitch tracking study on



8

Sout Indian music (Krishnaswamy 2003a) reduces the pitch space to 12 pitch-classes in

western music. Kapur et al. (2007) presents a different paradigm by presenting a

transcription of North Indian fretted string instrument sitar for education by the help

using visual data obtained from sensors placed on the frets. However the pitch space

peculiar to North Indian music is not considered in this study.

 There is also a folk music research domain within MIR, which is usually

considered under the “ethnic music” title which reminds “non-western musics”

(Cornelis et al. 2010; Orio 2010). There are many MIR studies on folk music based on

European song collections, but they are represented by western music notation sharing

the same pitch space with western classical music (e.g. Huron 1995; Toiviainen and

Eerola 2001; Juhász and Sipos 2010; Kranenburg et al. 2010). Among these studies

there are only 2 studies dedicated to the automatic transcription task: Duggan et al.

(2009) present the automatic transcription of traditional Irish tunes and Orio (2010)

presents automatic transcription of Balkan and Italian songs. However, both studies deal

with 12-pitch-classes of western music and consider the transcription task within a

retrieval system.

As a result, current MIR literature seems to be insufficient for the development

of AMT system for non-western musics. On the other hand, the discipline

ethnomusicology supplies some useful insights for the computational studies on non-

western musics.

Instead of considering the problems briefly presented in this subsection as an

independent chapter in the thesis, each problem is considered within relevant chapters,

as follows; ethnomusicological approach to the ambiguity in the definition of automatic

music transcription problem, divergence of theory and practice, and problems of

notation system in Turkish music are considered within Chapter 2, computational

approach to differences of pitch space between western music and Turkish music, and

divergence of theory and practice in Turkish music are considered in Chapter 3 and

Chapter 4, respectively. Finally, lack of robust MIR methods on non-western musics is

considered within Chapter 3 and Chapter 5.
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1.2. Computational Ethnomusicology for AMT of Non-Western Musics

Due to the infancy of MIR studies on non-western musics, current methods

developed for western music are usually applied blindly to non-western musics by

engineers or computer scientists with little or no musicological considerations

(Tzanetakis et.al. 2007). On the other hand, the volume of research using computational

methods on non-western musics is much larger and has a much longer history within

ethnomusicology than the MIR studies on non-western musics. Tzanetakis et al. (2007)

review these studies and introduce a new term, computational ethnomusicology (CE),

“to refer to the design, development and usage of computer tools that have the potential

to assist in ethnomusicological research”. Although Tzanetakis et al. (2007) underline

the benefits of integrating MIR methods into ethnomusicological research, they use the

term CE rather to emphasize an interdisciplinary collaboration of MIR and

ethnomusicology.

In this sense, the problem of “transcription” of non-western musics, as well as

western music, is also as old as the ethnomusicology itself. The issue was subject to hot

discussions for the founders and leading figures of the discipline such as Ellis (1814-

90), Stumpf (1848-1936) and Hornbostel (1877-1935), and Seeger (1886-1977). The

distinction between original notation and transcription has already been defined fifty

years ago by Charles Seeger in 1958 (Ellingson 1992a: 111). While prescriptive

notation (original notation) defines how a specific piece should be performed, the

descriptive notation (transcription) defines how a specific performance actually sounds.

Furthermore it is interesting to note that the technology for the “automatic

transcription” of non-western musics within ethnomusicology is also much older than

the MIR as a result of the invention of autotranscription machines by 1870s (Ellingson

1992, p. 134). Several devices were developed either for the measurement of pitch

intervals or autotranscription of non-western musics such as Appunn’s Tonometer

(1879), Miller’s Phonodeik (1916), Metfessel’s Phonophotography (1928), Seashore’s

Phonophotograph (1932), Stroboconn (1936), Obata and Kobayashi’s Direct-Reading

Pitch Recorder (1937) as reported by Cooper and Sapiro (2006). However, it has been

the  Seeger’s Melograph (1951, 1958) most widely used in ethnomusicological research

for the automatic music transcription. More recently, a software mainly developed for
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speech analysis, PRAAT, has been used for the automatic transcription by the

ethnomusicologists as suggested by Cooper and Sapiro (2006) in their survey.

On the one hand, techniques and methods of MIR for AMT are currently more

advanced, compared to PRAAT in the computational sense. On the other hand

ethnomusicology as a musicological programme rooted in the research on non-western

musics, has already solved methodological problems long ago such as avoiding the use

of western musical concepts for non-western musics, an example of ethnocentrism, in

the emerging years of the discipline. The problem of ethnocentrism is exactly what the

MIR research experiences almost whenever non-western musics are considered even by

the “insiders”.

The qualitative methods of ethnomusicology and quantitative methods of MIR

could be another collaboration point between the two disciplines. Especially the

quantitative approach of MIR toward evaluation makes the details of the process

inaccessible. On the contrary the methods of ethnomusicology are mainly qualitative

which supplies details of a procedure for any musical event. As a result, the perspective

of ehnomusicology presents a solution for the ambiguity of the problem definition in

AMT literature. Furthermore, the perspective of ethnomusicology also supplies

necessary approaches to many facets of this problem related with Turkish music such as

divergence of theory and practice, and problems of notation system in Turkish music. In

this sense our study tries to establish this interdisciplinary connection between

ethnomusicology and MIR for the automatic transcription of traditional Turkish art

music.

Finally, Chapter 2 presents this ethnomusicological framework which

subsequent chapters are based on. Briefly, the ethnomusicological perspective toward

the transcription problem, the divergence of theory and practice in Turkish music and

the problems of Turkish notation system are presented in Chapter 2. A brief

ethnomusicological case study on manual transcription is also presented at the end of

this chapter.

1.3. AutomaticMakam Recognition

As aforementioned, makam and tonic pitch of an audio recording are crucial for

automatic transcription in Turkish music. Furthermore knowledge of makam also



11

provides the accidentals to be used in the transcription.  It is not possible to find a

reference pitch without the determination of tonic pitch and in order to find tonic pitch it

is necessary to find the makam of the piece in Turkish music. However, firstly f0 data

should be extracted for any operation on pitches. Representation of pitch space for

Turkish music recordings were presented by Bozkurt (2008) for the first time. F0 data is

extracted by the YIN algorithm (de Cheveigne and Kawahara 2002) with post-filters

designed by Bozkurt (2008) to correct octave errors and remove noise on the f0 data.

Then Bozkurt (2008) presented the pitch-frequency histogram representation of Turkish

music and automatic tonic detection.

In the MIR literature on western music, tonality of a musical piece is found by

processing pitch-class histograms which simply represent the distribution of 12 pitch-

classes performed in a piece. In this type of representation, pitch-class histograms

consist of 12 dimensional vectors where each dimension corresponds to one of the 12

pitch-classes in western music. The pitch-class histogram of a given musical piece is

roughly compared to templates of 24 tonalities, 12 major and 12 minor, and the tonality

whose template is more similar is found as the tonality of the musical piece.

The construction of the tonality templates is mainly based on three kinds of

models in the literature: music theoretical (e.g. Longuet-Higgins and Steedman 1971),

psychological (e.g. Krumhansl 1990) and data-driven models (e.g. Temperley 2008).

These models were also initially developed in the studies based on symbolic data.

However, neither psychological nor data-driven models are fully independent from

western music theory. In addition, two important approaches of key-finding algorithm

based on music theoretical model use neither templates nor key-profiles: the rule-based

approach of Lerdahl and Jackendoff (1983) and the geometrical approach of Chew

(2002).

As a result, we apply template matching for finding the makam of a given

Turkish music recording. However, a data-driven model is chosen for the construction

of templates due to the lack of either psychological models or a relaible theory in

Turkish music. Similar to pitch-class histogram based classification studies, we use a

template matching approach for makam recognition using pitch-frequency histograms

(see Figure 1.2). We used pitch-frequency histograms for the representation of pitch

space of Turkish music. The template for each makam type is simply computed by

averaging the pitch-frequency histograms of audio recordings from the same makam

type after aligning all histograms with respect to their tonics. Figure 1.3 shows 2
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histogram templates of makamlar rast and uşşak.
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Figure 1.3. Pitch-frequency histogram templates for the two types of melodies: rast
makam and uşşak makam.

Thus, each recording’s histogram is compared to histogram templates of the

makam types and the makam type whose template is more similar is found as the

makam type of the recording for automatic makam recognition. As an example, pitch-

frequency histogram of a hicaz recording shown in Figure 1.2 is compared to the two

makam templates, rast and uşşak shown in Figure 1.3. The most similar makam

template is found as makam uşşak which gives name of the makam of the recording.

Since both makam recognition and tonic detection base on matching a histogram with a

template, these two steps are indeed performed by a single histogram matching

operation. Therefore, since the tonic of each makam template is given, automatic

makam detection also supplies automatic tonic detection.

The distance between pitch frequency histograms are measured by City-Block

(L1 norm) distance. 172 recordings of 9 makamlar which represent 50% of the current

Turkish music repertoire are used in the study. Leave-one-out cross validation method is

applied for evaluation and success rate is found as 68 % in terms of F-measure for

automatic makam recognition.

Finally, the details of the automatic makam recognition and tonic detection and a

comprehensive review on the use of pitch-class histograms in MIR studies both for

western and non-western music in comparison with Turkish music are presented and

lack of robust MIR methods on non-western musics is discussed in Chapter 3.
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1.4. Evaluation of Scale Theory of Turkish Music for MIR

In this part of the study, our main motivation is to investigate whether the scale

theory of Turkish music can provide a basis for automatic makam detection in Turkish

music in a similar way western music theory provides a basis for the current modality

deection studies. Western music theory plays a crucial role in current MIR methods,

especially for the representation of the pitch space as equal tempered 12 pitch-classes.

In this sense, we try to understand whether scale theory of Turkish music can provide

such valid pitch-class definitions for MIR studies on Turkish music. However, there are

several different theories of Turkish music where the number of pitch-classes varies

from 17 to 79 (Yarman 2008).

As a result, we consider the most influential theory in Turkish music developed

mainly by Hüseyin Sadeddin Arel (1880-1955). Arel theory is an official theory for

music education, and musical notations and transcriptions are also written according to

Arel theory in Turkey. On the other hand, the discussions about the divergence between

the theory and the practice are also mostly held with respect to Arel theory, especially

about the defined makam scales. Therefore, both for the research in MIR and

ethnomusicology, Arel theory is worthy of investigation. Consequently, we have

evaluated the makam scale theory of Arel.

The automatic makam recognition method and the data set summarized in

Subsection 1.3 are used for the evaluation. Since the theory defines fixed pitch intervals

for each makam scale, we have represented theoretical pitch intervals for each makam as

a sum of Gaussian distributions as shown in Figure 1.5. The mean of each Gaussian

distribution was set at the fixed pitch interval values defined in the theory for each

makam, and their standard deviations were selected as 2 Hc, nearly half a semitone,

heuristically.
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Figure 1.4. Representation of hicaz makam scale defined in Arel theory as sum of
Gaussian distributions.

Several pitch intervals was found to be lacking in the theory in comparison to

pitch intervals in practice. As a result, the success rate of 64 % in terms of F-measure is

found which is 4 % less than the success rate of data-driven model summarized in

Subsection 1.3.

Another makam recognition model is applied where new templates are

constructed by using the pitch intervals and weights obtained from the templates of the

data-driven model for new Gaussian distributions. This new automatic recognition

model outperformed data-driven model. The success rate of automatic makam

recognition based on this new model was found as %75 in terms of F-measure, %7

better than the success rate of data-driven model.

Finally, both the divergence of theory and practice is evaluated and a more

successful automatic makam recognition model is designed for our automatic

transcription system. The details of this study are presented in Chapter 4.
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1.5. Automatic Transcription of Turkish Music

Automatic transcription of Turkish music as a problem, mostly demonstrates

resemblance with automatic transcription of singing, humming or performance of

fretless pitched instruments such as violin within MIR studies, due to the resulting

continuous pitch space. As Ryynanen (2006) mentioned most of the singing

transcription applications are designed as the front-end of QBH systems in contrast to

our study. The most challenging task in singing transcription is converting a continuous

f0 curve to note labels (Ryynanen 2006: 362). However, despite the resemblance of

pitch-spaces in singing and Turkish music, it should be kept in mind that it is always a

matter of quantization of the f0 curve to the nearest pitch-class in western music. Of

course a simple rounding operation gives poor results for quantization of f0 curve,

depending on the following two important characteristics of singing:

 The performance of a singer can result with deviation of its frequency from the

reference frequency in time.

 Performance of ornamentations such as vibrato, legato and glissando which are

not possible in fretted instruments.

Since we are interested in instrumental recordings in Turkish music, the first

characteristic is out of our scope. The second characteristic is one of the most

important characteristic of Turkish music as aforementioned. However

ornamentations also take little attention in the litrature.

Automatic transcription task is roughly consist of three steps: extraction of f0

information, segmentation of f0 curve and labeling each segment with note names.

There are various methods for the extraction of f0 information: methods based on time-

domain, frequency domain or auditory model. Methods for segmentation and labeling of

f0 curve mainly follow two approaches: cascade approach where f0 curve is first

segmented and then labeled, and statistical method where segmentation and labeling are

jointly performed (Ryynanen 2006: 363).

The most popular statistical method for automatic transcription is Hidden

Markov Modeling (HMM). However, as mentioned by Orio (2010) the use of HMM for

automatic transcription requires collection of scores for training HMM which are hardly

available for non-western musics. In order to obtain training data for HMM the use of

manual transcriptions is also problematic for non-westen musics. Manual transcription
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of non-western musics either requires existence of a notation system or a notation

system in accordance with performance as in western music.

Therefore we preferred cascade approach in our AMT system as shown in

Figure 1.5. The system accepts monophonic audio recordings of instrumental Turkish

music. After the extraction of f0 data, pitch-frequency histogram is calculated in order

to find the makam (modality) and tonic pitch of the piece. Both the knowledge of

makam and tonic pitch are crucial for transcription, since without the determination of

tonic pitch, it is not possible to find a reference pitch in Turkish music. It is obvious that

pitch intervals can be only found with respect to a reference pitch. However, in order to

find tonic pitch it is necessary to find the makam of the piece, since each makam has a

relative tonic pitch and definite note name for that tonic picth. Therefore, automatic

makam recognition supplies both f0 value and name of the tonic pitch. Knowledge of

makam also provides the accidentals to be used in the transcription.

F0 extraction is applied as presented in Subsection 1.3. Automatic makam

recognition and tonic detection are applied as presented in Subsection 1.4. Therefore, it

is possibble to express f0 curve with respect to tonic pitch and then to obtain pitch

intervals. This operation is applied after converting the f0 curve to Hc. Then the value

of tonic pitch is substracted from the f0 curve. In order to label resulting f0 curve by

note names, firstly it is necesarry to segment the f0 curve. Segmentation corresponds to

finding the onset of the notes. Secondly f0 curve within each segment is quantized

which corresponds to eliminating ornamentations such as appagiatura, acciaccatura,

vibrato and glissandos. Rule-based approach is applied for segmentation and

quantization where parameters are heuristically determined depending on the

musicological knowledge peculiar to Turkish music.

After segmentation and quantization, representation of pitch intervals in terms of

Hc gives a resolution of 53 Hc/octave for f0 curve which is much bigger than the

number of pitch classes defined in theory as 24 pitch-classes/octave. Since notation

system of Turkish music  is a direct reflection of theory and in order to obtain a readable

notation, pitch intervals are converted to the nearest pitch-classes which have distinct

names for 2 octaves in theory. As the last step before transcription, note durations

corresponding to the segment lengths are quantized by using duration histogram. Finally

note names, onset time and note durations are used as an input to a notation software
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MUS22 which is specifically designed for Turkish music and outputs conventional

Turkish music staff notation. Since each block has a definite success rate, GUI enables

user to correct any faulty information such as makam name, tonic pitch etc. İn order to

obtain a more robust transcription result.

Figure 1.5. Block diagram of AMT system for Turkish music.

As a result, while our automatic transcription system outputs conventional

notation which corresponds to prescriptive notation, the GUI supplies descriptive

notation where details of a recording can be observed on f0 curve in comparison to

2 http://www.musiki.org/
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parameters of prescriptive notation such as note names, duration information and

onset/offset times.

Finally, 5 recordings are used for evaluation. Manual transcriptions of 2

musicians and automatic transcriptions are evaluated with respect to original notation.

While automatic transcription outperforms manual transcriptions for 2 recordings,

success rates of automatic transcription for the rest of 3 recordings are found close to

the success rates of manual transcription. The study and qualitatively evaluation of the

results are presented in detail in Chapter 5.

1.6. Contributions

Main contribution of the thesis is the design of an AMT system for Turkish

music for the first time in the literature. Secondary contributions of the study are the

approaches, methods and techniques developed also for the first time throughout the

research for automatic transcription of Turkish music. These contributions can be listed

as follows:

 An interdisciplinary approach for the study of automatic transcription of non-

western musics which synthesize qualitative methods of ethnomusicology and

quantitative methods of MIR.

 Automatic makam recognition.

 Evaluation of scale theory of Turkish music for nine makamlar in order to

understand whether it can be used for makam detection.

Finally, output of our AMT system corresponds to the conventional meaning of

transcription, since we try to obtain  conventional staff notation from recordings of

Turkish music for the purposes of performance and education. Since this kind of AMT

application covers the most comprehensive information, output of our study would

enable other kinds of applications for Turkish music also such as retrieval and

ethnomusicological analysis. Furthermore there is a wide geographical region such as

Middle-East, North Africa and Asia where the musical cultures shares close similarities

with Turkish music. Therefore our study would also provide more relevant techniques

and methods than the MIR literature for the study of these non-western musics.
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CHAPTER 2

ETHNOMUSICOLOGICAL FRAMEWORK

2.1. Basic Concepts of Turkish Music3

Traditional musics of wide geographical regions, such as Asia and Middle East,

share a modal system in their musics instead of tonal system of western music. In

contrast to tonal system, the modal systems of these non-western musics cannot be only

described by scale types such as major and minor scales as in western music. Modal

systems lie between scale-type and melody-type descriptions in varying degrees

peculiar to a specific non-western music. While the modal systems such as maqam in

Middle East, makom in Central Asia and raga in India are close to melody-type, the

pathet in Java and the choshi in Japan are close to the scale-type (Powers 2008). In this

sense, the makam practice in Turkey, as a modal system, is close to the melody-type,

and thus shares many similarities with maqam in the Middle East.

Turkish traditional art music is basically classified into several makamlar, both

in theory and in practice. Each makam, having a distinct name, generally implies a set of

rules for composition and improvisation. These rules are roughly defined in theory in

terms of the scale type and the melodic progression (seyir). Although there is a general

consensus about the names of makamlar, at least in practice, the rules that define them

remain problematic.

However, the definitions and the number of the makamlar have greatly changed

throughout the history. While the number of makamlar is stated as 27 in the treatise of

Dimitrie Cantemir (17th c.), Arel (1993) defines 113 makamlar. The defining rules of

makamlar are also considerably altered in the Arel theory, such as the abandonment of

the traditional concepts and classification categories avaze, şube and terkib. On the

other hand, Öztuna (2006) reports that historically, there have been as many as 600

3 This section is adapted from Gedik, A. C. and Bozkurt, B.(2009). Evaluation of the Makam Scale
Theory of Arel for Music Information Retrieval on Traditional Turkish Art Music, Journal of New
Music Research, 38(2): 103-116.
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makamlar, but only one sample for each of the 333 makamlar are left today, and

approximately seventy percent of the current repertoire consists of only 20 makamlar.

Form provides an additional classification for Turkish music in theory and in

practice. Each composition has a distinct makam name such as hicaz, saba, nihavend

and a distinct form such as peşrev, sazsemai. So each composition is referred to as hicaz

peşrev, saba sazsemai etc, where the makam name is followed by a form name. The

usul, the rhythmic structure of a composition such as aksak (9/8), semai (3/4) etc., is

also mentioned in the naming of compositions. Improvisation is considered as a free-

rhythmic form and classified as instrumental (taksim) and vocal (gazel).

2.2. The Divergence of Theory and Practice in Turkish Music4

The divergence between theory and practice, by no chance, is common5 in the

traditional art musics of the Middle East, where practice is mainly based on oral

tradition and theory is meant to be speculation and science of music (Bohlmann 2008).

Nonetheless, this fact appeared as a “problem” due to the westernization and

nationalization by the 20th century, which also try to bring standardization in music.

However, the lack of standardization in the production of instruments seems to lead to

the discussions about the divergence of theory and practice.

Two representative examples of the westernization and the nationalization of

music are Egypt and Turkey. The Congress of Arab Music held in Cairo in 1932 is an

historical attempt to standardize the theory and practice of traditional art music6 (Racy

1991:68). Although nationalism was not very explicitly present in the congress, the term

“Arab music” was clearly implying a distinction from Turkish and Persian musics

(Thomas 2007:2). The cultural policies of the government in Egypt intended both to

define an “Arab music” and raise it to the “level” of western music (Racy 1991:70) in

accordance with the general top-down direction of westernization and nationalization

processes.

On the other hand, the same processes followed a different course in Turkey.

Few years after the 1923 revolution, educational institutes of the traditional art music

4 This section is adapted from Gedik and Bozkurt (2009)
5 Even as early as in the 13.c., the theory of Urmevi slightly diverted from the practice of his time
(Marcus, 1993:50).
6 The term “traditional art music” is used to refer the relevant musics of Egypt and Turkey.
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such as official schools, religious lodges and cloisters were closed (Tekelioğlu

2001:95). This music was regarded as a symbol of Ottoman past, which implies a

primitive, morbid, non-rational, non-western and non-Turkish heritage, blurred with

Arab, Persian and ancient Greek effects (Signell 1976:77-78). Thus, the new Turkish

music was defined as the synthesis of “pure” Turkish folk music and western classical

music. Still this neither led to the disappearance of traditional art music nor to the

prevention of its own westernization and nationalization. This can be considered as a

characteristic of late modernization: the concurrent existence of modernity and

traditionality and/or hybrid structures.

The music theorists did not follow the cultural policies of the state, and

developed new discourses and theories based on the “Turkishness” and “westernness”

of traditional art music. Despite the ideological and physical interventions of the state,

even the radio broadcasting of traditional art music was banned between 1934 and 1936,

these theories and discourses were started to prevail among the theorists and the

musicians. However, the political climate of Turkey after 1940s changed and seemed to

become more tolerate towards traditional art music (Öztürk 2006b:153). The journal,

Musiki Mecmuası (founded by Arel in 1948) and semi-official and unofficial schools of

traditional art music played a crucial role in the appreciation of these theories and

discourses. Nevertheless, traditional art music is not officially recognized until 1976 by

the foundation of the first Conservatory of Turkish Music. Only after this event, the

current theories and discourses were also officially recognized and appreciated, and thus

constituted the basis of national education of the traditional art music. Therefore, these

theories and discourses have been much more prevailed and established after 1976.

It should be added that neither the Arab music congress nor the Turkish

revolution was a sudden turning point for the westernization of traditional musics.

Westernization dates back to the 19th cenutry, both in Egypt and Turkey: Khedive

Isma'il (1830-1895), a reformist ruler of Egypt, and Selim III (1761-1808), a reformist

Ottoman emperor, were both patrons of music, interested in western and traditional

musics and took important steps toward westernization of musical life. So the new

theories and discourses in Turkey can be considered as a continuation of the trends

started in the 19th century. Furthermore, two of the most influential modernist theorists

of the 20th century, Rauf Yekta Bey (1871-1935) and Arel were also the “students” of

the heads of dervish lodges (Akdoğu 1993:xii).
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The study of Yekta on the westernization of the theory provides a historical

turning point. The term “Ottoman music” is replaced by “Turkish music”, and the

traditional number of intervals is increased from seventeen to twenty-four (Öztürk

2006a: 213-214). However, his colleague Arel went much further in trying to “prove”

both the Turkishness7 of the traditional art music and its resemblance to western music.

He invented new instruments (soprano, alto, tenor, bass and double-bass kemençe) and

gave makam çargah, which has only one piece in repertoire, a central role in his new

theory due to its equivalance to scale of C major in western music.

Feldman (1990:100) compares the positions of Yekta and Arel as follows: while

Yekta appears to be more involved with musicological works, Arel plays the main role

in the ideological struggle against the cultural policies of the state which rejects

traditional Turkish art music. Nevertheless, it should be noted that Yekta had already

written an explicit answer against the arguments of the cultural policies in his 1925

articles (Yekta 1997a:5-7; 1997b:33-34) twenty years before Arel. However, Arel seems

to exceed the logical limits of past trends both theoretically and discursively in the 20th

century.

Arel theory was first published as a book in 1968 after its earlier publication as

articles in 1948, though Zeki Yılmaz’s book, published in 1977, which is a simplified

and somewhat distorted version of the Arel theory, has prevailed as if it was an official

textbook. Shiloah (2008) describes a similar tendency in Egypt after the second half of

the 20th century as an shift of interest from theory to practical theory. Therefore, Arel

theory is not much known in detail today, except among theorists and few musicians.

The main problems of Arel theory can be listed as follows (Öztürk 2006a:214-

216):

 makam çargah, has been given a central role and attributed as a general scale,

which is identical to the C major scale and tonality in western music. The

hierarchical tonal functions are attributed to the specific scale “degrees” and a

new notation system similar to western staff notation is introduced.

 One of the most important aspects of Turkish music, the melodic progression

(seyir), is underestimated. Therefore, the makam concept is reduced to a tonal

scale as in western music.

7 All past theorists are considered as ethnic Turks, although many of them were non-Ottoman or
even non-Turkish.
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Stokes (1996) also refers to these attempts as the “Arel project” in reference to

its strong relations with nationalization and westernization. However, there is an

increasing tendency toward criticizing Arel theory today, especially among the theorists

because of its divergence from the practice.

As a result, the westernization and the nationalization of the theories and

discourses have become more established by the official institutions founded in Turkey

and in Egypt after the second half of the 20th century. Thus, the divergence between the

theory and the practice became more apparent and problematic in countries due to the

officially institutionalized common discourse: “the theory should generate practice”

(Thomas 2007:4). Especially the standardization of tuning system as equal-tempered

quarter-tone scales in Egypt and as division of the octave into 24 unequal intervals in

Turkey generates similar new discourses among musicians: Pitch interval values are

performed differently than the ones defined in theory, and musicians describes this

flexibility with respect to the theory by using such terminology as “a little higher”, “a

little lower” or “minus a comma” (Marcus 1993). Unstandardized fret positions in the

production of instruments such as kanun and tanbur explicitly provide evidence for

these flexible pitch preferences of performers in Turkey (Yavuzoğlu 2008:12).

On the other hand, although the performances diverge from the theory, the Arel

theory is highly respected among performers, and they hesitate to contradict the theory

when the pitch intervals of their performances are measured by musicologists8.

2.3. Perspective of Ethnomusicology towards Transcription Problem

Since existence of a notation system is a prerequisite for any transcription, it is

necessary to define the concept of notation first. Notation is shortly a communication

system between musicians either in written or in oral form. However, oral notation is

out of our scope, since our focus is transcription. Besides communication, notation also

helps musicians to remember a much greater repertoire which otherwise not possible to

memorize. (Bent et al. 2011)

In this sense, first transcription attempts were for the purpose of preserving

musical cultures without notation at the beginings of 19th century (Nettl 1982: 67). The

8 Karl Signell and M. Kemal Karaosmanoğlu (quoted from Can Akkoç) shared their measurement
experiences with foremost performers Necdet Yaşar and Niyazi Sayın, respectively. (personal
communication with Signell and Karaosmanoğlu, 6-8 March 2008, İstanbul)
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first folk song collections in  Europe with the same motivation also encounter the first

problems of transcription about using a notation system not designed for the transcribed

music. Therefore, these folk song collections, also used in MIR studies consist of

distorted versions of the original songs (Burke 2009: 44-45). Transcription for the

purpose of analysing non-western musics and comparing it with western music emerges

by the foundation of the discipline ethnomusicology. By the end of 19th c. it was widely

accepted that use of European notation for non-Eropean music cultures was inadequate

(Ellingson 1992a: 117).

Transcription, from the ethnomusicological point of view rather corresponds to

the description of a musical piece. On the other hand, notation corresponds to

representation of musical features for the purpose of prescription (Ellingson 1992a:

153). Therefore, transcription and notation are interrelated concepts since transcription

is only possible for a definite notation system. As a result, both are crucial concepts for

the automatic transcription which take little attention within literature of AMT.

One of the milestones for the discussions of transcription in ethnomusicology is

the distinction suggested by Seeger. Notation is classified either as prescriptive or

descriptive by Charles Seeger in 1958 (Ellingson 1992b: 111): prescriptive notation

defines how a specific piece should be performed and the descriptive notation defines

how a specific performance actually sounds.

Nettl (1982: 69) also suggests a similar approach; the prescriptive notation

provides information about only the piece, not the style, to the native of that musical

culture (insider) even in western music; in other words in order to perform a mazurka of

Chopin from notation, one has to be familiar with the literature of Chopin and gain the

knowledge of how Chopin sounds. On the other hand the descriptive notation tries to

provide an “objective” analytical insight of the piece to the researcher (outsider) who is

not native of that musical culture. Thus, prescriptive notation provides information only

sufficient for a native to perform. This fact implies impossibility of a complete

correspondence between notation and performance as suggested by the perspective of

MIR.

However the concept of transcription as used in AMT corresponds to descriptive

notation since the procedure as applied aims to obtain original notation from recordings

of performance. Klapuri (2004) summarizes the aim of automatic transcription in MIR

as reverse-engineering which try to obtain the original prescriptive notation or “source

code” from recordings of performance. Therefore the perspective of MIR clearly results
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with disappearance of the important distinction between a notation of a piece and a

transcription of a performance even for western music.

As Ellingson (1992a: 154) discussed, performance need not be strictly the same

as the dictations of notation: “ ‘Prescriptive’ seems to be too strongly normative and

hierarchical a term to characterize some significant communications to performers about

musical sounds, communications that might be better conceived as ‘suggestive’,

‘advisory’, ’interactive’, and even ‘inspirational’, rather than prescriptions dictated to

performers.”

Nettl (1983: 69) also discussed that “It is ‘insiders’ who write music to be

performed, and they write it in a particular way. Typically, outsiders start by writing

everything they hear, which turns out to be impossible.” Instead of understating the

distinction, Nettl rather tries to reveal that a fully “objective” descriptive transcription is

not possible, since any visual representation of music is an abstraction. Similarly,

Turkish ethnomusicologist Erol (2009: 190)  mentions that anyone whom was not

familiar with a specific musical culture would be helpless in either interpreting a

notation or transcribing a musical sample.

Finally, the emprical studies of List (1974) and Stockmann (1979) discussing the

reliability of manual transcriptions shows that different participants gives out

transcriptions with a certain amount of difference primarily for the durations and

secondarily for the pitches of notes.

2.4. The Notation System of Turkish Music

One of the obstacles against developing an AMT system for Turkish music is the

meaning of notation in this musical culture which is still mainly based on an oral

tradition. Oral tradition in Turkish musical culture, called as meşk system, is historically

the learning process of a music student face to face with a master musician based on

memorization of the repertory without any use of notation.

Although the indroduction of western like or western notation for the

representation of Turkish music dates back to 17th century, these first attempts of

Albert Bobowski/Ali Ufki and Dimitrie Cantemir/Kantemir were mainly served as

preservation of the repertory. The first use of the western notation for performance was

only available at the beginings of 19th century as a result of the westernization
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processes by the Ottoman court limited with the court musicians. These musicians were

already familiar with another notation system called Hamparsum a decade ago, derived

from Armenian neumes, which consists of only sequence of letters denoting pitch

names and duration information without any staff, and thus quite different from the

western notation.

Therefore the use of western notation was seemed to be a simple matter of

learning the corresponding symbols found in Hamparsum but resulted with a dichotomy

in practice: existence of meşk and western notation side by side (Ayangil 2008: 416).

This attempt was limited with the court musicians, a small group compared to the much

larger community of musicians out of the court. It was only possible by the end of 19th

c., western notation adapted to Turkish music started to be used more widely (Ayangil

2008: 418). After various attempts of adapting western notation system to Turkish

music, western-based notation system of Arel-Ezgi-Uzdilek (shortly Arel theory)

became an official system by the 1970s and began to be thought in public and private

schools extensively.

Nevertheless, the divergence of theory and practice about the pitch space stand

at the center of discussions about notation and thus meşk system has never been left

completely. This fact lead to a hybrid education system from the 19th century up to

today. In other words the pitch space represented in practice and in the notation system

does not converge completely, requiring verbal explanations and musical

demonstrations where the meşk system takes role. Another reason for the indispensable

role of meşk system results from one of the most distinctive character of Turkish music,

the quite intense use of ornamentations and performance styles which are not

represented in notation, again (Ayangil 2008: 441).

As shown in Figure 2.1 the interval of a major second or whole tone (204 cents)

is divided into 9 equal parts (“Comma value” row) in theory. In other words an octave is

divided into 53 equal parts where each part is called as an Holdrian comma and a subset

of 24 notes are used among these 53. The resulting tuning system is 24 tone non-

tempered system. In contrast to two types of accidentals in western music, there are four

kinds of sharps and corresponding four kinds of flats which are used to represent 24

pitch-classes in Turkish music. Nevertheless, these accidentals fail to cover all pitch

intervals performed in practice.
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Figure 2.1. Accidentals in notation system of Arel theory
(Source: Ayangil 2008: 426)

As a result the western-based notation system of Arel theory is simply the

application of these accidentals to the western staff notation as shown in Figure 2.2.

Figure 2.2. Staff notation of a composition by Arel, showing only the first line.

Only G-clef is used in AEU notation as shown in Figure 2.2 Furthermore the pitch D4

(neva)  is tuned to 440 Hz in common practice, instead of A4 as in western music. There

are 13 standart tunings, called as ahenk in Turkish music defined by the 13 neyler (sl.

ney) (flute-like woodwind instrument) with different but standard sizes.

The key signature as shown in Figure 2.2 also does not indicate either tonality as

in western music or modality in Turkish music, since there are sevral modalities sharing

the same accidentals. However, the modality of the piece is indicated at the title of the

song, “Hüseyni”, also implies the tonic of the piece dügah (A4). The information about

form is also written at the title, “oyun havası”. Similarly, although time signature 7/8 is
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written as in western music, the rhytmic structure (usul) is also written by words as

devr-i turan, since the same time signature can have different beats. Other signs about

form and tempo such as segno and metronome, and about dynamics such as crescendo,

decrescendo and mezzoforte (mf) and about articulation such as staccato and ties are

used as in western music. Finally name of the composition, “Düğün Evinde” and name

of the composer, Hüseyin Sadeddin Arel are also mentioned in the notation as shown in

Figure 2.2.

2.5. Comparison of Notation and Performance in Turkish Music

Asaforementioned, notation system of Arel theory naturally reflects the theory

of Arel theory. Nevertheless, the theory of Arel theory does not reflect the practice of

Turkish music appropriately in terms of pitch space as discussed by Gedik and Bozkurt

(2009) in detail. The divergence of theory and practice in Turkish music can be

observed from Figure 2.3.
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Figure 2.3. Comparison of pitch spaces defined in theory and performed in practice for
the makam uşşak.

It has also been shown that the 25 pitch-classes defined by the Arel theory are

lacking two pitch intervals, and six pitch intervals also diverges from the defined pitch-

classes in theory. The reasons of the divergence of theory and practice in terms of pitch

space can be listed as follows (Gedik and Bozkurt 2009:107):

 The freedom of musicians in performance of a specific makam by varying the
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pitches for certain pitches of the makam scale.

 The small variations of pitches performed depending on the direction of melodic

progression, either descending or ascending.

Ayangil (2008: 443-445) also discussed the problems of notation system of

Turkish music in detail from the musicological point of view:

 Inaccuracy of representing pitch classes: “Yet, the musicians who have a good

understanding of the system of makams and pitches attain almost absolute

accuracy in the performance of makams and pitches, inspite of the relativity and

inaccuracy of the notation system and its alteration signs.” (Ayangil 2008: 445)

 Ahenk system: Although there are 13 posssible transpositions, performers

frequently use only  2 of them for practical reasons such as pitch range of vocal

and instruments. However the notation system does not reflect any transposition

and performers had to apply the transposition by using their musical skills, not by

the notation.

 Performance styles and ornamentations: While the performance styles such as

melodic and rhythmic variations and ornamentations constitutes one of the most

peculiar characteristic of Turkish music, they are not represented in notation.

Kaçar (2005) discussed this last item by comparing the notation of pieces and the

the performances of pieces  by master musicians. According to Kaçar notation system of

Turkish music leaves much more freedom to the performer for the interpretation of a

composition, in comparison to western music where a composition is more strictly

defined by the notation by 19th the century. Even the composers of Turkish music

performs their own compositions different than the notation. Notation functions as if it

is a framework of composition in Turkish music (Kaçar 2005: 216).

According to The New Harvard Dictionary Of Music ornamentations are

classified as follows (Kaçar 2005: 216):

 Insertion of additional notes into melody

o Insertion of small durational notes

o Ornamentations such as changing note durations

o Insertion of notes into tonal pitches

 Ornamentations based on various variations

 Ornamentations based on tempo and note duration changes such as ritardando,

rubato and cadence
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Figure 2.4. Two bars from a composition of Tanburi Cemil Bey, “Şedaraban Saz
Semaisi”. The first line is the notation of the composition and the second
line is the performance of the composer. (Source: Kaçar 2005: 223)

Kaçar (2005) classifies the source of differences between the notation and

performance in Turkish music under two main titles: ornamentations and non-note

based performances which is mentioned as performance styles by Ayangil (2008).

Ornamentations detected by Kaçar are as follows: acciaccatura, mordent, trill, grupetto

and tremolo. The ornamentations used in Turkish music also includes vibrato, glissando

and portamento as mentioned by Ayangil (2008). However, these ornamentations are

not represented in the notation as shown in Figure 2.4. As can be seen from the figure,

the performer applies grupetto as an ornamentation which is not present in the notation.

Non-note based performances or performance styles can be roughly listed as

follows (Kaçar 2005: 224):

 Performance of notes with long durations as notes with small durations.

 Additional notes other than ornamentations.

 Application of double notes.

 Arpeggios.

Figure 2.5 shows application of the second item, performing additional notes other

than ornamentations.
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Figure 2.5. One bar from a composition of Tanburi Cemil Bey, “Muhayyer Saz Semaisi”.
The first line is the notation of the composition and the second line is the
performance of Yorgo Bacanos. (Source: Kaçar 2005: 226)

Finally Kaçar concluded that the notation in Turkish music is only a reminder

for the performer (2005: 226).

2.6. Manual Transcription of Turkish music: A Case Study

In order to understand the manual transcription procedure and the relation of

musicians with original notation, performance and transcription in Turkish music we

have applied two qualitative methods of ethnomusicology: interview and participant

observation. Interviews are made with two local figures from the Turkish music

community of İzmir, Turkey.  C. was 20 years old locally well-known professional

tanbur performer recently educated from the state conservatory of Turkish music. E.

was 40 years old ney producer, performer and educator without a formal music

education. Interviews with C. and E. were made at 11.07.12 and 11.07.06, respectively

in İzmir. While C. earns his life by professional performances, E. earns his life mainly

by selling neyler produced by himself and private ney education. E. mainly performs in

amateur choruses in İzmir (a city of Turkey). As a result both interviewers represent two

facets of Turkish music community in İzmir; alaylı (performer without a formal

education) and okullu (performer graduated from music school). Although community

of Turkish music has much more facets, these two categories form the two main

division of musical life in Turkey. Therefore it was reasonable to interview and observe

these two figures about the transcription procedure of Turkish music.

When I asked E. about his transcription experiences, he replied that he seldomly

transcribes Turkish music. One memory of his transcription experience was about
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helping a friend. His friend found a notation of a piece of Yansımalar (music group

performing synchretic compositions consist of western harmonization accompanied by

guitar to melodies of traditional instruments tanbur and ney) which did not match with

the performance. Therefore, E. transcribes the piece more “accurately”. Another

experience of E. with transcription is studying the ney taksimler of master musicians

such as Aka Gündüz Kutbay and Sülayman Yardım from their manually transcribed

performances. In order to observe the transcription procedure, I asked him to transcribe

a recording of a piece composed by Sadettin Kaynak and performed by neyzen (ney

player) Salih Bilgin with the notation supplied publicly in a web site9. He had followed

the following steps for transcription without looking at original notation:

i. He listened to each segment (corresponding to one measure usually) repeatedly

(3 or 4 times at leats) and try to play the segment by ney while listening and then

write the corresponding notes to the staff sheet by pencil.

ii. He detected the usul as sofyan (4/4).

iii.While transcribing each segment he erased and rewritten several note groups.

iv. After transcribing several measures I asked him the makam of the piece and he

replied that it is probably segah makam. Thus he tried to put the accidentals of

this makam and declared that the tonic is segah. However he actually put the

accidentals of hüzzam makam. There is a 3 Hc difference between the

accidentals of these two makamlar are as follows: while hüzzam makam has an

accidental of b4 for E5, segah makam has an accidental of b1 for E5.

v. When I realized that he did not transcribe the ornamentation notes, I asked the

reason. He replied that ornamentations are seldom represented on notation and

while performing from notation they do not look much at ornamentations,

perform the piece as how they knew and heard.

vi. After completing the transcription he listened to the piece one more time to

make some corrections.

C. was more experienced in transcriptions and thus our interview takes longer

time than E.. He said that instead of transcription of Turkish music, transcription of

western music is thought at school but they studied solfege with Turkish music.

9 The web site neyzen.com provides vaious notations accompanying performances of neyzen Salih
Bilgin. Including the notation used in this section, all notations and performances used for
automatic transcription are taken from this web site. An important detail about the notations and
the performance of Salih Bilgin used in this study is that he had selected the most appropriate
notations among a number of notation which are slightly different but used for the same piece
among musicians.
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However he said that this was useful for him when transcription of Turkish music is

necessary out of school such as in studio works and composing. I asked him the

differences between transcribing a compositional and improvisational form (e.g.

taksim). He said that compositions (melodies with usul) can be transcribed with success

rate of %60-70 depending on the knowledge of instrument and composer. He gave an

example that in order to transcribe a composition of Çinuçen Tanrıkorur, a prior

knowledge of his style is necessary; an example which reminds the Nettl’s example of

performing Chopin from notation as mentioned before.

On the other hand according to C. transcription of a taksim (improvisation

without usul) could be more subjective resulting with a success rate of 30-40 %.

According to him three transcriptions of the same taksim performance could hardly

match. He gave an example of this situation based on one of his experiences. One of his

friend from school, a class-mate, had asked him to check his transcription of a

composition. C. had found many inaccuracies in the transcription due to wrong

detection/perception of usul. Therefore his friend had failed to discriminate

ornamentations from “actual notes” depending on the wrong rhythmic accents.

Another important point about notation and transcription mentioned by C. was

the central role of listening to a performance of the piece:

“In order to perform a piece from notation, listening to the piece is essential. When I transcribed
a taksim of İzzet Öke, even I perform the taksim from my notation according to the recording I
remember. If the transcription was not mine even I could not perform the taksim.” (interview
with C., 2011)

C. also made a distinction between notations as simple and stylistic. While

simple notations are transcribed by non-masters of this music which are mostly in use,

stylistic notations are transcriptions of master musicians which are rarely found.

According to C. simple notations reflects only 20-30% percent of the piece. However

stylistic notations transcribed by master musicians such as Çinuçen Tanrıkorur and

Alaaddin Yavaşça reflects their style giving the notation more accurate representation of

the piece. In fact these transcriptions are rather rewritten notations of compositions

instead of transcription of recordings. I asked C. to transcribe the same recording. He

asked me what kind of transcription I preferred, transcription of the composition or the

style. I preferred transcription of the composition and he followed the following steps:

i. He listen the whole piece repeatedly (3-4 times) and detected the usul of the

piece first as düyek (8/8).
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ii. Then he detected the makam as hüzzam and tonic as segah.

iii. He started transcription measure by measure while listening each repeatedly

without help of any instrument, although his tanbur was with him.

iv. When I realized that he did not transcribe the ornamentation notes, I asked the

reason. He said that intentionally he tried to keep the notation simple in order to

keep it easily readable.

v. After completing the transcription he listened to the piece one more time but did

not need to make any corrections.

Before visual comparison, the differences of the two transcriptions are already

clear from the makam and usul detection of transcribers. While E. detected makam and

usul as segah and sofyan, C. detected them as hüzzam and düyek in accordance with the

original notation. As a result, Figure 2.6 presents a comparison of the original notation

and corresponding transcriptions. As can be seen from the figure especially the 1st and

3rd measures of the transcriptions are different from the original notation both in terms

of durations of notes and added or deleted notes.

Figure 2.6. First 2- 4 measures of the piece, “Alma Tenden Canımı” composed by
Sadettin Kaynak shown in the first line,  and its corresponding
transcriptions by C. in the second line and by E. in the third line.
Transcription of the recording of the piece was performed by neyzen Salih
Bilgin.
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2.7. Discussion and Conclusion

Although the notation system has many problems as dicsuued in this chapter, it

is a fact that experienced musicians develop an ability to cope with these problems in

their relation with current notation system as mentioned by Ayangil (2008). Therefore,

the target of an AMT system for Turkish music should be conventional notation of

Turkish music, since transcription is by definition is possible only for existing notation

system. Of course it is also possible to `invent` a notation system in accordance with

practice such as the ethnomusicologists usually follow in their relevant researches.

However, the main target of our study is to produce transcriptions that can be read by

musicians either for performance or education which leaves a unique way to represent

transriptions as conventional staff notation.

Therefore, output of our system will be a prescriptive notation in terms of

ethnomusicological definition. However, in contrast to either intentional or

unintentional trend of current AMT studies, which aim to obtain original notation from

performance as formulated by Klapuri (2004) as reverse engineering, we try to obtain a

human readible description of performance as stated by Cemgil et al. (2006).

As a result, our AMT system firstly obtains a detailed transcription of recordings

and then eliminates ornementations such as appagiatura, acciaccatura, vibrato and

glissandos that are seldomly represented in Turkish staff notation. However, detection

of some ornementations and performance styles are not possible considering the state-

of-art. There is no method to decompose a recording of a performance as the notes

inserted into composition by performance styles and some ornementations on the one

side and the notes dictated by notation on the other side. Figure 2.4 and Figure 2.5

present two example of such ornementations and performance styles, respectively.

Finally, even this fact alone demonstrates that it is not possible to obtain original

notation from performance which supports the argument about obtaining a readable

description of performance. However, since our system follows a direction from a

detailed description of performance to a simple notaion of it, our system also supplies a

descriptive transcription which represents the details of performance.
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CHAPTER 3

AUTOMATICMAKAM RECOGNITION10

Due to the divergence of theory and practice presented in the previous chapter,

we prefer direct processing of the audio data with data-driven techniques and to utilize

very limited guidance from theory. One of the important differences of our approach

compared to the related MIR studies is that we do not take any specific tuning system

for granted.

As aforementioned, the proper representation of the pitch space is an essential

prerequisite for most of the MIR studies for non-western musics. Therefore, our study

focuses on the representation of pitch space for Turkish music targeting information

retrieval applications. More specifically, this study undertakes the challenging tasks of

developing automatic tonic detection and makam recognition algorithms for Turkish

music.

Makam and tonic pitch of an audio recording are crucial for automatic

transcription in Turkish music as discussed in the introduction. It is not possible to find

a reference pitch of a recording without the determination of its tonic pitch in Turkish

music. In order to find the tonic pitch it is necessary to find the makam of the piece in

Turkish music.

This chapter firstly presents a comprehensive review of pitch histogram use in

MIR studies both for western and non-western music in comparison to Turkish music.

Then we discuss more specifically the use of pitch histograms in Turkish music

analysis. Following this review part, we present the automatic makam recognition and

tonic detection based on pitch-frequency histograms.

10 This section is adapted from Gedik, A. C. and Bozkurt, B. (2010). Pitch Frequency Histogram
Based Music Information Retrieval for Turkish Music, Signal Processing, 90: 1049-1063.
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3.1. A Review of Pitch Histogram based MIR Studies

Although there is an important volume of research in MIR literature based on

pitch histograms, application of current methods for Turkish music is a challenging

task, as briefly explained in the introduction. Nevertheless, we think that any

computational study on non-western music should try to define their problem within the

general framework of MIR, due to the current well-established literature. Therefore, we

review related MIR studies in this section by relating, comparing and contrasting with

our data characteristics and applications. Both the data representations and distance

measures between data (musical pieces) are discussed in detail since most of the MIR

applications (as well as our makam recognition application) necessitate use of such

distance functions.

We first present our representation of Turkish music pitch space. Musical data is

represented by pitch-frequency histograms constructed based on fundamental

frequency(f0). f0 data is extracted from monophonic audio recordings. Thus, we apply

methods based on pitch histograms. Secondly, necessary methods to process such

representation are presented. Thirdly, automatic recognition of Turkish audio recordings

by makam types (names) is presented.

3.1.1. Pitch Spaces of Western and Turkish Music

A considerable portion of the MIR literature utilizing pitch histograms targets

the application of finding the tonality of a given musical piece either as major or minor.

In the western MIR literature, tonality of a musical piece is found by processing pitch

histograms which simply represent the distribution of pitches performed in a piece as

shown in Figure 3.1. In this type of representation, pitch histograms consist of 12

dimensional vectors where each dimension corresponds to one of the 12 pitch-classes in

western music (notes at higher/lower octaves are folded into a single octave). The pitch

histogram of a given musical piece is compared to 24 tonalities, 12 major and 12 minor

templates, and the tonality whose template is more similar is found as the tonality of the

musical piece.
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As illustrative examples of Turkish music we present two pitch-frequency

histograms in Figure 3.2. Two histograms are aligned according to their tonics in order

to compare the intervals visually. The tonic frequencies of the two performances are

computed as 295 Hz and 404 Hz, hence they are not in a standard pitch. This is an

additional difficulty/difference of Turkish music in comparison to western music.

Furthermore, another property that cannot be observed on the figure due to plotting of

only the main octave, is that it is not possible to represent pitch space of Turkish music

within one octave. Depending on the ascending or descending characteristics of the

melody of a makam type, performance of a pitch can be quite different in different

octaves. Therefore it is neither straight forward to define a set of pitch-classes for

Turkish music nor represent pitch histograms by 12 pitch-classes as in western music.

Furthermore, although the two pieces belong to the same makam, the performers prefer

close but different pitch intervals for the same pitches.

Figure 3.1. Pitch-class histogram of J.S. Bach's C-major Prelude from
…Wohltemperierte Klavier II (BWV 870).



39

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

n (Hc steps)

fre
qu

en
cy

 o
f o

cc
ur

an
ce

s

hicaz taksim by Tanburi Cemil Bey
hicaz taksim by Mesut Cemil

Figure 3.2. Pitch-frequency histograms of hicaz performances by Tanburi Cemil Bey
and Mesut Cemil. 11

The next subsection reviews MIR studies developed for western music to

investigate whether any method independent from data representation can be applied to

Turkish music recordings. In the same subsection, the state-of-art of relevant MIR

studies on non-western musics is also reviewed.

3.1.2. Pitch Histogram based Studies for Western MIR

The current methods for tonality finding essentially diverge according to the

format (symbolic (MIDI) or audio (wave)) and the content of the data (the number of

parts used in musical pieces, either monophonic (single part) or polyphonic (two or

more independent parts)). There is an important volume of research based on symbolic

data. Audio based studies have a relatively short history (Chuan and Chew 2007). This

results from the lack of reliable automatic music transcription methods. Some degree of

success in polyphonic transcription has been only achieved under some restrictions

(Klapuri 2006) and even the problems of monophonic transcription (especially for some

signals like singing) still have not been fully solved (Klapuri 2004). As a result, most of

the literature on pitch histograms consists of methods based on symbolic data, and these

11 Histograms are smoothed by low pass filters to enable a more explicit comparison between
performances.
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methods also form the basis for the studies on audio data.

It has been already mentioned that tonality of a musical piece is normally found

by comparing the pitch histogram of a given musical piece to major and minor tonality

histogram templates. Since the representation of musical pieces as pitch-class

histograms is rather a simple problem in western music, a vast amount of research is

dedicated to investigation of methods for constructing the tonality templates. The

tonality templates are again represented as pitch histograms consisting of 12

dimensional vectors, we refer to them as the pitch-class histogram. Since there are 12

major and 12 minor tonalities, the templates of other tonalities are found simply by

transposing the templates to the relevant keys (Temperley 2001).

The construction of the tonality templates is mainly based on three kinds of

models: music theoretical (e.g. Longuet-Higgins, and Steedman 1971), psychological

(e.g. Krumhansl, 1990) and data-driven models (e.g. Temperley 2008). These models

were also initially developed in the studies based on symbolic data. However, neither

psychological nor data-driven models are fully independent from western music theory.

In addition, two important approaches of key-finding algorithm based on music

theoretical model use neither templates nor key-profiles: the rule-based approach of

Lerdahl and Jackendoff (1983) and the geometrical approach of Chew (2002).

Among these models, the psychological model of Krumhansl and Kessler (1990)

is the most influential one and presents one of the most frequently applied distance

measures in studies based on all three models. Tonality templates are mainly derived

from psychological probe-tone experiments based on human ratings, and tonality of a

piece is simply found by correlating the pitch-class histogram of the piece with each of

the 24 templates. Studies based on symbolic and audio data mostly apply a correlation

coefficient to measure the similarity between the pitch-class distribution of a given

piece and the templates as defined by Krumhansl (1990):

2 2

( )( )

( ) ( )

x x y y
r

x x y y
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
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(3.1)

where x and y refers to the 12 dimensional pitch-class histogram vectors for the musical
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piece and the template. The correlation coefficients for a musical piece are computed

using Equation 3.1 with different templates (y) and the template which gives the highest

coefficient is found as the tonality of the piece.

The same method is also applied in data-driven models (e.g. Temperley 2008) by

simply correlating the pitch-class histogram of a given musical piece with major and

minor templates derived from relevant musical databases. Even the data-driven models

reflect the western music theory by the representation of musical data and templates as

12 dimensional vectors (pitch-classes).

Although studies on audio data (e.g. Zhu and Kankanhalli 2006) diverge from the

ones on symbolic data by the additional signal processing steps, these studies also try to

obtain a similar representation of the templates where pitch histograms are again

represented by 12 dimensional pitch-class vectors. Due to the lack of a reliable

automatic transcription, such studies process the spectrum of the audio data without f0

estimation to achieve tonality finding. In these studies, the signal is first pre-processed

to eliminate the non-audible and irrelevant frequencies by applying single-band or

multi-band frequency filters. Then, Discrete Fourier Transform (DFT) or constant Q-

transform (CQT) are applied and the data in the frequency domain is mapped to pitch-

class histograms (e.g. Zhu and Kankanhalli 2006; Gomez 2006). However, this

approach is problematic due to the complexity of reliably separating harmonic

components both for polyphonic and monophonic music which are naturally not present

in symbolic data. Another problem is the determination of tuning frequency (which

determines the band limits and the mapping function) in order to obtain reliable pitch-

class distributions from the data in the frequency domain. Most of the studies take the

standard pitch of A4=440 Hz as a ground truth for western music (e.g. Chuan and Chew

2005; Purwins et al. 2000). On the other hand, few studies estimate first a tuning

frequency, considering the fact that recordings of various bands and musicians need not

to be tuned exactly to 440 Hz. However, even in these studies, 440 Hz is taken as a

ground truth in another fashion (Ong et al. 2006; Zhu and Kankanhalli 2006). They

calculate the deviation of the tuning frequency of audio data from 440 Hz, and then take

into account this deviation in constructing frequency histograms. When Turkish music

is considered, no standard tuning exists (but only possible “ahenk”s for rather formal

recordings). This is another important obstacle for applying western music MIR

methods to our problem.

Although mostly the correlation coefficient presented in Equation 3.1 is used to
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measure the similarity between pitch-class distribution of a given piece and templates, a

number of recent studies apply various machine learning methods for tonality detection

such as Gomez and Herrera (2004). Chuan and Chew (2007), and, Lee and Slaney

(2008) do not use templates, but their approach is based on audio data synthesized from

symbolic data (MIDI). Lui et al. (2008) also do not use templates but for the first time

apply unsupervised learning. Since these approaches present the same difficulties when

applying them to Turkish music, they will not be reviewed here.

3.1.3. Pitch Histogram based Studies for Non-Western MIR

Although most of the current MIR studies focus on western music, a number of

studies considering non-western and folk musics also exist. The most common feature

of these studies is the use of audio recordings instead of symbolic data. However, most

of the research is based on processing of the f0 variation in time and does not utilize

pitch histograms, which is shown to be a valuable tool in analysis of large databases.

There is a relatively important volume of research on the pitch space analysis of Indian

music which does not utilize pitch histograms but directly the f0 variation curves in

time (Krishnaswamy 2003a; 2003b; 2003c; 2004). This is also the case for the two

studies on African music (Marandola 2003) and Javanese music (Carterette and Kendall

1999). There are also two MIR applications for non-western music without using pitch

histograms: an automatic transcription of Aboriginal music (Nesbit et al. 2004) and the

pattern recognition methods applied on South Indian classical music (Sinith and Rajeev

2007). Here, we will only review studies based on pitch histograms and refer the reader

to Tzenatakis et al. (2007) for a comprehensive review of computational studies on non-

western and folk musics.

The literature of non-western music studies utilizing pitch histograms for pitch

space analysis is much more limited. The studies of Moelants et al. (2006; 2007) apply

pitch histograms to analyze the pitch space of African music. Instead of pitch-class

histograms as in western music, “pitch-frequency histograms” are preferred, and thus

such continuous pitch space representation enables them to study the characteristic of

the tuning system of African music. They introduce and discuss important problems

related to African music based on analysis of a musical example but do no present any

MIR application. Akkoc (2002) analyses pitch space characteristics of Turkish music
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based on the performances of two outstanding Turkish musicians again using limited

data and without any MIR application. Bozkurt (2008) presented for the first time the

necessary tools and methods for the pitch space analysis of Turkish music when applied

to large music databases.

There is a number of MIR studies which utilize pitch histograms for aims other

than analyzing the pitch space. One example is Norowi et al. (2005) who use pitch

histograms as one of the features in automatic genre classification of traditional Malay

music beside timbre and rhythm related features. In this study, the pitch histogram

feature is automatically extracted using the software, MARSYAS, which computes

pitch-class histograms as in western music. Certain points in this study are confusing

and difficult to interpret, which hinders its use in our application: among other things, it

is not clear how the lack of a standard pitch is solved, the effect of pitch features in

classification is not evaluated, and the success rate of the classifier is not clear since

only the accuracy parameter is presented.

Two MIR studies on the classification of Indian classical music by raga types

(Chordia and Rae 2007; Chordia et al. 2008) are fairly similar to our study on

classification of Turkish music by makam types. However, in these studies the just-

intonation tuning system is used as the basis, and surprisingly 12 pitch-classes as in

western music are defined for the histograms, although they mention that Indian music

includes microtonal variations in contrast to western music. Chordia and Rae (2007)

used pitch-class dyad histograms also as a feature which refers to the distribution of

pitch transitions besides pitch-class histograms with the same basis. We find it

problematic to use a specific tuning system for pitch space dimension reduction of non-

western musics unless the existence of a theory well-conforming to practice is shown to

exist. In addition, a database of 20 hours audio recordings manually labeled in terms of

tonics is used in this study. This is a clear example showing the need for automatic tonic

detection algorithms for MIR. Again the high success rates obtained for classification is

subject to question for these studies due to the use of optimistic parameters for

evaluation, such as accuracy. Another study (Chordia et al. 2008) presents a more

detailed classification study of North Indian classical music. Three kinds of

classifications are applied: classification by artist, by instrument, by raga and thaat.

Each musical piece is again represented as pitch-class histograms for classification by

the raga types. On the other hand, this time only the similarity matrix is mentioned for

the raga classifier and the method of classification is not explained any further. Again,
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it is not clear how pitch histograms are represented in the classification process. The

success rates for classification by raga types applied on 897 audio recordings were

found to be considerably low in comparison to the previous study on raga classification

(Chordia and Rae 2007). Finally, an important drawback of this study is again the

manual adjustment of the tonic of the pieces. Again, all these problematic points hinder

the application of these technologies in other non-western MIR studies: some important

points related to the implementation or representations are not clear, the results are not

reliable or considerable amount of manual work is needed. We believe that this is

mainly due to the relatively short history of non-western MIR.

The most comprehensive study on non-western music is presented by Gomez

and Herrera (2008). A new feature, harmonic pitch class profile (HPCP) proposed by

Gomez (2006) which is inspired by pitch-class histograms, is applied to classify a very

large music corpora of western and non-western music. Besides HPCP, other features

such as tuning frequency, equal tempered deviation, non-tempered energy ratio and

diatonic strength, which are closely related with tonal description of music, are used to

discriminate non-western musics from western musics or vice versa. While 500 audio

recordings are used to represent non-western music including musics of Africa, Java,

Arabic, Japan, China, India and Central Asia, 1000 audio recordings are used to

represent western music including classical, jazz, pop, rock, hiphop, country music etc.

From our point of view, an interesting point of this study is the use of pitch

histograms (HPCP) without mapping the pitches into a 12 dimensional pitch-space as in

western music. Instead, pitches are represented in a 120 dimensional pitch-space which

thus enables to represent pitch-spaces of various non-western musics. Considering the

features used, the study mainly discriminates between non-western musics from western

music by computing their deviation from equal-tempered tuning system, in other words

their “deviation” from western music. As a result, two kinds of classifiers, decision trees

and SVM, are evaluated and success rates higher then 80% are obtained in terms of F-

measure. However, the study also bears serious drawbacks as explicitly demonstrated

by Lartillot et al. (2008). One of the critiques refers to the assumption of octave

equivalence for non-western musics. The other criticism is related to the assumption of

tempered scale for non-western musics as implemented in some features such as tuning

frequency, non-tempered energy ratio, the diatonic strength etc. Finally, it is also not

explained how the problem of tuning frequency is solved for non-western music

collections.
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Another group of study apply self-organizing maps (SOMs) based on pitch

histograms to understand the non-western and folk musics by visualization. Toiviainen

and Eurola (2006) apply SOM to visualize 2240 Chinese, 2323 Hungarian, 6236

German and 8613 Finnish folk melodies. Chordia and Rae (2007) also apply SOM to

model tonality in North Indian Classical Music.

As a result of this review, we conclude that non-western music research is very

much influenced by western music research in terms of pitch space representations and

MIR methodologies. This is problematic because the properties common to many non-

western musics, such as the variability in frequencies of pitches, non-standard tuning,

extended octave characteristics, practice of the concept of modal versus tonal, differ

highly in comparison to western music. The literature of fully automatic MIR

algorithms for non-western music, taking into consideration its own pitch space

characteristics without direct projection to western music, is almost non-present. The

use of methodologies developed for western music is in general acceptable, but data

space mappings are most of the time very problematic.

3.2. Pitch Histogram based Studies for Turkish MIR

In the literature about Turkish music, pitch-frequency histograms are

successfully used for tuning research by manually labeling peaks on histograms to

detect pitch frequencies (Akkoc 2006; Zeren 2003; Karaosmanoğlu and Akkoc 2003;

Karaosmanoğlu 2004). As discussed in the previous sections, it is clear that representing

Turkish music using a 12 dimensional pitch-class space is not appropriate. Aiming at

developing fully automatic MIR algorithms, we use high resolution pitch frequency

histograms, without a standard pitch or tuning system (tempered or non-tempered) taken

for granted.

Following the f0 estimation, a pitch frequency histogram, Hf0[n], is computed as a

mapping that corresponds to the number of f0 values that fall into various disjoint

categories.
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where (fn, fn+1) are boundary values defining the f0 range for the nth bin.

One of the critical choices made in histogram computation is the decision of bin-

width, Wb, where automatic methods are concerned. It is common practice to use

logarithmic partitioning of the f0 space in musical f0 analysis which leads to uniform

sampling of the log-f0 space. Given the number of bins, N, and the f0 range (f0max and

f0min) bin-width, Wb, and the edges of the histogram, fn, can be simply obtained by:
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For musical f0 analysis, various logarithmic units like cents and commas are used.

Although the cent (obtained by the division of an octave into 1200 logarithmically equal

partitions) is the most frequently used unit in western music analysis, it is common

practice to use the Holderian comma (Hc) (obtained by the division of an octave into 53

logarithmically equal partitions) as the smallest intervallic unit in Turkish music

theoretical parlance. To facilitate comparisons between our results and Turkish music

theory, we also use the Holderian comma unit in partitioning the f0 space (as a result in

our figures and tables). After empirical tests with various grid sizes, 1/3 Holderian

comma (Hc) resolution is obtained by Bozkurt (2008). This resolution optimizes

smoothness and precision of pitch histograms for various applications. Moreover, this

resolution is the highest master tuning scheme we could find from which a subset tuning

is derived for Turkish music, as specified by Yarman (2008).

In the next sections, we present the MIR methods we have developed for

Turkish music based on the pitch-histogram representation.
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3.2.1. Automatic Tonic Detection

In the analysis of large databases of Turkish music, the most problematic part is

correlating results from multiple files. Due to diapason differences between recordings

(i.e. non-standard pitches), lining up the analyzed data from various files is impossible

without a reference point. Fortunately, the tonic of each makam serves as a viable

reference point.

Theoretically and as a very common practice, a recording in a specific makam

always ends at the tonic as the last note (Akdoğu 1989). However tracking the last note

reliably is difficult especially in old recordings where the energy of background noise is

comparatively high.

Bozkurt (2008) presented a robust tonic detection algorithm (shown in Figure

3.3) based on aligning the pitch histogram of a given recording to a makam pitch

histogram template. The algorithm assumes the makam of the recording is known

(either from the tags or track names since it is common practice to name tracks with the

makam name as “Hicaz taksim”).

The makam pitch histogram templates are constructed (and also the tonics are re-

estimated for the collection of recordings) in an iterative manner: the template is

initiated as a Gaussian mixture from theoretical intervals and updated recursively as

recordings are synchronized. Similar to the pitch histogram computation, the Gaussian

mixtures are constructed in the log-frequency domain. The widths of Gaussians are

chosen to be the same in the log-frequency domain as presented in Figure 3.2 of

(Bozkurt 2008). Since in the algorithm a theoretical template is matched with a real

histogram, the best choice of width for optimizing the matching is to use the width

values close to the ones observed in the real data histograms.

We have observed on many samples that the widths of most of the peaks in real

histograms appear to be in the 1-4Hc range. As expected, smaller widths are observed

on fretted instrument samples where as larger widths are observed for unfretted

instruments. Several informal tests have been performed to study the effect of the width

choice for the tonic detection algorithm. We have observed that for the widths in the

1.5-3.5Hc range, the algorithm converges to the same results due to the iterative

approach used. Since it is an iterative process and the theoretical template is only used

for initialization, the choice of the theoretical system is not very critical, nor the width
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of the Gaussian functions. Given any of the existing theories and a width value in the

1.5-3.5Hc range, the system quickly converges to the same point. It only serves a means

for aligning histograms with respect to each other and is not used for dimension

reduction. One alternative to using theoretical information is to manually choose one of

the recordings to be representative as the initial template. Since it is an iterative process

and the theoretical template is only used for initialization, the choice of the theoretical

system is not very critical. Given any of the existing theories, the system quickly

converges to the same point. It only serves a means for aligning histograms and is not

used for dimension reduction.

Figure 3.3. Tonic detection and histogram template construction algorithm (box
indicated with dashed lines) and the overall analysis process. All
recordings should be in a given makam which also specifies the intervals
in the theoretical system. (Source: Bozkurt 2008)
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(a) (b)

Figure 3.4. Tonic detection via histogram matching. a) template histogram is shifted and
the distance/correlation is computed at each step, b) matching histograms at
the shift value providing the smallest distance (normalized for viewing,
tonic peak is labeled as the 0Hc point).

The presented algorithm is used to construct makam pitch histogram templates

used further both in tonic detection of other recordings and for the automatic classifier

explained in the next section.

Once the template of the makam is available, automatic tonic detection of a given

recording is achieved by:

- Sliding the template over the pitch histogram of the recording in 1/3Hc steps (as

shown in Figure 3.4a)

- Computing the shift amount that gives the maximum correlation or the minimum

distance using one of the measures listed below

- Assigning the peak that matches the tonic peak of the template as the tonic of the

recording (as shown in Figure 3.4b by indicating the tonic with 0Hc) and

computing the tonic from the shift value and the template’s tonic location.

These steps are represented as two blocks (Synchronization, Tonic Detection) in Figure

3.3.

Bozkurt (2008) found the best matching point between histograms by finding the

maximum of the cross-correlation function, c[n], computed using the following

equation:
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where hr[n] is the recording’s pitch histogram and ht[n] is the corresponding makam’s

pitch histogram template.

3.2.2. AutomaticMakam Recognition

In pattern recognition literature, template matching method is a simple and

robust approach when adequately applied (Cha and Srihari 2002; Brunelli and Poggio

1993; Tanaka et al. 2000; Li and Hui 2000; Santini and Jain 1999). Temperley (2001)

also considers the method of tonality finding in literature on western music as template

matching. We also apply template matching for finding makam of a given Turkish

music recording. In addition, as mentioned before, a data-driven model is chosen for the

construction of templates.

Similar to pitch histogram based classification studies, we also use a template

matching approach to makam recognition using pitch frequency histograms: each

recording’s histogram is compared to each histogram template of the makam type and

the makam type whose template is more similar is found as the makam type of the

recording. In contrast, there is no assumption of a standard pitch (diaposon) nor a

mapping to a low dimensional class space. One of the histograms is shifted (transposed

in musical terms) in 1/3Hc (1/159 octaves) steps until the best matching point is found

in a similar fashion to the tonic finding method described in section 3.2. The algorithm

is simple and effective, and the main problem is the construction of makam templates.

In our design and tests, we have used nine makam types which represent 50% of

the current Turkish music repertoire (Oztuna 2006). The list can be extended as new

templates are included which can be computed in a fully automatic manner using the

algorithm described in (Bozkurt 2008).

Tests: Our database consists of 172 audio recordings from nine makam types. The

makam types and the number of recordings from each makam type are as follows: 20-

hicaz, 19- rast, 21- saba, 20- segah, 16- kürdili hicazkar, 14- hüzzam, 18- nihavend, 20-

hüseyni and 24- uşşak.
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The uneven distribution of samples for each makam is due to the current

database of recordings we have collected so far. One-hundretd-seventy-two recordings

of historically most prominent musicians as well as the more actual ones were selected

for classification. Recordings were not partitioned and analysed as a whole. These were

monophonic (non-heterephonic) recordings of the following instruments: ney, tanbur,

kemençe, violin, clarinet and cello. Some of the performers in the recordings were:

Tanburi Cemil Bey (1873-1916), Mesut Cemil (1902-1963), Niyazi Sayın (b.1927),

Necdet Yaşar (b.1930), Sadrettin Özçimi (b.1955).12

Due to the limited number of recordings, we apply leave one-out cross

validation in both the construction of the templates and the evaluation of the makam

recognition system. Therefore, when a recording is subject to comparison with makam

templates, it does not contribute to the construction of the template of the makam type

the recording belongs to, and the comparison is made on the basis of unknown tuning

frequency of the recording. The template for each makam type is simply computed by

averaging the pitch-frequency histograms of audio recordings from the same makam

type after aligning all histograms with respect to their tonics (‘Tonic synchronized

histogram averaging’ block in Figure 3.4). In other words, every time a recording is

compared with the templates, the templates are reconstructed from the rest of the

recordings.

Firstly, each pitch-frequency histogram is obtained and normalized to unity sum

as follows:

0
0

0

HfHf N
Hf


 (3.9)

, where Hf0 denotes the pitch-frequency histogram and Hf0N denotes the normalized

pitch-frequency histogram. The templates for each makam type are obtained by

summing the tonic aligned histograms and normalization:

12 Detailed information about the recordings and Turkish music can be found at project web page:
http://likya.iyte.edu.tr/eee/labs/audio/Main.html
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where Hf0Nk(i) denotes the normalized pitch-frequency histogram of the i th recording

from makam type k, N refers to the number of recordings from makam type k, Tk refers

to template for the makam type k and TNk refers to the normalized template. As a result,

templates for each makam type are obtained: two templates for two makam types are

shown in Figure 3.5 as an example.
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Figure 3.5. Pitch-frequency histogram templates for the two types of melodies: hicaz
makam and saba makam.

Finally, when the data-driven model is finished, the similarity between

templates and a recording can be measured. City-Block (L1 norm) distance measure is

used in the makam recognition system. Given a recording’s histogram and the

templates, the histogram is shifted in 1/3Hc steps and the City Block distances to the

templates are computed at each step. Finally, the smallest distance is obtained and the

corresponding template indicates the makam type of the recording.
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Since both makam recognition and tonic detection base on matching a histogram

with a template, these two steps are indeed performed by a single histogram matching

operation. Interestingly, for many cases where makam detection fails, the tonic

detection can still be correctly done. This is due to the fact that makams confused often

share almost the same scale structure and matching results with the same tonic.

The makam recognition system described above is evaluated by computing the

measures and parameters presented below:

TPrecall
TP FN



TPprecision

TP FP




2
( )

recall precisionF measure
recall precision
 

 


(3.11)

TP: True positive, TN: True negative, FP: False positive, FN: False negative

The success rates obtained are presented in Table 3.1.

Table 3.1. The evaluation results of the makam recognition system.

Makam Type TP TN FP FN R P F-measure
hicaz 14 150 2 6 70 88 78
rast 14 151 2 5 73 88 79
segah 17 149 3 3 85 85 85
kürdili h. 10 145 11 6 63 48 55
huzzam 10 152 6 4 71 63 67
nihavend 14 143 11 4 78 56 65
hüseyni 10 146 6 10 50 63 56
uşşak 15 138 10 9 63 60 62
saba 16 150 1 5 76 94 84
mean 13 147 6 6 68 68 68

Table 3.1 shows that while the makam recognition system is successful for the makam

types hicaz, rast, segah and saba, it is not very successful for the makam types kürdili

hicazkar, hüzzam, nihavend, hüseyni and uşşak. Table 3.2 presents the confusion matrix

of the makam recognition system (unsuccessfully retrieved makam types indicated as

bold).

The highest confusion between the makam types are as follows: segah and

hüzzam on the one side and kürdili hicazkar, uşşak, hüseyni and nihavend on the other
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side. Observing the templates of these two groups of makam types indicates the reason

of this confusion. While the segah and hüzzam have similar pitch-frequency histograms

on the one side, as shown in Figure 3.6a, kürdili hicazkar, uşşak, hüseyni and nihavend

have similar pitch-frequency histograms on the other side, as depicted in Figure 3.6b.

On the other hand, two makam types, hicaz and saba, are not confused due to the

dissimilar pitch-frequency histograms as shown in Figure 3.5.

Table 3.2. Confusion matrix of the makam recognition system.

hicaz rast segah kürdili
hicazkar hüzzam nihavend hüseyni uşşak saba

hicaz - - - 1 - 2 2 1 -
rast - - - - 3 1 - 1 -
segah - - - - 3 - - - -
kürdili
hicazkar 1 - - - - 2 - 3 -

hüzzam 1 - - 1 - - - - -
nihavend - 1 1 1 - - 2 - -
hüseyni - - - 3 - 3 - 4 -
uşşak - - - 4 - 2 2 - 1
saba - 1 1 1 - 1 2 1 -

The most confused makamlar are also evaluated from the view point of music

theoretical knowledge, especially the theory founded by Arel (Gedik and Bozkurt

2008). Pitch interval values of the confused makam couples, segah - hüzzam and uşşak -

hüseyni are very similar to the Arel theory. The theoretical pitch interval values between

the makamlar nihavend and kürdili hicazkar have also certain similarities to the

makamlar, uşşak and hüseyni.
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Figure 3.6. Pitch-frequency histogram templates for the two groups of makam (a) segah

and hüzzam (b) kürdili hicazkar, uşşak, hüseyni and nihavend.

3.3. Discussions, Conclusions and Future Work

In this chapter, the use of a high dimensional pitch-frequency histogram

representation without pre-assumptions about the tuning, tonality, pitch-classes, or a

specific music theory, for two MIR applications are presented: automatic tonic detection

and makam recognition for Turkish music. In the introduction and review sections, we

first discussed why such a representation is necessary by discussing similar methods in

literature. We have shown that very high quality tonic detection and a fairly good

makam recognition could be achieved using this type of representation and the simple

approach of “shift and compare”.
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“Shift and compare” processing of pitch-frequency histograms mainly

correspond to transpose-invariant scale comparison since peaks of the histograms

correspond to notes in the scale. The results of the makam recognition system show that

the scale structure is very discriminative for some of the makams such as segah and

saba (F-measures: 85, 84). For other makamlar, such as kürdili hicazkar and hüseyni,

the success rate is relatively lower (F-measures: 55, 56) though still much higher than

chance (100/9 for 9 classes). The payback of using histograms instead of time-varying

f0 data for analysis is the loss of the temporal dimension and therefore, the musical

context of executed intervals. Referring back to Turkish music theory, we see that

makam descriptions include ascending-descending characteristics, possible modulations

and typical motives. In our future work, we will try to add new features derived from f0

curves based on this information, again using a data-driven approach.
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CHAPTER 4

EVALUATION OF THE SCALE THEORY OF TURKISH
MUSIC13

This chapter evaluates the makam scale theory of Arel. Although Arel theory

gives place to other central concepts of the definition of Turkish music such as seyir,

melodic organization and usul, rhythmic organization, the most disputable and

discriminative dimension of the theory is the makam scales. In other words, the

discussion of Arel theory corresponds to the discussion of makam scales in theoretical

studies on Turkish music. Therefore, we prefer to use the term, “Arel theory”

throughout the study, instead of “makam scale theory of Arel”.

The most straightforward approach for the evaluation of the theory and its

suitability to MIR-type methods is to compare the defined pitch-classes with the pitch

values obtained from practice. A comprehensive computational research based on such

a comparison is presented by Bozkurt et al. (2009) on five theoretical systems, including

Arel theory. Although this study provides empirical results over a significantly large

amount of data for the first time, the suitability of a theory for MIR applications should

be evaluated within the context of MIR. As a result, our study evaluates Arel theory

within the context of MIR studies.

We have presented comprehensively the obstacles against applying current MIR

and tonality finding methods for Turkish music without any contribution from theory by

developing a data-driven model in Chapter 3. While our study shares the conceptual

framework of this study, the computational framework used in this chapter is based on a

music theoretical model. Since Turkish music is based on a modal system, our study

rather corresponds to modality finding, analogous to tonality finding studies on western

music. In this sense, finding the makam of a given piece refers to finding the modality

of a given piece. In this chapter, modality (makam) templates are constructed based on

Arel theory and a given piece is compared with these modality templates. Consequently,

13 This section is adapted from Gedik, A. C. and Bozkurt, B. (2009). Evaluation of the Makam
Scale Theory of Arel for Music Information Retrieval on Traditional Turkish Art Music, Journal
of New Music Research, 38(2): 103-116.
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the modality whose template has the highest similarity is identified as the modality of

the piece.

For each makam, a scale usually within an octave14 and its pitch intervals are

defined in Arel theory. The  pitch interval types and their values in Hc defined in the

Arel theory are as follows: bakiyye-4, küçük müneccep-5, büyük müneccep-8, tanini-9,

artık ikili-12 or 13. Based on these  pitch interval values and the definition of makamlar

in Arel theory, we have derived a list of other pitch intervals15 with respect to the tonic

(karar) for the nine makamlar as shown in Table 4.1.

Table 4.1. Makam scale intervals of nine makamlar in Arel theory. Intervals for each
makam are given in Hc with respect to tonic.

1 2 3 4 5 6 7 8
hicaz 5 17 22 31 35 39 44 53
rast 9 17 22 31 40 48 - 53
segah 5 14 22 31 36 45 49 53
kurdili
hicazkar 4 13 22 31 35 44 - 53

huzzam 5 14 19 31 36 49 - 53
nihavend 9 13 22 31 35 44 - 53
hüseyni 8 13 22 31 39 44 - 53
uşşak 8 13 22 31 35 44 - 53
saba 8 13 18 31 35 44 49 -

Finally, the automatic makam recognition method and the data set summarized
in Subsection 1.3 are used for the evaluation.

4.1. Automatic Classification according to theMakam Scales16

As mentioned in the introduction, we consider modality finding as the aim of

our study, where each makam corresponds to a modality, analogous to tonality finding

studies on western music. However, due to the difference of pitch spaces between

western music and Turkish music, both the modality templates and recordings are

14 Only the makam saba among the makamlar used is defined in Arel theory as exceeding the
range of an octave. Since we consider all makamlar within an octave, intervals higher than 53Hc
(for example 61 Hc) of saba scale are omitted.
15 7th interval for hicaz, segah and saba makam scales are defined by Arel with respect to the seyir
features of these makamlar. According to Arel, these makam scales either use 6th interval or 7th

interval depending on the melodic direction (ascending or descending).
16 All codes for automatic classification are written in MatLab 6.1
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represented as pitch-frequency histograms instead of pitch-class distributions used for

western music. In a similar fashion to current MIR studies, modality templates are

constructed first, based on Arel theory: the pitch-frequency histograms derived from

theoretical makam scales are used as templates. Then a given piece, represented again as

pitch-frequency histogram, is compared to the modality templates.

4.1.1. Representation of Practice

The method proposed by Bozkurt (2008) for the analysis of pitch frequencies in

Turkish music was used to pre-process and then to represent the recordings as pitch-

frequency histograms. In this method, each recording in audio format (wav file) is

analyzed by YIN (de Cheveigne A. and Kawahara, H. 2002) and the estimated

fundamental frequency values are post-processed with filters. These filters are

especially designed for Turkish music, based on its acoustic characteristics (Bozkurt

2008). Then the automatic tonic detection algorithm presented by Bozkurt (2008) is

applied, and the results are checked and corrected manually. Pitch frequencies are

converted into pitch interval values with respect to the tonic in Hc and the distributions

are computed. These distributions also represent the scale structure of a makam

performed in a recording. As a result, each recording is represented as pitch-frequency

histogram (Figure 4.1).
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Figure 4.1. Pitch interval histogram of a hicaz taksim by Tanburi Cemil Bey and hicaz
scale defined in Arel theory.
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4.1.2. Representation of Theory

Although Arel defines fixed pitch intervals for each makam scale, none of the

172 recordings demonstrates such characteristics. All the pitch-frequency histograms we

have computed in this study from recordings showed rather flexible pitch frequencies.

Consequently, we have transformed the theoretical makam scales by converging it to the

practice, and represented each fixed pitch interval value of a makam scale defined in

theory by Gaussian distributions. The mean of each Gaussian distribution was set at the

fixed pitch interval values defined in the theory for each makam, and their standard

deviations were selected as 2 Hc, heuristically. Finally, each theoretical makam scale

was represented as the sum of these Gaussian distributions as shown in Figure 1.5 in

Chapter 1. Each of the Gaussian distributions is calculated by the equation shown

below:

2

2
( )

21( , )
2

x

g x e

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 


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 (4.1)

g : Gaussion distribution
 (mean): assigned as constant which corresponds to fixed pitch values (Hc) defined in theory for each pitch of a
makam scale.
  (standart deviation): constant value used as 2

The makam scales are then represented in terms of these Gaussian distributions as

shown below:

1
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s g x 


 (4.2)

ms : template of makam m.
m : makam index, 1<m<9
n : number of intervals

k  (mean): mean of each Gaussian distribution which are defined as fixed pitch values of each makam scale in
theory.
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As a result, each makam scale defined in Arel theory is represented as a template, and

both the scales defined in theory and the recordings are transformed into

computationally comparable formats.

4.1.3. Automatic Classifier

The same classifier defined in Chapter 3 is used. It is designed as a supervised

and a non-parametric classifier where each data is labelled to its own class and no

probability density is used. This means that the makam of each recording are known.

Then the classifier is evaluated according to its ability to classify positive (P) and

negative (N) samples by their true (T) and false (F) classification rates. Conventionally

the design of an automatic classifier consists of four phases: data pre-processing, feature

extraction, training and evaluation of the classifier. The first two phases are described

above. However, since the templates used in the classifier are derived from the pitch

interval values defined in theory, construction of the templates did not necessitate a

training phase in the implementation of the classifier. Thus, we did not split the data as

test and training sets. As a result, our classifier is specifically designed to evaluate the

success of Arel theory for MIR studies on Turkish music. The evaluation results of the

classifier is shown in Table 4.2 for the quality measures based on the parameters and

measures presented in Equation 3.1 given in Chapter 3.

Table 4.2. Evaluation results of the classifier in terms of recall (R), precision (P), and F-
measure

TP TN FP FN R P F-measure
hicaz 20 146 0 6 77 100 87
rast 17 151 2 2 89 89 89

segah 13 140 7 12 52 65 58
kürdili

hicazkar 7 143 9 13 35 44 39

huzzam 5 154 9 4 56 36 43
nihavend 16 147 2 7 70 89 78
hüseyni 6 147 14 5 55 30 39
uşşak 13 139 11 9 59 54 57
saba 17 151 4 0 100 81 89
mean 13 146 6 6 66 65 64
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4.2. Arel Theory: A Computational Perspective

According to the success rate of automatic classification presented in Table 4.2,

makamlar can be grouped in terms of the F-measure: while the classification results for

the makamlar segah, hüzzam, kürdili hicazkar, hüseyni and uşşak demonstrated low

success rates, the remaining makamlar hicaz, rast, nihavend and saba demonstrated

high success rates. However, it is not straightforward to infer that Arel theory is

unsuccessful for the first makam group from these classification results.

The confusion matrix of the automatic classification presented in Table 4.3

reveals the reason of the low classification success rates of the first makam group. It can

be seen from the table that the most confused makamlar occur within 2 groups:

makamlar kürdili hicazkar, hüseyni and uşşak are highly confused in the first confusion

group (light gray) and makamlar segah and hüzzam are highly confused in the second

confusion group (dark gray).

Table 4.3. The confusion matrix. Two confusion groups are marked with gray levels:
segah and hüzzam (dark gray), and kürdili hicazkar, hüseyni and uşşak (light
gray).

hicaz rast segah kürdili
h. huzzam nihavend hüseyni uşşak saba

hicaz - - - - - - - - -
rast - - - - - 1 1 - -

segah - - - 3 4 - - - -
kürdili h. 3 - 1 - - - 2 3 -
huzzam - - 9 - - - - - -

nihavend - 1 1 - - - - - -
hüseyni 3 - - 4 - 3 - 4 -
uşşak - - 1 6 - 3 1 - -
saba - 1 - - - - 1 2 -

This suggests that the practice of the makamlar from each confusion group have

similar pitch-frequency histograms. Figure 3.6 presented in Chapter 3 gives visual

evidence of such similarities within each confusion group by presenting mean pitch-

frequency histogram of each makam practice in each confusion group. Mean pitch-

frequency histograms of the makamlar from the first confusion group (kürdili hicazkar,
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hüseyni and uşşak) and the second confusion group (segah and hüzzam) are presented in

Figure 3.6.a and b, in Chapter 3, respectively. As can be observed from the figures, the

makamlar in each confusion group exhibit strong similarities. The practice of makamlar

kürdili hicazkar, hüseyni and uşşak in the first confusion group are quite similar to each

other as shown in Figure 3.6.a. The practice of makamlar segah and hüzzam in the

second confusion group are quite similar to each other, which is shown in Figure 3.6.b.

Since the confused makamlar showed strong similarities in practice, it is not

possible to conclude directly that Arel theory is unsuccessful for the makamlar with low

classification success rates. Nevertheless, it can be said that the failure of the theory in

reflecting the pitch intervals of practice, contributed to the low success rate. Table 4.4

presents the comparison of pitch interval values obtained from the practice and as

defined in the theory for each makam in the confusion groups. The pitch interval values

of the practice are obtained by a peak detection algorithm applied to mean pitch-

frequency histogram of each makam. A more detailed and comprehensive comparison

of the theory and the practice based on pitch interval values is presented by Bozkurt et

al. (2009).

Table 4.4. Comparison of pitch interval values obtained from practice (gray) and
defined in theory for each makam in the confusion groups.

1 2 3 4 5 6 7 8
1st confusion group

4.7 12.7 22 31 35.3 43.7 - 53kurdili
hicazkar 4 13 22 31 35 44 - 53

6.3 12.3 22 31 38 43.3 - 53.3hüseyni 8 13 22 31 39 44 - 53
6.7 13 22 31.3 35 44 - 53uşşak 8 13 22 31 35 44 - 53

2nd confusion group
5 14.3 23.3&27 31 36 46 49 53.3segah 5 14 22 31 36 45 49 53

4.7 14 21 30.7 36 48.7 - 53.3huzzam 5 14 19 31 36 49 - 53

Table 4.4 demonstrates that the Arel theory converges considerably to practice in terms

of the pitch interval values. The pitch interval values of the practice and the theory

which diverge by at least 1 Hc are marked as bold italic in the table. Especially the 1st

pitch interval values in makam hüseyni and uşşak, which diverge from the theory, are

the intervals subject to the discussions in Turkish music. Another noticeable divergence

can be observed from the 3rd pitch interval of makam segah as shown in Table 4.4. In
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practice, the 3rd pitch interval consists of two pitch interval values: the first one 23.3 Hc

diverges from the theory and the second one 27 Hc is lacking in theory. As a result,

since the pitch interval values of the confused makamlar are also similar, Arel theory

can be considered successful except for the few pitch interval values which diverges

from the practice.

A similar investigation can also be made for the makamlar with high

classification success rates, hicaz, rast, nihavend and saba. Although Arel theory seems

to be successful for the automatic classification of practice for these makamlar, it is also

possible that the theory could diverge from the practice in terms of pitch interval values

which contribute to the decrease in success rates. Table 4.5 presents the comparison of

pitch interval values obtained from practice (gray) and defined in theory for the

makamlar with high classification success rates. As can be seen from the Table 4.5,

Arel theory considerably converges to practice in terms of pitch interval values except

the pitch interval values marked as bold italic.

Table 4.5. Comparison of pitch interval values obtained from practice (gray) and
defined in theory for the makamlar with high classification success rates.

1 2 3 4 5 6 7 8
4.3 17 21.7 31 35 37.7 43.3 53hicaz
5 17 22 31 35 39 44 53
9 16.7 21.7 31 40.3 47.7 - 53rast
9 17 22 31 40 48 - 53
9.7 13.3 22.3 31.3 35.7 44.3 - 53nihavend
9 13 22 31 35 44 - 53
7.3 13 18.7 31.7 34.7 44.3 48 53saba
8 13 18 31 35 44 49 -

Finally, despite the divergence of few pitch interval values, Arel theory seems to

provide a valid framework for MIR studies on Turkish music. However, in order to

obtain more robust evaluation of the Arel theory, it is necessary to measure the effect of

pitch interval values which diverges from practice in automatic classification.

4.2.1.Makam Classification based on Pitch Intervals of Practice

In order to measure the effect of divergence of pitch intervals in automatic

classification, firstly the pitch interval values obtained from practice are replaced with
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the theoretical pitch intervals. Therefore, Gaussian representation of makam templates

are reconstructed by using the pitch interval values obtained from practice. Then the

automatic classification of recordings is applied by using the new templates. Finally, the

results of automatic classification by using the pitch interval values obtained from the

practice can be compared with the automatic classification by using the pitch intervals

defined in theory. This comparison would give a more robust evaluation of Arel theory

within the same classification context.

The pitch interval values are obtained by applying a peak detection algorithm to

the mean pitch-frequency histogram of each makam. Then, the templates for each

makam are computed by using these pitch interval values as new means of the Gaussian

distributions as presented in Equation 4.1 and 4.2. Finally, automatic classification is

applied by new templates using the same distance measure. Table 4.6 presents the

success rates of the automatic classification for each.

Table 4.6. Evaluation results of the classifier based on pitch interval values obtained
from practice in terms of recall (R), precision (P), and F-measure

TP TN FP FN R P F-measure
hicaz 18 149 2 3 86 90 88
rast 18 149 1 4 82 95 88

segah 19 146 1 7 76 95 84
kürdili

hicazkar 7 151 9 5 58 44 50

huzzam 11 158 3 0 100 79 88
nihavend 10 150 8 4 71 56 63
hüseyni 5 145 15 7 42 25 31
uşşak 16 129 8 19 46 67 54
saba 17 148 4 3 85 81 83
mean 13 147 6 6 72 70 70

Consequently, the classification results obtained by using the pitch interval

values based on theory and practice can be compared by looking at Table 4.2 and 4.6,

respectively. The two automatic classifications can be desribed as classification based

on theory and classification based on practice. First of all, it can be said that the effect

of pitch intervals which diverge from practice in automatic classification results 6 %

decrease in terms of mean the F-measure: while the success rate of classification based
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on the theory is found as 64 %, the success rate of classification based on the practice is

found as 70 % as can be seen from Table 4.2 and 4.6, respectively.

Although the amount of decrease in success rate seems to be not very

significant, there is a considerable amount of increase in the success rates of makamlar

segah and hüzzam as 26 % and 45 % in terms of the F-measure for the classification

based on practice (Table 4.6) in comparison to the classification based on theory (Table

4.2). Therefore, it can be said that the most important effect of automatic classification

about the divergence between the theory and the practice occurs due to the pitch interval

27 Hc in makam segah which is not present in Arel theory. A simple operation of

adding this pitch interval value to the theoretical definition of makam segah results in a

67.5 % success rate in terms of mean F-measure in automatic classification based on

theory. From this it is clear that the amount of decrease, 3.5 % in success rate of the

classification based on the theory in comparison to the classification based on the

practice, occurs due to the lack of the 27 Hc pitch interval in the theory. A similar effect

of divergence in automatic classification about the pitch interval 53 Hc for makam saba,

which is not part of the theory, is computed in a similar way and found as 1 %.

Therefore, the lack of two pitch intervals in theory results in a 4.5 % decrease in

automatic classification and the remaining amount of decrease, 1.5 % in the success rate

of classification based on the theory, occurs due to the other pitch intervals defined in

the theory which diverge from the pitch intervals performed in practice.

On the other hand, there is a considerable amount of decrease, 15 % in the

success rate of makam nihavend in automatic classification, based on practice in

comparison to classification based on theory. Since the pitch interval values obtained

from the practice provide the most reliable values, it can be argued that the high success

rate of classification based on theory for makam nihavend does not reflect a valid

success rate.

4.2.2. Arel Theory and the Pitch-Classes for Turkish Music

Our aim was to evaluate Arel theory to understand whether it can supply a basis

for MIR studies on Turkish music. So the main point is to evaluate whether Arel theory

is valid for its definition of pitch-classes for each makam. Without the existence of

reliable pitch-class definitions in Turkish music, it would not be possible to apply MIR
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methods for Turkish music especially for the applications based on temporal

information such as automatic transcription of Turkish music. The results presented so

far show that Arel theory considerably converges to practice except for the few pitch-

intervals (pitch-classes) marked as bold italics in Table 4.4 and 4. 5. Especially the lack

of two pitch intervals 27 Hc for makam segah and 53 Hc for makam saba in theory

results in a significant decrease in automatic classification.

Nevertheless, we think that the pitch intervals which are not part of the theory

and diverge considerably from the practice can be corrected within the context of

templates formed of Gaussian distributions for its application for MIR studies on

Turkish music. Firstly, pitch interval values obtained from the practice are used as mean

of each Gaussian distribution for each makam scale. Secondly, the weight of each pitch

from the mean pitch-frequency histogram of each makam is applied to the Gaussian

distributions. Therefore, templates are reconstructed as the sum of Gaussian

distributions as defined in Equation 4.1 and 4.2, only multiplying the amplitude of the

distributions by the weights obtained from the practice (Figure 4.2). Consequently, the

success rate of the automatic classification based on new Gaussian distributions is found

as 75 % in terms of the F-measure, which is 7 % more than the success rate obtained by

the data-driven model, presented in Chapter 3.
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Figure 4.2. Representation of hicaz makam template obtained by the new Gaussian
distributions where the parameters are obtained from practice.



68

4.3. Discussion and Conclusion

Since Arel theory is both the most influential theory and subject of discussions

about its divergence from practice, we have evaluated it to understand whether it can

provide a basis for MIR studies on Turkish music in a similar way western music theory

provide for western music. More specifically, the main problem was to understand

whether a theory of Turkish music can provide valid pitch-class definitions for MIR

studies on Turkish music, as 12-pitch-classes defined in western music theory do.

Since our investigation is intended for MIR applications on Turkish music, we

have evaluated the theory within the context of MIR studies. Therefore, current MIR

studies on tonality finding are selected as a framework for our evaluation. Due to the

significant differences between Turkish music and western music, we have adapted the

current methods for Turkish music. In short, the modality (makam) templates are

constructed based on the Arel theory and a given piece is compared with these modality

templates.

It has been shown that despite the few pitch intervals defined in theory but

which are not part of practice, Arel theory is found partly successful when applied in a

MIR context for Turkish music for the modality finding problem. The effect of pitch

intervals defined in theory which diverges from practice results only in a 6 % decrease

in terms of the F-measure. However, it has been shown that these few problematic pitch

intervals can be improved within Arel theory based on the pitch interval values obtained

from practice. Regarding the modality finding problem, it has also been shown that

when weights of the templates obtained from practice are used, the success of automatic

makam recognition is found as 75%, which is 7 % more than the success rate of the

data-driven model found as % 68 in terms of the F-measure. On the other hand, it is

clear that without improving the pitch interval values within the theory it will not be

possible to apply MIR methods based on temporal information. As a result, we conclude

that Arel theory with few improvements could provide valid pitch-class definitions for

MIR studies on Turkish music, similar to the 12-pitch-classes defined in western music

theory.

Although Arel theory seems to be improvable by slight changes in the pitch-

class definitions for computational applications, such changes mean a great change

within the logic of Arel theory from the perspective of ethnomusicology. The 24 pitch-
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classes are the distinctive feature of Arel theory which supports the Arel discourse in

terms of “westernnes” and “Turkishness” of Turkish music. However, it has been

shown that two pitch intervals seem to be lacking in theory, and there are six pitch-

classes defined in theory considerably diverging from practice, more than or equal to 1

Hc (Table 4.4 and 4.5), which points to serious problems for Arel theory from the

ethnomusicological point of view.
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CHAPTER 5

AUTOMATIC TRANSCRIPTION OF TURKISH MUSIC17

This chapter presents an automatic music transcription (AMT) system which

accepts monophonic instrumental audio recordings of traditional Turkish art music

(shortly Turkish music) as input and outputs transcriptions in the conventional staff

notation format which can be used for performance and education. Our problem can be

considered wtihin the context of the conventional meaning of transcription in contrast to

AMT studies in the literature, since we try to obtain staff notation from recordings of

Turkish music for the purposes of performance and education. Therefore, outputs of our

study would also enable melodical analysis of Turkish music recordings which could

lead to retrieval applications and ethnomusicological analysis. Furthermore there is a

wide geographical region such as Middle-East, North Africa and Asia where the

musical cultures shares close similarities with Turkish music. Thus, our study would

also provide more relevant methods and techniques than the MIR literature for the study

of these non-western musics.

Briefly the algorithm presented in this study consists of following steps which

also reflect the organization of the paper:

i. Extraction of f0 data

ii. Automatic makam classification and tonic pitch detection.

iii. Segmentation and quantization of f0 curve.

iv. Determination of pitch intervals.

v. Note labelling.

vi. Rhythmic analysis and quantization of duration.

vii. Auditory/visual graphical user interface.

viii. Representation of transcription in MIDI format and staff notation.

Since the first 2 steps of the system, extraction of f0 data, and Automatic makam

recognition and tonic pitch detection are considered within Chapter 3 and 4, we present

the rest of the steps in this chapter.

17  A version of this chapter was submitted to Journal of New Music Research by Ali C. Gedik and
Barış Bozkurt.
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Finally, we present the evaluation results of automatic transcription based on 5

monophonic instrumental recordings18 in comparison to manual transcriptions of 2

musicians. Automatic and manual tanscriptions are evaluated with a reference to

original notations. Therefore, we proposed a solution to the evaluation problem of

automatic transcription by using both original notation and manual transcriptions for the

first time in the literature. As a result, while automatic transcription outperforms manual

transcriptions for 2 recordings, success rates of automatic transcription for the rest of 3

recordings are found close to the success rates of manual transcription. Finally we also

discussed the evaluation results qualitatively.

5.1. Segmentation

Cascade approach to segmentation and labeling of f0 curve usually apply a

model similar to a blackboard system proposed by Bello et al. (2000). Segmentation and

labeling is usually done by applying each step based on rules, thresholds or tuning

parameters. However, onset detection as one of the research domain in MIR and a

robust method for segmentation takes little attention in studies based on cascade

approach. Onset detection is either applied by algorithms far from the state-of-art (e.g.

McNab and Smith 2000; Bruno and Nesi 2005; Antonelli and Rizzi 2008; Paiva et al.

2008) or simply not applied (e.g. Haus and Pollastri 2001; Clarisse et al. 2002; De

Mulder et al. 2004).

Holzapfel, Stylianou, Gedik and Bozkurt (2010) studied problems of onset

detection for Turkish music for the first time. They proposed a fusion algorithm for

pitched instruments of Turkish music in comparison with western music instruments.

Fusion algorithm consists of three onset detection algorithm, spectral flux (SF) and

phase slope (PS) and onset detection approach based on f0 change (F0). While 57

recordings corresponding to 1829 onsets are used for evaluation, 21 recordings

corresponding to 674 onsets are used for training. As a result following success rates in

terms of F-measure are obtained: 74.1% for  F0, 73.9% for SF, 73.7 % for PS and

%82.1 for fusion algorithm. Due to the simplicity, computational costs and close

successs rates, we preffered onset detection based on f0 change in our  AMT system for

18  Recordings and corresponding original notations are obtained from http://www.neyzen.com/.
Reocrodings are performed by a well-known neyzen Salih Bilgin.
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the segmentation block. If the difference between two successive f0 intervals is more

than 2 Hc, then it is decided that there is an onset, since 4 Hc is defined as the smallest

pitch interval in theory at least.

Figure 5.1 shows how segmentation block worked on an excerpt of a sample

recording. The makam of the recording is found as hüzzam whose tonic pitch is A4#8

and corresponding note name is segah, and the tonic pitch value is found as 7294 cent.

Firstly, tonic value is substracted from f0 curve and then the resulting f0 values are

converted to Holder comma. Therefore pitch intervals are obtained with a resolution of

53 Hc/octave as shown in Figure 5.1.
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Figure 5.1. Segmentation.

5.2. Quantization of f0 Segments

Once the f0 curve is segmented it is necessary first to quantize and then to label

each segment with note names. Median is the most frequent operation used for

quantization of f0 segments (Haus and Pollastri 2001; Clarisse et al. 2002; Adams et al.

2006; Paiva et al. 2008; Typke 2011). Before labeling, ornamentations such as vibrato

and glissando or articulations such as legato are detected in contrast to statistical

approach. Haus and Pollastri (2001) detect both vibrato and legato. Vibrato is defined as

a regular modulation of 4/7 Hz and legato is defined as adjacent segments 0.8 semitone

apart. However quantitative results are not presented due to the challenge in detection of

exact moment between two legato notes as noted in this study. Similarly Pollastri

(2002) applies 0.8 semitone threshold for the detection of vibrato and legato. De Mulder
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et al. (2004) apply legato detection for segments longer than 300 ms by looking for

multiple stable intervals having gabs in between. Paiva et al. (2008) present detection of

vibrato and glissando in their automatic transcription study where threshold of 1

semitone is used for vibrato and constant increase or decrease of successive short notes

for glissando.

Two studies that apply neither HMM model nor cascade approach are as

follows: Adams et al. (2006) applied Kalman filter for the detection of vibrato based on

statistical learning and Typke (2011) applies a clustering algorithm for note

segmentation and glissandi detection.

There are also studies focused on detection of ornamentations and articulations

rather than automatic transcription, for the purpose of automatic music tutor either for

singing or violin performance. Studies of Mayor et al. (2006; 2009) apply expression

categorization for singing by HMM to detect attack, sustain release and vibrato. Loscos

et al. (2006) apply vibrato detection based on amplitude and frequency modulations for

automatic violin transcription. The study of Barbancho et al. (2009) presents both

articulation detection such as detache, pizicato, spicatto and ornamentation detection

such as vibrato for automatic violin expressive detection. Their vibrato detection is

based on the difference of average frequency of the segment and some threshold values.

The study of Zhang and Wang (2009) fuse the audio and visual information for

automatic transcription of violin. Although this study covers ornamentation detection

such as vibrato and legato, it is not clear how they are applied.

Nevertheless, most of the studies on automatic transcription of singing or

fretless instruments do not cover any ornamentation detection (e.g. McNab and Smith

2000; Hu and Dannenberg 2002; Clarisse et al. 2002; Bruno and Nessi 2005; Antonelli

and Rizzi 2008; Fujihara and Goto 2011; Rao and Rao 2010).

Although not applied in an AMT study there exists also which give place or

focus on ornamentations. Ryynanen (2006) in his review of singing transcription

defines some ornamentations as follows: vibrato is defined as a rate of 4-7 Hz with a

depth between 0.34-1.23 semitones and reported that mean of the f0 curve of a vibrato

is close to the perceived pitch; glissando is defined as a musical event performed at the

beginning of long notes start with a low frequency and reach to the note within 200 ms.

Casey and Crawford (2004) presents automatic detection of trills and chord-spreading

performed in two 17th and 18th c. lute music. Gainza and Coyle (2007) apply automatic

ornamentation detection for Irish music performed with tin whistle, flute and pipe. The
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ornamentations of this study are peculiar to Irish music and its instruments such as cut,

strike, roll, etc. The study of Duggan et al. (2008) deals again with ornamentations

peculiar to Irish music but in a retrieval context.

We again applied a rule-based algorithm for quantization in our system. Each

segment is searched for the existence of vibrato and glissando. According to the type of

ornamentation, two different methods of quantization are applied, one for vibrato and

the other for glissando. Firstly, segments are classified as vibrato or glissando segment

according to the following rules: If the difference between maximum and minimum f0

values of a segment is less than or equal to 3 Hc , it is classified as a vibrato segment.

Otherwise the segments are classified as glissando segment if their durations are also

more than 150 ms. Therefore possible appoggiatura and acciaccatura segments with a

duration less than 150ms left unclassified either as vibrato or glissando. Similarly such

short ornamentations are left almost unchanged if classified as a vibrato segment. Such

segments are useful for onset detections in the proceeding blocks but they are cancelled

at the transcription block by a duration filter for the sake of obtaining a simple notation.

Quantization of vibrato segments: Median of the f0 values of each vibrato

segment is calculated and set as the quantized value. Figure 5.2 shows some of the

quantized vibrato segments marked with ellipse
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Figure 5.2. Quantization of vibrato segments.

Quantization of glissando segments: Figure 5.3 shows each glissando segment

marked with 2 stems showing start and end of each glissando segment. It is clear from

the figure that a glissando segment can also be a combination of long ornamentations
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such as glissando and vibrato and as well as short ornamentations such as appagiaturas

and acciaccaturas. As a result quantization of a glissando segment corresponds to the

quantization of long ornamentations and cancellation of short ornamentations.

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

time (*10ms)

H
ol

de
r c

om
m

a 
w

rt.
 to

ni
c 

at
 0 f0

glissando starts
glissando ends

Figure 5.3. Classification of glissando segments.

Therefore it is possible to quantize each glissando segment seperately. Three level of

segmentation and quantization are applied for quantization of glissando segments based

on rule-based algorithms similar to the rules applied in vibrato quantization. Firstly f0

values of a glissando segment is filtered by a median filter as follows:

f0med(n)=median{[f0(n-M) ... f0(n+M)]}, M= 150 ms (5.1)

 1st level: Each filtered glissando segment is segmented within itself by applying

following rule: segmentation is applied if the difference between the two

successive f0 values are more than 1/5 Hc. Then each segment is quantized if the

difference between the maximum and minimum values of f0 values is less than 2

Hc. Median of the f0 values are calculated and set as the quantization value.

 2nd level: The resulting glissando segment is segmented again according to the

following rule: segmentation is applied if the difference between the two

successive f0 values are more than 1 Hc. Then each segment is quantized if the

difference between the maximum and minimum values of f0 values is less than 6

Hc. Median of the f0 values are calculated and used as quantization value.
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 3rd level: A final segmentation is applied as follows: if the difference between the

two successive f0 values are different than 0 Hc, a new segment is detected.

Finally the segments less than 200ms are omitted by sharing their durations

equally with the neighbor segments. This final operation leads to the

cancellation of short ornamentation notes such as appagiaturas and

acciaccaturas.

As a result, first glissando segment of the f0 curve shown in Figure 5.3 is presented

as an example of glissando quantization in Figure 5.4.
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Figure 5.4. Quantization of glissando segments.

Final quantization result is shown in Figure 5.5. As can be seen from the figure there are

short ornamentations, since they are either classified as vibrato segment or remained

unclassified due to their durations less than 150 ms.
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Figure 5.5. Quantization of glissando segments.
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5.3. Note Labeling

In order to label quantized f0 curve with note names, a list of note names for 8

octaves is used. 53 note names for each octave is listed which corresponds to the

resolution of quantized f0 curve (53 Hc/octave). Therefore successive notes are listed in

the list in order to have 1 Hc difference in between, as follows: C1…C4#1 C4#2 C4#3

C4#4 C4#5 C4#6 C4#7 C4#8 D4...C8.

The distance between each pitch in the f0 curve and the tonic pitch is calculated

from the note list and the corresponding note name is found. As an example, we can

consider the same hüzzam recording. If we want to find the note name of a pitch interval

of 36 Hc with respect to tonic, then we should start counting 36 note names from the

note list starting from the tonic note, which is A4#8 for makam hüzzam. Considering a

whole note is 9 Hc and a half note is 4 Hc in Turkish music the distance of 36 Hc wrt.

tonic pitch can be calculated as follows: the difference between A4#8 and C5 is 5 Hc.

There are 31 steps left which corresponds to the remaning distance starting from C5. It

is clear that 31 Hc starting from C5 leads to G5, since 3 whole tones (C5-D5, D5-E5,

F5-G5) which corresponds to 3 x 9 = 27 Hc and a half tones (E5-F5) which corresponds

to 4 Hc between C5 and G5 makes 31 Hc in total. Therefore we reach to the note name

G5 for the pitch interval of 36 Hc.

In order to get rid of short ornamentations in the quantized f0 curve for the sake

of an easy readable notation, a final filter is applied which cancels the notes shorter than

150 ms by sharing durations of canceled notes equally between neighboring notes.

Since such ornamentations mark onsets and offsets which are necessary for the note

durations, the onsets of the cancelled notes are kept. Finally, Figure 5.6 shows the

resulting onsets and note names above the f0 curve depending on pitch interval values

of quantized f0 curve and the tonic note name found for the same excerpt of hüzzam

recording.
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Figure 5.6. Note labeling: note names above the f0 curve found according to the
resolution of 53 Hc/octave and note names below the f0 curve defined in
theory.

However, the pitch space of performance in Turkish music is much richer than the pitch

space defined in theory. Therfore pitches of the performance obtained according to the

resolution of 53 Hc/octave is converted to the closest pitches defined in theory, since we

aim to obtain conventional staff notation which is used by musicians. Following rules

are applied for this conversion:

- #1 is converted to natural if the note is not F, since #1 is only defined for F in

theory.

- #2 is converted to #1

- #3 is converted to #4

- #6 is converted to #5

- #7 is converted to #8

Again for the sake of easy readability of notation, sharps more than 4 are expressed in

terms of flats; eg.  A4#8 is written as B4b1 which is the actual representation of note

segah. Similarly e.g. D5#5 is written as E5b4 which is the actual representation of note

hisar. A final correction for the pitch intervals and note names is applied as follows: if

the difference between two successive notes is 1 Hc, which is not a musical interval,

then the most frequent one used in the whole piece is attended as the pitch interval of

the less frequent one. As a result, Figure 5.6 shows the converted note names below the

f0 curve. As can be seen from the figure the second note G5#1 and third note A5#1  are

converted to natural G5 and A5, etc. Successive notes F5#5 are expressed as F5b4 and

similarly F5#8 is expressed as G5b1. List of transcribed notes are written to a table to be

used for conventional staff notation.
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5.4. Quantization of Note Durations

Duration of notes also should be quantized in order to be represented as

conventional note durations such as 1/16, 1/8, 1/4 etc. There are mainly three

approaches for duration quantization; statistical approach, ratio approach and an

approach based on tempo set by the user. Viitaniemi et al. (2003) use distribution of

durations obtained from EsAC-database for the quantization of note durations of a given

piece. Adams et al. (2006) applies a uniform quantization where duration levels are

assumed to be uniformly distributed. Ratio approach is mainly applied in QBH systems

where note durations need not to be represented conventionally. Both Haus and Pollastri

(2001) and Unal et al. (2008) apply ratio of durations of consecutive notes. McNab et al.

(1996) for a tempo of 120 beat/minute (bpm) set 125 ms as semiquaver (1/16) and use

the resolution of semiquaver. McNab and Smith (2000) set the duration of the shortest

note as semiquaver which is another expression of previous work. In other words, each

note is quantized to the nearest semiquaver according to the tempo set by the user

(McNab et al. 2000). Duggan et al. (2008) use a duration histogram where the highest

peak is determined as the quaver note. Meek and Birmingham (2002) apply Inter-Onset-

Interval (IOI) for the quantization of note durations by applying a 29 level quantization

on a logarithmic scale.

However most of the studies do not study the duration quantization

problem (e.g. Bello et al. 2000; Clarisse et al.  2002; De Mulder et al. 2004; Bruno and

Nesi 2005; Paiva et al. 2008; Antonelli and Rizzi 2008; Rao and Rao 2010; Fujihara and

Goto 2011). In this sense rhythm detection is almost out of scope within many

automatic transcription studies, although there are studies focused only on rhythm

detection. Hainsworth (2006) presents a detailed review for those studies. We apply the

method based on duration histogram for the quantization of durations. In order to obtain

a robust histogram, a rounding operation is applied to the first digit of millisecond  for

each note duration (e.g. 1317 ms is rounded to 1320 ms). Finally, the highest peak of

the duration histogram is set as the eighth note (1/8) . Figure 5.7 shows duration

histogram of the same sample of hüzzam recording. As can be seen from the figure

eighth note is found as 0.4 sec. marked with solid ellipse and double of it, quarter note

0.8 sec. marked with dotted ellipse.



80

0 50 100 150
0

5

10

15

fre
qu

en
cy

 o
f o

cc
ur

an
ce

s

time (*10ms)

Figure 5.7. Duration histogram.

As a result, each note duration is divided to 0.4 sec. and expressed in terms of eighth

note. In order to use these duration values for conventional staff notation, each value is

expressed as simplest integer ratios such as 3/16, 5/8 etc., and numerator and

denumerator for each duration is written to a list beside note names.

However it is not possible to proceed to rhythm analysis after the quantization of

duration in Turkish music considering the state of art. One of the most important reason

for this fact is the complexity of rhythmic structure in Turkish music involving

compound rhythmic patterns such as 5/4, 7/8, 9/8. Furthermore when a percussion

instrument is lacking, it becomes challenging to detect onsets robustly. Nevertheless,

some preliminary tests are conducted for rhythm analysis by Bozkurt and Gedik (2010).

Spectral flux is used for onset detection and auto-correlation function of onset signal is

calculated for beat detection. While tests on 21 synthetic recordings give successful

results for beat detection, tests on 4 sample audio recordings give very poor results.

Therefore we leave this topic to future work.

5.5. Transcription and Graphical User Interface

As aforementioned, GUI provides a tool for the training of the system as shown in

Figure 5.8.. GUI also enables users to realize the automatic transcription by her/himself

and to correct any faulty information occurred at blocks of the automatic transcription

as follows:

i. Open a monophonic instrumental audio recording of Turkish music.

ii. Find the makam of the recording and if faulty choose the correct makam from
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the menu.

iii. Detect the tonic of the recording and if faulty set the tonic.

iv. Listen to the whole or selected part of the original recording in comparison with

synthesized sound obtained from the extracted f0 data.

v. Observe visually and auditorily the final transcription in terms of note names

and piano-roll and resulting MIDI in turn.

vi. Correct any faulty pitch by selecting its region.

Finally automatic transcription by the use of GUI also produces a list similar to

MIDI format and this format can be opened by the software MUS2 which produce

conventional Turkish staff notation. Figure 5.9 (top) shows the information used by

MUS2 represented on the piano-roll: note names and durations represented as simple

fractions. Figure 5.9 (middle) shows the conventional staff notation produced by MUS2.

Finally Figure 5.9 (bottom) shows the original notation. In overall Figure 5.9 both

demonstrates the result of automatic transcription and the divergence between the

notation and performance in terms of pitch intervals and duration. Although notation

dictates F5#4, the performer plays F5#5 (G5b4) as can be seen from the f0 curve.

Similarly while notation dictates E5b4, the performer plays E5 natural as can be seen

from the f0 curve.

Figure 5.8. Graphical User Interface coupled with the automatic transcription system.
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Figure 5.9. Transcription example: (top) shows the piano-roll representation; (middle)
shows the conventonal staff notation produced bu MUS2; (bottom) shows
the original notation.

As a result, representation of automatic transcription as a conventional staff

notation and as a more detailed notation via GUI, supplies two kinds of notations as

defined by ethnomusicologists: prescriptive notation and descriptive notation. While

prescriptive notation can be used for performance and education, descriptive notation

can be used in ethnomusicological studies on Turkish music.

5.6. Evaluation

There are mainly two approaches for the evaluation of automatic transcription in

the literature: comparison of transcription and reference notation (original notation or

manual transcription) and simply measuring the success of retrieval operation.. Since

the latter approach to evaluation is for retrieval applications, it is out of our scope.

There are various metrics for the evaluations based on comparison of

transcription and reference notation. One of them is edit distance (ED) where the

transcription is compared with reference notation on the basis of number of correct,

inserted and deleted notes (e.g. Martol 2003; Krige and Niesler 2006; Jiang et al. 2007;

Unal et al. 2008). However the effect of duration or onset/offset times on the success

rate is not clear in these studies.
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Fonseca and Ferriera (2009) classify evaluation metrics as frame-based and

note-based approaches. Frame-based approach is based on the comparison of two

notations for every 10 ms (Dixon 2000). Note-based approach is based on classification

metrics such as false negatives, false positives, recall, precision and f-measure.

Transcribed notes are classified as correct if their onsets are within a certain

neighbourhood of the onsets of the reference data and if difference of their pitch values

are under some threshold value, usually half of a semi-tone. The neighboorhood for

onset is defined  in the literature as a threshold between +25 - +150ms (Fonseca and

Ferreira 2009). Some of these studies also take duration into account by defining a

overlap ratio for the definition of correctly detected notes (e.g. Ryynanen and Klapuri

2005, 2006, 2008; Antonelli and Rizzi 2008). Overlap ratio determines the tolerance for

the original and transcribed notes in terms of their overlapping onset and offset times.

As a result, evaluation of AMT is mainly based on quantitative measures leaving

out the questions about false transcribed notes. This quantitative approach toward

evaluation makes the details of the process inaccessible. Especially when manual

transcriptions are used as reference data, the procedure applied is not clear in the

literature. In this sense Daniel et al. (2008) focus on the perceptual evaluations of

listeners for the transcription errors and use these data for developing a perceptual-based

evaluation.

However the use of original notation or manual transcription as reference data

for evaluation is also problematic even for western music as our discussion on the

concepts of descriptive notation and prescriptive notation showed. No doubt this

approach is much more problematic for Turkish music due to the divergence of theory

and performance. Two studies clearly focus on the problems of notation system in

Turkish music. Ayangil (2008: 445) especially underline that although the performance

styles such as melodic and rhythmic variations and ornamentations constitutes one of

the most important characteristic of Turkish music, they are not represented in notation.

Similarly Kaçar (2005) empirically shows this problem by comparing the notation of

pieces and the performances of pieces  by master musicians.

Therefore, an objective evaluation of automatic transcription system is also

problematic. In order to handle this challenging problem we applied a cross-evaluation

method for the first time in the literature. In short, we asked 2 locally well-known

performers having a formal education on Turkish music, to manually transcribe the

pieces which are selected for the evaluation of our AMT system. They have 2
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alternative approaches for transcription: one is simple transcription without

ornamentations in accordance with the tradition of notation in Turkish music and the

other is more complicated transcription including both ornamentations and performance

styles. Although both musician were familiar with both approach, we asked them to

transcribe as simple as possible, similar to original notations in Turkish music.

As a result, outputs of automatic transcription and manual transcriptions are

compared with original notations as a more objective measure for the success of our

AMT system. Success rate of AMT system is measured by both note-based and frame-

based evaluation methods.

Recall, precision and F-measures are used in note-based evaluation where TP

(True Positives), FN (False Negatives) and FP (False Positives) corresponds to number

of correctly transcribed notes, the number of notes not transcribed and the number of

notes not present but transcribed, in turn. 150ms tolerance for onset and threshold of 3

Hc (approximately half of a semitone) condition for pitch difference for a correctly

transcribed note are applied.

Overall overlap ratio is calculated by the following measure:

   
   

min - max
_

max - min
offsets onsets

overlap ratio
offsets onsets

 (5.2)

Offsets and onsets in the overlap ratio measure correspond to offsets and onsets of a

correctly transcribed note and its reference note. Therefore for each note pair ovelap

ratio is calculated based on the minimum and maximum of offsets and onsets. Mean of

the overlap ratios gives the overal overlap ratio. Finally a simplification proposed by

Jiang et al. (2007) for note-based evaluation is applied: Silence in the transcription is

deleted and adjacent notes with the same tone are merged as one note.

Frame-based evaluation is found by the following measure:

( )
TPAcc

FP FN TP


 
(5.3)
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Again threshold of 3Hc is used for the classification of correctly transcribed notes for

frame-based evaluation. Finally Table 5.1 presents evaluation results for both evaluation

approaches. We will first consider the note-based evaluation results. The success rates

of automatic transcriptions are almost equal to the success rates of manual transcriptions

for piece #2 uşşak and piece #4 hüseyni. Automatic transcription outperforms manual

transcriptions for piece #2 uşşak. The success rates of automatic transcriptions are lower

than manual transcriptions for rest of the three recordings, piece #1 hüzzam, piece #3

hicaz and piece #5 saba.

Table 5.1. Evaluation results for 3 kinds of transcriptions for 5 recordings. Manual 1
and 2 corresponds to the transcriptions of two musicians.

Piece
Note-based evaluation

Frame-based

 evaluation

#             Makam

Transcription

F-measure Overlap Ratio Accuracy

Manual 1 0.3111 0.9571 0.7593

Automatic 0.1263 0.5293 0.67891 Hüzzam

Manual 2 0.8298 0.9382 0.9717

Manual 1 0.1163 0.8325 0.7110
Automatic 0.1887 0.6620 0.47882 Uşşak

Manual 2 0.1771 0.8869 0.3577

Manual 1 0.4867 0.9505 0.6547

Automatic 0.2300 0.5504 0.58953 Hicaz

Manual 2 0.6766 0.9319 0.8274

Manual 1 0.8909 0.7381 0.8243

Automatic 0.6990 0.6624 0. 74444 Hüseyni

Manual 2 0.5255 0.5477 0.6815

Manual 1 0.2646 0.9010 0.5629

Automatic 0.2097 0.4766 0.53145 Saba

Manual 2 0.5748 0.9384 0.7710

If we consider frame-based evaluation results, automatic transcription of piece

#2 uşşak and piece #4 hüseyni do not outperform manual transcriptions, success rates of
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automatic transcriptions are within the confidence interval of success rates of manual

transcriptions. Again the success rates of automatic transcription is more close to the

success rates of manual transcriptions for the rest of other 3 recordings in comparison to

the success rates found in note-based evaluation. This fact can be seen from Table 5.2.

While the mean success rate of automatic transcription is much lower in note-based

evaluation, it is much higher in frame-based evaluation.

Table 5.2. Overall evaluation results for 3 transcriptions.

Note-based evaluation
Frame-based

 evaluationTranscription

Mean F-measure Mean Overlap Ratio Mean Accuracy

Manual 1 0.4139 0.8758 0.7024

Automatic 0.2907 0.5761 0.6046

Manual 2 0.6517 0.8390 0.8129

In fact, frame-based evaluation for all transcriptions gives more optimistic

results in comparison to note-based evaluation. Since the same pitch interval value,

3Hc, is used as a threshold for correct transcribed notes, the main difference should

result from the difference of approach to note-onsets in two evaluation metrics. In other

words, while note-based evaluation has a note-onset threshold, 150 ms, frame-based

evaluation does not use any condition for note-onsets.

5.7. Discussions

In order to discuss the evaluation results qualitatively we firstly present piano-

roll representation of 3 transcriptions of piece#2 uşşak in comparison to original

notation as shown in Figure 5.10.

Transcriptions of this piece are the most interesting example for discussion.

Although it is the worst successful example for both evaluation approaches, there is an

interesting difference between the results of the note-based and frame-based approach

as can be seen from Table 5.1. This fact is especially observable when the two kinds of
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success rates are compared for the manual transcription #1 (Figure 5.10 –top); % 12 for

note-based and % 70 for frame-based.
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Figure 5.10. Transcriptions of piece #2 uşşak in comparison to original notation:
Manual transcription #1 (top), automatic transcription (middle) and Manual
transcription #2 (bottom).
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Although transcription seems to be so close to the original notation from the

figure, the onsets of the notes of the transcription and original notation marked with

arrows are 200 ms far away which is above the evaluation threshold 150 ms. Therefore

the results of the note-based approach is not as flexible as frame-based approach and

leads to dramatic decrease in the success rates even for the transcriptions fits to the

original notation. The same considerations are also valid for the automatic transcription

shown in Figure 5.10 (middle). Again note onsets of the transcription and notation

marked with arrows seems to be very close but their distance is above the onset

threshold. The transcriptions of other 4 recordings demonstrates the same fact also (see

Appendix A for all transcriptions and original notations represented in piano-roll

format). Therefore we can conclude that frame-based approach gives not only more

optimistic results but also more realistic results for our cases. Finally Appendix B

presents all transcriptions and original notations represented in conventional staff

notation.

5.8. Conclusion

In this chapter, we presented an AMT system designed for Turkish music for the

first time in the literature. We also proposed a new evaluation approach due to the

ambiguity of the automatic transcription problem in MIR literature. The contribution of

our approach is the use of 2 different manual transcriptions for the evaluation of

automatic transcriptions in comparison to original notation. Our final contribution is the

two kinds of transcriptions our system produce: a prescriptive notation for the use in

performance and education and a descriptive notation for the use of ethnomusicological

analysis. While prescriptive notation gives conventional staff notation, descriptive

notation gives details of the performance in comparison to prescriptive notation via GUI

designed.

As a result, AMT system consists of several block which extracts f0 data from

audio recordings, automatically recognize makam of the recording and its tonic pitch,

segment the f0 data and quantize both f0 segments and its durations and finally label

them with note names. While the success rate of our system is found %60 in terms of

accuracy, the success rates of 2 manual transcriptions are found % 70 and % 81.
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CHAPTER 6

DISCUSSION AND CONCLUSION

This thesis presented an AMT system for Turkish music for the first time in the

literature. In order to construct this system several issues and applications were

discussed and applied. Firstly, automatic music transcription problem was considered

from the perspective of ethnomusicology. Secondly, an automatic makam recognition

system was developed. Thirdly, the Turkish music theory was evaluated

computationally in order to understand whether it can be used for MIR studies on

Turkish music.

Although each title is considered with its own discussion and conclusion section

within each chapter, it is necessary to consider several issues in detail. Following

subsections tries to handle these issues.

6.1. AutomaticMakam Recognition19

Possible problems about our study on automatic makam recognition should be

mentioned related with the data used. First of all, recordings consist of performances in

the form of taksim. Arel does not give place to forms in his book, but it is known that

the distinguishing feature of the form taksim is the modulations (i.e. short-term makam

changes) used during a performance. Therefore, a taksim performance of a specific

makam naturally shows the characteristics of other makamlar where it is modulated.

However, the weight of these modulations changes from performance to performance

which can be estimated intuitively as between 10-30 percent with respect to the whole

performance. Without the existence of an automatic segmentation algorithm, it is not

possible to detect the modulations in the performance. Automatic detection of

19 This section is adapted from Gedik, A. C. and Bozkurt, B.(2009). Evaluation of the Makam
Scale Theory of Arel for Music Information Retrieval on Traditional Turkish Art Music, Journal
of New Music Research, 38(2): 103-116.
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modulations is among our future goals. Therefore, this study lacks an analysis of the

effect of modulations to the classifier’s performance.

The other two main problems related to the data, which probably affected the

classification results, is their representation value of the practice. Firstly, most of them

were recorded in sound studios, far from the natural contexts of musical performance.

Although we do not have enough information about the general conditions of all

recordings, at least Ünlü (2004:199) reports the terrible psychological mood of Tanburi

Cemil Bey during the recording sessions. Of course, the time limitations due to the

recording technologies should have also affected the performances. Second, the time

period of recordings spread roughly between the years 1900 and 2000. So it is hard to

say that the practice is left unchanged during a century which prevents to make strict

generalizations over them. It should be added that the modernization process which

makes the “traditional art music” one of the most popular genre between 1950 and 1960

(Aksoy 2006:17) has effected the practice too.

However, as mentioned before one of the most challenging issues for the pitch-

class analysis of practice in Turkish music is the freedom of musicians in the

performance of pitches. The performances of the same makam by the two most

prominent performers of Turkish music, Tanburi Cemil Bey and his son Mesut Cemil,

demonstrate this freedom as shown in Figure 3.2 presented in Chapter 3. Even the most

characteristic pitch intervals of makam hicaz, 1st, 2nd and 3rd intervals, are performed at

different values. Furthermore, while all other theories including the Arel theory give

almost the same interval value at least for the 3rd interval as 22 Hc (Bozkurt et al. 2009),

Tanburi Cemil Bey and Mesut Cemil perform this interval as 21.3 and 21.7,

respectively. Consequently, such performance characteristic of pitch-classes can be

considered as one of the most important divergence between theory and practice which

seriously affected the success of automatic classifications presented in this study.

Finally, what makes the divergence between theory and practice more apparent

in the 20th century seems to be that the perception of theory has been more important

than before in the circle of traditional Turkish art music. Although the practice seems to

develop its own course, it is clear that the practice defines itself with reference to theory

as stated by Marcus (1993:50): He quotes from Wright that “the smaller intervals of

theory were then sometimes “enlarged” in practice”, and adds, based on his study in

Egypt, that “today, when theory dictates a large interval, musicians speak of “shrinking”

these intervals”. In this sense, Table 4.4 seems to demonstrate both tendencies of the
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performers since the theory covers both types of intervals: while the third and the sixth

interval defined for segah seem to be “enlarged”, the first interval defined for uşşak and

hüseyni seem to be “shrinked”.

6.2. Automatic Transcription of Turkish Music

One of the problems of evaluation results about automatic transcription is

already mentioned under the subsection 5.5 in Chapter 5, “Transcription and Graphical

User Interface”. The real pitch values of the performance (e.g. E5) diverges both from

pitch values of the original notation and transcription (e.g. E5b4) as shown in Figure

5.9. Since the example presented in Figure 5.9 is the same with the piece #1 hüzzam, the

same consideration holds true for the the piece #1 hüzzam as shown in Figure 6.1

(middle). This fact can be observed from the pitch intervlas of manual and automatic

transcriptions around 20 Hc in Figure 6.1 (middle). As shown also at Table 4.4 in

Chapter 4, this interval is one of the pitch intervals leading to divergence of theory and

practice: while the pitch interval of performance is reported as 19 Hc, the pitch interval

defined in theory is 21 Hc. However we see that the performer of the piece  #1 hüzzam

preferred a higher pitch value. Naturally 4 Hc difference is evaluated as false

transcription both by the note-based and frame-based approaches for automatic

transcription.

Similarly the real pitch values of the performance (e.g. D5) of the piece #3 saba

diverges both from pitch values of the original notation and manual transcriptions (e.g.

D5b4). Naturally 4 Hc difference is evaluated as false transcription both by the note-

based and frame-based approaches for automatic transcription. This fact again can be

observed from the pitch intervlas of manual and automatic transcriptions around 20 Hc

in Figure 6.2 (middle). As shown also at Table 4.5 in Chapter 4, this interval is one of

the pitch intervals leading to divergence of theory and practice: while the pitch interval

of performance is reported as 18.7 Hc, the pitch interval defined in theory is 18 Hc.

However we see that the performer of the piece #3 saba preferred a higher pitch value.
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Figure 6.1. Transcriptions of piece #1 hüzzam in comparison to original notation:
Manual transcription #1 (top), automatic transcription (middle) and
Manual transcription #2 (bottom).
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94

This is not surprising since we already mentioned the divergence of theory and

performance. This fact shows that the behavior of musicians whom transcribed the

recordings was according to theory not to how they hear. Currently our transcription

system can not handle such common-sense behavior. However, it is clear that in order

to represent recordings with conventional staff notation, it is necessary to develop such

methods. Therefore, one reason of low success rates of automatic transcription results

comes from the lack of such mappings that would reflect deficiencies of the theory to

represent practice (or to copy the errors of the theory to represent practice).

Another problem can be observed from Figure 5.10 which shows piano-roll

representation of transcriptions similar to original notation but shifted in time. This is

not peculiar only to automatic transcription and manual transcriber #2. In some other

examples manual transcriber #1 shifted transcriptions in time while the manual

transcriber #2 performs more close to original notation (see Appenix A). There is no

doubt that automatic transcription simply follows the f0 data extracted in both time and

frequency dimensions and gives the actual performed pitch interval. However this fact

again leads to low success rates. Possibly, if rhythm analysis could be applied, then it

would be easier to fit the automatic transcription to original notation in terms of tempo.

The results of our system are in accordance with the resuts of the emprical

studies of List (1974) and Stockmann (1979) on manual transcription from the

perspective of ethnomusicology. Both studies discuss the reliability of manual

transcriptions and show that different participants gives out transcriptions with a certain

amount of difference primarily for the durations and secondarily for the pitches of notes.

It should also be mentioned that both transcribers reported a certain difficulty about

fitting the note durations within the tempo of performances in their transcription

experience. This fact demonstrates an additional problem about transcription; Although

the performed pieces have certain tempo values, the performer prefers rather a flexible

interpretation of the given tempo in the original notations.

 Finally, it is clear that outputs of our system would be valuable for musicians in

their performances and education. While descriptive transcription supplies all details of

performance such as ornamentation and performance styles of a performance,

prescriptive notation supplies staff notation of any performance within the limits of our

system.
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6.3. Future Work

The limitations of our study can be listed as follows:

 Accepts only monophonic instrumental audio recordings

 Rhythm analysis is missing

 Although automatically recognizes makam of the recordings, unable to use this

knowledge for the use of accidentals in the transcription. This is not possible due

to the possible modulations (geçki) in a given recording.

 Small number of test recordings for the evaluation of our AMT system.

Each of the items about the limitations of this thesis can be thought as a future

work. On the other hand there is a more urgent issue about the transcription of Turkish

music. Our system is mainly evaluated by the performances of compositions. However,

improvisations also cover an important place in Turkish music. As mentioned by the

participants in Chapter 2 even manual transcription of improvisations are highly

challenging. Therefore, there is much less notations of improvisations in Turkish music

in comparison to compositions.

This fact points a more urgent need for an AMT which could accept

improvisations. Good news about our AMT system is that improvisations in Turkish

music is mainly performed monophonically either by instrument or vocal, which are

called as taksim and gazel, respectively. Furthermore, improvisations in Turkish music

are mainly performed in free rhythm. This is another advantage of our system for taksim

transcriptions which leaves out the rhythmic analysis. Therefore, it can be said that

theoretically our system can also work for taksim recordings, as well. However in order

to speak practically about our system’s performance on taksim recordings, it is

necessary to handle an evaluation for such recordings. No doubt any evaluation of our

system for taksim recordings would require original notations which are seldom found

and manual transcriptions which are less trustable in comparison to compositions.

Nevertheless, regarding the importance of improvisation in Turkish music, our first

future plan is to handle this challenging task.
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APPENDIX A

PIANO-ROLL REPRESENTATION OF
TRANSCRIPTIONS
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Figure A.1. Transcriptions of piece #3 hicaz in comparison to original notation: Manual
transcription #1 (top), automatic transcription (middle) and Manual
transcription #2 (bottom).
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Figure A.2. Transcriptions of piece #4 hüseyni in comparison to original notation:
Manual transcription #1 (top), automatic transcription (middle) and Manual
transcription #2 (bottom).
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APPENDIX B

STAFF NOTATION REPRESENTATION OF
TRANSCRIPTIONS

B.1. Original Notations

Figure B.1. Original notation of piece#1.
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Figure B.2. Original notation of piece#2.
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Figure B.3. Original notation of piece#3.
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Figure B.4. Original notation of piece#4.
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Figure B.5. Original notation of piece#5.
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B.2. Manual Transcriptions 1

Figure B.6. Manual Transcriptions 1 of piece#1.



118

Figure B.7. Manual Transcriptions 1 of piece#2.
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Figure B.8. Manual Transcriptions 1 of piece#3.
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Figure B.9. Manual Transcriptions 1 of piece#4.

Figure B.10. Manual Transcriptions 1 of piece#5.
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B.3. Manual Transcriptions 2

Figure B.11. Manual Transcriptions 2 of piece#1.
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Figure B.12. Manual Transcriptions 2 of piece#2.
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(cont. on next page)
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Figure B.13. (cont.) Manual Transcriptions 2 of piece#3.
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Figure B.14. Manual Transcriptions 2 of piece#4.
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Figure B.15. Manual Transcriptions 2 of piece#5.
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B.4. Automatic Transcriptions

Figure B.16. Automatic Transcription of piece#1.
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Figure B.17. Automatic Transcription of piece#2.
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Figure B.18. Automatic Transcription of piece#3.
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Figure B.19. Automatic Transcription of piece#4.
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Figure B.20. Automatic Transcription of piece#5.
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