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ABSTRACT

STRUCTURAL AND KINEMATIC SYNTHESIS OF
OVERCONSTRAINED MECHANISMS

Investigation on overconstrained mechanisms netdstian especially in the
structural synthesis. Knowing overconstrained coma and including them in the
design process will help creating manipulators Vie$s degree of freedom (DoF) and
more rigidity. Also this knowledge of overconstrihconditions will clarify concept of
mobility of the parallel manipulators. Another sedtj kinematic synthesis of
overconstrained mechanisms, is important becausdl iallow describing a function,
path, or motion with less DoF less number of joiiiise aim of this thesis is to describe
a generalized approach for structural synthesis apdtion of new overconstrained
manipulators and to describe a potentially germahle approach for function and
motion generation synthesis of overconstrained @sim.

Moreover, screw theory is investigated as a mathiealabase for defining
kinematics of overconstrained mechanisms. Also,ranrestrained mechanisms are
investigated and generation of new mechanismstiedaced with examples. Some
mathematical models for the subspace geometriegiaen. A method for defining
overconstrained simple structural groups is intoadu and extended to design of
manipulators with examples and solid drawings. amepproximation and least squares
approximation methods are used for the functioreggtion and motion generation of
overconstrained 6R mechanisms.

A gap of describing overconstrained manipulatorsfilied in the area of
structural synthesis. A general methodology is dieed for structural synthesis,
mobility and motion calculations of overconstraineganipulators using simple
structural groups. A potentially generalizable noetHfor the kinematic synthesis of
overconstrained manipulators is described botliuloction and motion generation.



OZET

KISITLI MEKAN IZMALARIN YAPISAL VE K INEMATIK SENTEZ

Kisith mekanizmalarin 6zellikle yapisal sentemigpcelenme gereklii vardir.
Kisith  mekanizmalarin kisithlik kallarint  bilinmesi ve bu kaillari tasarim
asamasinda kullanilmasi daha az serbestlikli ve ddhaganikli manipilatérlerin
tasarlanmasini giar. Ayrica bu kisith keul bilgisi paralel manipulatérlerin mobilite
konusunu da aydinlatacaktir. Kisith mekanizmalarkinematik sentezi bu
mekanizmalarla yani daha az mafsal sayisina sdaiproekanizmalarla bir fonksiyon,
yol yada hareket yaratiminingganabilmesine yardimci olur.

Bu tezin amaci, kisith manipulatorlerin tasarlatrabsi icin gereken genel bir
yontem tanimlamak ve ayrica kisith mekanizmalain igenellgtirilebilecek bir
foksiyon ve hareket sentezi yontemi tanimlamal®uw. amaca yonelik olarak kisith
mekanizmalarin kinematik olarak incelenmesi igidavteorisi kullanilmy ve birim vida
donsim matriksi yontemi gaitiriimistir.  Ayrica bilinen kisith  mekanizmalar
incelenms ve bu mekanizmalar kullanilarak yeni kisith mekamalar yaratmak icin bir
yontem verilmg ve uygulanmgtir. Kisith manipulatorlerin yapisal sentezi iggereken
basit yapisal gruplarin tanimlanmasi icin gereklornfiller verilmg ve
orneklendirilmitir. Kinematik sentez icin ise interpolasyon yakha ve en kugik
karaler yaklaimi alti mafsalli kisith mekanizmalarin fonksiyga hareket sentezlerine
uygulanmgtir.

Baoylelikle kisith mekanizmalarin yapisal sentgmobilite ve hareket hesaplari
icin vida teorisi ve basit yapisal gruplar kullamdk genel bir metodologi anlatilgtr.
Ayrica kisith mekanizmalar icin hem fonksiyon yama sentezi hem de hareket yaratim

sentezi Gizerine genellenebilecek bir kinematik segtintemi aciklanngtir.

Vi
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CHAPTER 1

INTRODUCTION

A robotic system can be defined as a re-programenabllti-functional
manipulator that is designed to move materialsisp&ools or devices through variable
programmed motions for desired tasks. Similar tahires, a robotic system is an
assembly of one or more mechanisms with other re@datt hydraulic or pneumatic
components. Mechanisms, which are vital parts oflnmes, are the combination of
gears, cams, linkages, springs etc. Linkage systemslementary subject in design of
manipulators and can be defined as a collectidmk$ that are connected with actuated
free joints.

When a constraint is imposed in a space then mavesnte rigid body in this
space are restricted and this new restricted splaggid body is called its subspace of.
Knowing constraints imposed by the linkages subs@ad the motion of mechanisms
can be described easily. A mechanism is calledsasconstrained when it belongs to a
subspace. Noting that the sum of subspace numbercanstraint number for a
mechanism is always being equal to motions in apanvironment definition of
structural mobility can be defined as the diffeebhetween total mobility of joints and
the total of subspace numbers of independent lgofise system. A mechanism must
always transmit mechanical motion. If mobility ofiakage system is zero then it will
be defined as a structural group. Structural graxgmsbe divided into simple structural
groups. Simple structural groups are kinematicrchaith zero degree of freedom and
cannot be divided into other simple structural gu

Investigation on overconstrained mechanisms netdstian especially in the
structural synthesis. Knowing overconstrained coma and including them in the
design process will help creating manipulators vigtss DoF and more rigidity. Also
this knowledge of overconstrained conditions widirfy the concept of mobility of the
parallel manipulators. Another subject kinematicntegsis of overconstrained
mechanisms is important because it will allow diéseg a function, path, or motion
with less DoF and with overconstrained mechanisgas humber of joints. The aim of

this thesis is to describe a generalized approacthé structural synthesis and creation



of new overconstrained manipulators and to descab@otentially generalizable
approach for the function and motion generation tl®sis of overconstrained

mechanism.

1.1. Literature Survey of Structural Synthesis of Rrallel Manipulators

Studies of lower mobility parallel manipulators wrattention of both industry
and academia in last two decades due to the facsitkmotions in space are not always
needed. Overconstrained manipulators have feweks liand joints and reduced
complexity with higher stiffness properties. Beaausf overconstrained parallel
manipulators’ having lower mobility and being inwler subspaces task orientated
design must be utilized which requires structuesign.

Structural design of a parallel manipulator candeéned by determination of
the specifications of the manipulator (number agdetof joints, link and joint
parameters and, mobility), intended to acquire effigletor motions, in space or
subspaces and by using a synthesis method, fudfitine conversion of input actuator
motions to desired end-effector motions with leasgularity, sufficient workspace and
minimum number of joints that supply with consttairof design as productibility,
assemblability, redundancy and placement of actsiato

In the last decades, synthesis methods for stalctiesign are interpreted such
as screw theory, group theory, velocity loop equedj linear transformations theory
and theory of structural groups. Screw theory seslimensional vector to describe
the motion of a rigid body. In their researches mtpyand Li (2002a, 2002b, 2003a,
2003b, 2003c) introduced a screw theory based rddtrdhe type synthesis of parallel
manipulators. The proposed method can be summaaizdohding constraints that are
given to the end effector from limbs by using recgal screws. Lower mobility non-
constrained and overconstrained manipulators & ralvealed. Fang and Tsai (2002,
2004a, 2004b, 2004c) investigated 4 and 5 DoF lghnadanipulators with identical
limb structures and 3 DoF translational and rotatio non-constrained and
overconstrained manipulators by using theory oiprecal screws. Kong and Gosselin
(2001, 2004, 2006) proposed a way for the typet®gis of parallel manipulators using
virtual chain approach with screw theory. In thewestigations parallel manipulators

with different type of motions are introduced. &nal. (2004) examined the structural

2



synthesis of parallel manipulators based on sekee@ctuation by using screw algebra.
As a result of their research, parallel manipukieith 3 DoF spherical motions, 3 DoF
translational motions, 3DoF hybrid motions and G-Dspatial motions depending on
the types of actuation are found. In the work odir et al.(2000),the results of
examination of the end effector accelerations ef $brial chains by means of screw
algebra are applied to the synthesis of translatimgarallel actuation mechanisms.
Carricato (2005) introduced a methodology that us®mew theory tools to synthesize
desired forms for the direct and inverse Jacobiatrioes of parallel manipulators and
presented a novel family of fully isotropic paraleechanisms with Schoenflies motion
at the end effector. Glazunov (2010) describedmmaach for the synthesis of 6 DoF
decoupled parallel manipulators based on closedwsagroups which also avoid
complicated equations by synthesis and singulanlysis of these mechanisms. At the
end of their research decoupled manipulators vhiteet, four and six DoF are obtained.
Zhao et al. (2002a) investigated the type synthefispatial parallel mechanism with
lower DoF based on the screw theory. Motions amtsiraints of mechanisms are also
included in the design by the use of screw grogsigbed in their research.

A non-empty set with a closed product operatioteited a group where product
operation satisfies conditions such as existenamefidentity element and one inverse
for any element and associativity. According to’sitheory of continuous groups the
set of rigid body motions is a six dimensional groof transformations which is
represented by an operator acting on points oftitee dimensional affine space. Group
theory is also used by many authors for the stratuesign of parallel manipulators.
Hervé and Sparacino (1991, 1993) investigatedype synthesis of parallel robots that
generate translations by using the kinematic ppieciof displacement subgroups
intersection of the group theory. In their studytimo of the ends of the legs are
assigned to same displacement groups and inteyseaftithese sub-groups result in the
end effector motion as a main displacement graughe studies of Hervé (1999), group
theory is used to define the method of compositima intersection of mechanical
bonds and exemplified with 3 DoF parallel manipaatwhere platform has three
translations and each leg is a subgroup of Scheenfhotions. Hervé (2003 2004)
defined planar-spherical bond generators usingetgeserators as legs using lie groups
parallel manipulators are designed which dependb®relative positions of planes and
sphere centers. Using group theory Karouia and é1€A004a, 2004b) introduced

structural synthesis of 3 DoF spherical parallethamisms with un-identical legs. Lee
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and Hervé (2009) investigated the type synthesiSabfoenflies motion generators for
future structural synthesis of parallel manipulatby using Lie groups. Also Lee and
Hervé (2006) apply Lie group algebraic properties the type synthesis of non-
constrained translational parallel manipulatorswimps which generates Lie subgroup
of three translations and two rotations. Refaat .ef2006) examined one rotational two
translational and one translational two rotatioalDoF overconstrained parallel
mechanisms using Lie group theory. Angeles (200B)iad the group theory algebra to
the qualitative synthesis of parallel manipulatdnsthe research not only well known
planar spherical subgroups but also cylindricab &and three dimensional translation
and Schoenflies subgroups are investigaftedI” andIT’ type joints are utilized for the
type synthesis. A geometric theory used with grthgory is proposed by Meng et al.
(2005) for the analysis and synthesis of sub 6 [aifallel manipulators and a
procedure is given for the structural synthesipafallel manipulators where desired
end effector motions are in the form of Lie subgrolm the study of Gao et al. (2002)
methodology in the design of parallel manipulatbesed on Plicker coordinates is
proposed. Rico et al. (2006) introduces a theosgfan the analysis of the subsets and
subgroups of the Euclidean group for type synthe$i$ DoF and lower mobility
platform manipulators.

Another method for structural synthesis of paratlanipulators is velocity loop
equations. Using velocity that occurs in the loopsystem and Jacobian, the mobility
and singularities are defined and these are uséokisynthesis of the structure of the
manipulator. Gregorio and Parenti-Castelli (199902 applied this method for the
analysis and synthesis of 3 DoF translational prabanipulators. Theory of linear
transformations is another method proposed by G@fi08). For the Structural
synthesis, evolutional morphology is used to desiigibs, and platforms are designed
by intersection of these limbs. The only invesiigad known to authors so far about
structural synthesis of overconstrained parallehipi#ators are done by Zhao et al.
[2002b], Gogu (2008), and Kong and Gosselin (208%zade et al. (2007a, 2010). An
analytical method of using equivalent screw groigpproposed in the study of Zhao
3RRC, 3CPR, 3UPU/SPS and 4UPU mechanisms are ekpbse method proposed
by Gogu is also applied to design overconstrainadipulators. Virtual chain approach
based on screw theory is utilized in the work ohg@nd Gosselin (2006).

Theory of structural groups is also a method tonctural synthesis of parallel

manipulators. A simple structural group is kinematnain with zero degree of freedom
4



and cannot be divided into other simple structgralips. Manipulators are designed by
adding actuated joints to these simple structuratgs. Theory of simple structural
groups is applied in the studies of Alizade et(2007a, 2007b, 2010). In the work of
Alizade et al. (2007a, 2007b) new and revised nusthor structural synthesis of serial
platform manipulators, parallel Cartesian platfarmanipulators and Euclidean parallel
manipulators are illustrated along with exampleg.uBing simple structural groups of
overconstrained subspace with general constraiatAdizade et al. (2010) researched
structural design of parallel manipulators with giexh constraint one regarding angular

and linear-angular conditions.

1.2. Literature Survey for Kinematic Synthesis of Rrallel Mechanisms

During design of mechanisms for generation of ai@mobr obtaining a function
by the input output relation kinematic synthesighgbem has an important place. After a
specific task is attached to a mechanism, typehef jbints and geometry for the
mechanism should be decided.

In the kinematic synthesis, construction parameiétle mechanism are used to
define an objective such as a function or motionegation. In the function generation
synthesis construction parameters builds a bridg@vden input and output of the
mechanism.

The problem of function generation synthesis candsxribed as determination
of construction parameters of a mechanism for argiinput output relation. In
literature, several methods such as algebraic camplmbers vector quaternion, bi-
quaternion, matrix, screw and Cad based methods dereloped for planar spherical
and spatial four-bar mechanisms.

Levitskii (1946) introduced a polynomial equationhigh includes design
parameters and input output variables. Design peterm are calculated using
interpolation, least-square and Chebsyhev apprdiomanethods. Freudenstein (1954)
presented the function generation of planar fourdfar linkage by 3,4,5 points of exact
approximation and higher order approximation. Zimmmen (1967) proposed an
algorithm for the analytical function generationnthesis of spherical four-bar
mechanisms for given four precision positions. Bin@pproximation is applied to
polynomial functions for three, four and five prgon positions on the spherical four-



bar mechanism in the works of Alizade (1994), Adieaand Kilit (2005), Alizade and
Gezgin (2011), Farhang et al. (1988, 1999), Raal.ét973), Murray and McCarthy
(1995).

Alizade and Kilit (2005) also developed a new méttiogy satisfying a specific
constraint. This methodology, which has been cabipdhe authors “MDA (minimum
deviation area)” is a method for selection of tihecsion points on given function such
that the deviation area between given and generatections will be minimum.
Alizade and Gezgin (2011) introduced a new functieneration synthesis method for
spherical four bar mechanism with six independeatrameters. Interpolation,
Chebyshev and least square approximation were aseéd error differences were
compared with graphs. A synthesis method that astimmensional synthesis technique
and local optimization was introduced by Sancibearal. (2007) and a new approach
for three and four precision points exact synthe&s proposed by Cervantes-Sanchez
et al. (2009) along with examples of spherical fbar mechanism. Also Kazerounian
and Solecki (1993) and Gupta and Beloiu (1998) el additional conditions as
rotability, branch and circuit defect eliminatidrat can be controlled after the synthesis
problem.Function generation of spatial mechanisnesimvestigated in the works of
Rao et al. (1973), Wu and Chen (1997), Hartenbang Denavit ( 1964), Dukkipati (
2001), Sancibrian et al.(2007) and Cervantes-Sanehal. (2011).

Motion generation is the determination of consiarct parameters of a
mechanism for a given link motion. Bottema and Ra®v/9) used kinematic mappings
to derive the kinematic constraint equations ofdlad using the components of dual
quaternion. Bodduluri and McCarthy (1992) and Rawad Roth (1983) investigated
the constraint manifold of spherical RR dyad fiftiior an arbitrary number of location.
The branching problem in finite position synthesfispherical four-bar mechanism was
presented by McCarthy and Bodduluri (2000). On titker hand, method for
approximating finite set of spatial locations wibherical orientations for spherical
linkage was presented by Tse and Larochelle (208ditionally in this study, a new
technique for approximate motion synthesis of sphERR dyad and spherical 4R
closed chains was presented. Larochelle et aB3)1€eveloped A CAD program,
named SPHINX, for motion synthesis of sphericalkdige. Larochelle (2003)
investigated approximate motion synthesis for pldR, spherical RR and spatial CC
dyads and dual quaternion was used in the fornaumladf synthesis problem. A robust

analytical solution for rigid body guidance syntke®f spherical mechanism is
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presented by Al-Widyan and Angeles (2003). The amtsynthesis of spherical 4R
linkages for specified rigid body positions wasdstal by Ruth and McCarthy (1999)
where spherical 4R linkage is designed by using IBKRC CAD program. In the

study of Lee et al. (2009) the least-square methad used to solve the synthesis
problem for not limited prescribed rigid-body pasits for the motion generation of an
adjustable spherical four-bar. The synthesis of -plvase adjustable spherical

mechanism was illustrated along with a numericahexle.

1.3. Representation of Joints and Kinematic Bonding

For the simplicity joint types and their relatiosu® described as shown in Table

(1.1). For example a planar four bar with prismgbints (Figure 1.1.a) can be
described by kinematic bonding &RRF. Or a RRRRRRI 7R mechanism (Figure
1.1.b) describes that four of the revolute joints parallel to each other and the rest
three is also parallel but in different directiorttwthe first group. Moreover, if there are

some intersections in the system (Figure 1.1.cls ghown with a dot on the top or

below. In a mechanism with bondinRRRRRRI have the same properties with
RRRRRRI mechanism but two of the recurrent revolute joimsthe middle are

intersecting.

Table 1.1. Representation of joints and their cotioes.

Symbol Definition Symbol Definition Symbol Definition
R Revolute R R joints with parallel | R 1R Perpendicular
joint axes axes
P Prismatic R R joints with parallel | R//P Parallel axes
Joint B axes
H Helical Joint P P joints with parallel | R = R Coincident axes
normal axes
C Cylindrical P P joints with parallel | Re R Intersecting axes
Joint B normal axes
] Universal R R joints with ( )E Planar subspace
Joint intersecting axes
S Spherical R R joints with ( ) Spherical
Joint intersecting axes s subspace
E Planar Joint R Actuated joints ( )E . Planar-Spherical
subspace




a) b) c)

Figure 1.1. Kinematic bonding for mechanisms.

1.4. Research on Structural and Kinematic Synthesisf Parallel
Mechanisms

During the investigations of this thesis, whichbased on the structural and
kinematic synthesis of overconstrained mechanisuiject of structural synthesis of
parallel manipulators and kinematic synthesis otmaisms are examined. It is seen
that research on structural synthesis of paralletchanisms usually neglects
overconstraint conditions of the loops of the maldfors. Including overconstrained
conditions of the loops in the structural desigmpafallel manipulators is vital and also
constraint conditions should be the basis for smat synthesis of overconstrained
manipulators. For the kinematic synthesis sidehefgtory, it is seen that in literature
mostly planar, spherical or some kind of spatiathamisms are used. To show the
capabilities of overconstrained mechanism, kinetnsynthesis is applied to some 6R
mechanisms.

In the introduction part of this thesis, a literatsurvey for both structural and
kinematic synthesis of mechanisms is given. Kingnbonding of the joints, joint
types and connection of links are tabulated withanegles for simplicity and
consistency along the thesis.

To apply kinematics and derive needed mathematicalels, a tool is needed
such as unit vector algebra, theory of screws,stoamation matrices, quaternion, bi

quaternion etc. Each method has its advantagesdesadivantages. Because of the



simplicity, applicability, adaptability and improb#ity properties of the theory of
screws is selected for kinematic calculations.

In the second Chapter of this thesis, definitiohthe theory of screws are given
such as twist, wrench, pitch etc. The screw an@vwscroordinates are defined in
Cartesian space. A new method called method oftramtsformation screw matrix for
the calculation of recurrent screws is describdw @ise of this method for the position,
velocity and acceleration analyses of mechanisnshasvn. Also robot actuator force
analysis is described. Explaining reciprocity airtiral work allowed describing screw
systems. Describing operations on screw systenastéeatructural analysis of parallel
mechanisms using theory of screws.

After defining the rigid body motions in subspae@sl their geometric relations
in the third chapter, not only an intuitional medhdor generation of new
overconstrained mechanisms in lower subspacesldntad possible mechanisms are
listed. For defining the subspaces mathematictily,method to describe mathematical
models of overconstrained subspaces is presentcexamples.

Subsequent to the definition of all mathematicadeis of kinematic pairs and
degree of screw, in the fourth Chapter novel mgbédguation for mechanisms is given.
Moreover, derivation of simple structural groupsstsown with method for general
constraint one and two with possible geometrieserAfhe method for the structural
synthesis of overconstrained parallel manipulai®esented along with examples for
the calculation of mobility and motion of robot nfaulators new formulations are
given.

In Chapter five, kinematic synthesis of overconsd mechanisms are shown
for function generation of double spherical anchplaspherical 6R linkages and motion
generation for planar spherical 6R linkage for ¢hpesitions. Also a synthesis method
for a multi loop platform mechanism is shown witlmmerical example.

In the final section of this thesis, an experimentark on parallel manipulators
is presented. Effects of earthquake disturbancewonking of mechanisms are

investigated by the help of a parallel robot.



CHAPTER 2

THEORY OF SCREWS

Three dimensional Euclidean space admits six mstion a rigid body with
three translations and three rotations. Thus, atgphent of a rigid body should be
described by six independent parameters. Whatdwenrtotion of the rigid body is
according to the theorem of Chasles “any givenldegment of a rigid body can be
conceived by a rotation about an axis combined wittanslation parallel to that axis”.
Similarly, in the theorem by Poinsot, any systenfastes and moments applied to a
rigid body can be uniquely replaced by a singledasnd couple in such a way that the
single force is parallel to the axis of the couflaese two theorems form the basis of
the theory of screws.

In the theory of screws, a screw is defined agraght line in this rigid body
whose points are displaced relative to a referdrasae, and this screw will be coaxial
with the line itself in any time. We denote theeserby a symbol $ which is not an
ordinary algebraic quantity; to specify it, five anities are needed. Four of them are
required to determine the position of the line #&mal fifth quantity is the pitch denoted
by u. The pitch of the screw is the ratio of the raatito the translation during the
displacement between two positions of the rigidybod

During an infinitesimally small displacement oéthgid body the screw remains
the same as properties, but it is now referredh@snistantaneous screw axis. Finite and
infinitesimal displacements of rigid body are bo#iled as twists about a screw. As the
displacement of rigid body must be described byrgilependent parameters twist about
a screw $ is defined by five parameters from thiendi®n of screw and a six quantity
which is called the amplitude of the twisi),(which expresses the angle of the rotation
around the line.

The definition wrench comes from the statemerRahsot. A wrench is used to
describe the force and moment couple acting on rigel body which is the
simplification of all forces on the rigid body. Tlpgtch of the wrench is taken as the
ratio of the moment to the force applied to rigatp. To describe a wrench on screw $

six parameters are needed. Five of which are requo describe the screw and sixth
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quantity which is called the intensity of the wrbndt is denoted by f expressing the
magnitude of that force which united with a coughel constitutes the entire wrench.
Pitch of a twist or wrench can be finite or infeilf the pitch of the twist is zero
it only defines a pure rotation around $. If thiepiof the twist is infinite, the amplitude
must be zero for the twist to be finite, which s&ed to define a pure translation parallel
to $. When pitch of the wrench is zero it reduacea pure force along $. If it is infinite
intensity must be zero for the wrench to be fimitach defines only a couple in a plane

that is perpendicular to axis of $.
2.1. Screw Coordinates

Displacement of a rigid body in space is descritéti six parameters and as

shown in Figure 2.1 translation is described withit wector s=[I m n|' and

moments, =[P+l Q+um R+un'.

Z‘}
D)
Z:\R\
~ $
\\
N
\
VAL
So nl s
~
N
\l m
’ : Y : Y2 ’)-
] Pl P v
N B B Q7
X/ L
P/ T i
X

Figure 2.1. Line coordinates of a screw.

Unit screws can be defined as a dual vector usniigvectors and momens, as

$=s+os, (2.1)
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whereo is the Clifford operator with property®=0.

Writing the screw in dual form, we get

S S
SRE

The pitch can be calculated from the parametetiseoflual vector as

_sky
uz2. (2.3)

According to this definition expanding EquationARwith the components of vectas

andu gives the screw as
$=[ m n P* Q@ R], (2.4)

where P*=P+ul, Q=Q+ym R=Ry.n BE-mz npy @ |2 jand
R=-ly, + mx.
The values for the direction cosines as seen inrei@.1 will bel =x, - x,,
m=1y,—y and n=z - zZ. The moments P*, Q*, R* can be described in thenfof

parameters, y;, z and ¢ with respect to direction cosines as

P*| 1w -z % |
Q*|=| z u -x%| m|. (2.5)
R [-% x #||n

2.2 Method of Unit Transformation Matrix for the Calculations of
Recurrent Screws

In this section, a new method called method of traitsformation screw matrix

for the calculation of recurrent screws is desaib@&he description of the method starts

12



with the description of recurrent unit vectors pase. Recurrent unit vectors should be
90 degrees and consequent to each other.

2.2.1. Recurrent Unit Vectors

Three recurrent unit vectors are defined in sacghown in Figure 2.2.

Figure 2.2. Three recurrent unit vectors in space.

Vector equations of three recurrent unit vect®rss, s (Figure 2.2) can be

described as

s xg =$Sing,, (2.6)
s [ =Cosay, (2.7)
Sj D% =0. (28)

Multiplying both sides of Equation (2.6) withwe get
S [Q S x§) =slisSing; , (2.9)
applying the rule of triple scalar product it be@sm

(s xs)0s =Sina, . (2.10)
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If we define normal vector(sj x$):§, where slj:(lij,mj,q) and

I, =mn-nm, m=n]-ln,n =lm-m|l Equation (2.10) will be
s; & =Sing; . (2.11)

Solving Equation (2.11) and Equation (2.7) with &ton (2.8) to describe vectarvse
can find

S = §Cosay + § Simy, . (2.12)

Equation (2.12) is the general equation to find ting& vectors, with given
recurrent vectors; ands. We can write the conditions in equations (2.6-208 sk as
S; X§ =sSing, , s;05 =Cosq, , s[5 =0 and write a general equation for

transformation of unit vector system we can writeeguation fossy similar to Equation
(2.12).

Sk =§ Cosa, +.5 Sing (2.13)

The parameten;, =q, and vectors;; =-$ so Equation (2.13) will be

s, =§ Cosq, — s Siny, . (2.14)

Writing Equation (2.14) and Equation (2.12) withnddions, = § in matrix form we

get the transformation matrix equation for recutrrarit vectors as

S 0 1 0 S
s |=| Cosa,, O Simg, |s |. (2.15)
Si =Sing, 0 Cosx | |5
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2.2.2. Transformation of Screw Systems in Space

Because of the analogue of vector systems to ssystems Equation (2.15) can

be applied to screw systems by using dual anghadtations

$=s+swandA, =qa, +a, w ,

CosA, = Cosr, —wa, Sig,, SIAL = Sp +wag Cgs, (2.16)

where«? =0.

Figure 2.3. Four recurrent unit screws in space.

The screw transformation matrix equation for theé sarews as shown in Figure 2.3 is

found as

$, o 1 o0 |[$

$ [=| CosA, 0 SR [II$ | (2.17)
$, -SinA, 0 CosA, ||$

Applying the same matrix equation farBith respect to $and & we get

$ 0o 1 0 $
$, |=| CosA;, 0 S, |IT§ | (2.18)
$,] |-SinA, 0 Co&, || %
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Describing | $ $ MT =E, [$ §& % ]T =E and[$, & $.] =E and

matrices for the screws as

0 1 0 0 1 0
T, =| CosA, 0 Sim, [and T, =| CosA;, 0 SiA,
-SinA, 0 Cos%\, =SinA;, 0 CoRA,

The method for the calculations of screws can lhi@eld recurrently
E,=T,E
E.=TiiE =& =TLE. (2.19)

Operation shown in equations (2.18) defines thehotkdf successive multiplications of

matrices and application to screw transformations.
2.2.3. Transformation Matrix of Screw Systems

Substituting parameters of $'s and A’s from Equatfd.16) to Equation (2.17)
will give us the vector matrix with paramet&,s{lk m n P Q I,R} as

$, =§CosA, +$ Sim ,

$, =(Cosa, ~wq Sim, )($ +§a))+( Sig, +w,a Cags )(ijs ﬁ%w),

s, +gw= sCosa, + sSimy, +(;5Cog, - 32 Sig + s a Cps + °s Bn)w,
s, =sCosa, - s Sig, , $=,5Cog, - ga Sig +s,3 Cosg +§ Sim .

Applying the same rules fd, gives

$, =-$ SinA, +§ Cosh

$, =—(Sina, +wa Cosy, )(5 +ié’a))+( Cog +w,a Sn )(ijs fjr%a)),

S« tS w=-sSing, +sCosy +(-$Sig — sa Cgs - sa 9n + °s Gos)w,

Sik =-$Sing, + §C03?1'< » Sik =—§?Sinaik - 5@ Cox ~iiSid Sig o 5 Cgs .
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Substituting parameters foy, $ and % in to Equation (2.17) gives us

ST o 0 10 0 o 1%
0
5 0 0 01 0 0 ||S
S
S< - Caik O O 0 SO’ik O . i) , (2'20)
33 —ay S, G, 0 0 @@ -4 S
S -Sa, 0 00 Ca, 0 S
slok | —aCa, -Say 0 0 -3 & Qo | .?

where Ca, =Coda, ) and Sa, = Sir(a, ).
2.2.4. Transformation Screw Matrix Position Analyss

Using transformation screw matrix equations, tramsftions between
successive screw systems can be written in a sthmdatrix form which includes just
screw parameters. If we know the position coordimaand orientation of a screw

system,E,, then we can find position coordinates and oriémiabf the same system

in the previous coordinate systdn by using a transformation screw matii,, as

E, :Ti,i+1Ei +17 (2.21)
where
0 o 10 O 0 ]
0 0 0 1 0 0
Tii+1: ii+2 O O 0 iji+2 0 . (222)
eSS, @, 00 AW, B,
=304, 0 00 ., 0
__ai,i+2caii+2 -Sa,;.,, 0 0 8,9, Cai,i+2_

Furthermore, each screw vector is given by

17



E=[s € s 8§ s % (2.23)

Now by applying Equation (2.21) recursively fromeolnk to the other we can write

for an n-link single loop mechanism

E.=T.E.
LR (2.24)
=TT T T
and in general
E, =T, 0,51 _4E;. (2.25)
These T matrices can be denoted as a T matrix as
T, =T 05T . (2.26)
Then Equation (2.25) becomes
E, =T,E. (2.27)
Because it is a close loop link 1 follows link itaé end of the loop
E, =T, 0, T, E. (2.28)
From Equation (2.28) no matter which screw systehbsen, it is seen that
=T, T, 5Tl (2.29)

where, | is the 6x6 identity transformation screatnx.
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Equation (2.29) defines the loop-closure equatioh rechanism in
transformation screw matrix form and states that ihoduct of transformation screw

matrices around a kinematic loop must equal thetityetransformation screw matrix.

2.2.5. Screw Matrix Velocity and Acceleration Analges

Si

$, $n_ 0
X |
1

Figure 2.4. Link and joint parameters.

The link and joint parameters two of which desctie joint (Figure 2.4.a) and
other two describing the link (Figure 2.4.b) arelagnl to the screw system (Equation
2.22) gives.

0 0 10 0 0
0 0 0 1 0 0
Cos@ 0 0O 0 Sig 0
T'oint = . ! | (230)
! -dSind Co¥ 0 O dCo8 St
-Sind 0 0 0O Co¥ 0
|-dCosf -Si 0 0 —dSi# Cd3
0 0 10 0 0 |
0 0 0 1 0 0
Cosa 0 0 0 Simr 0
T .= 0 ! e (2.31)
-aSina Com 0 O aCog S
-Sina 0 0 0 Coxr 0
|-aCosy —-Simr 0 0 - aSir Cas|
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Therefore, using equations (2.20) and (2.25) thesfiormation screw matrix of

a link and joint can be found by multiplying th@Hli and joint transformation screw

matricesT,,, andT,, .
- Ca
-—asSy
-Sa ¥
T=TT, =

I dcosm-a@r @

-Cox

0
Qr
0

0

0
0
@

-

0
0
0

0

-8 6 - d&6 &«

—aCaC+dH ¥ - @ 8 - d€ - & -

Sa 0

aQ@r &

@ @ 0 |.(2.32)
aCcoe asSds ad@

@ @ 0
#&aS dCOS a |

When the joint variable is the andgleand the derivative of T with respect to this

variable is
i 0
0
dT _ -COSx
46 |dS9 - a@ @
SO Sy
aCa H+d& @

0 0 0

0 0 0

0 -9 0
-8 € - d€ - &6 -

0 -@ 0

8 & as - &

0
0
@ @

aCcCos aSés a@C

- B
8Sa S

0

dCfC- a @]

0
0
0

(2.33)

On the other hand, if the joint is prismatic aniehijovariable is d, then the derivative will

be

dT
dd

|
@
N

O o © o oo

© o © o o o

O o O o o g

(2.34)

These both derivatives can be described by oneularosing a derivative operator Q

dTi,i+l _QT
dw i+l

(2.35)
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Where when joint i is a revolute joint we use

o O O O

(2.36)

o O O O O
o O kP O O O

O O O ©O O o
O O O ©O o o
o O O O O

and when that joint is a prismatic pair we use

(2.37)

O O O O o o
O O O O o o

O O o o
o O O O O O
o O O O O O

o O O O O

To make velocity analysis we need derivatives wéspect to time instead of the joint

variables. Thus, using Equation (2.35) we can find

dT..., .
— M= QT .. 2.38
dt Q| |,|+l¢ ( )

We start velocity analysis by differentiating tlo®b-closure conditions (Equation 2.29)
with respect to time. Using the chain rule with Bfjon (2.38) to differentiate each

factor we get
2Tl os T Qe T,y 9= 0. (2:39)
Arranging Equation (2.39) in a more compact form

Z Ty QT, ,1(? =0 (2.40)
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If we define the symbol D as,

D = Tl,i QT 1 (2.41)
and take into account, , :Tl‘il Equation (2.41) can be written as
D =T, QTl_il . (2.42)

Then Equation (2.40) becomes

ZDiq'g =0. (2.43)

Figure 2.5. 7R spatial linkage.
To describe the concept of Jacobian Equation (2MiBbe expanded for a one

degree of freedom close loop system. Let n= 7 awshn Figure 2.5. Thus, Equation
(2.42) can be written for seven joints as
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D1 = Tl,lQ;rI,]i' D2=T l,ZQ-E _1],-2 D 3=T 1, 3_]]:,8 D ET 1, 4_11,

- . B B ~ . (2.44)
D5 _T1,5Q5T1,5’ DG_T l,GQ-E 1,6 D 7_T 1, 7 17
Matrices D, has the form as shown in Equation (2.45)
0 0 b 0 a O
0O 0 e b d a
b 0 0 0 ¢ O
D = , (2.45)
-c b 0 O f c
-a 0 -c 0 0 O
|-d -a -f -c 0 0]
Furthermore, using this symmetB matrix can be described as vector form
D=[a b c de {f. (2.46)

Expanding Equation (2.43) and calculating the vabfe®, from Equation (2.44) we

get

D, +D g, +D ;+D p,+D g+ D p+D ¢ 70, (2.47)

whereD,=[a, b ¢ d, ¢ E]T,Dzz[az b, ¢, d, & f?]T’

T

D,;=[a, b ¢ dy & f3]T’D4:[a4 b, ¢, d, ¢ f4],

T

D5:[a5 by ¢ d & fs]T’De:[ae by ¢ d & fe]'

D,=[a, b, ¢ d e f].
Taking the elements of vector Equation (2.47) astions of input parameters

((2(), and knowing the input velocitieqlq and equation the sum of corresponding matrix

element we can write the equations in matrix vefdon as
Jp=V, (2.48)
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2 & a a 3 al [a| [-ag]
b, b b b b b @ —hq
¢, & ¢ G G G| . _|4¢ -C4a
where J = , Q=" |, V= ol
d, d d & d o @) |-dg
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J describes the Jacobian of the mechanism andhdonverse task of velocity analysis

where the end velocities of the mechanism is gjuet velocities can be found as
¢=J"01V. (2.49)

If the Jacobian is not a square matrix, then eithere are less than six joint variables,
other solution methods must be used or there ame Mi@an six joint variables, the
problem has no unique solution.

Joint variable accelerations can be found analdgous
> Dg=A (2.50)

and in the matrix vector form
JH=A. (2.51)
By inverting the Jacobian in Equation (2.51) joratiable accelerations can be found.
¢=J"A. (2.52)
2.2.6. Robot Actuator Force Analysis

To perform a given task of the manipulator, itngportant to know the forces
and torques must be applied by the actuators. @agirforce that can be produced at
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the end effector by the actuators must be knowil. &fector forces and moments are
shown in Equation (2.53).

F=[M* MY M? R R R (2.53)

If the torques of the actuators are describedvector as
t=[r, 7, . . .1, (2.54)
Then we define a small displacement of the toahlsyx component vector
OR, =[38° B’ §* OR* SR’ IR, (2.55)
and define the displacement of joint variablesrduthis small displacement

59, =[o@ @ . .. .. ag]. (2.56)

The work done at the end effector is calculatedrtiplication of the forces
acting and displacement, meanwhile work done atjtivgs are multiplication of
torques of joints with joint variable displacemeatsd the work must be same for the
conservation of energy as described in Equatiab7{2

FTOR =1'd¢ (2.57)
Writing Equation (2.48) in time derivative form,

fo. R

, 2.58
dt dt ( )

and we can write it for a short time intervél Equation (2.58) can be written in the

form

25



OR =Jd¢. (2.59)
Substituting Equation (2.59) in Equation (2.57) asarranging we get
(v -F"3)dp=0. (2.60)
The small displacement cannot be zero thus torgltge actuators can be described as

t=J'F. (2.61)
2.3. Reciprocity and Virtual Work

Principle of virtual work can be used to reduger@blem of kinetics at a chosen
instant to one of statics. This method allows seréavbe applied to a wide range of
problems in kinetostatics. In kinetostatics of diffiodies two dual vector quantities are
characterized: infinitesimal displacements (twisiep force with a couple acting on
rigid body (wrench). As a matter of fact twists foe rigid body defines the motion and
wrench defines action, these screws are calledasemt and vector or shortly motor
screws.

In Figure 2.6 two screws on a rigid body of poiAtand B are depicted. The
pitches of the screws are,"pand “p,” meters/radian respectively. Minimum distance

between the screws is defined with “a” meters amglkar displacement as™ radians.

At point A a wrench is applied to rigid body alosgrew A where it is defined as
W =[F r]T and at point B a twist =[o v]T. The rate of work @/dt of wrench

acting on a rigid body while the body is going unde infinitesimal twist is the mutual

moment of this wrench and twist which is

WoT =(FOv+7 [b) = Fo((p, + p,) Cosa - a Sinz). (2.62)
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>

/ onscrew A

>
<
wrench W

Figure 2.6. Wrench and twist acting on a rigid hody

When the wrench is unable to do any work on theylibhén W and T are called as
reciprocal. So from Equation (2.62) it is resultedt the condition of reciprocity of a

wrench and a twist is

(p,+p,)Cosa — a Sinr = C. (2.63)

2.4. Screw Systems

It is necessary to establish all the screws trattnstraints will permit the body
to be twisted to define the freedom of the rigidiypolf there is linearly independent n
screws $ %, ...$, that the rigid body can receive a twist on eactefine the freedom.
So all these screws, $%; ...$, said to form a screw systesof the ' order. For the
Euclidean space limits of n will be<On< 6.

For any screw syste® of order n there is a reciprocal screw sysg&rof order
(6-n). Every screw of must be reciprocal to all screws of screw sys&nand vice

versa. Reciprocity of this two screw systems caddseribed by above equation
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S0 S =0. (2.64)

Where “” denotes the mutual moment or reciprocal proddctwm systems. This

equation can be written in matrix vector form as

S'A S = 0or S'NullSpacgg =0, (2.65)

0 |1
where A = { 3“} .
|3X3 0 6x6

Equation (2.65) shows us that the null space @ve@ystent is equal toAS and the

relation of the dimensions of the screw systemitniciprocal is
dim(S) +dim( S ) =6. (2.66)
2.4.1. Operation on Screw Systems

The union and intersection of two screw systenesvartten asS S, and

S, n S, respectively. The dimension of union of two scsgtem can be given as

dim(S, 0 S,) =dim( §) +dim( S)- dim( $n 9. (2.67)

Screw systems also follow the conditions

(S,0S e, 08) %0 S §), (2.68)
(80 Sn §) {80 S....0 9. (2.69)

2.5. Structural Analysis of Parallel Mechanisms wit Theory of Screws

A parallel manipulator is composed bfserial kinematic chains connected

between ground and a common moving platform. Teedsion of the output twist

28



system of the manipulator will give us the mobildl/the platform. As a first step the
screws on joints in the legs are must be calculated

In the beginning A base screw is defined for therdinate axis on the base as
$,,={001000}, $,={010000} and $, ={100000} then the screw

parameters of each joint must be calculated usaéegrrent screw equations that are

described before. From the screws of the jointstiists of the joint screws will be

defined with respect to their joint types. $=[s, I xs +y$]T for a joint screw twist

for the revolute joint will be$, =[s  r,xs]" and for the prismatic joir$, =[0 s] .

Figure 2.7. Twist system for one leg of a parati@nipulator.
After enumerating all twist for all the joints dime leg shown in Figure 2.7 the
twist system of the leg must be calculated whicthésunion of each joint twists on that

leg. If there are n joints on the leg equationhef twist of the leg will be;

S, =50S,.... 0§ where,i=1,2..1,. (2.70)

After describing the motion systeS, of the I" leg the constraint screw system of the
i™ leg S, which is the reciprocal of motion systeBy; can be found from Equation
(2.71)

S,AS, =0 i=1,2.... (2.71)
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Figure 2.8. Screw systems of a manipulator.

Using equatiom S, = NullSpacgS, ], Equation (2.71) can be written in the form as
S, =ANullSpaces, ] . (2.72)
After finding all constraints imposed on the platfofrom all legs, the constraint

system &) of platform that is shown in Figure 2.8 can barfd by the union of all

constraints effecting the platform by Equation 8.7

Sp=%0 S I § (2.73)

The reciprocal of platform constraint system wiNe us the platform motion system

(Sp) which we can interpret the motion of the platfamshown in Equation (2.74).
S, =ANullSpacgg, ] (2.74)
The dimension of Swill give us the mobility of the platform,

M =dim(s,). (2.75)
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CHAPTER 3

GEOMETRY ANALYSIS OF SUBSPACES

A rigid body in space has six motions. The geneaaistraint for a rigid body
can be defined as the restrictions that are impbgegekternal elements. If a constraint
is applied to a rigid body it can be defined tlins tigid body is restricted to a subspace
where the motion is less than the space. Formulatiw the relation of general

constraint of a rigid body can be given as

d=6-1, (3.1)

whered stands for the general constraint of the systerns the space or subspace
number and 6 comes from the general degrees afdmne®f rigid body in space.

For a manipulator, general constraint is the retsbns applied by the
geometrical conditions of the linkages and joint$us, general constraint of a
manipulator is the difference of the maximum pdssinotions of the end-effector in
space and the maximum possible motions of the #edter in its subspace. Six
independent motions of rigid body in space coneisthree translations and three
rotations (PPPRRR) in Cartesian coordinate system.

The constrained motions @aE5 can be described with the relation of two rigid
body surfaces that are defined in Table 3.1. Téie thody motion PPP-RR is described
by the motion of a planar surface with respect tplanar surface or a hyperbolic
surface. PP-RRR motion can be described by theacbntotion of a spherical surface
or and elliptic toroidal surface on a planar swefaB-RRRR motion is shown by the
respective motions of elliptic cylinder surface gpherical surface, hyperbolic surface
on spherical surface or hyperbolic surface on tatliproidal surface. Finally RRRRR
motion is described by the motions of a sphericafage on spherical surface or on
elliptic toroidal surface and motion of elliptic raddal surface on elliptic toroidal
surface. Note that although there are more thata&ional motions in some examples,

the excessive ones can be represented by tramslhtimtions (Table 3.1).
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Table 3.1. Summary of rigid body motions in subgpas.

# Structure Motion
Planar Surface - Planar Surface PPP-RR
2 Hyperbolic Surface — Planar Surface PPP-RR
3 Planar Surface - Spherical Surface PP-RRR
4 Elliptic Toroidal Surface - Planar Surface PP-RRR
5 Elliptic Cylindrical Surface - Spherical Surface P-RRRR
6 Hyperboloid Surface - Spherical Surface P-RRRR
7 Hyperbolic Surface - Elliptic Toroidal Surface P-RRRR
8 Spherical Surface - Spherical Surface RRRRR
9 Elliptic Toroidal Surface - Spherical Surface RRRRR
10 Elliptic Toroidal 21322222 - Elliptic Toroidal RRRRR

body surface and a line positioned with resped¢héd surface. The rigid body motion
PPP-R is described by the motion of a planar serfaith respect to a skew line or a
perpendicular line. PP-RR motion can be descrilyetthéd contact motion of a Line on a
planar surface. P-RRR motion is shown by the rdasmemotions of a spherical surface

with a line intersecting with the center of the epgh(Table 3.2).

The constrained motions @4 can be described with the relation of one rigid

Table 3.2. Summary of rigid body motions in subgpaat.

# Structure Motion
1 Planar Surface - Skew Line PPP-R
2 Planar Surface - Perpendicular Line PPP-R
3 Planar Surface - Parallel Line PP-RR
4 Spherical Surface — Line P-RRR




Motions in subspac&=3 can be described by direct definition of surfade
Table 3.3 rigid body motions in subspace8 are shown within four categories. In the
planar motion two translations and one rotatioruogon a planar surface (Table 3.3-1).
In Table 3.3-2 spherical motion is described witleé rotations. In Table 3.3-3 toroidal
motion is shown with also three rotations. Findllgperbolical motion is shown with

one translation and two rotations.

Table 3.3. Summary of rigid body motions in subgpaS.

Structure Motion
1 Planar PP-R
2 Spherical RRR
3 Toroidal RRR
4 Hyperbolic P-RR

In subspaca=2 there is only two kinds of motion. First oneagsshown in Table
3.4-1, a planar motion without a rotation and secone is a cylindrical motion with

one translation and one rotation (PR).

Table 3.4. Summary of rigid body motions in subspa?

Structure Motion
1 Planar PP
2 Cylindrical P-R

3.1. Generation of Overconstrained Mechanisms by gy Mechanisms
in Lower Subspaces

Describing all subspace conditions for overcons&di mechanisms and
manipulators is an important and challenging stefhe design of overconstrained and
non-constrained mechanical systems. In the veryinbhagg of the design of

overconstrained mechanism design integration ospate mechanisms is used by
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many designers. First time Sarrus (1853) introduaedoverconstrained mechanism
which is a special case of planar-hybrid linkags thas six axes intersecting by pairs of
three distinct points (Figure 3.1.a). Bennett ()9@5oduced spherical-hybrid linkage

and plano-spherical hybrid linkage with the crieof intersecting six axes by pairs in

two different points (Figure 3.1.b).

Figure 3.1. Combined six-bar mechanisms; a) Platarar, b) Planar-spherical.

As shown in Figure 3.1.a two slider crank mechasishat have subspaze3
are used to create a six bar linkage in subspa®e In Figure 3.1.b a planar and a
spherical four-bar are integrated to create a aixlihkage with general constraint one.
Before describing the method to create these tyjpsubspaces =3, 4, 5 the
mechanisms =2, 3, 4 must be listed with respect to their sabspnumbers and
motion types.

3.1.1. Overconstrained Mechanisms in Subspaée?2

In subspace=2 there is two groups of linkages with respectheir motion
types. One is a planar mechanism with only pristrjaairs where three prismatic joints
connected and all three axes of joints are paraleine plane and neither of them are
parallel to each other (Table 3.5-1) and the segwadp of motion consist of H, P, and
R pairs that are in line so that the motion of tjnisup can be described as cylindrical.

Four different types of linkage can be achievedtasvn in Table 3.5-2.
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Table 3.5. Overconstrained mechanisms=A.

Motion Bonding Figure
Planar (PPP.
H=H=H
H//IP/IH
Cylindrical
H=R=H
H=R//P
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3.1.2. Overconstrained Mechanisms in Subspaée3

There is four groups of linkages in subsp&e8. Mechanisms in planar motion
shown in Table 3.6-1. There is only R and P jowitere all axes of R joints are parallel
and all axes of P joints are perpendicular to afeR joints. Second motion group of
subspaces =3 is spherical where only R joints are used ahdads of R joints are
intersecting in one point (Table 3.6-2). Third matigroup of subspacde=3 is Toroidal
motion group (Table 3.6-3) which is well known Bettnmechanism. Last motion
group of subspacke=3 is Hyperbolical which consists of 2 R and 2m{sias shown in
Table 3.6-4.

Table 3.6. Overconstrained mechanisms=8.

# Motion Bonding Figure
(RPRP_ @
- @i
1 Planar
- ﬂ
(RRRR), @

(cont. on next page)
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Table 3.6. (cont.)

2 Spherical (RRRR),
[
3 Toroidal (RRRR),
w
|
4 Hyperbolical (RRRR),,

3.1.3. Overconstrained Mechanisms in Subspaée4

Two groups of mechanisms in subspacd can be defined. First one is the
linkage consist of 5 parallel H pairs where pitcbéselical joints are different (Table
3.7-1) which describes a special type of motiotedahs Schoenflies that can be defined
as a motion of plane along a line. Second growgniglar to first one with a skew line
with respect to plane. It consists of prismatic aedolute pairs only (Table 3.7-2)

where revolute joints are parallel and prismatintpare arbitrary.
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Table 3.7. Overconstrained mechanisms=4.

# Motion Bonding

Plane along a
1 i H//H/H/IHIH
ine

Plane along a

skew line

PRPRF

3.2. Combination of Subspaces

The idea of creating new subspaces by combinimgedarder subspaces is to
intersect one of the joints and connect the linkthose joints to each other and remove
the joint as shown schematically in Figure 3.2. SEheombinations of mechanisms
create new mechanisms in different subspaces @&se tinechanisms give a topological
basis for the creation of overconstrained mechasism

The formula for calculating the subspace numbertf@r integration of two

subspaces can be given as

A =%+ 1. (3.2)

combined —
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Figure 3.2. Combination of two spherical four baamanism.

In the case of combination of three subspacesdhaula for calculating new
subspace number will be
)"combined = )\’ 1+ 7\‘ 2+7\‘ 2 2 : (33)

If we write a general equation from Equation (3a@§l Equation (3.3) as shown
in Equation (3.4).

n

zxi =}“combined-'- n _1’ (34)
i=1
where n is the number of subspaces to be combined.

3.2.1. Combined Overconstrained Mechanisms in Subapei=3

Using Equation (3.4) only one condition for meakars in A=3 subspace is
possible where there is two subspakes®ndi, and they both are equal to two. As
shown in Table 3.5 there is only two groups of mtin A=2 is possible and ih=3
only the combination of this two group can be acplished as new mechanisms. The
integration of this two subspaces with2 gives us four types of mechanisms with 2

different motion groups (Table 3.8).
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Table 3.8. Combined overconstrained mechanisrs3n

Number of Motions of
subspaces combined Bonding Figure
to combine subspaces
H=HPP
Plane around
2,2 _
cylinder
H=HPR
H=HPP
Cylinder on
2,2
plane
H=RPP
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3.2.2. Combined Overconstrained Mechanisms in Subapei=4

If Equation (3.4) is solved foflicombined4 then the combination of the
mechanisms in=4 must béy,=3 with A,=2 or the combination of thrée=2 subspaces.
To construct the conditions (Table 3.5 (1-8)) foe ffirst casé.=3 mechanisms from
Table 3.6 are added to mechanisms listed in TaldleaBd Table 3.2. For the second
case where three=2 mechanisms are integrated together (Table B=2),mechanisms
from Table 3.9(2) are combined with the pre-comifiekages listed in Table 3.8.

Four types of mechanisms are listed in Table 3.92(9

Table 3.9. Combined overconstrained mechanisris4n

Motions
Combined of _ _
# ] Bonding Figure
Subspaces| combined
subspaces
1 2,3 HHRRR
Cylinder
and plane
2 2,3 HPRRR

(cont. on next page)
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Table 3.9. (cont.)

3 2,3 H=H ORRR
Plane
around
cylinder
4 2,3 H=P 0 RRR
S 2,3 H=HRRR
Cylinder
and
sphere
6 2,3 HPRRR
Torus and
7 2,3 . H=HRRR
Cylinder

(cont. on next page)
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Table 3.9. (cont.)

Torus and e

8 2,3 H(PRRR)
Cylinder

9 2,2,2 H=HH=R[P
Plane

10| 2,2,2 with H=HH=R[P
Double
Cylinder

11| 2,2,2 H=RH=R[P
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3.2.3. Combined Overconstrained Mechanisms in Subapei=5

For the enumeration of combined mechanisms=h using Equation (3.4) we
get three kinds of combinations. First is the catioe of twol=3 mechanisms as listed
in Table 3.10 (1-21). Another type of combinati@nimtegration ofi=4 mechanisms
with aA=2 mechanism is listed in Table 3.10 (22-24) andifthe combination of &=3
and twol=2 mechanisms resulted in six mechanisms with tgreaeps of motion as
shown in Table 3.10 (25-31)

Overconstrained mechanisms are moving in lowerpgades such as spherical,
planar, hyperbolical, toroidal and combinationshafse. In this section these spaces and

intersections are investigated.

Table 3.10. Combined overconstrained mechanisrissn

Number of
Motions of
subspaces ' _ _
# . combined Bonding Figure
0
_ subspaces
combine
1 2 (RPR), (RPR)
Hyperboloid
and Plane
2 2 (RPR), (RRR)

(cont. on next page)
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Table 3.10. (cont)

3 2 (PPR). (RRP) @
A ) Plane and PRRPRP

Plane | (PRR). (PRP)
5 2 (RRR). (RPP} @
6 2 (RRR). (RRP) @

Plane and

Plane

7 2 (RRR). (RRR), @

(cont. on next page)
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Table 3.10. (cont)

8 (RPP). (RRR)
9 Plane and (RPR). (RRR)
Torus
10 (RRP). (RRR)
Plane and
11 (RRR). (RRR}
Torus
12 (PRP), (RRR)
Spherical
and
Hyperboloid
13 (RPR), (RRR)

(cont. on next page)
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Table 3.10. (cont)

14 (PPR). (RRR) @
15 (PRR). (RRR) @
Spherical
and Planar
16 (RPR). (RRR) @
17 (RRR). (RRR), @
18 Double (RRR) (RRR
Spherical }

(cont. on next page)
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Table 3.10. (cont)

19

Spherical
and

Toroidal

(RRR), (RRR)

20

Toroidal
and

hyperboloid

(PRP), (RRR)

21

Toroidal
and

Toroidal

(RRR), (RRR}

22

23

Hyperboloid
cylindrical
and planar

PRRPPF

(PRP), RR=F

24

Double
Planar and

cylindrical

(cont. on next page)
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Table 3.10. (cont)

25 H=H O RPHR
Planar and
double
cylindrical
26 H=R O RPHR
27 H=HRP=HR
Spherical
and double
cylindrical
28 H//PRP=HR
29 H=H(RP=HR)
Toroidal
and double
cylindrical
30 H//P(RP=HR)
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3.3. Mathematical Models of Overconstrained Subspas

Describing the geometry of the subspaces matheafigitis a challenging task.
In this section mathematical models of some inténsg geometries are described

which will lead to the mathematical modeling of spaces.
3.3.1. Intersection of Two Non-Parallel Planes witlsphere

The main equation of intersection of the two norafi@ planes P1 and P2 with

sphere (Figure 3.3.a) can be described as

LXx+my+nz= g
Lx+my+nz= f (3.5)

(x=%) +(y-w)+(z 2)'= &

where:d, =l x,+my +nz, f=Lx+ my+ pz O P, P, and
e =[l,m n]", e,=[I,m, n]" are unit vectors of normals respect to planes 1Pz

Let point A(%a, Ya, za) Will not belong to planes P1 and P2, and theusaif
sphere equal a. The point G(¥c, z:) is the point of intersection of the planes P1 and
P2 with sphere. The problem is to define the comtgdis of point C in frame coordinate
system XYZ. Let us introduce moving coordinate sgs{U;, U,, U3) with the origin A,

then coordinates of point C can be described as:
UlC =Xc ™ Xa Uzc =Y Yu U3c: Z.~ Z, (3-6)
Substituting Equation (3.6) in Equation (3.5) yeld

a) |1U1C+rnlU2C+nlU(£: d
b) LWe+mUg+nUg.=f | (3.7)

2 2

c) (U1c)2+(uzc)2+(usc) =a

where:d=d,-lx,-my,-nz, f= {-Lx-my- nz
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Uaﬂ P

Usc

d)

Figure 3.3. Intersection of two non-parallel plangth sphere.

Eliminating U, Uxc and U in turn from linear Equations (3.7) we will get

three linear Equations of line as the interseatibtwo planes as

a) anUZC - rqzux: - P=0
b) |12U3c _n12U1:_Q:

0o , (3.8)
C) nlzujc - |12U2c: - R=0

where: $[12, m2,m2, P, Q, R) are Pliicker coordinates of line (adfescrew),

l P_fl _me_f 29
Izm'_dI'Q_d " d - (3.9)

In Equations (3.9)12, mi2 N2 are the projections of normal vectesxs, = § onto

n b
n L

_Im n
m n

'n12_

I12 ‘ ’m12 =

axes of system coordinates. Non parallelism of phlanes is described by condition

l, Zm,#n,%0.
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Solution of system of Equations (3.7) are achidwedubstituting expressions

U1c :nl_zl(llpzz_Q) (3.10)
Uy = n1_21(ranU:C + P)

From Equation (3.8) in Equation (3.7c) that givemdratic equation with respect to

unknown parameter4d as
(15 +m%+ 2 Uy +2(m,P- 1,Q U +( P+ G- d4)=0. (3.11)

A solution of Equation (3.11) describes two realuea Wc and corresponding two
values for Yc and Ucfrom Equations (3.10).

If discriminant of Equation (3.11) is less than et means that the line of
intersection of planes P1 and P2 will not interseith the sphere. If discriminant is
equal to zero the line of intersection of planesapil P2 is tangent to the surface of
sphere. According to these definitions the follogvihree cases can be described:

If n1> =0 (Figure 5.1b), then from Equations (3.8) folltkat line lie on the

planeU,. =-Pn1, = QI that is parallel to plane JU,). SubstitutingU,. =-P n,
and expressiot,. = (I,JJ . +R)nm; from Equation (3.8c) to third Equation (3.7c) we

can get quadratic equation with respect g &5
(12+m2)UZ +21,RU . +(P*+ R*- @nf)=0. (3.12)
Solution of Equation (3.12) describe two real valt® Uy, and corresponding

Uic can be found from Equation (3.8c) angtffom Equation (3.8a)
If 1,,=0 (Figure 5.1c), then the line lie on plabe. =-Qn; = Rnj, that is

parallel to plane (& Us). Using expressiot),. =-Qn;, and U,. =(m,Uy + P) ;

then Equation (3.7c) yields

(M + ) UL +2m,PU. +( G+ P- &1d)=0. (3.13)
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Solution of Equation (3.13) gives two real valuesWsc.

If m1,=0 (Figure 5.1d), we will get the line on the pldhg. =-RI;, = Pn; that
is parallel to plane (&) U). Then using expressionU,.=-Rl; and
U, =(n U, +Q)I5; the last equation of system Equation (3.7c) isemblrespect to

Ujcas,
(12+n%)uZ +2n,QU +(R+ Q- &1})=0 (3.14)

After solution of one of quadratic Equations (33.24) and using Equations
(3.8) we can get valuesit) Uy, Usc, and respect to Equation (3.6) are define
parameters & VYc, Zc. For choice one of solution of system Equations7)(3
characterizing the condition of assembly it is reektb bring in parameter K(0,1) the
value of that is get involved with first or secasmution of system.

For having only one solution for the choice thexexi multiplication of three

vectorsCB, CA ,e, are taken in to account. (@Xﬁ)@l >0 we will have %, Yy,

zc when K=0, if (@xﬁ)@w we will have %, yc, zc when K=1. The mixed

multiplication of vectors yields:

Li(Nzuzc_Mzuxz)"'Ml(NzUI:_Lp@)"' N](Mpn:_ Lp z)<0

3.3.2. Intersection of Two Spheres with a Plane

Figure 3.4. Intersection of two spheres and a plane
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Intersection of a plane with two spheres (Figug 8an be introduced as

a) lUgt+tmUy,+nUg=d
b) (%-%)+(%-%) +(z-2)°= b (3.15)
c) U1(32 + U202 + U302 =a’

Adding to the left part of Equations (3.15b) bypsssionstx,,* y,,+ z,, and

after some transformations we get equation of plamentersection of two spheres,
Equations (3.15) convert in the form

a) Uy e +mU, +nUg =d
b) fUc+ U+ UL =1, (3.16)
C) Ulcz'i'L"zcz'l'Usc2 =a’

where, f, =X, ~ X5, f,=Vi-Ys f,=2,—2 , f :(bz_az_ f2- f2- fgz)/z.

Determinations of the point of intersection of manare calculated by using

solutions of Equations (3.16).

3.3.3. Intersection of Three Spheres

Figure 3.5. Intersection of three spheres.
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The basic equations of intersection of three sgh@igure 3.5) are given by

a)  (%-%)*(x-w)+(z-3)=t
B (%-%)*(%- %) +(z-3)°=b (3.17)
0 (%-x%)*+(%-w) *(z-2)= 4

where a,b,c are radii of three intersecting sphes#s coordinates of centers in points

A(Xa, Yas Za), B(Xs, Y8, 28), C(Xc, Yo, Zo).
Therefore, it is required expressions of coeffitsenf three linear line Equations

(3.8) and corresponding values of coordinates aftg®(xc, Yc, Zc). Adding in the left

side of Equations (3.17 a,b) by expressioax,,+y,,*z,,and after some

transformations we will get the system similar 6.With following coefficients

dlUlC + dZUZC + dBUKZ = d
U+ T+ U= 1, (3.18)

2 2 2 _ /2
UlC +UZC +U3C =a

where;d, = x, - %, ,d,= y\— ¥ ,d= Z-— g,d=( T a O O 3?()/2
fl:XA_XB’ f2:YA_ Yo Ez 5~ & f:( b- &a- 1]2_ z]e_ 3]@)/2-

Solution of given mathematical model also comestblying quadratic Equation
(3.11), where coefficients of these Equations @moad to Equations (3.18). So we can
find Uzc, then Y and Ue from Equations (3.8) and then respect to Equati8r&y are
defined coordinates {yc, zc) and (¢, Y, Zc).

3.3.4. Intersection of Plane and Sphere

Intersection of plane and sphere is the circlenasduced in (Figure 3.6). The

solution of Equations that describe connectionlah@ with sphere can be described as

a We.+rmU,+nU,.=f

3.19
b) U’ +U,’+U, =2’ ( :
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Figure 3.6. Intersection of plane and sphere.

Assume that value 44 is given, then solution of Equations (3.19) respegarameter

Uscyields
Use =(1—'§)_1[(f U Jnpxmy) (1-13)(a% - £7) (U -1 )]} . (3.20)

Hence, using Equation (3.20) it has within changihgarameter &, it means

corresponding location of points as intersecti@nplwith sphere.
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CHAPTER 4

STRUCTURAL SYNTHESIS OF
OVERCONSTRAINED MANIPULATORS

As a definitiona multi loop manipulator can be sped as a closed loop
mechanism with an end-effector that is connectedth® base by at least two
independent loops and its actuators should be ilmistd to each leg. These
manipulators have some advantages when comparedseital manipulators such as
higher precision, robustness, stiffness and load/icg capacity. It is also obvious that
multi loop manipulators should consist of multi iy loops. In addition, multi loop
manipulators can be referred as the manipulatats tave more than two legs and
consist of either one platform or many platformattlare connected by hinges or
branches. During the structural synthesis of ovesttained multi loop manipulators,
both legs and the loops of the manipulator showddcbnsidered and the general
mobility formula for multi loop manipulators withaviable general constraint should

also be developed.

4.1. Degree of Screw and Mathematical Models of Kematic Pairs

In order to form a kinematic pair, exactly two ddrodies must be contacted to
each other by a surface, a line or a point. Kinenpairs respect to their contact
geometries can be divided as Type | (surfacesl), Type Il (line B=2), Type llI
(point, T3=3). Due to the fact that the unconstraint spacedaindependent motions
3R 3P and kinematic pairs need constralfl+5) in order to be defined properly
degree of freedom f=6-C.

In order to define the mathematical models of kireematic pairs by using
transformation unit screw concept we will have &ddal input and as a result output
unit screws. Thus, if the maximum DoF of kinematair f,,=5, it means that the

number of variables are changed from one to fiteealch variable corresponds to
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variable of unit screws and adding input and outpoit screws we can describe
maximum number of unit screws of kinematic paibas=7.

Taking from seven, a number of constraint “C” amomber of unit screw with
variable pitch “S” that belong to translation motiand adding the number of contact
type “T” we obtain the following new structural foula of the degree of screw (Do$)

for kinematic pair as
$=7-C-S+T. (4.1)

It is important to note that any screw that carti®e independent motions as
rotation around the screw axis and translation @gltthe screw axis is called to have
variable pitch. The most common kinematic pairglinypes and degree of screws are
shown in Table 4.1 with their kinematic representet by using Equation (4.1).

In order to define the mathematical models of teemkatic pairs by using
transformation unit screw concept, the last ougmwew should be defined in terms of

variable “ " constant “ ” or dependent variable, = /@, . As seen in Table 4.1, the

screw structures resemble each other but the péeamsieuctures of all the joints are
different. Assuming that the first two screwsaid $are known, the final output screw
can be computed by using Equation (2.17). Let'& laothe mathematical models of the
first four joints in Table 4.1. The mathematicaldaets of the revolute, prismatic, helical

and cylindrical joints are introduced &g(l,,m,,n,, P, Q.. R) in Equation (2.17). It is

clear that the mathematical models are the samalifaf the four joints in terms of
formulation structure, however the behavior of pagametersa, and a;, are different

for each joint. For instance, both of the paransetgf and a, are independent
variables in cylindrical joint(:(ak,ﬁik) while they are dependent on each other in the
case of helical joinH ( &, = @) . In the revolute jointR(g, &, ) or in the prismatic
joint P(&.a,) one of the parameters is constant and other igblar After the
sequential operations are carried out in Equatht7) mathematical models of the
screw structure of spherical with finger joirg (Erik,c?jkﬂ,ak = a}k+1:0), spherical

joint  S(ay = 81 = @w2=0, i, G, 0xks2), sSPherical in slot joint

Ss(B B = &2 ™ &1ws™ 0,0+ Tjkarr Tepezsr Graries) » SPherical in torus joint
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S(Grar & = @2 ™ &aws=0, Oy Tjisar Gxiszr Graakea) » SPherical on plane
joint So (s Guars eakes™ Az a= 00 Ty sy Tiezr Aisaiesr Tiaaiea) Will b

computed respectively.

Table 4.1. Kinematic representations of kinemasicg

Kinematic . —
# - T|C|f| s |$ Kinematic diagram
Pair
A$'
)
Pk
nn ik
Revolute | | | | | | ~———TF T~ ~| _________
1 1|51/ 0] 3 -4
R
aik
$i
Prismatic _——
2 1/5|1/ 0|3
P
Helical
3 H 1|51 0| 3

(cont. on next page)
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Table 4.1. (cont.)

Cylinder | | | | | | ————f————=— -I _________
C

Spherical
with finger
Sf

Spherical
S

(cont. on next page)
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Table 4.1. (cont.)

Spherical
7 in slot 2124 1|6
Ss

Spherical
8 in torus 2124 1|6
St

Spherical
9 onplane | 3 | 1|5/ 2 | 7
Sp

It is clear to note that the simple planar surfae@ be represented by two
screws. The intersection of two planar surfacekredult in a line that can be presented
by three screws and the intersection of three plandaces that will result in a point
can be represented by four screws. In the ligtlhe$e, the number of screws to define a
kinematic pair is equal to the number of screwsu@fign 4.1) needed to represent the

orientation of its associated contact geometry.
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4.2. Novel Mobility Equation of Mechanisms

Having learned the idea behind the degree of s¢a8) of kinematic pairs by
the help of recurrent screws, the subject can liended beyond by applying screw
theory to mobility equation for the mechanisms aploot manipulators. Definition of
mobility is that in any position of a mechanicattm it defines the difference between
the number of independent screw and number of emdgnt differential constraint
equations.

The mobility equation applies to mechanisms withexdeption is,
i L
M = Z$i > A (4.2)

where M is mobility of mechanisn is number of independent unit screwk, is

number of independent loop-closure equations.

The Equation (4.2) can be applied to all kinemat@irth and mechanisms with

mixed number of spacel, (2,3,4,5,§. If the number ofA is identical in each

independent loop then Equation (4.2) becomes

M :zjléi -AL. (4.3)

i=1

In this case the degree of independent screw @nkatic pair is the number of
independent screw needed to describe the relatisgigns of pairing elements. Pairing
element occurs by assembly of surfaces, lines mt$of a solid body through which it

may contact with another solid body. Each solid bealy be described by screws $, so

the independent degree of screé\) of kinematic pair, Equation (4.1) can be introdlice

also in the following form as

$=$+5- (T+1) (4.4)

where S is number of unit screws with variabletpitc
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Combining Equations (4.4) and (4.2), we have thebiltp equations with
mixed or constant number of independent loop-cl®quations in each independent

loop in the general form as

i L
M= > A +0-j, (4.5)
i=1 K=1
i
M=>$ -AL+q-j,, (4.6)

where g is the number of excessive links gpds the number of passive joints.

The Equations (4.5) and (4.6) shows that the mghilimber is associated with
the motion of the kinematic pair and with the coaist of an independent loop. The
conclusions of the equations (4.2-4.6) can be sumethin the following forms.

e The number of space within which the mechanism apgrad is equal to the
number of independent, scalar, differential loopsare equations.

e The total number of independent unit screws of Isogetermined by the rank
of the coefficient matrix of the loop-closure eqaas.

* A mobility equation applicable for mixed or condtasonstraint reduces to
Equations (4.5) or (4.6).

4.3. Simple Overconstrained Structural Groups

It is known that overconstrained manipulators d@n obtained by taking
appropriate overconstrained simple structural grang adding the required number of
actuators. The geometry of actuator joints mustdbsfeed by the geometry of simple
overconstrained structural group. Simple structgedup is the smallest kinematic

chain with zero mobility.
Let Z$h, ZQD and Z$ denote the total number of independent screws of

hinges, branches and legs of the manipulator réspsc A platform in subspace with

general constraint one usually hgs independent joints, thé< j, < 5. By definition,
the number of independent screws follows as
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iéz Jj$n+ Jb7$0+i~$ 4.7)

i=1 h=1 b=1 =1

Taking mobility M=0 and a number of variable pit6k0 in Equation (4.3), we

can reach following equation for simple structigadup described in Equation (4.8).

Zj:$=AL (4.8)

i=1
The number of independent loops in a closed sintpletsire is obtained from Equation
(4.8) as

1 i .
L:;2$. (4.9)

At the same time the number of independent loagnple structural group will be

L=j,—n,=ny—ny, (4.10)

where |, is the total number of joints on the platfornms, is the number of platforms,

n, is the number of branches between platforms ands the number of hinges

between platforms.

4.4. Simple Overconstrained Structural Groups withGeneral
Constraint One

For overconstrained kinematic chain with one platf where number of joints

on platform are2< j, <5 and subspace numbdr=5, the simple structural group can
be obtained by using Equations (4.10) and (4.5)peetvely: L=(1,2,3,9,

> $=11=(5,10,15,20 and j, = j;*> $(2-3,3-3-4,2-2-4,4-4-4-3,4-4-4-4), where |,
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is the number of joints in the legs. Distributiohconstraints in the legs for the simple
structural groups with general constraint one amw in Table 4.2 and by using these
values possible structural groups with constraamditions (see Table 3.2) are tabulated
in Table 4.3.

Table 4.2. Distribution of conditions to joints@mple structural groups =5

Number of legs 2l 3 4 5
Number of joints attached to first condition 3 (6 |912
Number of joints attached to second condition 2 |4 | 8

If we will have two or more platforms withj, 26 and A =5 connected each

other by branches then the total number of legevefrconstrained simple structural

group is described as,

n=j,-2n,-2n,. (4.11)

Example 4.4.1: Lets take, two platforms, =2 with joints j, =(3+3)
connected by hingey, =1, so the number of legs ig = j, —2n, =6-201= 4. The
number of independent loops Is= j, -n,—n,-n,=6-2-0-1= & Thus, the total
number of independent screws will be calculated Es$=/] L=5[B=1% or
Z$=Z$ +Z$1 =14+ 1= 1t and number of joints in each leg is calculated as
Ji =n|'12$| =4'M4= (3,3,4,4. Connections of constrained joints are shown in

Table 4.4-1

Example 4.4.2: Two platforms, =2 with joints j, =(3+4) connected by
branchn, =1, so the number of legs i§ = j, —2n, =7- 2[1= 5 and the number of
independent loops i = j,-n,—n,—n,=7-2-0-1= 4. Thus, the total number of
independent screws will b® $=AL=54=200r > $=> § +> § =19+ == 2(and
number of joints in each legs if =n,'12$| =51119= (3,4,4,4,4. Connections of

constrained joints are shown in Table 4.4-2
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Table 4.3. Simple structural groups with generalst@int one.

Connection of joints by two conditions
L|$ jp | Figure il
1 2 3 4 5 6
2 |-22 -1-2 -1-1
1|5 2
3| -1-141 -1-1-2 -1-2-2
3| -2-22 -1-2-2 -1-2-2 -1-1-2 -1-1-2
3| -1-141 -1-1-2 -1-1-1 -1-1-2 -1-1-1
4| -1112 | 1112 | -1-1-2-2 | -1-1-2-2 | -1-2-2-2
2110 | 3
2| -22 -1-2 -1-1 -1-1
4 | -111-2 | 1-1-2-2 | -1-2-2-2 | -1-1-2-2
4| -111-2 | -1-1-1-2 | -1-1-1-2 | -1-1-2-2
3| -2-22 -1-2-2 -1-1-2 -1-1-2 -1-1-1 -1-1-1
4| -111-2 | 1-1-2-2 | -1-2-2-2 | -1-1-2-2 | -1-1-2-2 | -1-2-2-2
3115 | 4
4| -111-2 | 1112 | 1112 | -1-1-2-2 | -1-1-2-2 | -1-1-2-2
4| -111-2 | 1112 | 1112 | -1-1-1-2 | -1-1-2-2 | -1-1-1-2
4 | 1-2-2-2 | -1-1-22
4| -1122 | -1-1-222
4|, 20| 5 4| 1112 | -1-1-2-2
4| -111-2 | -1-1-1-2
4 | -111-2 | -1-1-1-2
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Table 4.4. Simple structural groups with multiplatfprms.

. . ) Connection of joints by two
# L $ | jp Figure Il »
conditions
3 -1-1-2
1 1
113 [ 15 | 343 3| |12
4 -1-1-2-2
4 -1-1-2-2
4 -1-2-2
1 1
3 -1-1-1-2
24|20 | 3+4 1 RN
4 -1-1-2-2
4 -1-1-1-2
3 -1-1-2
1-
3/ 315|343 3|3 |q. |12
3|1 122
3 -1-1-2

Example 4.4.3: Two platforms, =2 with joints j, =(3+3) connected by
branchn, =1, with 3 joints, so the number of legsns= j, —2n, = 6— 2[1= 4 and the
number of independent loops ik=j,-n,—-n,—n,=6-2-1-0= 2 Thus, after
calculating total number of loops the total numioérindependent screws can be
calculated asy $=A L=5[B=15or > $=> § +> § =12+ 3= 1 and the number of
joints in each legs will be calculated &s= nl‘lzél = 4'12= (3,3,3,3. Connections

of constrained joints are shown in Table 4.4-3.
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Table 4.5. Number of simple structural group$ eb.

Simple Structural 2 Loops / 3 L(/)ops 4L oops/
Groups of A=5 3Legs Alegs 5Legs
> § - Number of Simple
o 2 % Structural Groups
EQ € | 334 2-4-4| 4-4-43| 4-4-4-4-4
82 | @
o
1 P-P x1 5 4 6 2 17
2 H-P X2 10 8 12 4 34
3 P-S X2 10 8 12 4 34
4 Et-P X2 10 8 12 4 34
5 Ec-P X2 10 8 12 4 34
6 H-S X2 10 8 12 4 34
7 H-Et X2 10 8 12 4 34
8 S-S x1 5 4 6 2 17
9 Et-S X2 10 8 12 4 34
é Et-Et x1 5 4 6 2 17
Total 85 68 102 34 289

Example 4.4.4: As an example, single platform witfee legs is selected. From
Table 4.3 leg configuration is selected as 3-3+#h wondition number 4, where each leg
has conditions as 1-1-2, 1-1-2, 1-1-2-2. As theraomestraint condition spherical-

spherical geometry is selected. Resulted simpletstral group is shown in Figure 4.1.

Figure 4.1. Simple structural group with one platiand three legs ik=5.
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Example 4.4.5: A two platform manipulator with fdegs is selected. The shape
of the simple structural group is shown in Tablé-4. Structural geometry is selected
as spherical-spherical and conditions of thesetgoiare described as 1 for the
connection of the platforms and then 1-1-2, 1-1-4-2-2, and 1-1-2-2 for the legs.

Simple structural group with two platforms is shomrigure 4.2.

Figure 4.2. Simple structural group with two platfioand four legs in=>5.

4.5. Simple Overconstrained Structural Groups withGeneral
Constraint Two

For overconstrained kinematic chain with one plaif 2< j, <4 and A =4,
the simple structural group can be obtained by qudtguations (4.10) and (4.8)
respectively: L=(1,2,3, > $=4L=(4,812 and j =j;'> $(2-2,2-3-3,3-3-3-F
The distribution of conditions (see Table 3.3) be fegs of simple structural groups

with general constraint two are described in Tabl@ and Table 4.7 and possible

structural groups are shown in Table 4.8.

Table 4.6. Distribution of conditions to joints sifnple structural groups =4

Number of legs 2l 3 4
Number of joints attached to first condition 3 |5 |7
Number of joints attached to second condition 113|565
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Table 4.7. Simple structural groups with generalst@int two.

. . . Connection of joints by two
L $ ip Figure il -
conditions

2 -1-2

1 4 2 /: a
2 -1-1
2 -1-2

2 8 3 3 -1-1-2
3 -1-1-2
3 -1-1-2

3| 12| 4 3 -1-1-2
3 -1-1-2
3 -1-2-2

If we will have two or more platforms witj, 26 and A =4 connected each

other by branches, then, the total number of Idgsverconstrained simple structural

group is defined as

n = j,—2n,-2n, (4.12)

Example 4.5.1: Two platforms, =2 with joints j, :(3+ 3) connected by
branch n, =1, so the number of legs will be = j, —2n, =6-2[1= 4. Number of
independent loops will bé& = j, —n —ny,—n,=6-2-0-1= & Thus, the total number
of independent screws will b $=AL=4B=12 or Y $=> §+> § =11+ I= 1
and the number of joints in each leg will bp=n">$ =4"011= (2,333

Connections of constrained joints are shown in Fgu3.
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Figure 4.3. Two platform structural group with gealeonstraint two.

Table 4.8. Number of simple structural group3o4.

) 1Loop/ | 2Loops/ | 3 Loops/
Simple Structural Groups of A =4 Number of Structural
2Legs 3Legs 4lLegs
Groups
Geometry of Subspace 2-2 2-3-3 3-3-3-B

1 Plane-Skew Line 2 1 1 4

2 Plane-Perpendicular Line 2 1 1 4

3 Plane-Parallel Line 2 1 1 4

4 Sphere-Intersecting Line 2 1 1 4

Total 8 4 4 16

Example 4.5.2: A simple structural group is usethva single platform with
three legs which is described in Table 4.8 withrowastraint condition Spherical

Surface - Line geometry. Resulted simple structgralip is shown in Figure 4.4.

Figure 4.4. Simple structural group with one platiand three legs il=4.




4.6. Structural Design of Overconstrained ParalleManipulators

To design a manipulator in a subspace, first, aiandlype must be selected.
Then, with respect to this motion, a suitable geoynwill be decided. A structural
group with decided number of platforms and numbetegs must be generated as
described in previous sections. Then, constructibloverconstrained manipulator is
just a matter of adding mobile joints to the systeith suitable conditions. The
constraint conditions of the loops of multi loop mpulator should be consistent.
Mobility of the manipulator that will be equal thet number of input joints added to the
structural group
Algorithm for the structural synthesis can be sumnea as

1- Decision for the objective motion (m) of platformdaDoF of the Manipulator.

2- Selection of suitable subspace geometry for theamdt, Chapter 3).

3- Determination of needed number of platforms).(n

4- Determination of number of joints on platformg).(j

5- Determination of number of legs \nbranches (), and hinges @ in the
system.

6- Calculation of number of loops (L) (Equation 4.10).

7- Calculation of total number of joints to describesimple structural group

Equation (4.6).

8- Selection of condition combination for the joinbsatdapt to subspace geometry.

9- Addition of input joints with consistent conditiomsth the structural group.

Example 4.6.1: DoF of the manipulator is selecede 3, and the subspace
number should b2>3 and decided to be=5. There will be only one platform i)
with three joints ¢=3). There are no branches or hinges in the sybesause there is
only one platform, thus the number of legs willtheee (n=3). The number of loops

will be calculated as L=,{n,=2.. Total number of joints of the simple structuyeoup
will be Z§5=)l L=5[2=10 and distribution of joints on legs can be caledais
i =i, $=(3-3-4,2-2-}. From this two combination, (3-3-4) will be useat this
manipulator. Structural group is constructed besthg appropriate conditions for the
joints as shown in Figure 4.5.a. Three inputs (f@gu5.b) will be added to the simple

structural group and manipulator shown in Figueciis constructed.
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Figure 4.5. Three DoF manipulator with one platfoni=5.

Example 4.6.2: DoF of the manipulator is seleciede 4, and the subspace
number should b& >4 and decided to bg=5. It is decided to have two platforms
(n,=2) and both platforms will have three joints eg§gh3+3=6).

There will be no branches but one hinge will conteo platforms. The number
of legs will be from Equation (4.12),(®6-2.1=4). Number of loops will be calculated

as L=p-ny-ny=2. Total number of joints of the simple structurgdoup will be
> $=1L=5[3=1E and distribution of joints on legs will b§ = j;*> $=(3-3-4-4.
Structural group can be constructed by selectimyagiate conditions for the joints as
shown in Figure 4.6.a. Four inputs (Figure 4.6.0) ke added to the simple structural
group with consistent conditions and manipulatoovah in Figure 4.6.c will be

constructed.
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Figure 4.6. Four DoF manipulator with two platforms3.=5.

Example 4.6.3: DoF of the manipulator is seleciede 3, and the subspace
number should bg& >3 and decided to e=4. There will be only one platform i)
with three joints (=3). There are no branches or hinges in the systemper of legs

will be three (n=3). The number of loops will be calculated as Lk=rj,=2.. Total
number of joints of the simple structural group Iwile Z$=/1 L=4[2=8 and
distribution of joints on legs will bej =j;*> $=(2-3-9. Structural group is

constructed and three inputs are added to creatguoiator shown in Figure 4.7.

Figure 4.7. Three DoF manipulator with one platfonih=4.
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Example 4.6.3: 4 DoF manipulator is selected amdstibspace number should
be A >3 and decided to be=4. There will be two platforms n2) with four joints
(jp=4). There will be one hinge in the system, nunddedegs will be four (n=6-2=4).

Number of loops will be calculated as L=n,=3. Total number of joints of the simple
structural group will beZéz)l L=4[B=12 and distribution of joints on legs can be
calculated asj, =j;*> $=(2-3-3-3+ 1 Structural group is constructed and three

inputs are added to create manipulator shown iarEig.8.

Figure 4.8. Four DoF manipulator with two platforms.=4
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CHAPTER 5

KINEMATIC SYNTHESIS OF
PARALEL MECHANISMS

In this chapter, an investigation on the functioangration synthesis of
overconstrained mechanisms will be presented witmoael method. Function
generation synthesis method will be applied to abtk spherical six bar mechanism
and a planar-spherical six bar mechanism. Furtheryre motion generation synthesis

of a parallel mechanism is presented by anothenodet

5.1. Kinematic Synthesis of Overconstrained Mechasins

In this section, function generation synthesis wéroonstrained mechanisms
will be investigated. For the synthesis, two mectras are used. The first one is a
double spherical six bar mechanism and the secend planar-spherical six bar
mechanism. The synthesis of these kinds of mecdmsniss difficult, but the
mechanisms can be separated into two sectionsibg aa imaginary joint and solved
recurrently.

Two different methods as interpolation approximatiand least squares
approximation will be used during synthesis procedheory of screws is used to
derive the objective function of the planar and espal parts of overconstrained
mechanisms.

It is assumed that there are two four bar mechanishrere output of the first

one is the input for the second four bar. Functieneration synthesis procedure starts

with a desired function ay/ = f(x) . The range of x is given ag, < x< x, and
respectivelyy, < y< y, wherey, = f(x,) andy, = f(x,).
Initially, the functiony = f (x) is scaled for the inputgf) and output ¢ ) of the

mechanism where the range of inpugs< @< ¢, and range of output ig, <¢/ <,,.

The scale equation will be
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p=ax+ta , ¢=by+h (5.1)

and the desired function for output angle will be

Y=h ( a +h, (5.2)

After defining the input output relations, a fumetiis found by making synthesis of the
first four bar linkage as

J=w(oc), (5.3)

whereC is the designed construction parameters of teeffur bar linkage.

After defining the outputy as the input of the second four bar linkage and
desired output is set ag =¢/(¢) another synthesis operation will be done for the

second four bar linkage. A function with respecttoc andd will be found as

=y (pc,d), (5.4)

wherec andd are vector of construction parameters for thd fwrsd second four bar
linkages respectively. The error in the synthesis be calculated by the difference

between designed and desired outputs as showruiatigg (5.5).
e=y-y(pc,d) (5.5)

5.1.1. Function Generation Synthesis with a Doubl8pherical
Mechanism

Double spherical linkage is a one constrained mesm which belongs to
subspaced =5. It has six revolute joints whose axes are inttisg three by three in

two different points as shown in Figure 5.1.
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Figure 5.1. Double spherical six bar linkage.

The function generation synthesis of the doubleespal linkage mechanism is
described as two spherical four bar linkages. Aewshin Figure 5.2 an imaginary
revolute joint is attached between two parts ofrtrezhanism that gives ability to solve

the equations for the mechanism separately.

Figure 5.2. Double spherical mechanism as two $mddefour bar linkages with unit
vector axes.

The sequence of finding unit vectors is importamtfinding the objective

functions of four bar linkages. Sincs, =(1,0,0 ands, =(0,0,1), vectors; will be
calculated usingy, s, and a, , thens, will be calculated using, s3, anda, ,. Vectorsg
will be calculated using,,s; and a, , thens;s will be calculated using;, ssand a ,; .
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Next, ss will be calculated usings, sis and a;,  for the first four link of the mechanism.
Further, for the second part of the mecharssmwill be calculated usings, s; and a; ,,
thens;s will be calculated using,s14, and a, ,,. Vectors;, will be calculated using,
s13 and a,,,, then sy will be calculated using, ss and a,, . Finally s0 will be

calculated usings, S and ay , -

The objective function of the first four-bar wileb
ss s, =Ca,,. (5.6)
Substituting values of; andss and arranging will result in Equation (5.7).

Ca, +Ca,,Ca, a6t @ I 5 ,,8 55
+Ca, ,Ca, Qg3 ,  F 55 @ 115@ , 8 45 &, (5.7)
+S0, ;0,5 H 5, 8560

where the inpup is a, , and outputy is a, ..

The function can be written in the polynomial foifrdivided by -Sa, ,Sa ; as

R fo(@) + Ri@) + BT+ Ri{p) - Ky =0, (5.8)

where F, = (Ca4,6_ C0'2,4(17 2,8ca 8,3 S'a 2,4810 8,’ R= 'S_laa,s Ca8,6872,£’ P = 'Caz,a’
R=S'a,,@,,%,, f(9)=1 f(9=Co. f(9=Cecy, f(9)=Cy,

F(o)=Sp .
For describing the objective function of second esmlal four bar linkage,

Equation (5.9) will be used.
S12 DS_LO = Cal10,12’ (59)

where the input is a,, and outputy is a,,,. The function can be written in the

polynomial form if divided by-Sa, ,,Sa,, ,, to get
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R&G@+Ra@)+ Ro@)+ Rdy)- @)=0, (5.10)

where R, =(Cd1,Cl o100 6,100 141050 6280 141 R = -5'01,1,C01,137 44
R =-Clgipn R =S"0,0C0g:00 510 Gy (lﬁ):l, G (‘/7) =C¢g, 9, (‘/7) =C¢ Cy,
6, (#)=Cy, G(¢#)=S¢ Sy

Linear approximation will be used. For exact santiwe need 4 points of the
function, thus n=4 and precision points are disteld with exact synthesis equally in

the range of x as shown in Equation (5.11).
X =%+ J(%1- X)/(N+1), j=1,n (5.11)
Values of y is described for a given function as
y;=f(x). j=0n+1. (5.12)
The distance between precision points will be dated by using Equation (5.13)
0= (X, — %) /(N+1) . (5.13)

The scaled equations of input and output varialles given in Equation (5.1) the

constant parameters will be calculated using Equat(5.14).

3 =-((a+ @) (% %.1), =% Pom X ) (X %))

(5.14)
bl :_((_w0+wn+1)/(y0_ yn+]))’ b2= _(( ymi//o' Wr& )/( Yo ¥ ))

General form of equations derived from the objextiunction is shown in equation
(5.15).

0=> R f(@a)-F(g), i=1in (5.15)
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The number of precision points is 4 thus 4 linequations with 4 unknowns are

acquired from Equation (5.15) which can be wriitethe matrix vector form as

(@) fi(a) fAe) flo)|[Pd |F(e)

() fi(e) fae) fie)||P. _ F(g) (5.16)
fo(%) f1(¢3) fz(wa) fs(ws) . P, F(@' '
() fi(e) fe) fie)][Pd |Flo)

By multiplying both sides of Equation (5.16) withverse of matrix[ f, ;] results as

P=[f,]™"F (5.17)

Values of P (i=1,n) could be found by using Equation (5.17§ avhich construction
values of first spherical four bar can be foundlaswn in Equations (5.18).

a,, = ArcCog- B),
a, ,= ArcCot(Cs¢a,y B,
as s =-ArcCot(Cs€a,,) B,
a,s=ArcCoq Sifa,,) Sife,y) ( Caqg,) Car,) C@t )+ §.

(5.18)

Solving objective function with the found paramsteiith respect t@ will give us the

output as a function of input
g=w(oc), (5.19)
where ¢=[a,, 0,, 05,0, .

Moreover, the error can be calculated by the dffee of desired function and

defined function by the first four bar linkage &®wn in Equation (5.20).

(5.20)

e1=|w—w|:‘(q f(g”;ia?} q]—w(mc)
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To find the mechanism that will generate minimumoelan algorithm must be
applied and a relation between precision pointseanal must be established. Precision
points are selected as equally spaced in the bieginmmhen the combination of each
point betweent0.50 range with0.15 step is applied to the procedure of synthesis.
After each selection of precision pointsvBlues are controlled if they are real numbers,

value of B is checked if it is in the rangel< P, <1. If all these values are satisfied

then the results of the synthesis procedure isdatila list with construction parameters
and related error. Finally best approximation ieced with the criteria both minimum
error and constructability.

General form of equations derived from the objextiunction of the second

spherical four bar is shown in Equation (5.21).

n-1

O:ZR’kgk(wi)_G(lﬁi)’ i=1n (5.21)

Number of precision points is again 4 thus 4 linegwations with 4 unknowns

are also acquired from Equation (5.21) which cawbgen in the matrix vector form,

G (@) (@) o.(#) of@)|[R] | A¥)

wlp) 50) o) o)\ R0l o
% () @) 9.,(@) 9?)|| R qe)| '

% (@) @(@.) 9.(@) o)L R] | d¥)

By multiplying both sides of Equation (5.22) withverse of matrix[g, ;] results as,

R=[g,]%G. (5.23)

The values of R(i=1,n) could be found by using Equation (5.23nf avhich
construction values of second spherical four lzar lse found as shown in Equations
(5.24).
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as,, =ArcCog- R)
Qg1 = ArcCot(- R/ Si'(‘as,lz))
ay,, =-ArcCot( R/ Sifa,,))

a10,12 = Arccoq Si'ﬁa&l() Si(nl4,1)( Cc(g 8,])1 Cm 8,]}) q@t 14).2+ B

(5.24)

Solving objective function with the found parameteiith respect tap will give

us the output as a function of input as,
@ =y(pcd), (5.25)
Where d :{a8,147 a14,12 a 8,10a 10,}2 -

Error of the six bar mechanism can be calculatedhieydifference of desired

function and defined function by both four bar lgle as shown in Equation (5.20).

e =l - =‘[n f(ﬁf} bz]—w(w,c,d) (5.26)

The same procedure to find the mechanism best shésfunction with
constructability is applied also to the second sphEfour bar linkage. Here Ralue is
checked if it is in the rangel< R <1.

Example 5.1: In the case of a numerical exampletfon to be synthesized is
selected to bey = X°. Selected range of x, input angle and output aofjke desired

six bar mechanism is shown in Table 5.1.

Table 5.1. Design ranges of input output parameters

# Range Minimum Maximum
1 X 1 2

2 y 1 4

3 @ 0.4 V4

4 [/ 0.17 0.6
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Table 5.2. Precision points used in the synthesis.

# Precision points 1 2 3 4
X First mechanism 1.2 1.4 1.6 1.8
Shift for first
JAVe _ 0 0 0 0
mechanism
¢, | Second mechanism 1.63 2.01 2.38 2.76
Shift for second
AY. _ -0.09 -0.09 0.05 0.13
mechanism

Precision points are calculated as shown in Talfle For this precision points

parameters of the six bar mechanism will bes{a,,=1.12, a,,=0.91, a,,=1.11,
a,,=1.54}, d ={a,,=-0.177, a,,,,=0.099, a,,,=-0.175, a,,,,=0.096}.

In Figure 5.3 designed mechanism is shown withitd@rsection points.

ot o

Figure 5.3. Designed double spherical six bar meisha

In Figure 5.4.a scaled desired function and designaction is shown for the
first spherical linkage. In Figure 5.4.b error l®/n and total error of first mechanism

is calculated as 0.0899.
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Figure 5.4. a) Designed and desired functionsref fipherical linkage, b) Error of first
spherical linkage.

In Figure 5.5.a, scaled desired function and desigunction is shown for the
second spherical linkage. In Figure 5.5.b, errothef second mechanism is shown and
calculated as 0.033 and total error generatedXlyasi linkage is 0.113.

‘70 e sk

a) b)

Figure 5.5. a) Designed and desired functions ofifdiage, b) Error of 6R linkage.

5.1.2. Function Generation Synthesis with Planar Syerical
Mechanism

Planar-spherical six bar is a one DoF mechanismking in subspacel =5. It
has six revolute joints where axes of the firse¢éhare parallel and axes of other three

recurrent revolute are intersecting as shown imiféiép.6.

85



Figure 5.6. Planar-spherical six bar linkage.

The input output function synthesis of the planamesical linkage mechanism
can be described as two four bar linkages wheseifira planar four bar and second is a

spherical four bar as shown in Figure 5.7.

SI3 4S5 gy

ts S4 sS4 //\/ S8
B <
74

_ S10

1e\™ —‘N
/4 87

$ S11

Figure 5.7. Planar-spherical mechanism shown akamapand a spherical four bar
linkages with screw axes.

The sequence of defining screws for planar-sphetinkage is as follows.

s, =(1,0,0 ands, =(0,0,)) is given in x and z coordinates,is parallel tos, thus it is
equal tos; . Hence, s, will be calculated using,, 3, and a, ,. The vectorss will be

calculated usingp, s; and a, ; for defining the objective function of planar fear
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linkage part. Further, for the second part (spla¢ficur-bar) of the mechaniseag will

be calculated using ,s; and a;,,, thensy will be calculated using, si0, anda, ,. The
vectorsg will be calculated usingio, S and a,, 4, thensy; will be calculated using,,s

anda,,, . Finally,ss will be calculated usings, s;1 anda,; .

The objective function of the planar four-bar Wk calculated from Equation
(5.27).

B-C|=a,,, (5.27)

B andC vector can be found fro =a, s, C=a, s + a,,,5], Equation (5.27) can

be written in open form agx; — ><c)2 +(Yg— yc)2 = %,14-

Substituting values of vectoB and C in to Equation (5.27) gives us the
objective function of the planar four bar linkage a

'3122,14+ ag,14+ ai,12+ 3-21,??2 al,l?- 1,£:a 2,%2 a3,1?' 1,1@0' 2',9 )'!4' 2 a 3,1@ 1,@ =2,4C (5-28)

where the inputy is a,, and outputy is a,,. The function can be written in the

polynomial form if divided by2 a, ,,4a, ,. as,

R i@+ Ri(@+ P9 - Hep=0, (5.29)

2 2 2 2
_ '312,14"' a3,14"' a1,12+ a; _ Qg3
where, P, = , B=-

22,3, I a 1,
f,(#)=Cy, F(g)=C(p-v).

The objective function of second spherical four lakage will be calculated

from,

S0 18 =Cay 4 (5.30)

where the inputy is a,,, and outputy is a, .
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The function can be arranged and written in thgmahial form as

R&%W@+Ra@)+ Ro)+ RdyP)- @)=0, (5.31)

where; Ro Z(Cae,s'caa,ecas,loca 10,8)Sla 3,(Sa 10,¢ R = 'Slalo,scalos&' 3,10
R, = 'Cas,lol R, zslaa,ecaa,e&rs,lo o (‘[’):1, 0, (lﬁ) =Cy¢, 09, (lﬁ) =C¢ Cy,
0:(¢)=Cy, G(¢)=S¢ Sy

Linear approximation will be used for the planaurfbdar part of the system. For
exact solution, we need 3 positions of the functitius n=3 and precision points are
distributed with exact synthesis equally in thegewof x. Equations (5.11-5.15) can be
used also for this procedure for n=3. The numbere€ision points is three, thus three
linear equations with three unknowns are acquirethfEquation (5.29) for this case,

which can be written in the matrix vector form,

) fl(@) fz((ol) Po F(wl)
o, F(o,) (5.32)
) fi(e) fie)] [P |Fle)

N
—h
N
—_
S
N—
»—\-U
]

By multiplying both sides of Equation (5.32) withverse of matrix [f, ]

results in Equation (5.33)

P=[f,]™"F. (5.33)

Values of P (i=1,2,3) could be found by using Equation (5.88) construction
values of first planar four bar can be found assshm Equation (5.34)

- - _ & _a
a3 =1, A4~ \/323,14"' a21,12+ az1,:'-32 a3z, 1,1123 o d3m ?3 a 1,1‘2?3 (5.34)
1 2

where a , must be given as design parameter then otherldéingth values can be

found respectively.
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Solving objective function with the found paramstesith respect tap will give
us the output as a function of input as describedEqguation (5.19), where

c={a;,, a,,, a,, . Then error (g :|t//—¢/| ) can be calculated by the difference of

desired function and defined function by planarrfbar linkage as shown in Equation
(5.20).

To find the mechanism that will generate minimumoelan algorithm must be
applied and a relation between precision pointseanat must be established. Precision
points are selected as equally spaced in the bieginmhen the combination of each
point between a range with.15 step is applied to the procedure of synthesis. The
ranges arg-0.959,+0.41}, {-0.60,+0.®}, {-0.40,+0.99 ] for three precision points

respectively.

After each selection of precision points, (1, 2, 3) values are controlled if
they are real numbers, value of P1 is checked todmative. If all these values are
satisfied then the results of the synthesis proeeduadded to a list with construction
parameters and related error. Finally the bestaqimation is selected with the criteria
both minimum error and constructability.

In the synthesis of spherical part of the mechamsmber of precision points
(m) wanted to be more than the number of constrngbarameters (n). This problem
can be solved by using least square approximatiethod and best fitting function can
be found with respect to the given design point $éke least square approximation
method suggests that, when the sum of squaredsdftdis a minimum function it will
be the best fitting function.

m

n=2¢ =2 (Fo.d)-F@)) (5.35)

i=1

The minimum error is reached when the partial ddénes of Equation (5.35)

with respect to construction parameters are zero.

on .
97 -0, i=,01.n-: 5.36
oP : (5.36)
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For the synthesis of spherical four bar linkage digun (5.36) can be written in the

form,

R.9 (&)~ G(J/i)jz . (5.37)

For m precision points and n = 4 parameters Equgba37) can be written in matrix

form,

Z[gk,i] R=[[g] G,], (5.38)

where G ={[ i g @) @)} & andR = {R} :can be found by solving Equation (5.38)

i=1

as described in Equation (5.39).
R :[z 9, ()] [G . (5.39)
i=1

Construction values of spherical four-bar can haébfrom Equations (5.40).

a,,, =ArcCog-R)

a5 = ArcCot(- R/ Silfa ;)

a,s =-ArcCot( R/ Silfa,,))

ass = ArcCoq Silta, ) Sifo,)( Cdg ;) Car,) Cat )L+ R

(5.40)

Solving objective function with the found paramsteiith respect tap will give

us the output as a function of input as shown indfign (5.25), wherd ={a, ,,, a5,

Ay Tggb -

Error of the six bar mechanism can be calculatedhieydifference of desired
function and defined function by both four bar kgle as shown in Equation (5.20). For
finding the mechanism best suiting to the functiath constructability with minimum
error a random function is added to the each poetipoint where the range is

-10<A<-10 and Rvalue is checked to be in the rangé< R, <1 where all R(i=1,

2, 3, 4) values are real numbers.
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Example 5.2; As a numerical example function tospethesized is selected to
be y=x. Selected range of x, input angle and output aofléhe desired six bar

mechanism is shown in Table 5.3

Table 5.3. Ranges of parameters.

# Range Minimum Maximum
1 X 1 10
2 7, 0.17 0.57
3 Y 0.057 0.7m7

Precision points are calculated as shown in Tablead Table 5.5. For this

precision points parameters of the six bar mechawsl be c={ a , =1, a,,,=1.637,
a ,=1052 a,,,=0.812}, d ={a,,,=0.858,a,,,= 0.1789¢ , ;= 0.94% ;~ 0.10.

In Figure 5.8 the designed mechanism is shown.

Table 5.4. Precision points for the first linkage.

# Precision points 1 2 3
X Initial 3.25 5.5 7.75
JAVS Shift 0.225 1.035 1.8
X Final 3.475 6.535 9.55
Table 5.5. Precision points of the second linkage.
Precision
paints 1 2 3 4 5 6 7 8 9 10
Initial | 0.428 | 0.542| 0.656 0.77L 0.885 0.999 1.113228 | 1.342| 1.456
Shift | ggg | 0-042| 0.076| ; (co| 0.051| 0.102 0.01% ) (o | 0.036| 0.059
final 0.343| 0.584| 0.732 0.712 0.937 1.1p1 1.129 32.11.379| 1.514




In Figure 5.9.a, scaled desired function and desidanction are shown for the
planar linkage. In Figure 5.9.b, error of planakége is shown and error of first

mechanism is calculated as 0.675.

Figure 5.8. Designed planar-spherical six bar mesha

06 08 10 12 14|

a) b)

Figure 5.9. a) Designed and desired function ohanlainkage, b) Error of planar
linkage.

92



In Figure 5.10.a, scaled desired function and aesigunction is shown for the
second spherical linkage. In Figure 5.10.b, erfosexond mechanism is shown and

calculated as 0.213 and total error generatedXolyasi linkage is 0.888.

T Y \ T4 ¢

a) b)

Figure 5.10. a) Designed and desired output funstmf spherical linkage, b) Error of
spherical linkage.

5.1.3 Motion Generation Synthesis of Planar Spherat Mechanism

In this section, motion generation of a planaresal mechanism is done for
three positions of the end effector. The screw afethe mechanism are shown in
Figure 5.11. Mechanism is fixed to the ground friovo parallel revolute joints and an

end effector will be placed on the axis of the josy. Three positions of the end
effector are given as three positions for poinn@ three orientations of vectsy;.

The synthesis procedure starts with the syntladdisst leg of the planar part of
the mechanism which can be defined with four patarmse two link parameters

8,0 &0 @Nd two joint parameters, ,,a,,,. The objective function for the first leg of

the planar part will be derived from Equation (5.41

B 10% T g3 = Pc (5.41)

If the values of vectors, ands;, are substituted in to Equation (5.41) Equationd3p

will be reached.
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az,locos(al,g) + 310,8C0@' 19t 9,11 = Pex s

. ) (5.42)
8,091, o) + 3¢S 5+ O 4.} = Ocy-

Eliminating a,,, from Equations (5.42) will result in as objectifterction in

polynomial form as

Rf+Rf+Pf,=F, (5.43)

where, f,=1 f,= 00, f,= Pey ,F = pex+ Poy R =80~ &1 B =28,,,Coda,y),
P, =28, ,,SiMa, ).

S17
zMSZ

T S4
AS6
. 2

S1 S3 1

S10 SS é\
S7

] 1
S9

Figure 5.11. Screw placement for the planar-sphen@chanism.
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Solving the polynomial equation (5.43) for threeint® of p. will give us
parametersy, 4, a,,, and a,,,. Then, a value is set for the anglg+a,,, is set asy

and it will be calculated for three positions fréquation (5.44).

ﬂ(pcx’pcv) = ATar{(pcv_ 310 871,9)/ 61‘0,8(:0 cx az,lo@ 1,)/ QO} (5.44)

The second step is the synthesis of first legpblescal part of the mechanism.

Given parameters are={s,, §, s} and input anglex,,, which is known asyg from
Equation (5.44). Design parameters atg;,a,,,. and a,, ,,. Objective function will be

found from Equation (5.45)

S=5; (5.45)
Substituting values o ands, . into Equation (5.45) results in

SX = Q_3,153_,12 %,13-'- S&lg Q,lS C.I.2,14S.L,f§ C.I.,lZS.I.),l
SY = §,12 %2,14 $3,15_ Q& Q3,15 %]?E g,lS(:.I.Z,MS‘l),l (546)
SZ = c%,13C13,15_ C12,1488,13813,15

Eliminating S, ,, andC,, ,, from Equations (5.46) results in

Szc;s,ls"'(_s( C1,12"' & $1§ %,13_ Q3,15:O- (5.47)

a,,, can be written asy, ,+a,,,, and substituted into Equation (5.47) and

objective function will be
R%+Rg+ Bg= G (5.48)

where, R, = —C5415CsGy4,Cs6,, R =Cot,,Cs¢, ., R, =-Cot,,,, 9,=1, g =5,

9, = Cut S S, 655Gt § Si
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Solving Equation (5.48) for three positions giveluge design parameters

011,12' a8,13 and a13,15'

In the third step of synthesis, a kinematic analysr the second leg of spherical

part will be done. Constant design parametgrs a,,,; and a,,, will be given.

Equation (5.49) can be written in the left partie# equation are the given orientation of

the end effector and on the right partsjs which is calculated from the second leg by

using parameters, ,,, @, s, @, d5,5 ANAQ, .

s=g, (5.49)

From Equation (5.49),, ,, have been eliminated and Equation (5.50) have foeem.

S, C8,17 + (_ & Q1,7+ 7,16)+ S 51,4 7,1& %,17_ 715 0 (5-50)

Equation (5.50) has been solved to find valuesrpof for three positions of the end
effector. Values ofx, , will be used in next step as input variable.

On the last step of synthesis a close loop equdteore been written for the

second leg of planar part as shown in Equatiorn.{§.5

QA S3 A, St A5 5,7 P (5.51)

Expanding Equation (5.51) results as

a,,Csta,C st as ) 7 Ocx

, (5.51)
3 4S 3t &S5t s Loy

where a,;=a,,+a,, 0, ,=a +a ;4#0a ;. Eliminating a,; from Equations (5.51)

will give the objective function as shown in polyn@al form in Equation (5.52).
Toh+Th+ Th+ Th= H (5.52)
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where, T, = 0'5(_3'2,6"' a§,4+ aé,s) v T=ma, T,=-ay,, T,=a.3, » hh=1,
0y = 0exCr* Poy S 1o = PexCrs+ Py S Ny = Currgy H =-0.5( 02 + 02 ).
After giving a value fora,, and Equation (5.52) have been solved for three

position of point C and profound three valuesagf. Design parameters, ,, a,, 8¢

have been found by this process. A designed matgruior three positions is shown in
Figure 5.12.

Figure 5.12. Three desired positions for the desigslanar-spherical manipulator.

5.2 Kinematic Synthesis of Multi Loop Platform Mechanisms

In this section, a novel procedure for synthesis nafilti loop platform
mechanisms will be described with an example. Migdtip mechanism selected as
example is one DoF with three legs and leg jointfigurations are RS-RS-CS. In
Figure 5.13, mechanism is shown with all constatwngtructive) and variable
parameters. Pre-designed conditions of the meadmami® that all fixed kinematic
pivots, two revolute and one cylindrical has paiadixes.

Main target for synthesis is generation of a platfovith three legs where center

point on the platform C pass through three givemtsoin space with coordinates

£ (% Yi ), 05 (X0 Vor 22) 4 05 (Xs0 ¥ar Z) -
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Figure 5.13. Parameters of RS-RS-CS parallel mesiman

Synthesis problem is divided into three steps. fm first step, synthesis of
kinematic chain which is denoted in Figure 5.13lexs 1 will be described. Then,
inverse task analysis will be done for this leg. tB& second step leg 2 in Figure 5.13

will be solved with respect to objective functioeg (&, =Cosg¢,, and the synthesis
parameters arey,, a,,, 8,. For the third step of synthesis procedure leg Bigure 5.13
the objective functionse ,[& =Cosg, and e, [&,=Cos¢ ,, with synthesis parameters
a,,8, 1,, a5 Will be solved. For the platform,, a,, 3 lengths are distances from edges of
the triangle center C of platform and angleg,¢,,¢, define form of the triangle
platform. To center C not to be outside of thengia the angles,,9,,¢, will not be

set as synthesis parameters and they will be gisehn = ¢, = ¢, =120.

For the first step let solve the inverse kinemati@ins of leg 1. Close loop
equations from the frame to point C in the vectont can be written as,

pc = a.L,+a,,e;+ ae. (5.53)
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By using recurrent screw equations valueggfe,, ¢ are found and substituted

in Equation (5.53) and get

Xe :_53(33(24 %5)"' (H at @Q}. (5.54)
Ye =Ss(a,t aG)+ G aC, ), (5.55)
Z.=3;t a3, S (5.56)

Solutions of Equation (5.54) and (5.55) with redpgecS, andC , will yield

S:=[y(a,+aC)- ¥ aG, P( >+ ¥, (5.57)
Cis=[X%(au+aCy+ w(aC,SY( *+ § (5.58)

If Equations (5.54-5.56) will be squared and aditi@dll result in

Xé"'yé"'(zc_%)rz:@i"' i+ZQ4%QE (5.59)

From Equation (5.59) value @, is found as

C35:[X§+ yg"'(%_ 6}3)2_ i4_ i](Z Q46)_1 (5.60)

From known trigonometric equatio®, + C, =1 we can findS,,

S =%(1- Cy)™*. (5.61)

From Equation (5.56%,, can be found as,

S.=(z-a)(a™" (5.62)

With respect to trigonometric equati@j, + C,, =1 we have
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C, =£(1-S,)™. (5.63)

Respect to values;, C,, S,, C, S; G we can find the values of unknown
anglesa,,,a,,,a .. As a result, we get four solutions of inverseé tig given values of
construction parameters on leg 1. These solutiomwige determination of three
derived value of vectoe{L, M, Ng for given pointp.{X., Yo X3 -

Magnitude of the value ok, are defined by using recurrent equations and

described as

Ls = -S,,Cu St GG (5.64)
M =CsChSist S5 G (5.65)
Ns =S, Ss. (5.66)

Furthermore, in the second step kinematic chaite@f2 will be investigated.

Loop closure equations for the leg 2 in the vefiiom can be written as,

Pc =6 T8, + A6+ A6, (5.67)

Equation (5.67) can be written in the scalar fognsbbstituting values of vectors as,

X = _38( 3 gg %1() + QS( 3st 3 Ql))’ (5.68)
Ye =at Se(ast 3G+ G G S (5.69)
Zo = 85+ 8,54 Q¢ (5.70)

Rearranging Equations (5.68-5.70) for simplicityes us

a4C29%1o:( ¥ - ax) Cls_ & %’ (5.71)
3t ,Cyo=(% — a) G+ X G, (5.72)
Zo = 85+ 8,54 Q¢ (5.73)
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From Equation (5.72) value o€, can be written as

Coro=[(Yc — @) Sg* % G~ 3} agl' (5.74)

From trigonometric relations value &, can be found as

Suo = £#(1- G)™°. (5.75)

By using Equations (5.74) and (5.7%j,,, can be determined. From Equations (5.71)
and (5.73)C,, and S,4 are derived as

Co=l(Ye—a)Ce— % S4( 3 %12_1’ (5.76)
Sy = ( - qS)( 3 %1()_1- (5.77)

By using Equations (5.76) and (5.7@), can be found. For finding variable angies,

and a,, squares of Equations (5.71-5.73) are summed eind g

1
28,

Se(¥—a)+ Gex=-—[ &+( - 3°+( 2= B*+ & % (579)

Moreover, describing additional conditions of rigydof triangle in point C Equation

(5.79) is presented.
1
€ EELO=C05¢1:_E' (5.79)
Rearranging Equation (5.79) in another form regults

a,"(pc —p) (&, = Cosp, = (5.80)

N

Describing Equation (5.80) in the coordinate forreg us Equation (5.81).
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SeMs+ Cgls= af Lex + Mg+ Noz+ a3- 3, N- aM. (5.81)

Solutions of Equations (5.78) and (5.81) respe@toandC,, yields

Ss=(05RL-%x(R- & N- aM)/( af L y- - M), (582
Cs=((Ye—a)(R- asN- aM)-05RM)/( 8 i y- 3- M), (5.83)

whereR = Lox. + Mgy + N2 +053, B= &+ (y- F+(z @&+ & %
From Equations (5.82) and (5.83) angig, can be found. By using trigonometric
identity S5+ C;,=1 and Equations (5.82) and (5.83) objective fundtior synthesis

of parametersy,g, 8,4, &, can be defined as

0.25R; (Ls+ M)+ (R- asN— aM’[ X+ (¥— 9]

, (5.84)
“R(R-a;N- aM)[ Lx+ M{ y— 3= & Kk y- r- ML

After setting an arbitrary design parameter $or, using a numerical method system of

three nonlinear equations for given three parametamn be solved to determine

a8y, 8,. Output coordinates of unit vecta{L,, M, N,} are calculated using

recurrent equations to get

Lo = _Slsczg %10'*’ CiS CBll’ (5.85)
Mo = CieCrsSai0t Sis G (5.86)
Ny = S0 30 (5.87)

For the third step of the task kinematic chaindegf 3 is described and loop closure

equations are found as

aSC2,12S.L1,13=( ¥ - aa) C1,11_ & S.,:I (5.88)
a2,12 + a5C11,13: ( ¥~ a) 8111'" & C:l,J’ (5-89)
aSSZ,lZ %1,13: €~ Qi (5.90)
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From Equation (5.89) value @,, ,, can be found as

Chi=l(Ye—a) St %X Cir &b 3}5 (5.91)

Value of S, ,; can be found using Equation (5.91) and trigonoimetentity.

Sis=1(1- Cil,lz)o.s (5.92)

From (5.76) and (5.78) values @&, ,, and S, ,, can be defined as

Con=l(e—2a)C= % Sil( & 31)3_1 (5.93)
%,12 =(z- a.m)( & 31,12_1 (5.94)

By using the values ofS,,,, C,,;, C,,, and S, , anglesr,,,, and a,,, can be
determined. For eliminating angles, ,,, a,,, Equations (5.88) to (5.90) are squared

and then summed as

1
28, 1,

S_,n(){;_az)'*' C1,11¥: [( - 511,1)2"'( y- Q2+ é(+ 315 % (5.95)

Then two conditions from the rigidity of triangléafform are described in Equations
(5.96, 5.97) as

e,le =Cosp,=-0.5, (5.96)

e,®,=Cosp,=-0.5 (5.97)
or

[(pc —p) B]a;' =-0.5, (5.98)

[(pc —p) Bola;' =-0.5. (5.99)
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Equations (5.98, 5.99) can be described in cooteliftam as follows

a2,12C1,llL5+(a2+ aZ,IZSl,])l M g- al,ZI.lN E pC @ t% ! (5100)

a2,12C1,11L10+ (a2+ a2,1§1,])]. M 16_ al,lJ\I 1% pC [e ZITB% : (5101)

If Equation (5.100) multiplied byN,, and Equation (5.101) multiplied bi{, and

subtracted from other, Equation (5.102) will berfdu

az,12C1,11( I—5N 10 LlON Q+( azt 32,1251,21 M 5N 10 M 1(M!

N (5.102)

=(pc [&)N, —(pc &) Ng+ 5 (Ny— NY.

Equations (5.100, 5.102) can be described in thewaig form as
_ 1 8
SuMs+ Gy le=— (pc (& 5+E -a,Mg al,llN)S’ (5.103)
12
S.,ll( IVI5N10_ MlONg + Cl,l( Lleo_ LlON)S

1 (5.104)

[Pc &Ny —pc @10N5+%( Nyo= Nj = af M;N M N)] .

12

Solution of Equations (5.103) and (5.104) with resge S, and C,,, define two

expressions as

R+3(L-Lo-a,R, 3,
1= — = , (5.105)
2 8,1,Rs X
Cu= R (My- Mg+ aMlRl. (5.106)
8,1,Rs

where Ry =pc [&pls—pc 85l R, = LsN;;— LN, R = LM;— LM,
Rs = —pc & Mg+ pc [&;M,, R, = MgNyy— MyoNe.
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From the values of §,, and C,,, value of a;,, can be found. Using

trigonometric identityS’,, + C,,=1 we get equations with respectdp,, as
au(Ri+R)+2a,{RR RR aRR "R "R ARR *(R-4,5 0, (5.107)

whereR, = R3+%(L5— L), R= F%—%( M- M.
If we use the values ,; and C,,from Equations (5.105) and (5.106) in (5.95)

we get other expressions for determinatioragf.

&= R/ R, (5.108)

where

Ri=2aRR- R~ B- K & BIST X REE+( oy B R Bl R,
R.=(RR-RBR+ aRB Rl( ¥ B R Rz xR MRHR

Equation (5.108) is objective function for syntlseparametersa,,a, ,,, a;, a
numerical method is used to fingl. (x., Y., z.) and three non linear equations are

solved with respect to three construction pararseter

Thus, the synthesis parameters in this mechanienagra,,, a,, a,, a,,, a and

will be given arbitrarily in the design process.h@t construction parameters are

a3 &y, A &,0.,0 .0 . The designed mechanism gives to the center Cragsegiven
three point in spacp... The variable parameters are determined from egpes given

above. Numerical example for solving this task eespo 6 parameters is given in Table

5.6. Here x,y,z are given parameters of the task, kmy, a,, a, a, a,,,a are

parameters found from synthesis. Designed Parakbehanism is shown in Figure 5.14.
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Table 5.6. Parameters of the synthesis and cotistnuc

Given points of center C

Arbitrary parameters

X Y 4 a3 1.0
1 0.44558 2.793871 1.1025453 &, 2.0
2 -0.0262626| 3.293184 1.25782Y a, 1.73205
3 0.0730888| 3.140754 2.184055 & 4.0
Synthesized parameters
A Do a, & 12 23
2.0 1.0 1.73205 4.5 2.0 1.73205

Figure 5.14. Designed parallel mechanism with tiofgective points.
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CHAPTER 6

AN EXPERIMENTAL CHARACTERIZATION OF
EARTHQUAKE EFFECTS ON MECHANISM
OPERATION BY USING A PARALLEL MANIPULATOR

In the last decade parallel manipulators have Ipeeposed for new application
areas because of their better characteristics ssclnigher stiffness, velocity and
acceleration motion, and payload capacity, witlpees to those of serial manipulators.
In this thesis these properties of parallel marmpuks have been used to investigate
experimentally the effects of earthquakes on theratpn of mechanical systems by the
help of CaPaMan (Cassino Parallel Manipulator),clvhis a 3 DoF robot designed in
1997, (Ceccarelli 1997). CaPaMan being a less degfefreedom manipulator and
having similar properties with overconstrained rpafators is the motivation to use it.

For investigating the earthquake characteristicel a@arthquake resistant
constructions, earthquake simulators are commoséd dor experimental tests in the
field of Civil Engineering. For dynamic testing sfructures subjected to earthquake
accelerations and for experimenting effects onctimnes small scale uni-axial servo-
hydraulic seismic simulators have become populashasvn by Conte and Trombetti
(2000) and Kuehn et al. (1998). A number of newdascale seismic simulator facilities
have recently been, presented as in the worksek€and Severn (2001), Ogawa et al.
(2001) and Shortreed et al. (2001). Furthermoreeserteptional simulators are also
made for outdoor even with 6 DoF motion in the ssdf Bruneau et al. (2002). It is
important to have earthquake simulators that cprotkice earthquakes with main real
characteristics. Generally, most of the earthquakwrilators are shaking tables, which
are actuated by hydraulic actuators fixed on thgebadigh payload capacity, high
motion speeds, and high accelerations are the omaracteristics of the shaking tables
but they refer to seismic translational motionsyonl

A new earthquake simulator is a suitable applicattdé CaPaMan which can
simulate not only translational motion but also @Rving motions of earthquakes.
Performances and suitable formulation for the dpmraof CaPaMan as earthquake
simulator have been presented by theoretical imgagins and experimental
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validations in the works of Ceccarelli et al. (192®02), Ottaviano and Ceccarelli
(2006) and Carvalho and Ceccarelli (2002). In fdue, operation of CaPaMan can be
easily adjusted to obtain any kind of earthquakéerms of magnitude, frequency and
duration by giving suitable input motion.

A novel field of interest can be recognized in istigating the effects of
earthquake motion on the operation of machinerythdlgh vibrations and their
isolations are well known as affecting the machineperation, the specific
characteristics of earthquake actions on machirsgy not yet fully explored. In
previous works of Selvi and Ceccarelli (2010), ¢fiects of earthquakes on mechanism
operation are shown with experiments on a slidamkcmechanism and a robotic hand.

In this chapter of the thesis the effects of earttkg on the operation of
mechanical systems have been investigated by alysaand reproduction of an
earthquake motion. This chapter illustrates a d$igeactivity that has been focused in
determining experimentally the effects of earthquakotion on mechanism operation
by looking at the changes in the motion (accelemtior force outputs of the
mechanisms. Experimental tests have been carrietdyousing a slider-crank linkage
with dc and servo motors, robot leg linkage, a $rmat model, and LARM Hand as

test-bed mechanisms with acceleration or forceassns

6.1. Earthquake Motion Characteristics

A sudden and sometimes catastrophic movement aftaop the surface of the
Earth is called an earthquake which results froemdiinamic release of elastic strain
energy that radiates seismic waves. Large eartleguedn cause serious destruction and
massive loss of life through a variety of typeslamage such as fault rupture, vibratory
ground motion, inundation, various kinds of pernmdnground failure, and fire or a
release of hazardous materials, but even buildiogstructions collapses and
vehicles/machinery operations crashes. Ground moigo the dominant and most
widespread cause of damages as interpreted inutg af Chen and Scawthorn (2003).

In general an earthquake has three phases sucim astial phase, which
corresponds to the beginning of the seismic motamjntermediate phase where the
maximum acceleration peaks and displacements @cwla final phase representing the

end of the earthquake. Main characteristics of athgquake are frequency, amplitude
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and acceleration magnitude, since the resonanaesydtem is determined by frequency
value, duration of the stress action due to a geismotion, amplitude and acceleration

magnitude of an earthquake.

i 11119 T T I T I T I T T I T 7 7 s
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17717 7 ris L,
1 4

Figure 6.1. Basic characteristics of seismic wawes Compression and expansion
waves, b) Transversal waves, c) Types of seismagyram
(Source: Carvalho and Ceccarelli 2002).

The period of a seismic cycle and characterigigth for each seismic wave
must be identified to define the seismic motion.shswn in Figure 6.1, main types of
seismic waves can be considered as the compresgmansion waves P, transversal
waves S, and superficial waves M. They can be ifiledsoy referring to the spread
speed and terrain movements. S waves are tranbwergas and the usual period of the
S waves is between 0.5 and 1 second. The P waxesdsiihirough a spring-like-motion
with a typical period between 0.1 and 0.2 secoradh B and S waves occur close to the
epicenter. Unlike P and S waves, M waves occurhensurface of the terrain at a
considerable distance from the epicenter of théhgaake and usually they have a
period from 20 second to 1 minute. In Figure 6rhain differences among the seismic
waves are represented in terms of acceleration i@gnand characteristic period of
oscillating motion, which is responsible of a pdraal excitation of structures that can
be damaged when resonance situation occurs.

Usually, critical resonant motion is analyzed imnts of translational seismic
components, but even angular motion can strongtyribmte to the resonant excitation.
Thus, unlike most of the simulators where the 3Dtiomo of the terrain due to
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earthquake waves has not been taken into accouihisistudy 3D motion capability of
CaPaMan parallel manipulator have been used tolaienearthquake motion with its

full motion effects.

6.2. Operation of Mechanisms

As mentioned in the IFToMM terminology (2003) a e is ‘a mechanical
system that performs a specific task, such as thmmig of material, and the
transference and transformation of motion and fdremd mechanism is defined as a
“constrained system of bodies designed to convetibnsoof, and forces on, one or
several bodies into motions of, and forces on, rdreaining bodies Mechanisms,
which can be considered the core parts for machanescombination of gears, cams,
linkages, springs etc.

Operation of mechanisms can be characterized hyt,ingsk and output. Task
and output of mechanisms can differ with respectlésired results. These desired
results are task goals for mechanisms, which cadldssified as function generation,
point guidance and body guidance. Considerationsldgigning mechanisms for those
and other tasks are related to characteristicspefation such as general operation
performance, repeatability of operation frequerefficiency, reliability, precision and
accuracy. Also vibrations that can occur during diperation can be considered and
some isolation can be applied to machine basements.

Machinery operations are usually aimed to perforatioms and actions with the
task performance that are related to the machiagnyand also interaction with users
and environments. The machinery aim can be in génederstanding as described by
mechanical properties whose performance indicesbeaexpressed in term of motion
characteristics and action transmission with efficy features both from kinematical
and energy view points. Machinery interactions tanunderstood as related to the
effects toward the surrounding environment and ipaas from the viewpoint of
human-machine interactions. Those last featurek imdlude issues on comfort and
safety that can make strong constraints to machioperations with limited range of
feasible operations. Thus, machinery operationsbeadescribed and characterized by
performance indices which can be formulated foregainbut specific aspects that

permit both design procedures towards optimal &oigt and experimental
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control/monitoring of successful operation. Spea#tention is today addressed to
safety as interaction with human users, even wisamgua machine under critical, risky
situations which can be characterized by impacgh haccelerations or changed
operation outputs. Also efficiency in force transsin and energy consumption is of
great importance in modern machinery.

Unfortunately in general the effects of earthquakesneglected during machine
design. The difficulty to determine the effectstbé earthquakes is due to different
types of totally random waves caused by them, agiored in Section 6.2.

An illustrative example for machinery operation ¢angiven as referring to the
running of a train. Input for trains is the actiohactuators for wheel motion. Task for
the train is the body guidance of the train and dbtput is a stable motion with the
features comfort, safety, efficiency and relialiliA general operation performance of
the train is related to vibrations which effectaalsomfort. Characteristics of train
motions are strongly affected by actions on maakyioperations. Comfort in train task
is felt by human users mainly in terms of accelerabf the train cars. But this task
efficiency is a result from the transmission of mo$ and forces from the mechanism
for the wheel actuation and car guidance in redatwotion during the run. Those
characteristics are demanded in more robust ouipufaster trains. Any disturbance
can produce not only uncomfortable operation, weneaisks of disasters in train run, as
it can be the case of an earthquake.

For a mechanism it is necessary to have a fixedreate for defining the
motion. Usually ground is taken as the referencenfachines and manipulators. When
an earthquake occur these fixed link starts to meowve even the frame applies force
acting on the machines or manipulators. The efféthese unexpected random forces
and motions on machines must be investigated talseeinexpected changes of the
outputs. This knowledge can give useful feedbaaktli@ design and operation of
machines that can work without affected by earthgaa

6.2.1. An Example with a Slider Crank Mechanism

The slider-crank mechanism in Figure 6.2.a is ofteed to convert rotary
motion into alternating linear motion or vice verda slider-crank kinematic chain

consists of four bodies that are linked with threolute joints and one prismatic joint.
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Four different mechanisms or inversions of thisekmatic chain are possible depending
on which body is grounded, namely the crank, cotmgdink, sliding link or slot link.

One of the inversions of slider crank mechanismsisd in internal combustion engines
(automobiles, trucks and small engines), with agapion of perhaps a billion engines

makes the slider crank mechanism one of the mest oiechanisms in the world.
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Figure 6.2. A test-bed slider-crank mechanism; @&)ekKiatic parameters, b) Slider
accelerations with stationary frame (43 rpm).

In Figure 6.2.a kinematic parameters of the slaank are shown, acceleration
equation as output of the slider can be calculated the acceleration equation of the

slider with respect to input rotation as,

X:-ra(sin(% r3|2r: Zej-rmz(cos(% rcoISZBJ (6.1)

A numerical computation is shown in Figure 6.2.khaklkshows a nearly

harmonic motion.
6.2.2. An Example with a Leg Mechanism

Another example for mechanism operation is an digintlinkage mechanism as
shown in Figure 6.3.a. Top part of the linkage na@idm with links abcdfm is a

Chebyshev four bar mechanism to produce near-lineaion and second part with
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links 2z, z3, 74, 75 is a pantograph mechanism to invert and scalentbgon. This
mechanism is designed to use for walking robot$ wite DoF as shown in Figure
6.3.b. Rickshaw robot is designed as a biped wglkabot with low-cost design and

easy operation in terms of compactness, and ligight.

Figure 6.3. Leg mechanism; a) Kinematic paramebgrRickshaw robot
(Source: Ottaviano et al. 2010).

Position of the point A can be calculated by udtggiation (6.2) as

X, =M, +2z Co¥,+ z Cob,

, 6.2
Ya=M, +2 Sing + z Sirg, 6-2)

where, 8 =6,-a,+m,  6,=m+6,-y, y:Cos‘l((—F§+ Z+ 3)/2 EQ,
O =Tan"( Yoo/ %), a,=Cos'((B+ 2~ /222, P = %0 * Yao -

Xao = Xe = My, Yao = V5~ My'

The position of B can be formulated by closureatigms of Chebyshev four bar
linkage. Acceleration of point A of the leg mechamihas been calculated two times
derivation of Equation (6.2) with respect to tinmeldahe result is shown in Figure 6.4.a
with input speed of 150 rpm and Figure 6.4.b wihut speed of 257 rpm.
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Figure 6.4. Acceleration of point A along x directiwith stationary frame; a) 150 rpm,
b) 257 rpm.

6.3. An Experimental Evaluation

The CaPaMan prototype is shown in Figure 6.5. Latiooy test-bed prototype
for earthquake simulator consists of CaPaMan pyptowith sensors, a controller for
its operation and an acquisition board connectdatigaomputer in order to acquire the
components of the linear accelerations occurriog@khe axes of the reference system
belonging to the mobile platform, (Ceccarelli et1899).

Figure 6.5. An experimental setup at LARM with glieler-crank mechanism.
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The minimum numbers of accelerometers need to tthirealculate the angular
velocity for a 3D motion of a rigid body is twelvin this section four of three axis
accelerometers are placed in the corners to kempsyry and using the mathematical
calculations in the study of Schopp (2009), thisfiguration of 4 sensors is used to
keep the replacement errors of sensor minimum.

Four three axis accelerometers are planned todeeglunder the platform of the
CaPaMan with dimensions as shown in Figures 6.6d 6.6.b, and placed
accelerometers shown in Figures 6.6.c and 6.6.d.cbhtrol system scheme layout for
CaPaMan manipulator is shown in Figure 6.7. Datasfmulating the earthquake is
send to the servo motor controller (Scorbot-ER Y)using the ACL programming
language. The motors move the mobile platform anthb help of accelerometers the
acceleration information of the mobile platformahgh the NI-DAQ 6210 is processed

and visualized with the LabView software.

Figure 6.6. CaPaMan platform with accelerometerseen a) Scheme, b) Sensor
locations, c¢) Sensor installation, d) Test lay-out.
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A suitable Virtual Instrument has been developedlabView environment to
manage the signals coming from the sensors. Thermeasured acceleration data from
the accelerometers have been used to estimatectieterations of the point H at the
centre of the movable plate and the plate anguaiarcity.

For characterization of earthquake effects on m@sha two types of
earthquakes are simulated. Characteristic phas® aimulated earthquakes (Carvalho
and Ceccarelli (2002)) are given in Table 6.1 anefarence earthquake simulation

Figure 6.8 is given for defining parameters fotlegmake characteristics

_____ C a_EiM_a‘F_._.l
Motor |, Motors :
Controller | T |
A i |
RS 232 | Mobile Platform i
Serial I .
Port | A I
ACL | | Accelerometers| |
P J

] [

" NI-DAQ 6210
5 -ﬂ{".\ﬂiﬂﬂ\w O
Labview

Figure 6.7. Control system layout for CaPaMan asathquake simulator.

Table 6.1. The characteristics of simulated eadkgs.

Total Maximum

Time | flm | flm | Setiiatons | Freduency

(sec) (Hz)

Earthquake Type 1 45 2.0 0.8 30 1.2
Eafrtggggke 50 2.0 15 30 08
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Figure 6.8. Typical characteristics of simulatetleguake.

Accelerometer data of the simulated earthquake typeshown in Figure 6.9.
To calculate the linear angular accelerations amglilar velocities around center point
H first the relation of an accelerometer on a rigmdy must be expressed. Let the
acceleration of a point P fixed on a rigid bodyhnét positionr expressed by Equation
(6.3) (Field and Ziwet 1916, Schopp 2009).

A, =agtagXr +ogx(myXr) (6.3)

where acceleratiomg, the angular velocityog and the angular acceleratia are
described for the relative movement of the rigidyp®s with respect to the fixed frame
Or . The terms of the equatiary x r can be described as tangential acceleration and
o X(wg X ) as centripetal acceleration. In order to caleultiie acceleration as
measured by a sensor that is attached at positwithin a body the sensitivity axis

and the sensors’ metrological signal offsgmust be added in above equation to give
a; =9 (g tagxr +oyx(0yxr))+a,. (6.4)
Equation (6.4) can be written in vector form as

a;=cz+ g, (6.4)

wherez = AN S % " and
Z= I:aB,x 1Sy G, P Uy Up, O Ppy P, PP, Pg®p, M B,z]
C=[5,,8 .38 $ 8N SF ST S

(S5+S L) (S F+S ) -S40 +5,7 ) ST 4SS r#srpgsrl’
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By using four sensors with totally twelve sensitases it is possible to directly

compute the quadratic terms @f as well asag andwg. So the system becomes linear

and can be written in matrix vector form as

y=Az+%y

wherey = [asr gy ’asdT , A= [Csr Cspr s C512]T and Qs = [ao,sr Apsa

(6.5)

a 0,51;T .
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Figure 6.9. Accelerometer data during earthquakeilgsition.

By inverting A it is possible to calculate charaigics of the relative body

movement held by vector z for a given measuremectiov y applying

z :A'l(y—%’s).

(6.6)
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By using Equation (6.6) the linear acceleratioas),(angular accelerations{) and

angular velocitiesdg) around point H are calculated and shown in Figui®.
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Figure 6.10. An example of acceleration data dusagthquake simulation; a) For
platform center H, b) Angular platform velocity, &ngular platform
acceleration.

6.4. Experimental Tests with Prototypes

Experimental tests have been carried out by usistidar-crank linkage with
DC and servo motors, a robot leg linkage, a snalincodel, and LARM Hand as test-

bed mechanisms with acceleration or force sensors.
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6.4.1. Slider Crank Actuated with Dc Motor

An accelerometer is attached to the slider of tiders crank mechanism as

shown in Figure 6.11.a and accelerometers sengegya@n be seen in Figure 6.11.b.

b)

accelerometer

Figure 6.11. A test-bed slider-crank mechanism ARM; a) An experimental set up
with accelerometer and weight on the slider, b)sB&n axes of the
accelerometer.
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Figure 6.12. An experimental measure of the typamalelerations of the slider-crank
with stationary frame; a) Crank rotation 32 romQoank rotation 43 rpm.

Slider-crank mechanism with DC motor actuation ubjscted to earthquake

vibrations with different operating speeds. Fig@rg2 shows the filtered experimental

measure of the acceleration of the slider as filoencase in Figure 6.2.b. The noise in
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the experimental measure is due to backlash ofahgonents, flexibility of the links
and design tolerances. Also some noise is causedniyonmental waves into the

frame link. Experiments are repeated with and wittagtached weight on the slider.

6.4.2. Slider Crank Actuated by Servo Motor

An accelerometer is attached to the slider of sh@er crank mechanism as
shown in 6.13.a and accelerometers sensing axdsecagen in Figure 6.13.b. Usage of
servo motor gives the advantage to view torque dateng operation. In Figure 6.14.a
torque data of the motor and acceleration of thdeslis given without earthquake
disturbance with crank motion of 90 rpm. In Figér&4.b same type of data with crank
rotation 180 rpm is given.

accelerometer

b)

Figure 6.13. A test-bed slider-crank mechanism wgignvo motor at LARM; a) An
experimental set up with accelerometer on the slioe Sensing axes of
the accelerometer.

121



Torque Acceleration
400 &0 \ \
= = 2 N oo | AN
g 300 £ | |l A\ N JF\ N
g 200 .E 0 “ “‘ \\ \“ “ “‘ \\ \“ k\ “‘ | J“ ‘\ “‘ \‘\
=2 = Vit o8 V1T | ]
= 100 = | \ I \ | \
S = -1t | ) / W \ \/ )
o 0 = \/ \J - \/ \V | \/
o
c 9 5
0 5 :
time (sec) time (sec)
a)
Torque Acceleration
~ 400 < 8 | \l \ | f " I ‘ | ¢ b
£ 300 = }H‘ AL
T 200 ERNInunnunnnnn
= T 0 ANANANININAN
g 100 E ST T
= 0 T . S IR
& - | |
= -6 v /
0 . 5 0 ] 5
time (sec) time (sec)
b)

Figure 6.14. Experimental measures of slider cravikh servo motor without
earthquake effect, Torque data of the motor, acabe of the slider
with crank rotation; a) 90 rpm, b) 180rpm.

6.4.3. Leg Mechanism

motor

accelerometer y

b)

Figure 6.15. A test-bed pantograph-Chebyshev mésimara) An experimental set up
with an accelerometer, b) Sensing axes of the exuakter.
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Figure 6.16. An experimental measure of the typacakelerations of the leg mechanism
without earthquake effect; a) Crank rotation 156 ) Crank rotation
257 rpm.

An accelerometer is attached to the end link of paatograph- Chebyshev
linkage as shown in Figure 6.15.a and accelerometensing axes can be seen in
Figure 6.15.b. In Figure 6.16.a Experimental measfraccelerations with different
speeds of input motion are shown in Figure 6.16ta ®50 rpm in Figure 6.16.b with
257 rpm.

6.4.4. LARM Hand

Other peculiar mechanism operation can be considesen robotic systems. As
test-bed mechanism LARM Hand prototype has beed usé¢his work. The LARM
Hand shown in Figure 6.17 is composed of threeefingin particular, a human-like
grasping is obtained by each finger with one DoFtiomo by using a suitable
mechanism, whose design has been obtained throagh four-bar linkages to be fitted
in the finger body as described in the study of b@ae and Ceccarelli (2008).
Consequently the grasp can be regulated throughmescontrol by using force sensor
signals and an industrial small PLC for operatibhe LARM Hand can be used as a
grasping end-effector in robots and automatic syst&ach finger of LARM Hand has
three joints and one actuator. The range of mdbothe prototype in Figure 6.17 is 40
degrees for finger inputs and 140 degrees for fiyénks. LARM Hand is equipped
with four force sensors whose ranges of sensiwitare from 1N to 100 N. The
dimensions of the finger are 1:1.2 of the humangdm size and the hand is
110x240x120 mm and range of the grasp is betweer0QGnm.
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b)

Figure 6.17. LARM Hand; a) Prototype, b) Sensoatmns.

Both types of earthquakes are applied to LARM Hahaing grasping a
cylinder block. Earthquakes are repeated alsogfist implementation of the first one
because of the difference between first assembfprdeno earthquake and after

earthquake as shown in Table 6.2.

Table 6.2. Force data of the sensors on LARM hahitewthe platform is stable.

F1(N) F2(N) F3(N) F4(N)
Static 2.437 2.493 2.389 2.854

6.4.5. Vehicle Model

A vehicle model is designed for characterization eafrthquake effects on
machinery operation. The vehicle model has a domatd set on a rail as shown in
Figure 6.18.a. A force sensor and a three axislexeeter are attached as shown in
Figure 6.18.b. Due to friction on the wheels whettage is applied to dc motor a force

is applied on the force sensor.
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Accelerometer

Figure 6.18. Model car with force and acceleromstansors; a) Experimental setup
with prototype b) Sensors and directions.
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Figure 6.19. An experimental measure of the typioedes on the model car without
earthquake effect; a) Applied voltage 7v, b) Appheltage 9v.

6.5. Results of Tests and Considerations for Chartarization

The results of simulated earthquakes can be sumethmwith the maximum
acceleration values of center point H. For theheprake type 1 maximum acceleration
is ama= 8.4 M/4, and for earthquake type 2 max acceleration ofitpbii is & mac
5.29m/$. In Table 6.3 maximum acceleration data for themaaisms are given for
comparison. In each sub-section experimental @data fmechanism sensors are shown
during earthquake disturbance.
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Table 6.3. Experimental data from experimentaktesth test-bed mechanisms.

Earthquake | Earthqua )
Exp data Stationary
type 1 ke type 2
24 volts 32rpm 8.575 9.160 0.452
Horizontal
32 volts 43rpm 5.664 5.267 0.531
) 24 volts 32rpm 9.023 8.006 0.316
Slider crank weighted
32 volts 43rpm 6.235 6.223 0.574
With DC motor
_ 24 volts 32rpm 9.286 7.438 0.447
AZiax (M/S) Vertical
32 volts 43rpm 4.390 3.829 0.587
) 24 volts 32rpm 7.145 8.583 0.609
weighted
32 volts 43rpm 3.975 4.242 0.706
15k-90rpm 7.530 4.15 2.508
New slider crank
30k-180rpm 11.64 10.81 8.211
QYmax (M/S)
60k-360 rpm 16.90 16.03 13.97
Pantograph-Chebyshev leg 4v 150 rpm 15.446 11.172 3.452
ax max (m/g) 7.5v 257 rpm 16.253 13.845 9.541
M 2.65, 2.65, | 2.23,2.30,| 2.52,2.57,
ax
Larm Hand 2.53,2.99 | 2.37,3.10| 2.47,2.97
Force (N) Mi 1.9,1.99, | 1.64,1.73,| 1.89, 1.94,
in
1.91,2.25 | 1.77,2.33| 1.86,2.23
. Max 2. 086 2.121 1.980
Y%
Car model Min 1.189 1.604 1.839
Force (N) 9 Max 2.102 2.091 1.995
%
Min 1. 155 0. 012 1.95

6.5.1. Slider Crank

6.5.1.1. Actuation by Dc Motor

When the slider-crank is subjected to an earthquagion the acceleration of
the slider is altered up to the measured acceteraghown in Figure 6.20 for slider
position horizontal and Figure 6.21 for slider piosi vertical. Details of these changes
are visible from Figure 6.20 to Figure 6.21 witews of slider acceleration between 25

and 30 seconds of earthquake motion, when the ge@sioelerations are at maximum.
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Figure 6.20. An experimental measure of the typacaklerations with horizontal slider

under earthquake effect (type 1); a) Crank rotaé@rpm, b) Crank
rotation 43 rpm.

It is observed from the Figures 6.20 and 6.21 ttratshape and amplitude of the
acceleration of the slider during a simulated eprétke are strongly changed and
oscillations of the slider acceleration are alsmistaed. It seems that the slider
acceleration is fully disturbed by the earthqualieots. Considering the different
speeds and different position of the mechanismrtbion is affected more when crank

speed is at lower speed or slider position is vakti
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Figure 6.21. An experimental measure of the typamdelerations with vertical slider

under earthquake effect (type 1); a) Crank rota@rpm, b) Crank
rotation 43 rpm.

6.5.1.2. Actuation by Servo Motor

In Figure 6.22.a and Figure 6.22.b experimentah d&tmotor torque and slider

acceleration during earthquake disturbance are stioma crank rotation of 90 rpm and
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180 rpm respectively. It is recognized from accdien data of slider shown in Figure
6.20 that not only shape and amplitude of the acaBbn of the slider during a
simulated earthquake are strongly changed but afszllations of the slider are
vanished. Meanwhile torque data of the motor hasesdisturbances in the amplitude;

shape and oscillation can be told to be similahwhe static state.

Torque ~ Acceleration
P | E
A NUNANIMLVINAIS I PSR M I
2 -0 | A N L
20 (ime (se0) 25 8 20 e e )5
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Torque ~ Acceleration
~ 400 4 % 10 )
vt € stk
SR W 14 i \/AL u'/\f\/\ W/\ o |
) 20 25 § 2:) . | 25
time (sec) time (sec)
b)

Figure 6.22. An experimental measure of slider kckaith servo motor with earthquake
effect (type 1), Torque data of the motor, accélensof the slider with
crank rotation a) 90 rpm, b) 180 rpm

6.5.2. LARM Hand

In Table 6.3 forces acting to object during statadition and during earthquake
disturbance are given. In Figure 6.23 force datdhefgrippers and palm are shown
during a simulated earthquake. From Table 6.3 agar& 6.23 force on gripper fingers
and palm have an oscillatory motion during the heprake and there is an obvious

change at the end. These results show that duringaethquake characteristic for the
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manipulator such as output (force), repeatabilifytlee operation frequency and
efficiency, and the reliability of the process (@sson accuracy) are affected. For the
LARM Hand the holding force on the fingers decrsagdaring the earthquake and if the
force exceeds the force needed to handle objeanitcause to the slipping of material.
Amount of the applied force to the object is insesh at the end of the experiment
Therefore, the object can be damaged.

F1 F2
2.65 2.65
g 2.60 Z 2.60
g ;gﬁ g 2.55
e o
= 2.45 = 2.50
2.40 2.45
2.35
0 5 10 15202530 3540 45 50 0 5 10 1520 2530 35 40 45 50
time (sec) time (sec)
F3 F4
2.96
- ~ 2.94
z =50 Z 2.92
W & 2.9
25’ 2.45W E 2.88 W
= ~ 2.86
2.40 2.84
0 S 10 1520 25 30 35 40 45 50 0 5 10 1520 25 30 35 40 45 50
time (sec) time (sec)

Figure. 6.23. Force data of LARM Hand during eantiiee type 1.

6.5.3. Leg Mechanism

Detail of changes on the acceleration of leg meishartan be seen in Figure
6.24 with views of slider acceleration between 88 80 seconds of earthquake motion
when the seismic accelerations are at maximumoihtrast with static accelerations of
leg mechanism shown in Figure 6.16 the amplituctk strape of accelerations do not
represent the motion of the leg mechanism becausarthquake disturbance.
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Figure 6.24. An experimental measure of the typacalelerations of the leg mechanism
without earthquake effect; a) Crank rotation 156 ) Crank rotation
257 rpm.

6.5.4. Vehicle Model

Figure 6.25 shows force data on the vehicle moddéuearthquake disturbance.
Comparing with static data shown in Figure 6.19cEoon the sensor has radically
changed with oscillations. Details of these changms be seen in Figure 6.26 with
views of force data between 20 to 25 seconds dh@aake motion when the seismic
accelerations are at maximum. Considering the reiffevoltages applied to motor of
the mechanism from Figures 6.25 and 6.26 earthgusdems to be affecting same.
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Figure 6.25. An experimental measure of forces e rmodel car with earthquake
effect; a) Applied voltage 7v, b) Applied voltage. 9
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Figure 6.26. Detailed view of the experimental noea®f forces on the model car with
earthquake effect; a) Applied voltage 7v, b) Appheltage 9v.

Summarizing, with the help of CaPaMan the effedisearthquakes on the
operation of mechanical systems have been invéstidey an analysis and reproduction
of an earthquake motion. The sensitivity of therapen characteristics of machinery to
earthquake disturbance is characterized in termacoéleration response of output of
machinery operation. Experimental tests have beemed out by using a slider-crank
linkage with DC and servo motors, a robot leg lopdxaa small car model, and LARM
Hand as test-bed mechanisms with accelerationroe feensors. The results show that
an earthquake will surely effect the acceleratibrihe mechanism operation both in
shape and amplitude of the output motion. Also affef earthquake is inverse
proportional with the speed of the mechanism, iheptwords, the more we are
approaching to the frequency of the earthquakdeseemechanism is affected. Applied
force is affected during earthquake and it is olesgbthat it is increased after earthquake
disturbance.
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CHAPTER 7

CONCLUSION

In this thesis a generalized approach for strutsyathesis and creation of new
overconstrained manipulators is described and enpiatly generalizable approach for
function and motion generation synthesis of ovest@mned mechanism is presented.
Studies on these subjects are investigated anérmiegkas a literature survey. Then an
introduction is given with the definition of thegimlems and methods for solution of
these problems. A novel method for calculation afews is presented calledUfiit
Transformation Screw Matrixand kinematic calculations for mechanisms is dbed
for position, velocity, acceleration and force asak. Methodology for structural
analysis of parallel manipulators is described gigieciprocity and virtual work and
screw systems. Eleven overconstrained mechanisnrepresented foi= 2, 3, 4
subspaces and a methodology for the generatioewfaverconstrained mechanisms is
given by utilizing these mechanisms in lower subspa 4, 11 and 30 overconstrained
mechanisms are generated for3, A=4, A=5 subspaces respectively. Moreover,
mathematical models for overconstrained subspaeesx@mplified.

To describe structural synthesis initially degreé screw (Do$) and
mathematical models of kinematic pairs are desdriB&en novel mobility equations
for manipulators are given. Using new formulas denpverconstrained structural
groups with general constraint one and two areutatied and listed with examples. A
procedure for the structural design of overconsédiparallel manipulators by using
simple structural groups is given and illustratethwexamples

Furthermore kinematic synthesis of overconstraimeghanisms is shown with
a novel method for function generation of doubléesgral and planar spherical 6R
linkages. Also motion generation for planar sprargR linkage for three positions is
described which has a new approach for the motinthssis of overconstrained
mechanisms. Moreover, a synthesis method for airadp platform mechanism is
shown with a numerical example. Finally to makeagplication on parallel robots an
experimental setup is used to investigate the &ffexf earthquake motions on

mechanisms.
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