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ABSTRACT

INVERSE PROBLEMS AND REGULARIZATION IN SIGNAL

PROCESSING WITH APPLICATIONS TO WIRELESS CHANNEL

ESTIMATION

The research presented in this thesis is on inverse problems encountered in the

field of signal processing. Theory, classification and solution techniques of linear discrete

inverse problems (LDIP) are investigated. LDIP are classified as underdetermined LDIP

(ULDIP) and overdetermined LDIP (OLDIP). The solution methods developed for LDIP

are applied to the particular problems of signal processing mainly channel estimation,

equalization and compressive sampling. A new solution technique named constraint re-

moval (CR) is presented for ULDIP type problems with sparse inputs. CR is applied to

terrestrial digital TV (DTV) channel estimation. CR is also compared with subspace pur-

suit (SP) and linear programming. Regularization and optimum regularization parameter

selection for ill-posed OLDIP type problems are discussed. Sparse channel estimation

for wireless digital communications is investigated. A new channel estimation method,

permuted deconvolution (PDEC), for long delay spread channels with short training se-

quences is proposed and compared with other methods. A review on equalization is pre-

sented. Different equalization techniques are discussed and compared. DFE is explained

from an inverse problem perspective. A new non-feedback equalization technique called

frequency compensated linear equalization (FC-LE) for sparse channels is presented and

compared with DFE.
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ÖZET

İŞARET İŞLEMEDE TERS PROBLEMLER VE DÜZENLİLEŞTİRME

İLE KABLOSUZ KANAL KESTİRİMİ UYGULAMALARI

Bu tezde sunulan araştırma sinyal işleme alanında karşılaşılan ters problemler

üzerinedir. Doğrusal ayrık ters problemler, teori, sınıflandırma ve çözüm teknikleri

açısından incelenmiştir. Doğrusal ayrık ters problemler (DATP) az belirli doğrusal ayrık

ters problemler (ADATP) ve çok belirli doğrusal ayrık ters problemler (ÇDATP) olarak

iki sınıfa ayrılmıştır. DATP için geliştirilen çözüm teknikleri sinyal işleme alanında

özellikle kanal kestirimi, eşitleme ve sıkıştırmalı örnekleme alanlarına uygulanmıştır.

ADATP için ‘kısıtlama kaldırımı’ (KK) adında yeni bir yöntem önerilmiştir. Kısıtlama

kaldırımı yöntemi karasal sayısal televizyon kanal kestirimi için uygulanmıştır. Kısıtlama

kaldırımı, alt uzay takibi ve doğrusal programlama yöntemleriyle kıyaslanmıştır. Kötü

huylu çok belirli doğrusal ayrık ters problemlerin çözümü için düzenlileştirme ve en

iyi düzenlileştirme katsayısının otomatik hesaplanması tartışılmıştır. Telsiz sayısal

haberleşme seyrek kanal kestirimi incelenmiştir. Kısa eğitim dizisi ile uzun telsiz

sayısal haberleşme kanal kestirimi için ‘değişimli ters evrişim’ (DTE) isimli yeni bir

yöntem önerilmiş ve diğer kanal kestirimi yöntemleri ile kıyaslanmıştır. Eşitleme konusu

incelenmiş ve farklı eşitleme teknikleri tartışılarak kıyaslanmıştır. Karar geri beslemeli

eşitleyici (KGBE) ters problem perspektifi ile açıklanmıştır. Seyrek kanallar için frekans

dengelemeli doğrusal eşitleyici (FD-DE) adında yeni bir eşitleyici önerilmiş ve karar geri

beslemeli eşitleyici ile kıyaslanmıştır.
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CHAPTER 1

INTRODUCTION

1.1. Inverse Problems

1.1.1. Definition

Inverse problems can safely be defined as the inverse of a direct problem. A

similar definition is given in Keller (1976). A direct problem can be defined as a process

which has a natural flow of actions going forward in the dimension of time. The amount

of information that a direct problem produces as an effect is less than or equal to the

amount of information it uses. Inverse problem is a process that flows backward in time

scale against the natural flow of actions. The information that an inverse problem should

produce is equal to or greater than the information it uses. This definition of inverse

problem is valid for physical systems for which dimension of time exists. But there may

be theoretical systems without an explicit scale of time such as inverse of a matrix. It

is well known that if an input vector x is multiplied with a known matrix A, an output

vector y is always produced. This is the direct problem, but the reverse may not be true.

In order to get x from y, we need the inverse of matrix A. The inverse of matrix A may

not exist, or x that gives y may not be unique or no x can produce y. In general, inverse

problems are difficult to solve because the corresponding direct problem may not be one

to one and there may be loss of information going in the forward direction. For that

reason, inverse problems generally require additional constraints in order to be solved.

Imposing these constraints on the inverse problem is called regularization (Engl, Hanke

and Neubauer 1996, Groetsch 2007). As will be mentioned further in the thesis, two such

constraints are sparsity and minimum norm constraints without which many important

inverse problems can not be solved (Donoho 2006b, Donoho et al. 2006, Foucart 2010,

Tikhonov and Arsenin 1977).
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1.1.2. Motivation

Inverse problems are not a rare case in science. In fact, many important scien-

tific problems are of inverse nature which are characterized by the processing of sampled

data to extract information (Bertero and Boccacci 1998, Bertero and Piana 2006, Menke

1989, Munk, Worcester and Wunsch 1995, Enderle 2005). One of the motivations behind

the rising interest in inverse problems is the fact that many scientific and engineering in-

verse problems which involved prohibitively large amount of sensory data processing and

hence were considered impossible to solve within a practical time limit became increas-

ingly solvable during the last few decades thanks to the advances in computer technology

(Wang, Polydorides and Bertsekas 2009). Many high technology systems like computed

tomography (CT) (Hounsfield 1973) and magnetic resonance imaging (MR) (Lauterbur

1973), seismic underground imaging (Menke 1989, Richardson and Zandt 2009) ocean

acoustic tomography (Munk, Worcester and Wunsch 1995) and channel estimation de-

pend on the solution of inverse problems. In addition, increasing computational power

encouraged the scientists and engineers to explore and challenge new areas of research in-

volving intensive computations. One such area is the compressed sensing (Donoho 2006a)

or equivalently compressive sampling (Candès 2006) field which intends to change the

way data is sampled and compressed with promising practical consequences. Two impor-

tant inverse problems in terrestrial, mobile and wireless digital communications are the

channel estimation and equalization problems (Proakis 1995) which gained more signifi-

cance with the large scale deployment of mobile and wireless communication devices and

very high data rate digital terrestrial television systems (DTV).

1.1.3. Linear Discrete Inverse Problems (LDIP)

Many practical inverse problems are of discrete nature since they involve process-

ing of data sampled at discrete time instants (Bertero, Mol and Pike 1985, 1988, Hansen

2010, Menke 1989). In addition, inverse problems need to be discrete or discretized in

order to be solved by powerful digital computers. Although most practical inverse prob-

lems are linear, nonlinear ones can be approximated by a linear inverse problem within a
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small period of time. Typically a noisy linear discrete system can be described as

y = Ax+ η, (1.1)

where x is the n× 1 input vector, y is the m× 1 measurement vector, η is the m× 1 noise

vector which includes the perturbation in A and A is the m×n measurement matrix. The

linear discrete inverse problem here is to find unknown x, given y and A. If the matrix A

were a square (m = n), full rank and well-conditioned matrix, it would be straightforward

to solve the inverse problem by finding the inverse of A and multiplying it with y. If m <

n, the system is called underdetermined and ifm > n, the system is called overdetermined

and the corresponding inverse problems can be called underdetermined linear discrete

inverse problem (ULDIP) and overdetermined linear discrete inverse problem (OLDIP)

respectively. Both systems are encountered in different contexts and possess different

characteristics and hence their solutions require different strategies.

1.1.4. Overdetermined Linear Discrete Inverse Problems (OLDIP)

Overdetermined Linear Discrete Inverse Problems (OLDIP) are usually encoun-

tered in biomedical and seismic imaging which depend on spatiotemporal sensory data

processing (Enderle 2005, Biondi 2006, Brown 2004). Such systems acquire very large

amount of sensory data for a non-invasive imaging of a target. There are two main reasons

for such systems to acquire large amount of data. First reason is to be able to construct

a faithful three dimensional image of the target with sufficient resolution. The second

reason is to overcome the effect of noise and measurement errors by using as many mea-

surements as possible. Due to the spatiotemporal proximity of sensory data, there is

usually an incremental difference between consecutive measurements and from neighbor-

ing sensors which makes the inverse system very noise sensitive and hence ill-posed. The

term ill-posed will be defined in Subsection 1.1.6..

1.1.5. Underdetermined Linear Discrete Inverse Problems (ULDIP)

Underdetermined Linear Discrete Inverse Problems (ULDIP) are those in which

less measurement or sensory data is available than the number of unknowns. Examples
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of such problems are channel estimation with very long delay spread and comparatively

short training sequence (Özen, Zoltowski and Fimoff 2002) as in DTV channels and com-

pressive sampling (Candès 2006) in which less measurements are taken for the purpose

of compression. It is obvious that such problems are theoretically unsolvable unless there

are some additional information or constraint to fill the gap caused by the missing data.

Currently, there exist three main tracks to solve ULDIP type problems. The first

is the L1 norm minimization formulations like basis pursuit (Chen, Donoho and Saun-

ders 1998), LASSO (Tibshirani 1996) and Dantzig selector (Candès and Tao 2007) which

can be solved by convex optimization methods like linear programming. Although they

achieve high correct recovery rates, convex optimization used to solve them may require

very large number of iterations. The second track is the greedy pursuit methods like

CoSaMP (Needell and Tropp 2009) and SP (Dai and Milenkovic 2008) based on the

initial matching pursuit (Mallat and Zhang 1993) algorithm which require less computa-

tion but slightly less performance in terms of correctness than the first track. Rigorous

research is being done to improve the correctness of the greedy pursuits without com-

promising the speed. Practical systems which are usually consumer oriented with limited

energy and computational resources require fast algorithms with acceptable level of cor-

rectness. Therefore, the second track is more of a choice to be researched for practical us-

age. Algorithms in the third track involves weighted least squares solutions like FOCUSS

(Gorodnitsky and Rao 1997) and iteratively reweighted least squares IRLS (Daubechies

et al. 2010). Although both algorithms have tractable complexity and good performances,

they do not have the speed advantage of the greedy algorithms.

1.1.6. Ill-Posedness and Regularization

Well-Posed: Hadamard defined that a system is well-posed if it satisfies the following

conditions (Hadamard 1902, 1923):

1. Existence : For all admissible data, a solution exists.

2. Uniqueness : For all admissible data, the solution is unique.

3. Continuity : The solution depends continuously on the data.
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Ill-Posed: A system is ill-posed if it is not well-posed, that is, if it does not satisfy one

or more of the above conditions. Ill-posed linear discrete systems have an ill-conditioned

measurement matrix and well-posed linear discrete systems have a well-conditioned ma-

trix. The terms ill-posed and well-posed are used for systems. For matrices that define lin-

ear discrete systems, the terms ill-conditioned and well-conditioned are more appropriate.

The condition number of a matrix is given by the ratio of its largest and smallest singular

values. As the condition number gets higher, the matrix becomes more ill-conditioned

and hence the associated linear discrete system more ill-posed.

Physically Ill-Posed: Hadamard’s definition for well-posedness is too strict in the phys-

ical sense. A system may satisfy all three conditions for well-posedness but still may be

considered ill-posed physically, due to unrealistic or physically inadmissable solutions. A

general definition of ill-posedness for LDIP type systems need to be made in a relaxed

physical sense. A noisy LDIP type system is defined by the Equation 1.1. If the mea-

surement matrix A does not have an inverse or pseudoinverse, this LDIP system is strictly

ill-posed. Yet, ifATA is near singular and hence the measurement matrixA has an inverse

or pseudoinverse with very large entries such that the solution is dominated by the ampli-

fied noise, the system is still considered to be ill-posed in the physical sense. Therefore, a

relaxed physical definition of ill-posedness could be the following: “An inverse problem

is physically ill-posed if noise gets amplified in its solution”. Depending on the ampli-

fication level, we can categorize ill-posed problems as severely ill-posed if amplification

is large, moderately ill-posed if amplification is moderate and mildly ill-posed if amplifi-

cation is low. From the above discussion, it is safe to say that ULDIP type problems are

always strictly ill-posed.

Most OLDIP type problems which are frequently encountered in sensory data

acquisition and processing systems where large amount of spatiotemporal data is collected

for subsequent processing are severely ill-posed. The spatiotemporal proximity of sensor

data due to physical constraints produce an overdetermined measurement matrix A with

nearly linear dependent columns. Consequently, the near singularity of ATA causes the

pseudoinverse of A to have blowing entries causing the least squares solution to amplify

noise. Even very small amount of noise in the measurement data y may be amplified to

an extent to dominate the solution x which becomes effectively an amplified noise. The

solution to noise amplification is regularization.
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Regularization: It is usually not possible to get meaningful results from an ill-posed

inverse problem unless some regularization method is applied (Bertero, Mol and Pike

1988, Engl, Hanke and Neubauer 1996). Regularization aims to constrain or force the

solution to be in a meaningful range. It is common to minimize the L1 or L2 norms of

the solution for regularization. The well known Tikhonov regularization (Tikhonov and

Arsenin 1977) minimizes the Lagrangian sum functional

J(x) = ‖y − Ax‖22 + λ‖x‖22. (1.2)

Tikhonov regularization is the only regularization technique with a closed form represen-

tation. Iterative regularization methods minimizing L1 and L2 norms are also available

with no closed form expressions.

Regularization parameter: Parameter based regularization brings about the issue of

regularization parameter selection. The question is how to find the optimum λ such that

the solution x which minimize the sum in (1.2) is closest to the unknown actual solution

xa. It is common to relate the regularization parameter to noise variance. Some heuristic

regularization parameter selection methods are proposed (Mallows 1973, Wahba 1977,

Hansen and O’Leary 1993) but the issue still remains to be developed.

Usually, there exists a range of regularization parameters which produce admissi-

ble solutions. If the regularization parameter is selected out of this range, either overreg-

ularization or underregularization may occur.

Overregularization: the solution is largely determined by regularization and

regularization parameter and has negligible connection with the actual solution.

Underregularization: the solution is largely determined by noise and has negli-

gible connection with the actual solution.

For an extensive treatment of regularization see Engl, Hanke and Neubauer (1996)

1.1.7. Rank Deficiency and Ill-Posedness

Rank deficient matrices do not have an inverse or pseudoinverse. Ill-posed (con-

ditioned) matrices, despite their near singularity, have always inverses or pseudoinverses.

This topic is treated in Section 3.6.3. using singular value decomposition.
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1.2. Inverse Problem Applications in Signal Processing

1.2.1. Channel Estimation

Channel estimation or equivalently channel impulse response estimation is an in-

evitable part of digital wireless, terrestrial and mobile receiving systems. This is because,

without the knowledge of CIR, efficient equalization of channels to remove ISI would

not be possible. High error rates caused by large ISI would make efficient and reliable

digital communication impossible. There are mainly 3 types of channel estimation meth-

ods currently available; training sequence based channel estimation, semi-blind channel

estimation and blind channel estimation. All have advantages and disadvantages. Train-

ing sequence based channel estimation is the one currently used in wireless, terrestrial

and mobile communication receivers. Figure 1.1 depicts a sample DTV channel which

exhibits sparsity, a property useful in solving certain important inverse problems.
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Figure 1.1. A typical DTV channel impulse response (CIR) with a delay spread
(length) of 576 is plotted. DTV channels exhibit a sparse behavior with
very few major taps as compared to the channel length a property which is
useful in CIR estimation via sparse recovery techniques.

1.2.2. Equalization

Equalization like channel estimation is an important inverse problem in digital

communications particularly in wireless terrestrial digital transmission and broadcasting.

Every digital signal which is carried by a physical medium undergo some distortion dur-
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ing its travel. One important distortion particularly in terrestrial digital communications

is the so called multi-path effect caused by the reflection of a transmitted signal from

surrounding objects. Multi-path effect causes a transmitted symbol to reach its destina-

tion at different times and power levels. Therefore the sampled signal at the receiving

antenna is the superposition of multiple symbols instead of a single symbol as would be

in an ideal uni-path transmission. In other words, multiple symbols belonging to different

time instants get summed up in one sample with different weights. This phenomenon

is called inter-symbol interference (ISI). In order to detect the individual symbols from

ISI corrupted samples, the receivers must counteract the effect of ISI. Since ISI causes

an unequal, nonuniform response at each frequency, the receiver must try to equalize the

responses at all frequencies by performing equalization. Equalization can be done in vari-

ous ways. There are linear and nonlinear equalizers. Equalization is a ULDIP type inverse

problem explained in Chapter 6.

1.2.3. Compressive Sampling and Sparse Recovery

Compressed sensing (CS) (Donoho 2006a) or equivalently compressive sampling

(Candès 2006) aims to sample data in a compressed from so that less resources are used

for processing and storage. CS aims to change the way sampling and compression have

so far been done in a way by combining them in one operation and hence economizing on

the computational and storage resources. However, compressive sampling must be done

in such a way that the original uncompressed data can later be recovered lossless or with

marginal loss. Compressive sampling itself is a direct problem not an inverse problem.

Yet, recovering the original data from its sampled and compressed form is a ULDIP type

inverse problem. As will be described later in Chapter 2, recovery is only possible if

the original uncompressed data is sparse in some domain. The inverse of compressive

sampling is therefore called sparse recovery.

Although it is a relatively new topic of research, thanks to its highly promising

consequences in various fields of science and engineering particularly in data compression

and acquisition, CS has swiftly became the focus of an intensive research particularly in

applied mathematics and engineering disciplines.
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1.2.4. Error Correction

One important inverse problem in digital communications is the detection of

stream errors. In digital data transmission, signal is scrambled before being transmit-

ted. During transmission through physical media such as air, errors may be introduced

in the digital stream perhaps due to atmospheric effects. These errors are almost always

sparse and sparse recovery techniques can be used to correct such errors. Suppose that

x is the raw signal and y = Ax is the scrambled signal to be transmitted where A is the

scrambler matrix and that there exists another matrix Ã such that ÃA is equal to a zero

matrix. Then detecting the error can be transformed into a sparse recovery problem as

described below. The receiver receives the corrupted signal

y = Ax+ ε, (1.3)

where ε is the sparse error. Then multiplying both sides of (1.3) with Ã

Ãy = ÃA+ Ãε = Ãε, (1.4)

setting q = Ãy and rewriting (1.4) we get the sparse linear equation

q = Ãε, (1.5)

where ε can be recovered by sparse recovery techniques.

1.2.5. Image Reconstruction

Reconstructing a distorted image is an ill-posed inverse problem (Vogel 2002,

Bertero and Piana 2006). If the cause of the distortion is known, this inverse problem can

be solved using regularization. There are a number of causes which impair the quality

of image captured by camera sensors. The object being captured might be moving caus-

ing motion blur, the camera can be out of focus resulting in a defocused image or the

camera itself can move during capture which cause the whole image to blur. Repairing

impaired images using image processing techniques is called image reconstruction. The

most encountered image defect is the blurring effect. Yet, the cause of blurring is not

unique. There are two main reasons for blurry images and blurry objects in an image.
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The first is the motion blur caused by the motion of the camera or the motion of objects

in a scene. The second is the defocusing effect caused by out of focus camera lens. It

is also possible that both can happen at the same time. Forward processes for both mo-

tion blur and defocusing involves convolution. Therefore, the inverse processes for both

involves deconvolution. Deconvolution is an ill-posed inverse problem hence its solution

requires regularization. It is still an unsolved problem to find the optimum regulariza-

tion parameter automatically and usually visual feedback is necessary to determine the

optimal parameter.

1.3. Organization and Contributions of the Thesis

This thesis consists of eight chapters including an introduction and a conclusion

chapter. The first four chapters are on inverse problems and regularization. The ensuing

three chapters are on the application of inverse problem techniques to the particular

problems of sparse channel estimation and equalization.

Chapter 1 gives an introduction to inverse problems and their applications. Linear

discrete inverse problems are discussed and categorized. Ill-posed inverse problems, the

requirement for their regularization and regularization methods are introduced. Some

important application areas of inverse problems in signal processing are exemplified.

Chapter 2 studies the ULDIP type problems with sparse solutions. It is stressed

that all ULDIP are ill-posed. The impossibility of solution without additional information

and constraint is described. The methods to enforce sparsity as an additional information

in a ULDIP type of problem is reviewed. Sparse recovery through norm minimization

and greedy pursuits are discussed.

Chapter 3 covers the OLDIP type problems and discusses the regularization of ill-

posed OLDIP. It is stressed that most practical OLDIP type problems in signal processing

are of ill-posed nature and need to be regularized. Regularization of OLDIP by norm

minimization and Tikhonov regularization are presented. Heuristic approaches to optimal

regularization parameter selection are reviewed.

10



Chapter 4 proposes a new sparse recovery method CR for ULDIP type problems. CR

works by converting a ULDIP into an OLDIP by initially constraining all entries in

the solution to zero and then removing the constraints on the largest magnitude entries

in each iteration. The performance and complexity of CR is compared to other sparse

recovery methods and shown to outperform them for zero-one type signals.

Chapter 5 discusses the sparse channel estimation problem. Training sequence based

channel estimation strategies using long and short training sequences are discussed.

Different methods to estimate sparse channels with short training sequences are reviewed

and compared. A new low complexity deconvolution method named PDEC based on

subsequential diversity is introduced for the estimation of sparse long delay channels

with short training sequences. PDEC is shown to increase deconvolution efficiency by

reducing interference from past and future symbols.

Chapter 6 treats equalization of sparse channels from an inverse problem perspec-

tive. How decision feedback transforms a heavily underdetermined inverse problem to

a mildly underdetermined or overdetermined one is described. Transition from a linear

equalizer to DFE by reducing the horizontal dimension of the measurement (convolution)

matrix is explained with the assumption that the previous decisions are correct and part of

the convolution matrix corresponding to the previous decisions can be truncated. A new

double-symbol detection mechanism to combat interference is proposed as an alternative

to decision feedback.

Chapter 7 applies the proposed CR method and other sparse recovery methods to

the particular case of sparse DTV channel estimation. Direct estimation of physical taps

using PMF-convolved training sequences to undo the effect of PMF is discussed and

tested.

Chapter 8 summarizes and concludes the thesis.
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CHAPTER 2

ULDIP TYPE PROBLEMS UNDER SPARSITY

CONSTRAINT

2.1. Preliminaries: Norm, Support and Sparsity

Norm: For real p ≥ 1, Lp norm of a real vector x is defined as

‖x‖p =

[
N∑
i=1

|xi|p
]1/p

. (2.1)

For p ≥ 1, Equality 2.1 satisfies all axioms of a norm (Desoer 1970). But for 0 ≤ p < 1,

Equality 2.1 does not define a norm since, for 0 < p < 1, triangle inequality axiom and

for p = 0, positive scalability (homogeneity) axioms are not satisfied. This does not mean

that they do not have a useful meaning or function. For instance, for p = 0, Equality 2.1

gives a useful metric which counts the number of nonzero elements in x. ‖x‖0 is called

absolute sparsity of a vector. And for 0 ≤ p < 1, Equality 2.1 defines metrics whose

minimization in inverse problems induces sparsity with an increasing force as p goes to

zero (Chartrand 2007, Saab and Yılmaz 2010). Despite their failure to satisfy all norm

axioms, due to their useful and convenient meaning, Lps with 0 ≤ p < 1 are informally

called norms.

It would be appropriate to emphasize the meaning of L0, L1, L2, L∞ norms. L0

norm counts the number of nonzero entries in x and hence is an absolute sparsity measure,

L1 norm is the sum of absolute values, L2 norm is the square root of the sum of squares

of the entries of x and L∞ norm gives the maximum magnitude element.

Support: The support of a vector x denoted by supp(x) is a set which contains

the indices of the nonzero elements of x. Therefore, supp(x) = {i : xi 6= 0}.

Sparsity: The sparsity of a vector x is the number of nonzero elements in x

and hence is given by the L0 norm of x, which is ‖x‖0. A vector x is called s sparse if

‖x‖0 ≤ s.
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Sparse, Perfect Sparse and Near-Sparse Vectors: A vector x is called a sparse

vector if majority of its entries can be considered to be zero. A vector x is called perfect

sparse if majority of its entries are exactly zero and is called near-sparse if majority of

its entries are not exactly zero but very close to zero. In most practical situations, near-

sparsity rather than perfect sparsity is valid due to external effects like noise. A simple

thresholding can convert a near-sparse signal to a perfect sparse signal. Although there

is not an established ratio, most sparse signals of practical interest have more than three

quarters of its entries zero.

2.2. Norm Minimizations for Sparse Solutions

When solving ULDIP type problems, sparsity, in most cases, is the unique con-

straint and therefore has to be somehow incorporated into the solution. Norm minimiza-

tion can be formulated as

minx‖x‖p subject to y = Ax,

where x is the input vector, y is the measurement vector, andA is the measurement matrix.

Since L0 norm is the absolute measure of sparsity of a vector, minimizing L0 norm to find

the sparsest solution is straightforward. In theory, L0 norm minimization in a ULDIP

type problem will produce the best performance in terms of correctness. However, most

ULDIP problems in signal processing involve near-sparse vectors instead of perfect sparse

ones. Near-sparse vectors will have near-zero rather than exact zero elements. This may

be due to external factors like noise or to the nature of the problem. Therefore unless there

is thresholding, L0 norm is not meaningful. Besides, a more important drawback to use L0

norm is the nonconvexity of L0 minimization problem which prohibits the use of convex

optimization algorithms. L0 norm minimization requires an NP-hard combinatorial search

(Natarajan 1995) and is therefore practically infeasible. For these reasons, the research on

ULDIP type problems has been focusing on L1 norm minimization as a convex relaxation

to the non-convex L0 norm minimization.

13



2.2.1. L1 Norm Minimization

L1 norm given by ‖x‖1 =
∑n

i |xi| is not an absolute sparsity measure as L0 norm,

yet, it is closely related to the sparsity of a vector. Suppose x1 and x2 are two solutions

for an underdetermined system y = Ax, the one with smaller L1 norm is, with high prob-

ability, to have smaller L0 norm and hence to be sparser than the other. Candès and Tao

(2005) have shown that if the measurement matrixA satisfies a certain condition, minimal

L1 norm solution is equivalent to the minimal L0 norm solution. Thanks to the convexity

of L1 norm minimization and its tolerance for near-sparse solutions, L1 norm has been a

tractable alternative to NP-hard L0 norm minimization. There are different L1 norm min-

imization formulations like Basis Pursuit, LASSO and Dantzig selector which are solved

by convex optimization methods like convex, linear or quadratic programming. They all

have good performances and guarantees in terms of correct recovery. The major problem

with L1 norm minimizations is that their solutions may require very large number of it-

erations and generally there exists no polynomial bound for that number. Therefore for

very large systems, L1 norm minimization by convex optimization may not be practical.

2.2.2. Restricted Isometry

Restricted Isometry Condition (RIC) or Restricted Isometry Property (RIP) for

underdetermined measurement matrices have been introduced by Candès and Tao (2005).

If a measurement matrix A holds RIP, L1 norm minimization is equivalent to L0 min-

imization for sparse recovery (Candès, Romberg and Tao 2005, 2006, Candès and Tao

2006). A matrix A satisfies the RIC with parameters (k, δk) if, for all k sparse vectors x,

it satisfies

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22, (2.2)

where δk is the smallest parameter for which the above inequality holds for all k sparse

vectors (0 < δk < 1). If δk is close to zero, k or less columns of A are nearly orthogonal

which is preferable for sparse solutions. This is equivalent to saying that less measure-

ments are needed for recovery. However as δk gets closer to 1, more measurements are

needed for sparse solutions.

There is an important theorem by Candès and Tao (2005) about sparse recovery
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under RIC which states that, if the measurement matrix A satisfies RIC with parameters

(3s, 0.2), then every s sparse vector x can be exactly recovered from its measurements

Ax as a unique solution to the convex optimization problem (L1). This theorem is later

improved by the same authors to RIC parameters (2s,
√

2− 1).

It is not trivial to check if a matrix satisfies RIC, yet some natural random matrices

like Gaussian, Bernoulli and partial Fourier matrices are known to satisfy RIC with very

high probability (Mendelson et al. 2008). For m × n Gaussian and Bernoulli matrices,

number of measurements m needed to satisfy RIC for a given sparsity of s is given ap-

proximately by m ≈ s log(n/m). For m × n partial Fourier matrices m ≈ s logp(n)

where p is a small integer.

Candès (2008) studies the implications of the restricted isometry property for com-

pressed sensing.

2.3. L1 Norm Minimization Formulations for Sparse Solutions

2.3.1. Basis Pursuit (BP)

The best known L1 norm minimization method is the Basis Pursuit (BP) method

proposed by Chen, Donoho and Saunders (1998). The BP method can be formulated as:

min
x
‖x‖1 subject to y = Ax, (2.3)

where x is the input vector, y is the measurement vector, and A is the measurement ma-

trix. The equality constraint above may be unsuitable for the noisy case, a more general

formula known as Basis Pursuit Denoising (BPDN) which takes into account possible

noise can be stated as

min
x
‖x‖1 subject to ‖y − Ax‖2 ≤ ε. (2.4)

It is obvious that for ε = 0, both representations are equivalent. It has been shown by

Candès and Tao (2006) that if the underdetermined matrix A possess the restricted isom-

etry property (RIP), the BP problem is equivalent to the L0 norm minimization. The cost

of using L1 norm instead of L0 norm is more restriction on the matrix A. There exists no

practical method to check if a matrix has the RIP property but some type of matrices such
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as Gaussian, Bernoulli and partial Fourier matrices have been shown to possess RIP with

very high probability. To recover a sparse vector x with length n and sparsity s, BP needs

O(s log n) measurements.

BP and BPDN problem can be solved through convex optimization algorithms like

linear or quadratic programming requiring, in general, very large number of iterations.

Therefore, BP and BPDN are currently not considered as a practical solution to ULDIP

type problems.

There also exists an unconstrained formulation for BPDN in Lagrangian form.

The solution regularized by its L1 norm with a regularization parameter λ is

minx
(
1
2
‖y − Ax‖22 + λ‖x‖1

)
.

This formulation requires that optimal λ be determined before solving for x.

2.3.2. Linear Programming (LP)

Linear programming is used by Chen, Donoho and Saunders (1998) to solve the

basis pursuit problem. Linear programming is indeed a formulation not the solution of a

linear system with linear equality and linear inequality constraints (Dantzig 1963, Dantzig

and Thapa 1997). Linear programming, which is a constrained optimization problem, can

be formulated as,

min(cTx) subject to Ax = y and x ≥ 0, (2.5)

where x is the unknown n × 1 input vector, y is the m × 1 measurement vector, A is the

m× n measurement matrix and cTx is the objective function to be minimized. The basis

pursuit problem (2.3) can be recast into a linear program formulation (Chen, Donoho and

Saunders 1998) as

min(cTx) subject to βx = y and x ≥ 0 (2.6)

by making the translations

c = (1; 1), β = (A,−A), x = (u; v), u, v ∈ Rn, c ∈ R2n.

The best known algorithms to solve the BP formulation are the simplex method by

Dantzig (1951) and the interior point method by Nesterov and Nemirovski (1994).
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In the simplex method, m linearly independent columns of A is selected and a

solution is found for this set. At each step, a column is swapped with another column not

in the current set to improve the objective function. Precautions are taken against cycling.

Swapping is done in a way to guarantee convergence (Gill, Murray and Wright 1991). In

interior point method, an initial solution to the underdetermined representation problem

y = Ax with x > 0 is found. Coefficients are modified iteratively subject to y = Ax, and

a sparsifying transformation is applied to x. After some iterations, s significant entries

will become prominent corresponding to the nonzero entries in x.

2.3.3. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO has been proposed by Tibshirani (1996). For the underdetermined noisy

measurement system y = Ax + η, it aims to minimize the norm of the error ‖y − Ax‖2
while the norm of the solution ‖x‖1 is bounded by a positive constant ε. This is a useful

formulation if we have no prior estimate of noise η but know that the sparsity of the signal

is bounded. LASSO can be formulated as the constrained minimization

minx‖y − Ax‖2 subject to ‖x‖1 ≤ ε,

which can be solved using quadratic programming or convex optimization methods.

2.3.4. Dantzig Selector (DS)

Candès and Tao (2007) have proposed the Dantzig selector formulation as an es-

timator for the solution x of an underdetermined noisy measurement system

ym×1 = Am×n xn×1 + ηm×1 (m < n),

where η is a Gaussian random noise with zero mean and σ2 variance. To estimate x, DS

solves the L1 norm minimization problem

minx‖x‖1 subject to ‖AT (y − Ax)‖∞ ≤ ε,

where ε is a positive constant. It has been shown by Candès and Tao (2007) that if A

obeys a uniform uncertainty principle with unit normed columns and if the signal vector
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x is sufficiently sparse, with very high probability the norm of the error between the

estimated and real input signals is upper bounded such that

‖xest − xreal‖2 ≤ Ψ.

Dantzig selector can be cast as a linear program and can be solved by linear programming

methods.

2.4. Focal Underdetermined System Solver (FOCUSS)

The focal underdetermined system solver FOCUSS has been proposed by Gorod-

nitsky and Rao (1997). The main idea behind the FOCUSS algorithm is that, instead of

solving for x directly, a transformation of x, q is solved for where x = Wq and W is the

transformation matrix obtained from the previous solution for x. Therefore the new equa-

tion to be solved is y = AWq. The FOCUSS algorithm begins with an initial estimate

x0 of the solution which is calculated for the underdetermined system y = Ax using the

least norm formula x0 = AT (AAT )−1y. After finding x0, the following steps are repeated

until a sparse solution is obtained.

Step 1: Wk = diag(xk−1)

Step 2: qk = (AW )†y
(
(AW )† is the pseudoinverse of (AW )

)
Step 3: xk = Wqk.

2.5. Iteratively Reweighted Least Squares (IRLS)

IRLS has been proposed by Chartrand and Yin (2008) and Daubechies et al. (2010)

for compressive sensing and sparse recovery. L2 norm minimization is formulated as

min
x
‖x‖2 subject to y = Ax. (2.7)

Minimum L2 norm solution has a convenient closed form

x = AT (AAT )−1y. (2.8)
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L1 norm minimization is

min
x
‖x‖1 subject to y = Ax. (2.9)

There exists no closed form solution for L1 norm minimization. IRLS aims to solve

the sparsity enforcing L1 norm minimization problem using the convenient least squares

formula. The general weighted least squares or weighted L2 norm minimization can be

written as

min
x

N∑
i

(wix
2
i ) subject to y = Ax, (2.10)

where w is a weighting vector. The IRLS algorithm produces w from the previous iterate

of x such that wi = |xi|−1. Since |xi| ≈ (x2i /|xi|) the weighted least squares equation

(2.10) solves an approximate L1 norm minimization problem. An immediate problem is

that if xi is zero wi becomes infinite. One possible solution is to regularize wi such that

wi =
[
x2i + ε2

]−1/2
, (2.11)

where ε is a small regularization parameter. The solution to (2.10) at the nth iteration is

x(n) = WAT (AWAT )−1y, (2.12)

where W is a diagonal matrix whose diagonal elements wi are obtained from the previous

solution x(n− 1) using Equation 2.11.

2.6. Iterative Basis Selection: Greedy Methods for Sparse Solutions

Iterative basis selection methods also termed as “greedy methods” involve select-

ing one or more columns at each iteration to find an improved interim solution x. They

differ from the statistical norm minimization algorithms in their speed and non-explicit

imposition of sparsity. MP and its derivatives rely on the assumption that inner product

of the columns of A with the measurement vector y should be high for columns which

are in the active set, and should be low for columns that are not in the active set, and

hence requires near orthogonality for columns of A, which also means that ATA must

not have very large non-diagonal elements relative to the diagonal ones. This is ensured

by the restricted isometry condition which is also a prerequisite for statistical L1 norm

minimization algorithms.
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2.6.1. Matching Pursuit (MP)

The matching pursuit (MP) algorithm for sparse recovery is proposed by Mallat

and Zhang (1993) as an alternative to statistical L1 norm minimization methods like BP

and DS. Despite its very low complexity, MP had a very poor performance in terms of

correct recovery. The optimized derivatives of MP have later started to challenge the L1

norm minimization methods while still preserving the low complexity profile of the initial

MP algorithm. Their incomparable speed makes them favorable to be used in practical

applications and motivates researchers to improve their correctness. There exists two gen-

erations of the matching pursuit algorithms. The first generation includes the matching

pursuit (MP) itself, its improved versions orthogonal matching pursuit (OMP) (Tropp and

Gilbert 2007) and stagewise orthogonal matching pursuit (StOMP) (Donoho et al. 2006).

The second generation, with a considerable leap in performance, includes regularized or-

thogonal matching pursuit (ROMP) (Needell and Vershynin 2009), compressed sampling

matching pursuit CoSaMP (Needell and Tropp 2009), subspace pursuit (SP) (Dai and

Milenkovic 2008) and iterative hard thresholding (IHT) (Blumensath and Davies 2009).

The promises made by the second generation methods are high and are likely to be worked

on and improved further. In fact, there is currently no serious alternative to them in terms

of practical usage.

2.6.2. Orthogonal Matching Pursuit (OMP)

OMP (Tropp and Gilbert 2007) is the first successor to MP which encouraged

researchers that there might be more potential in the MP based algorithms than the

relatively discouraging performance exhibited by the basic MP. It has been shown by

many researchers to have more effective results compared to the basic MP motivating

the more promising second generation algorithms mentioned in the previous subsection.

OMP is still included for comparison in many articles describing new methods. The basic

idea behind OMP is that if entries of measurement matrix A are selected from a Gaussian

distribution, its columns will be nearly orthogonal (ATA ≈ I). Since ATy = ATAx, the

maximum magnitude entry in ATy is expected to correspond to a nonzero entry in the

sparse solution x. Therefore the first component of the sparse solution x is estimated.
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Then the contribution of that component is subtracted from y and the same procedure is

repeated to find the second and other components.

The OMP Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, sparsity level s (number

of nonzero elements in unknown vector x).

OUTPUT: Index set I .

PROCEDURE:

Initialize: I = ∅ and residual r = y. Iteration counter c = 1

Step 1: Find the index i of the maximum magnitude element in AT r. Add i to the index

set:

I ← I ∪ {i}.

Step 2: Isolate the columns of A that are in the index set I to produce AI . Using least

squares solution, find a new estimate xI for the values of x in the index set I

xI = ATI (ATI AI)
−1y.

Step 3: Update the residual: r = y − AIxI . Increment iteration counter: c = c + 1. If

c < s go to Step 1 else terminate.

End of Algorithm

2.6.3. Stagewise Orthogonal Matching Pursuit (StOMP)

StOMP (Donoho et al. 2006) differs from OMP by its index updating strategy.

Instead of selecting one index at a time, StOMP selects a group of indexes for which the

entries of q = AT r exceeds a predetermined threshold. At each iteration least squares

solution is obtained for those entries in the index set and a residual is calculated using this

least squares solution in an identical fashion to that in OMP. StOMP uses fixed number

of iterations.

The StOMP Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, number of iterations s.
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OUTPUT: Index set I , the estimated solution x

PROCEDURE:

Initialize: I = ∅ and residual r = y. Iteration counter c = 1

Step 1: Find the index set J of the elements of q = AT r whose magnitudes are larger

than τcσc. τc is a threshold parameter for iteration number c and σc is formal noise

parameter for iteration number c. Then unify the index set I with J

J = {j : |j| ≥ τcσc} I ← I ∪ J.

Step 2: Isolate the columns of A that are in the index set I to produce AI . Using least

squares solution, find a new estimate xI for the values of x in the index set I .

xI = ATI (ATI AI)
−1y.

Step 3: Update the residual: r = y − AIxI . Increment iteration counter: c = c + 1. If

c < s go to Step 1 else terminate.

End of Algorithm

2.6.4. Regularized Orthogonal Matching Pursuit (ROMP)

ROMP (Needell and Vershynin 2009) applies regularization in its index selection

step. It selects the index group with maximal energy.

The ROMP Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, sparsity level s.

OUTPUT: Index set I . The estimated solution x

PROCEDURE:

Initialize: I = ∅ and residual r = y.

Step 1: Find the index set J of the s biggest elements of q = AT r or all nonzero elements

whichever set is smaller.

Step 2: Among all subsets J0 ⊂ J with comparable entries

|q(i)| ≤ 2|q(j)| ∀i, j ∈ J0,

choose J0 with maximal energy ‖qJ0‖2.
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Step 3: Unify the index set I with J0.

I ← I ∪ J0.

Step 4: Isolate the columns of A that are in the index set I to produce AI . Using least

squares solution find a new estimate xI for the values of x in the index set I .

xI = ATI (ATI AI)
−1y.

Step 5: Update the residual: r = y − AIxI . If r 6= 0 go to Step 1 else terminate.

End of Algorithm

For nearly sparse signals, the ROMP algorithm may not terminate since r may

never be equal to zero. In that case, fixed number of iterations will be used.

2.6.5. Compressive Sampling Matching Pursuit (CoSaMP)

Like the ROMP method, CoSaMP (Needell and Tropp 2008) differs from OMP

by selecting a group of columns in the measurement matrix A corresponding to the

largest magnitude elements in x instead of a single one at each step. ROMP has the

disadvantage that once it selects a column in A which does not belong to the true basis,

it is not possible to remove it from the selected set. CoSaMP aims to correct this by

allowing the removal of a column if necessary.

The CoSaMP Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, sparsity level s (number

of nonzero elements in unknown vector x).

OUTPUT: s-sparse reconstruction vector x = a.

PROCEDURE:

Initialize: Set a0 = 0, r = y, k = 0. Repeat the following steps and increment k until the

halting criterion is met.

Signal Proxy: Set u = AHr, Ω = supp(u2s) and merge the supports T = ΩUsupp(ak−1).

Signal Estimation: Reset all columns of A that are not in the support set T to zero to

construct AT and find the least squares solution b = A†Ty.
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Prune: To obtain the next approximation, set ak = bs. (s largest elements in b are

maintained and all other elements are set to zero to produce bs).

Sample Update: Update the current samples: r = y − Aak.

End of Algorithm

2.6.6. Subspace Pursuit (SP)

SP (Dai and Milenkovic 2008) for sparse recovery has been proposed around the

same time as the CoSaMP method. Like the CoSaMP method it allows the removal of

a column later in iterations. This is an important improvement of both methods over the

previous ones since a wrong column selection can later be corrected by removing it from

the set. Before continuing to the SP algorithm steps, some definitions need to be made.

Projection: Let y ∈ Rm, and AI ∈ RmxI . Suppose AHI A is invertible. The projection of

y onto the span (AI) is defined as

yp = proj(y, AI) := AIA
†
Iy, where A†I := (AHI AI)

−1AH

denotes the pseudoinverse of the matrix AI , and AH stands for the hermitian of the com-

plex matrix A.

Residue: The residue vector of the projection equals

yr = resid(y, AI) := y − yp.

The SP Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, and K.

OUTPUT: Sparse reconstruction vector x satisfying x{1....N}−T l = 0 and xT l = A†
T ly.

PROCEDURE:

Initialization:

1) T 0 = {The set of indices of K largest magnitude entries in AHy }.

2) y0r =resid(y, AT 0).

Iteration: At the lth iteration, go through the following steps.

1) T l = T l−1 U {The set of indices of K largest magnitude entries in AHyl−1r }.

2) Set xp = A†
T ly.
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3) T l = T l−1 U {The set of indices of K largest magnitude entries in xp }.

4) ylr =resid(y, AT l).

5) If ‖ylr‖2 > ‖yl−1r ‖2, let T l = T l−1 and quit the iteration.

End of Algorithm

2.6.7. Iterative Hard Thresholding (IHT)

The Iterative Hard Thresholding algorithm for sparse recovery has been reported

by Blumensath and Davies (2009) around the same time as the proposal of CoSaMP and

SP algorithms. Despite its comparable efficiency, IHT has a relatively simple algorithm

which only involves matrix multiplication and hard thresholding. The algorithm for the

IHT method is as follows.

The IHT Algorithm:

INPUT: Measurement matrix A, measurement vector y = Ax, Nonlinear HK operator

which operates on vector a and resets all but K largest magnitude entries in a to zero.

OUTPUT: Sparse reconstruction vector x.

PROCEDURE:

Initialization:

Start with x0 = 0.

Iteration:

xn+1 = HK(xn + AT (y − Ax)).

End of Algorithm

The original IHT algorithm has later been improved by Blumensath and Davies

(2010) to the normalized IHT with better performance and stability.
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CHAPTER 3

OLDIP TYPE PROBLEMS AND REGULARIZATION

3.1. Introduction

Overdetermined linear discrete inverse problems (OLDIP) arise in sensory data

processing applications such as in biomedical and seismic imaging. OLDIP type problems

are characterized by having a measurement matrix A with more, usually much more rows

than columns. However the name overdetermined can be misleading in that an overdeter-

mined inverse problem may not have a well determined solution in many cases. Therefore

overdetermined means only that the measurement matrix A has more rows (measure-

ments) than columns (unknowns), not that the system is well defined or well determined.

In fact, in many practical applications, the situation is opposite to well determinedness.

There are a number of factors which make the inverse problem overdetermined yet not

well determined. One major factor is that the measurements must be taken from outside

the environment the subject reside in and hence sensors must be placed at a distance. As

an example, seismic and biomedical imaging involve indirect and noninvasive acquisition

of information about an object underground or within a body. Secondly, the number of

sensors must be high to be able to see the subject in many directions. Yet possible sensor

positions may be physically limited. In addition, the number of sensors must be high

to overcome noise both in the sensors and in the incoming signal which may be at very

low levels. These are the reasons that such systems have many more measurements than

unknowns which make the system overdetermined but not necessarily well determined.

It is a common characteristic of practical overdetermined systems to have a measurement

matrix A whose columns are nearly linearly dependent due to the factors stated above

which makes the inverse solution x very sensitive to noise. These type of systems are

defined as ill-posed overdetermined systems and their direct solution perhaps by the well

known least squares (LS) method yields unrealistic results usually with very large norms.

Therefore a method named regularization is applied to solve ill-posed overdetermined

problems.
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3.2. Least Squares Solution (LS)

The linear least squares or least squares (LS) (Penrose 1955, Moore 1920) is a

well known method to estimate the solution of an overdetermined linear discrete inverse

problem (OLDIP) defined by

ym×1 = Am×n xn×1 + ηm×1 (m > n), (3.1)

where x is the unknown vector, y is the measurement vector, η is the noise plus mea-

surement error vector and A is the measurement matrix. Linear discrete overdetermined

systems generally do not have an exact inverse solution, instead they have an estimate of

a solution for which the error y−Ax is minimized using a particular metric. If this metric

is L2 norm, the estimate is named the least squares solution. The least squares solution is

formulated as

xls = min
x
‖y − Ax‖2. (3.2)

Linear LS solution has a closed form expression

x = (ATA)−1ATy, (3.3)

where A† = (ATA)−1AT is called Moore-Penrose pseudoinverse or generalized inverse

of the matrix A. In linear overdetermined systems, LS solution gives a good estimate of

the solution x provided that the system is noiseless or well-posed.

3.3. Ill-Posed OLDIP Type Systems and Noise

As discussed in Section 1.1.6, most practical OLDIP type problems are ill-posed

due to the physical limitations stated. The measurement matrix A has columns which are

nearly dependent, which cause the matrix ATA to be near singular. Therefore, the inverse

of ATA has very large entries. This is not an issue as long as there is an inverse. That

is, if y and A are known, the overdetermined inverse problem defined by y = Ax can be

solved using LS to find

x = (ATA)−1ATy. (3.4)
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There seems to be no problem until the measurement vector y has noise η in it. With

noise, the LS solution for x becomes

x = (ATA)−1(AT (y + η))

= (ATA)−1(ATy) + (ATA)−1(ATη)

= xa + xn. (3.5)

It can be seen in the equation above that the LS solution x consists of two parts, the actual

solution xa and the noise contribution xn. Since for an ill-posed matrix A (ATA)−1 has

very large entries, the noise contribution xn = (ATA)−1(ATη) is not a term to be omitted.

Yet, in fact, it is almost always the dominant term in the solution for OLDIP type systems

even when the noise is very low. This makes the solution x practically unusable.

Noise is inevitably present in all sensing systems and there is no way to remove

it completely. Even a trace amount of noise may have lethal consequences for ill-posed

OLDIP type systems. Regularization aims to solve this problem by striking a balance be-

tween the magnitude of the noise and magnitude of the solution without explicitly know-

ing neither of them.

3.4. Regularization

Regularization targets to restrict both the solutions x and the error y − Ax to

be within admissible limits. Here admissible limit is a subjective entity which may be

determined from experiences. Regularization of OLDIP type inverse problems is not a

deterministic approach and it is, indeed, not possible to regularize perfectly since it is

generally not known how much to regularize. The degree of regularization is controlled

by the regularization parameter and this parameter in general can not be known. Estima-

tion of optimum regularization parameter is currently a topic of continuing research. If

the regularization parameter is wrongly selected, either overregularization or underregu-

larization may occur (see Section 1.1.6.).
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3.5. Norm Based Regularization

Given the inverse problem defined by Equation 3.1, norm based regularization can

be accomplished in a number of ways.

1. Regularization by solution norm minimization under a noise norm bound: The norm

of the solution can be minimized for a given noise norm bound:

minx‖x‖ subject to ‖y − Ax‖ ≤ ε2.

Useful if bound for noise norm is known.

2. Regularization by noise norm minimization under a solution norm bound: The noise

norm can be minimized for a given solution norm bound:

minx ‖y − Ax‖ subject to ‖x‖ ≤ ε2.

Useful if there is a prior knowledge of the solution norm bound.

3. Regularization by Lagrangian minimization of the sum of solution norm and noise

norm:

minx( ‖y − Ax‖+ λ‖x‖ ).

There is no constraint on either of the solution and noise norms. Instead both are

minimized together in a Lagrangian sum with a positive regularization parameter

λ. Useful if no prior knowledge of noise and solution bounds are available but

optimum regularization parameter λ needs to be determined.

3.5.1. Tikhonov Regularization

If the squared Euclidian (L2) norm for both the solution and noise terms are used

in the third item of norm based regularizations described above, this regularization is

called Tikhonov regularization (Tikhonov and Arsenin 1977). For the system of equations

described by Equation 3.1, the solution to the Lagrangian minimization problem

minx( ‖y − Ax‖22 + λ‖x‖22 ) λ > 0
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is given by

x = (ATA+ λI)−1ATy.

Tikhonov regularization is particularly important because it is the only norm based regu-

larization with a closed form expression. Other regularization methods need to use math-

ematical optimization algorithms involving large number of iterations. The conjugate

gradient and the steepest descent algorithms are common iterative optimization tools.

3.5.2. Tikhonov Regularization from a Different Perspective

There exists two different perspectives to look at the Tikhonov Regularization.

The first perspective is the minimization of the error and solution norms together in a

Lagrangian sum. For positive λ, equating the derivative of the functional J(x) given by

J(x) = ‖y − Ax‖22 + λ‖x‖22 (3.6)

to zero gives the minimal solution

x = (ATA+ λI)−1ATy.

The second perspective is to extend the system matrix A to Ae by adding rows that force

each element in x to zero and to extend the measurement vector y to ye by adding zeros.

This is the same procedure described in the SCR method to be described in Section 4.3.for

ULDIP type problems except that for ULDIP type inverse problems an underdetermined

matrix A is converted to an overdetermined matrix Ae. Here an overdetermined matrix

is extended to be overdetermined again. By applying an ordinary LS solution without

regularization to the extended system

ye = Aex,

exactly the same result is obtained as that obtained by minimizing the functional in Equa-

tion 3.6 above given by

xls = (ATe Ae)
−1ATe ye,

which is equivalent to
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xls = (ATA+ λI)−1ATy

for positive λ.

3.6. Regularization Using Singular Value Decomposition (SVD)

Although SVD based regularizations are computationally prohibitive for most

practical OLDIP type problems involving very large measurement matrices, SVD is con-

sidered a theoretically important tool in explaining the characteristics of matrices includ-

ing ill and well-posedness. SVD has been first introduced by the Italian mathematician

Eugenio Beltrami in 1873.

3.6.1. Singular Value Decomposition

An overdetermined m× n matrix A has singular value decomposition

A = UΣV T =
n∑
i

uiσiv
T
i , (3.7)

where U is anm×pmatrix, Σ is a p×p diagonal matrix with positive decreasing singular

values σi ≥ 0, and V is an n× p matrix such that

UTU = V TV = Ipxp. (3.8)

The inverse of A is given in terms of SVD as

A−1 = V ΣUT =
n∑
i

viσ
−1
i uTi . (3.9)

For LS solution of OLDIP type problems, the matrix Q will represent ATA which is a

n × n square symmetric matrix. Multiplying both sides of the measurement equation

y = Ax+ η (Equation 3.1) by AT , the equation becomes

ATy = (ATA)x+ ATη. (3.10)

Setting Q = ATA, Y = ATy and N = ATη, the above equation becomes

Y = Qx+N. (3.11)
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Since Q = ATA, Q is symmetric and positive semi-definite, it can be shown that the

singular values σi are the eigenvalues ofQ and U = V with orthonormal columns. There-

fore,

Q =UΣUT , (3.12)

Q−1 =(UT )−1Σ−1U−1 = UΣ−1UT . (3.13)

From Equation 3.13, it is obvious that if the singular values or eigenvalues in this partic-

ular case are close to zero, Σ−1 hence the inverse of Q will have very large entries. This

will cause x to blow up. The solution x can be extracted by multiplying both sides of

Equation 3.11 with Q−1,

Q−1Y = Q−1Qx+Q−1N

Q−1Y = x+Q−1N

x = Q−1Y −Q−1N

x = xa − xn

Here, xa is the actual solution that is sought after and xn is the noise component. Since

xn = Q−1N and if Q−1 has very large entries due to very small singular (eigen) values,

xn is very likely to have very large entries dominating the solution.

3.6.2. Singular Value Decomposition and Ill-Posed Matrices

Ill-posed matrices have some common properties revealed by singular value de-

composition.

1- Their singular values decrease steadily towards zero with no intervals.

2- Their left and right singular vectors for small singular values become more

oscillatory
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3.6.3. Rank Deficient and Ill-Posed Matrices

There is an obvious distinction between an ill-posed and a rank deficient matrix

in terms of their singular values. In rank deficient matrices, there is a sharp boundary

between nonzero and near-zero singular values. This means nonzero singular values are

prominent and near-zero singular values are very close to zero. Ill-posed matrices do not

have such a sharp boundary, instead their singular values gradually decay to zero. No

distinct grouping is possible. Having a sharp boundary allows rank deficient matrices to

have approximate inverses through singular value truncation. Lack of such a sharp border

in ill-posed matrices makes it difficult for them to have approximate inverses through

truncation because truncation point is not well defined. If too high a threshold is selected

below which is to be truncated, significant errors may result, if too low a point is selected,

the result may be unstable.

3.6.4. Regularization by Truncated Singular Value Decomposition

(TSVD)

Truncated singular value decomposition (Hansen 1987) is a method for regular-

ization which sets zero or near-zero singular (eigen) values in Σ to infinity. Then Σ−1 will

have zeros in place of those entries hence truncation takes place. Therefore the new Q−1

which is equal to UΣ−1UT will not have very large elements. Multiplying both sides of

Equation 3.11 with the modified Q−1, x is obtained as

x = Q−1Y −Q−1N. (3.14)

The first term Q−1Y does not correspond to the actual solution xa any more, hence, there

is an error in xa term due to missing singular values but noise amplification is largely

prevented. TSVD can be parameterized by setting a positive threshold α such that singular

values with magnitude below α are set to infinity in Σ. α becomes the regularization

parameter for TSVD.
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3.6.5. Regularization by Filtered Singular Value Decomposition

Instead of truncation, a filtering function is used such that singular values in Σ are

replaced by a new value given by

σ ← σ +
λ

σ
λ > 0. (3.15)

It can be noted that if the singular value σ is very small, its new value will be very large

and if σ is large, its new value will be close to σ. Therefore the entries σ−1 in Σ−1 will

not be very large for small singular values. Here, the positive λ is the regularization

parameter.

This regularization is indeed identical to the Tikhonov regularization with the

same positive regularization parameter λ.

3.7. Regularization Parameter Selection

An important consideration in regularization is the selection of positive regular-

ization parameter λ. Parameter λ sets a balance between the noise norm and the solution

norm. If λ is too small the noise norm will be small but the solution norm will be un-

realistically high. If λ is too high the solution norm will be low yet the noise norm will

be very high. In both cases, the solution will not be useful for any practical purposes.

Regularization parameter selection depends on the type of regularization applied and on

the estimates of the noise and solution norms.

In norm based regularization, norm bounds ε2 are the regularization parameter. If

a prior estimate of ε2 is available, minimizations can be done for this ε2.

In TSVD regularization, positive threshold α for the singular values to be trun-

cated is the regularization parameter.

In filtered SVD, positive filter parameter λ is the regularization parameter.

In Tikhonov regularization, positive λ is the regularization parameter.

Finding the optimum parameter automatically is still a subject of continuing re-

search.
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3.7.1. Regularization Parameter for Iterative Computations

In norm based regularization, except for the Tikhonov regularization, iterative

methods are needed to solve the bounded regularization problems as there is no closed

form solutions for them. All iterative methods rely on error gradient to find the solution.

The error functional is given as

N(x) =
1

2
‖y − Ax‖22 (3.16)

and its gradient is given by

grad(N(x)) = AT (y − Ax). (3.17)

Then, iteration can be done using the gradient vector to update the solution

xi+1 = xi − α grad(N(xi)) (3.18)

This is the common form of iterative regularization methods. Landweber iteration has a

constant α for all iterations. The steepest descent method updates α at each iteration. α

is chosen to find the minimum solution x.

If bound for error norm or solution norm or both is known beforehand, iterations

can be continued until one of these criteria is met. If there is no prior knowledge of the

bounds, iteration count must be bounded because iterations tend to go until there remains

no noise error N(x) which result in a false solution x since noise is not generally zero.

Therefore, iteration count is indeed the regularization parameter which depends on the

bounds for error norm and solution norm.

3.7.2. The UPRE and GCV Methods for Regularization Parameter

Selection

Both the Unbiased Predictive Risk Estimator (UPRE) (Mallows 1973) and the

generalized cross validation (GCV) (Wahba 1977) methods are based on predictive risk

estimation. The linear measurement system in Equation 3.1 is rewritten as

y = Ax+ η, (3.19)
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where y is the m × 1 measurement vector, A is the m × n measurement matrix, x is the

n × 1 unknown input and η is the m × 1 random noise. The estimate for x using the

regularization parameter e is given by xe and the actual solution by xa. The estimation

error is then ε = xe − xa. It is not feasible to compute the estimation error ε without

knowing xa. Yet, it is feasible to estimate the predictive error pe defined by

pe = A(xe − xa). (3.20)

UPRE:

The Unbiased Predictive Risk Estimator (UPRE) method for linear regression

problems is also used for regularization parameter estimation. In this method, regulariza-

tion parameter which minimizes a metric called UPRE is chosen as the optimal parameter.

UPRE is described below in accordance with the description in Vogel (2002).

Predictive risk is defined as the mean square of the predictive error and is given by

predictive risk =
1

m
‖pe‖22 =

1

m
‖A(xe − xa)‖22. (3.21)

The estimated solution xe will be assumed to have a linear dependence on the measured

data such that

xe = Hey. (3.22)

He is an n×m matrix. The influence matrix β is defined as

βe = AHe. (3.23)

Then the predictive error pe is

pe = (βe − I)Axa + βeη. (3.24)

Expected value of the predictive risk is

E(
1

m
‖pe‖22) =

1

m
‖(βe − I)Axa‖22 +

σ2

m
trace(βHe βe), (3.25)

where σ2 is the variance of the noise η. The residual re for the estimate xe is defined as

re = Axe − y = (βe − I)y =

[
(βe − I)Axa + (βe − I)η

]
. (3.26)
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Expected value of the mean square of the residual is given by

E(
1

m
‖re‖22) =

1

m
‖(βe − I)Axa‖22 +

σ2

m
trace(βHe βe)−

−2σ2

m
trace(βe) + σ2. (3.27)

Rewriting Equation 3.25 using Equation 3.27 produces

E(
1

m
‖pe‖22) = E(

1

m
‖re‖22) +

2σ2

m
trace(βe)− σ2. (3.28)

The UPRE functional U(e) is defined as

U(e) =
1

m
‖re‖22 +

2σ2

m
trace(βe)− σ2. (3.29)

Since the expected value of U(e) is equal to the expected value of the predictive risk,

U(e) is an unbiased estimator for it. The regularization parameter e which minimizes

UPRE is chosen as the optimal regularization parameter. UPRE needs prior noise variance

information.

GCV:

With the same terminology as in the description of UPRE, the generalized cross

validation (GCV) chooses the regularization parameter e which minimizes the functional

GCV (e) =
1
m
‖re‖2[

1
m
trace(I − βe)

]2 (3.30)

In contrast to UPRE, GCV method does not need a prior noise variance estimate. Both

UPRE and GCV methods assume that η is discrete white noise. If prior noise variance

information is available, UPRE performs better than GCV, GCV should otherwise be

preferred.

If the SVD of A is available, it is easy to implement both UPRE and GCV meth-

ods, otherwise approximate methods need to be used.

Vogel (2002) treats some implementation issues regarding UPRE and GCV and

makes a comparison between them.
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3.7.3. L-Curve Method for Regularization Parameter Selection

10-2 10-1 100 101 10210-2

10-1

100

101

102

103

||y-Ax||2

||x
|| 2

Figure 3.1. L-Curve for the Tikhonov regularization of the shaw experiment (Hansen
2007) with 47 dB SNR. L-Curve is a log-log plot of solution norm ‖x‖2
on y axis versus noise error norm ‖y − Ax‖2 on x axis for varying values
of regularization parameter λ. The curve has its name from the L like
shape of the plot for ill-posed systems. The center of the circle indicates
the minimum error point. Note that the minimum error point occurs not
exactly at the corner of the curve but it is slightly to the right of the corner.
The minimum point is determined by using the actual xwhich is not known
in the real context of the problem.

L-Curve method has been introduced by Hansen and O’Leary (1993) for optimal

regularization parameter selection. In this method, the norm of the estimated solution

‖x‖2 is plotted against the norm of the estimated noise error ‖y−Ax‖2 for the increasing

values of the positive regularization parameter λ in a log-log plot. The horizontal axis is

log10‖y−Ax‖2 and the vertical axis is log10‖x‖2. For an ill-posed OLDIP type problem,

the shape of the curve resembles that of the letter L, hence the name L-Curve. For very

small values of λ, the regularization is very weak and the estimated solution norm is very

high due to near singularity of matrix ATA. Therefore, the plot begins at the upper left

corner of the axes. As λ increases, regularization sets in and the norm of the solution
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decreases sharply while the norm of noise error increases slightly. At some value of λ,

decrease in the solution norm slows down and increase in noise error norm speeds up

which corresponds to the corner of the log-log plot. L-Curve method argues that the

optimal regularization parameter lies around this corner since here both the solution and

the noise error norms are at their lowest levels. At other parts of the curve, either the

solution norm or the noise error norm is very high. L-Curve method can be used for any

parametric regularization method but it is commonly used for Tikhonov regularization

in which regularization parameter λ can be varied continuously. Hence the optimum

parameter is found by finding the point of maximum curvature at the corner. There are

some points to consider about the L-Curve method;

For the L-Curve method to work properly, the plot must have the L shape other-

wise there will be no corner to detect. Not all ill-posed problems have proper L shaped

plot.

There is no theoretical basis for the maximum curvature point to be the optimum

λ although logically the optimum λ is expected in or around the corner.

L-Curve method does not presume a noise or solution norm. This is advantageous

if there is no prior estimate available about solution and noise norm. If noise or solution

estimate is available, L-Curve method, by not making use of this, is disadvantageous.

L-Curve method is not convergent. It does not provide the actual solution in no

noise case.

3.7.4. Relation between Optimum Regularization Parameter and

Noise Variance

It is often asked if noise variance is known beforehand, does this information

help to estimate optimum regularization parameter? It is possible to test this by using a

constant variance Gaussian noise and a known input. The result of this test is tabulated

below for various noise variances for the shaw experiment.

From Table 3.1 it can be observed that for the same noise variance σ2 and for

the same input x, the optimum regularization parameter λopt fluctuates largely between

0.000050 and 0.000929. This indicates that there is not a very tight relationship between

the noise variance and the optimum regularization parameter. There is another point in

39



choosing λopt. What if ten times or one tenth of the λopt is chosen? Would the actual error

‖x2 − x‖2 will change drastically? This can be tested using the last row. If 10 × λopt is

chosen, the actual error ‖x2 − x‖2 is calculated to be 0.7115 and if λopt/10 is chosen, the

actual error ‖x2−x‖2 is calculated to be 0.6621. Both results give almost double the error

for λopt. Knowing that the norm of the actual solution ‖x‖2 is equal to 5.6467, the results

are not a drastic yet a significant deviation.

Table 3.1. Optimum regularization parameter for constant noise variance.

Noise Variance Optimum Reg. Param. Actual Error

σ2 λopt ‖x2 − x‖2
0.00011 0.000373 0.475199

0.00011 0.000072 0.400888

0.00011 0.000645 0.599660

0.00011 0.000448 0.618440

0.00011 0.000050 0.460500

0.00011 0.000311 0.493619

0.00011 0.000774 0.359588

0.00011 0.000180 0.581743

0.00011 0.000774 0.276563

0.00011 0.000538 0.422033

0.00011 0.000645 0.544617

0.00011 0.000373 0.406304

0.00011 0.000311 0.534923

0.00011 0.000373 0.326379

0.00011 0.000216 0.454709

0.00011 0.000125 0.550521

0.00011 0.000180 0.405888

0.00011 0.000072 0.326378

0.00011 0.000929 0.812508

0.00011 0.000538 0.292526
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It can be concluded from the above discussion and Table 3.1 that precise estima-

tion of λopt is not possible even if exact noise variance value σ2 is available. Therefore

optimum regularization parameter estimation methods which rely on noise variance val-

ues can not produce an exact estimation. And in many cases even a good estimate of noise

variance is not available.
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CHAPTER 4

CONSTRAINT REMOVAL (CR) FOR SOLVING

SPARSE ULDIP TYPE PROBLEMS

4.1. Introduction

This chapter introduces a new algorithm named constraint removal (Şahin and

Özen 2012) for solving sparse ULDIP type problems. As explained in Chapter 2, ULDIP

type inverse problems are unsolvable unless there exists sufficient additional information

or constraint about how the solution should be. Sparseness of the solution is an important

and in most cases the unique additional information. Using sparseness of solution to

solve a ULDIP type problem is therefore called sparse recovery. The constraint removal

algorithm is preceded by the sequential constraint removal algorithm (SCR). SCR differs

from CR by removing the constraints one by one instead of selecting a group. Both

algorithms SCR and CR will be explained in this chapter.

4.1.1. Sparsity and Sparse Recovery

A vector is K-sparse if the number of its nonzero entries is equal to or less than

the positive integer K. A vector is sparse if the majority of its entries are zero. Sparse

recovery refers to the problem of reconstructing a sparse signal x from a number of linear

measurements y in which the number of measurements m is smaller than the number n

of the entries in x. This can be formulated as an underdetermined system of equations:

ym×1 = Am×nxn×1 (m < n). (4.1)

Compressive sampling (Donoho 2006a, Candès 2006) aims to sample data in compressed

form by finding the sparsest solution to (4.1). The L0 norm of a vector is equal to the

number of its nonzero entries and therefore to its sparsity. Due to the absence of scaling

property, L0 norm is not mathematically a norm, although it became a usual practice to
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call it a norm. The straightforward way to find the sparsest solution to (4.1) is thus by

minimizing the L0 norm of the solution x:

min‖x‖0 subject to y = Ax. (4.2)

The solution to the nonconvex problem in (4.2) requires a combinatorial search which

is NP-hard and therefore practically infeasible. It has been shown in Donoho (2006b),

Candès and Tao (2005) that if the matrix A in (4.1) satisfies certain properties, it is equiv-

alent to use the L1 norm instead of the L0 norm for minimization. The L1 norm minimiza-

tion problem is called basis pursuit (Chen, Donoho and Saunders 1998) and is solved by

linear programming methods. This is frequently referred to as BP-LP or simply LP, and

is written as

Basis Pursuit: min‖x‖1 subject to y = Ax. (4.3)

Both L0 and L1 norm minimizations are computationally complex which have been the

motivation to search for alternative greedy pursuit algorithms with much lower complex-

ities and with comparable performances. The first is the matching pursuit (MP) (Mallat

and Zhang 1993) algorithm. The MP algorithm has been followed by many derivatives in

which the latest two algorithms stand out. They are the subspace pursuit (SP) (Dai and

Milenkovic 2008) and the compressive sampling matching pursuit (CoSaMP) (Needell

and Tropp 2009) algorithms. They both represent a leap in the recovery performance of

the MP based algorithms while still preserving the low complexity profile of the basic MP

algorithm. The constraint removal (CR) algorithm introduced in this presentation is the

first greedy algorithm with nearly the same performance of LP. The CR algorithm has a

different motivation and different initial steps than all other MP based greedy pursuits as

shown in the following section.

4.1.2. Converting Sparsity into Rows

In LDIP type systems, which are represented by the equation y = Ax, every

linearly independent row in system matrixA is a constraint necessary to produce a unique

solution. If the number of constraints (linearly independent rows) is equal to the number

of unknowns in x, the system has a single solution. Whereas in ULDIP type systems,

the system has missing rows (constraints) and hence has infinitely many solutions. One
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remedy to this problem could be to fill the missing rows somehow using some additional

information. Sparsity in fact is the only such criterion in many ULDIP type problems.

Therefore the question is how to convert the sparsity information into rows. One idea is

to force all elements in input x to zero. The justification is that if the input x is known to

be sparse, for example 70 percent of its elements are zero, forcing all of them to zero is

70 percent correct and 30 percent false. This means correctness is more than falsity and

solution of such a system should give an approximate result and this should be the case as

long as the number of zeros in input is more than 50 percent.

4.2. Motivation for SCR and CR

Since the system in (4.1) is underdetermined, a direct solution is not possible

and infinitely many solutions exist. One remedy is to force the solution to be sparse.

The support of a vector x denoted by supp(x) is a set which contains the indexes of the

nonzero elements, i.e. supp(x) = {i : xi 6= 0}. Since both the support and sparsity level

of the signal x are not known, the only intuitive thing to be done is to press all entries in

x to zero. Doing so is more correct than false if x is indeed sparse. Pressing all entries

to zero is done by vertically concatenating the underdetermined matrix A with an n × n

identity matrix below and elongating the measurement vector y by padding it with n zeros

downwards as shown in (4.5). The new system of equations become

y(m+n)×1
new = A(m+n)×n

new xn×1, (4.4)

where

A(m+n)×n
new =

 Am×n

In×n

 , and y(m+n)×1
new =

 ym×1

0n×1

 . (4.5)

Equation 4.4 represents an overdetermined system with an upper and a lower part. The

upper part is the initial system for which a sparse solution is sought, the lower part is

an identity matrix pressing all entries in x towards zero. Therefore, both parts will com-

promise on the solution. Multiplying both sides of Equation 4.4 with ATnew, the equation

transforms to

ATnewynew = ATnewAnewx. (4.6)
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The identities in (4.5) imply that ATnewAnew = (ATA + I) and ATnewynew = ATy. There-

fore, Equation 4.6 is equivalent to

ATy = (ATA+ I)x. (4.7)

Multiplying both sides with (ATA+ I)−1 the initial solution x = xinit is

xinit = (ATA+ I)−1ATy, (4.8)

where xinit is the initial solution for the underdetermined Equation 4.1, and where all en-

tries in x are equally pressed towards zero within an overdetermined context. After finding

xinit, an initial estimate of the support can be obtained. Assuming that the maximum ex-

pected sparsity is K, the indexes of the largest K entries in xinit is the first estimate of

the support. This means the pressure on the entries in the support can be released by

removing the corresponding K rows in Equation 4.4 to obtain the new overdetermined

equation

y(m+n−K)×1
new = A(m+n−K)×n

new xn×1. (4.9)

Applying the same procedure described in the Equations 4.6 through 4.8, to Equation 4.9,

the new estimate of the signal x is given by

x = (ATA+D)−1ATy. (4.10)

This time, the solution for x involves a diagonal matrix Dn×n in place of the identity

matrix In×n in Equation 4.8 due to the removed constraints on the estimated support.

The diagonal matrix D is obtained by setting the elements of the identity matrix I to zero

corresponding to the current support estimate. This procedure is repeated until the support

does not change. The CR algorithm consists of two interleaved parts in each iteration,

estimating the solution x for a given support and estimating the new support from the

solution estimate x. Equations 4.4 through 4.9 serve only to describe the motivation

behind CR. Equation 4.10 is the main equation to be iterated.
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4.3. Sequential Constraint Removal (SCR)

4.3.1. The SCR Algorithm

The term inverted support need to be defined before describing the SCR algo-

rithm. Inverted support of a vector is obtained by logically inverting its support.

Algorithm 4.1: The Sequential Constraint Removal Algorithm

Input: Measurement matrix Am×n, measurement vector ym×1 and maximum expected

sparsity K = floor(m/2).

Output: signal xn×1out .

Initialize: xinit = (ATA+ I)−1ATy and xnew = xinit. s′ = onesn×1.

Step-1: Set xold = xnew. Set the entry in inverted support vector s′ whose index

correspond to the next largest magnitude entry in xnew to zero.

Step-2: Produce a diagonal matrix D = diag(s′) from the vector s′.

Step-3: Solve xnew = (ATA+D)−1ATy.

Step-4: If xnew = xold end iterations, set xout = xnew and terminate; else go to Step 1.

End of Algorithm 4.1.

Algorithm 4.1 describes the sequential constraint removal algorithm. At the end

of the iterations, xout will be our sparse solution, and the diagonal s′ of the matrix D will

contain the inverted support for xout. At each iteration the next largest entry is selected

until the remaining entries are all zeros. The third step involves least squares evaluation

which can be solved by Gaussian elimination.
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4.3.2. An Example to Demonstrate the SCR Algorithm (no noise)

The original system: y = Ax with the known input x. Throughout the example

solution, x will be assumed to be unknown.


1

1

−3

3

 =


1 1 −1 −1 1 1 1 −1

1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1

 ·



−1

0

0

0

2

0

0

0


STEP1: Extend the original system y = Ax to the extended system: ye = Aex

(λ = 1) 

1

1

−3

3

0

0

0

0

0

0

0

0



=



1 1 −1 −1 1 1 1 −1

1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



·


x



STEP2: Least squares solution to the extended system:

xls =
[
−0.2351, −0.7553, −0.4002, −0.0218, 0.9204, 0.4002, 0.0218, −0.1433

]T
STEP3 and STEP4: The maximum magnitude component is at the 5th index position.

Then zero the 4 + 5 = 9th row in Ae.
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

1

1

−3

3

0

0

0

0

0

0

0

0



=



1 1 −1 −1 1 1 1 −1

1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



·


x



STEP2: (Second Iteration) Least squares solution to the extended system:

xls =
[
−0.4612, −0.2533, −0.2079, 0.0756, 1.7543, 0.2079, −0.0756, 0.1777

]T
STEP3 and STEP4: The second maximum magnitude component is at the first index

position. Then zero the 4 + 1 = 5th row in Ae.

1

1

−3

3

0

0

0

0

0

0

0

0



=



1 1 −1 −1 1 1 1 −1

1 −1 1 1 1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1

−1 −1 −1 1 1 1 −1 −1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



·


x



STEP2: (Third Iteration) Least squares solution to the extended system:

xls =
[
−1.0000, 0.0000, 0.0000, −0.0000, 2.0000, 0.0000, 0.0000, 0.0000

]T
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This is the actual sparse solution, continuing iteration will not change the result and next

maxima will be zero. There were only two iterations for this problem since there were

only two nonzero elemnts in x. In no noise case, the iteration count will be equal to the

number of nonzero elemnts in x.

4.4. Constraint Removal (CR)

The SCR algorithm proceeds one by one each time selecting the next maximum

until the value of next maximum element drops below a predetermined threshold as the

stopping criterion. This has the disadvantage that iteration count must be equal to the

number of significant magnitude elements which is computationally demanding. In con-

straint removal (CR), instead of selecting one element at each iteration, a group of largest

K elements is selected until the group does not change. K is the maximum expected

number of nonzero elements. CR in general needs much less iterations than SCR and

hence is computationally more efficient. Another advantage of CR over SCR is that once

a wrong element is selected in SCR it generally remains so but in CR a wrongly selected

element may be eliminated in ensuing iterations.

4.4.1. The CR Algorithm

Algorithm 4.2: The Constraint Removal Algorithm

Input: Measurement matrix Am×n, measurement vector ym×1 and maximum expected

sparsity K = floor(m/2).

Output: signal xn×1out .

Initialize : xinit = (ATA+ I)−1ATy and xnew = xinit.

Step-1: Set xold = xnew. By setting the largest K entries in xnew to zeros and all others

to ones, produce an inverted support vector s′.

Step-2: Produce a diagonal matrix D = diag(s′) from the vector s′.

Step-3: Solve xnew = (ATA+D)−1ATy.

Step-4: If xnew = xold end iterations, set xout = xnew and terminate; else go to Step 1.

End of Algorithm 4.2.
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The term inverted support need to be defined before describing the CR algorithm.

Inverted support of a vector is obtained by logically inverting its support.

Algorithm 4.2 describes the constraint removal algorithm. At the end of the itera-

tions, xout will be our sparse solution, and the diagonal s′ of the matrix D will contain the

inverted support for xout. At each iteration a group of the largestK entries is selected until

the group does not change. A group element may stay in the group or may be eliminated

from the group at each iteration prohibiting fixed false elements. The third step involves

least squares evaluation which can be solved by Gaussian elimination.

4.4.2. Simulations and Comparison

Simulation for Zero-One Signals

Figure 4.1 below shows the simulation results for zero-one signals. Zero-one

signal has its elements from the set {0,1,-1} The CR algorithm is simulated and compared

to the SP and LP algorithms. The SP method is chosen as a representative algorithm

for MP based methods since it has a superior performance to its alternatives and is very

similar to CoSaMP with a slightly better performance. The LP algorithm is a statistical

procedure for sparse recovery with no polynomial bound for computation yet in terms of

correctness it has the best performance and for that reason is used as a benchmark.

Simulation for Gaussian Random Signals:

Figure 4.2 shows the simulations and comparison of the same methods for Gaus-

sian random signals. It can be observed that both the SP and CR algorithms have sharp

jumps beginning from sparsity 30. This phenomenon can be explained such that this time

both the values and the positions of the elements of the input vector x is Gaussian along

with the elements of the system matrix A adding an extra randomness to the inverse sys-

tem which decrease the predictability of the output. However, generally speaking, both

algorithms have similar performances slightly above LP with CR being slightly superior

to SP.
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Figure 4.1. The CR algorithm has been simulated and compared to the SP and LP
methods for zero-one signals. The SP method is chosen as a representative
method for the MP based sparse recovery algorithms since it is very sim-
ilar to the CoSaMP algorithm with a slightly better performance. The LP
method is included as a benchmark.

4.5. Convergence

The convergence of the CR algorithm is straightforward. It is assumed that xa is

the actual K-sparse solution so that y = Axa. Referring to the main iterated equation

in Step 3 of the CR algorithm and replacing y with Axa, the estimated solution xnew

becomes

xnew = (ATA+D)−1ATAxa, (4.11)

xnew = (ATA+D)−1(ATA+D −D)xa, (4.12)

xnew = xa − (ATA+D)−1Dxa︸ ︷︷ ︸
error

. (4.13)

Equation 4.13 indicates that ifD contains in its diagonal the inverted support of the actual

solution xa so thatDxa = 0, the solution xnew converges to the actual solution xa. Finally,

it needs to be shown that the diagonal of matrix D approaches the inverted support of xa
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Figure 4.2. The CR algorithm has been simulated and compared to the SP and LP
methods for Gaussian random signals. The SP method is chosen as a
representative method for MP based sparse recovery algorithms. The LP
method again is included as a benchmark. The thick black line represents
the LP results, the dashed gray line represents the CR and the thin gray line
represents the SP results.

beginning from the first iteration where D = I . In the first iteration of the CR algorithm

xnew[1] = xa − (ATA+ I)−1xa, (4.14)

the number of columns used in (ATA + I)−1 is equal to the sparsity K of xa. If xnew[1]

is well aligned (have a similar order of magnitudes) with xa, in the second iteration, the

vector Dxa will be sparser than xa. As a result, the next solution xnew[2] will be closer to

and better aligned with xa since less columns from (ATA + D)−1 will be involved. This

will continue in the subsequent iterations until convergence occurs where Dxa = 0 and

xnew = xa.

From Proposition 3.1 in Needell and Tropp (2009), if A satisfies the restricted

isometry condition for sparsity K and parameter δ, the bounds for the error in the first

iteration can be written as

‖xa‖2
(2 + δ)

≤ ‖(ATA+ I)−1xa‖2 ≤
‖xa‖2

(2− δ)
. (4.15)
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It is therefore crucial to have a good alignment in the first and subsequent iterations which

depends on how closeATA is to identity and therefore on the restricted isometry constant.

Even when δ = 0, the norm of the error in the first iteration is not zero but is perfectly

aligned with xa, therefore in the second iteration actual solution xa will be recovered

exactly. If A satisfies the restricted isometry condition, the reconstruction will be exact

yet the value of the RIC parameter δ below which reconstruction is guaranteed needs to

be determined.

4.6. Noise and Stable Recovery

The measurements may be corrupted by noise such that y = Ax + e, where e

represents the noise vector. For a stable recovery, measurement noise e and corresponding

signal deviation ∆x must be comparable. This can be shown using the main iterated

equation in the CR algorithm x[i] = (ATA+D)−1AT (y+ e). The deviation in x is given

by ∆x = (ATA+D)−1AT e. Since (ATA+D)−1 is always nonsingular, the norm of ∆x

will be comparable to the norm of measurement noise e ensuring stability.

4.7. Conclusion

CR performs better than SP for zero-one type sparse signals with nearly equal

performance for Gaussian type signals. Despite its apparent high complexity O(n3), its

simulation runtimes were far below than expected and below that of BP-LP perhaps due

to much fewer number of iterations and early termination of the Gaussian elimination for

sparse signals. In addition, CR does not require prior sparsity knowledge.
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CHAPTER 5

SPARSE CHANNEL ESTIMATION

5.1. Introduction

5.1.1. Channel

The medium between the source and the destination through which information

signals travel is called channel. Every channel has its own characteristic depending on

its structure. Every communication channel is in fact a filter. This is due to the fact that

channels are selective on frequencies. Channels can be modeled by magnitude and phase

responses in frequency domain and impulse response in time domain. An ideal channel

is a channel in which there is only a time delay between the transmitted and received

symbols as in a uni-path transmission with constant velocity for all frequencies. However,

even in a highly protected single-mode fiber optic channel in which there exists only one

path between the source and destination, channel is far from ideal because the velocity of

light in the fiber is wavelength dependent which cause dispersion. Also the bandwidth of

wavelengths that travel increases with the modulation frequency. Similar considerations

also apply to the protected uni-path channels like coaxial and twisted pair cables. The

case with the unprotected channels like air and underwater is worse. The are more factors

that contribute to the distortion of the signal received by the receiver. Thermal noise,

human generated noises, radiation, scattering, reflection are some to count. One of the

major causes of distortion in air and underwater transmission is the so called multi-path

effect caused by reflections. In this thesis, the focus will be on this type of distortion.

5.1.2. Multi-Path Effect, ISI, Frequency Selectivity, Dispersion

Multi-path effect can be visualized as having one receiver and multiple transmit-

ters clustered at the same position each transmitting the same sequence of symbols with

different time delays and attenuation. The samples received at the receiver therefore do
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not belong to a single symbol instead are the superposition of multiple symbols with dif-

ferent attenuation factors and phases. This prevents direct detection of a symbol from a

single sample. This superposition of multiple symbols into one sample is called inter-

symbol interference (ISI). Channels having ISI are frequency selective. An equivalent

term for ISI generally used in fiber optic context is dispersion.

5.1.3. Mobile and Terrestrial Digital Communication Channels

Most digital communication systems involve transmission of highly compressed

data in digital packets as in DTV or HDTV broadcasting and cellular mobile communi-

cations. High symbol rates coupled with high compression ratios make such channels

challenging to estimate because they may span several hundred symbols length. Also the

equalization of these channels is equally challenging due to the same reason. Symbol er-

ror rate gains more significance as the compression ratio increases as in h264 and MPEG2

video transmissions because decompression of them is not tolerant to symbol errors since

they involve a very tight sequential synchronization. If synchronization is lost repeatedly,

this may cause fatal frame losses and degraded quality of service.

Robust channel estimation and equalization is required for high symbol rate and

high compression ratio transmissions.

5.2. Channel Estimation

It is apparent from the previous section that detection of a symbol from an ISI

corrupted single sample is not possible since this sample does not wholly belong to that

single symbol. In order to detect a symbol, multiple samples that may bear information

about that symbol must be carefully processed together. Intuitively, in order to undo the

effect of a channel, channel characteristic must be known by the receiver. In other words,

we need to know what the channel is doing to each symbol. Since this information is

contained in channel impulse response, we need to estimate it before doing any symbol

detection.

Channel impulse response (CIR) estimation or shortly channel estimation is an

important inverse problem encountered in digital communication systems. Estimated
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channel impulse response is eventually used to equalize the frequency response of that

channel for efficient symbol detection. Digital wireless and terrestrial communication

channels in general exhibit frequency selectivity due to a phenomenon known as multi-

path effect and the consequent inter-symbol interference (ISI). Estimated CIR is used to

equalize the overall frequency response between the transmitter and the symbol detector

of the receiver in order to recover efficiently the correct symbols as if they are received

through a uni-path constant velocity transmission.

5.3. Channel Estimation Methods

Channel estimation methods can be divided into three main categories depending

on the usage of a training sequence.

1. Blind Channel Estimation: Channel is estimated from received signals only. There

is no knowledge of what is being transmitted. Blind channel estimation uses the

constant modulus property of the transmitted symbols and usually requires long it-

erations to converge. Although it offers much better channel utilization due to the

absence of a training sequence, it is not a robust method in fast changing environ-

ments and hence not utilized in practical systems as of now.

2. Training Sequence Based Channel Estimation: Known training sequences are trans-

mitted. Receiver knows the transmitted training sequence and when it is transmit-

ted. Receiver uses the known training sequence and corresponding received signal

to estimate the channel. It may require long training sequences for long channels

because training sequences must be longer than the channel for a robust estimation.

Training sequence based channel estimation provides faster and more accurate esti-

mation due to known training sequence. Channel utilization is penalized due to the

transmission of long training sequences.

3. Semi-Blind Channel Estimation: Merges both the blind and the training sequence

based channel estimations to be able to use shorter training sequences with less

iterations. However, this topic is still in the research stage without an active usage

as of now.
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All three methods have their advantages and disadvantages. Second and third methods

are more likely to be preferred. In the case of high bit-rate transmissions, accuracy gains

much significance due to high compression ratios. Training sequence based channel es-

timation is an inverse problem and can be defined within the context of linear inverse

problems formulated by finding unknown input x from known output y and known ma-

trix A such that y = Ax. Here y stands for the signal samples received, A is the Toeplitz

convolution matrix constructed from the transmitted training sequence and x is the un-

known channel.

5.4. Training Sequence Based Channel Estimation and Sparse

Channels

Training sequence based channel estimation depends on transmission of a se-

quence of symbols known by both transmitter and receiver in order to probe the channel

characteristic, known as channel impulse response. It is known that the samples received

by the receiver while the training sequence is transmitted is the convolution of the channel

impulse response with the training sequence. It is straightforward to think that deconvo-

lution of received sample sequence with the known training sequence should yield the

channel impulse response.

Training sequences are generally pseudo random sequences with no specific pat-

tern. Training sequences can also be designed in a different way depending on the channel

and device characteristics.

Training sequence based channel estimation is an actively used channel estima-

tion method for its robust performance and simplicity. For dynamic channel estimation

transmitter sends a known training sequence at certain periodic time instants to receiver.

Receiver detects the beginning of the training sequence, stores the received data corre-

sponding to the training sequence and tries to estimate the channel from them.

Sparse Channels And Training Sequence length

The most common way to estimate a channel in practice is by finding the least

squares solution to the linear system y = Ah in which y is the received data corre-

sponding to the training sequence, A is the Toeplitz convolution matrix constructed from

the known training sequence, and h is the unknown channel impulse response data. A
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Toeplitz matrix is the one whose (n + 1)th row is the nth row shifted to right by one.

For a robust channel estimation, the n× n Toeplitz matrix A must have only training se-

quence data which requires a training sequence of length at least 2n. For low bit-rate and

short channels this may not be a concern. However, for high bit-rate long delay spread

channels, periodically sent long training sequences with at least two times the length of

the channel will cause significant reduction in channel efficiency. Therefore, there is a

need for a method using shorter training sequences. With a shorter than 2n length train-

ing sequence, it is not possible to construct an n × n square matrix A, instead a smaller

m×n rectangular matrix A withm < n can be constructed. This makes the linear system

y = Ah an underdetermined linear system. It has been shown in previous chapters that

if the unknown input h to a linear system y = Ah is known to be sparse, then full n × n

matrix A is not necessary to recover h from y, instead an m × n matrix A with m < n

can be sufficient. The value of m depends on the level of the sparsity. High bit-rate DTV

channels are almost always sparse allowing training sequences shorter than the length 2n

to be used for their estimation. Therefore sparse recovery techniques such as CR and SP

methods mentioned in previous chapters can be used for this purpose.

There are currently five main training sequence based channel estimation methods:

1. Least Squares And Least Norm Channel Estimation

2. Maximum likelihood Channel Estimation

3. Correlation Based Channel Estimation

4. Blended Least Squares Estimation

5. De-convolution Based Channel Estimation

5.4.1. Least Squares and Least Norm Channel Estimation

Least squares (LS) channel estimation finds the channel that minimizes the L2

norm of the error between the sampled data and the expected data which is the convolution

of the training sequence and the channel impulse response. LS is possible if the training

sequence is sufficiently long, that is, the system is overdetermined. In the short training
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sequence case, when the system is underdetermined, least norm solution finds the channel

with the minimum L2 norm.

As mentioned in Section 5.4, channel estimation problem in the presence of a

training sequence is equivalent to solving a linear discrete inverse problem,

h = Φ(y, A) (5.1)

for the linear channel model,

y = Ah+ η, (5.2)

where y is the m× 1 vector of the received samples, A is the m× n Toeplitz convolution

matrix constructed from the training sequence symbols, η is the m× 1 noise vector and h

is the n× 1 channel impulse response vector.

Linear discrete inverse problems have been treated extensively in Chapters 2 and 3.

Depending on the length of the training sequence relative to the channel spread, the prob-

lem is either posed as an underdetermined linear discrete inverse problem or an overde-

termined linear discrete inverse problem as stated in Section 5.4. If the training sequence

is sufficiently long hence the system is overdetermined, the solution that minimize the L2

norm of the error such that

hLS = min
h
‖y − Ah‖2 (5.3)

is given by

hLS = (ATA)−1ATy. (5.4)

hLS is called the least squares channel estimation. If the training sequence is not suffi-

ciently long hence the system is underdetermined, the solution with minimum L2 norm

such that

hLN = min
h
‖h‖2 subject to y = Ah (5.5)

is given by

hLN = lim
λ→0

(ATA+ λI)−1ATy = AT (AAT )−1y. (5.6)

hLN is called the least norm solution.

Although both least squares and least norm solutions have different targets, they

have quite similar formulations. Least norm solution in the limiting case when λ goes

to zero become equivalent to the least squares formulation. In other words, least norm
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solution is in fact equivalent to the Tikhonov regularized least squares solution when the

regularization parameter λ goes to zero.

Substituting Equation 5.2 into the the least squares solution given by Equation 5.4

produces

hLS = (ATA)−1AT (Ah+ η) (5.7)

hLS = h+ (ATA)−1ATη. (5.8)

Substituting Equation 5.2 into the the least norm solution given by Equation 5.6

produces

hLN = AT (AAT )−1(Ah+ η) (5.9)

hLN = AT (AAT )−1Ah+ AT (AAT )−1η. (5.10)

From matrix inversion lemma,1

hLN = lim
λ→0

(ATA+ λI)−1ATAh+ lim
λ→0

(ATA+ λI)−1ATη (5.11)

hLN = αh+ βη (5.12)

The least squares (LS) channel estimate in Equation 5.8 has the actual channel im-

pulse response vector h with the colored noise term (ATA)−1ATη. The meaning of this is

that, apart from the noise, there is no interference to the estimated channel. In the absence

of noise, the least squares estimate converges to the actual channel. If there is a suffi-

ciently long training sequence at least two times the channel spread, least squares gives

quite a robust estimate of the channel but with some penalty to the channel efficiency.

The least norm (LN) channel estimate in Equation 5.11 and 5.12 which uses a

shorter training sequence does not perform as good as the least squares solution but offers

a better channel usage. The poor performance is indicated in Equation 5.12 such that it

does not have an actual channel vector h standing alone and hence it does not converge

to the actual channel even in the absence of noise. This is due to the fact that the matrix

α = limλ→0(A
TA + λI)−1ATA that multiply the channel vector h is not an identity

matrix because A is underdetermined. This causes an effect called inter-tap interference

in the channel estimate. That is, one tap in the channel may affect another tap degrading

1(ATA+ λI)−1AT = AT (AAT + λI)−1
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the estimation performance. Performance degradation increases when the matrix A gets

more underdetermined as the training sequence gets shorter.

Least squares and least norm estimations need to be followed by a thresholding

stage to be effectively used in practice. There exists different thresholding techniques that

can be used. Direct thresholding, constant false alarm rate (CFAR), or protection window

based thresholding can be used.

There exists other variants of least squares estimation: One is the thresholded

least squares (ThLS) which uses the thresholded output of the least squares as the channel

estimate. The other is the sparse least squares (SpLS) which reevaluates the coefficients

obtained from the ThLS using another smaller sized least squares.

5.4.2. Maximum Likelihood (ML) Channel Estimation

Maximum likelihood (ML) channel estimation finds the channel impulse response

which maximizes the probability of received samples for a given training sequence. ML

channel estimation is in fact a generalization of least squares estimation. Apart from

LS estimation, ML estimation needs and incorporates the noise information, namely the

noise covariance matrix into the solution to obtain a better estimate. If the noise is white

Gaussian with zero mean and hence the noise covariance matrix is a scaled identity matrix

σ2I , the ML solution is equivalent to the LS solution.

For the overdetermined channel convolution model

y = Ah+ η, (5.13)

the ML estimate for the channel is given by

hML = max
h

[p(y|h)] = (AHC−1A)−1(AHC−1)y, (5.14)

where C is the covariance matrix of the noise η which is computed using the expected

value of ηηH given by

C = Cov(η) = E(ηηH). (5.15)

It is obvious that if the noise is Gaussian with variance σ2, the covariance matrix

C is given by C = σ2I . Substituting this into the Equation 5.14, the ML estimate for the

channel become equivalent to the LS estimate.
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If the noise is not white Gaussian, ML performs better than LS provided that there

is prior noise information, that is, noise covariance matrix is known. This may not be

always possible in which case ML estimate can be iterated to estimate both the channel

and noise.

Like LS, ML requires a sufficiently long training sequence, at least two times the

channel span, for a robust estimation.

5.4.3. Correlation Based Channel Estimation

Correlation based channel estimation is a low complexity method to estimate a

channel. It relies on convolving the training sequence with the received symbols. Since

the training sequences are of pseudo-random nature they will have near identity auto-

correlation matrices which enables the estimation of the channel. The performance of

correlation based channel estimation depends on the length of the training sequence used.

There are two cases to consider.

Long Training Sequence: This is the case when the length of the training se-

quence is at least two times the channel span. In this case, the convolution matrix A

consists only of the training sequence symbols such that

y = Ah+ η. (5.16)

Multiplying both sides with AT produces

ATy = ATAh+ ATη. (5.17)

Since

ATA ≈ NI, (5.18)

correlation estimate is given by

hcorr =
1

N
ATy. (5.19)

Substituting Equation 5.16 into 5.19 produces

hcorr =
1

N
AT (Ah+ η) (5.20)

hcorr =
1

N
ATAh+

1

N
ATη (5.21)

hcorr =
1

N
ATAh+ ε. (5.22)
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Equation 5.22 indicates that the correlation estimate does not converge to the actual chan-

nel in the absence of noise and if 1
N

(ATA) is not an identity matrix, which will be the

case for most of the time if the training sequence is of finite length. Non-identity ma-

trix 1
N

(ATA) that multiplies the actual channel h will cause inter-tap interference. For

pseudo-random training sequences, it can be shown that as the length of the training se-

quence increases, the correlation matrix 1
N

(ATA) gets closer to the identity matrix, but

this penalizes the channel efficiency.

Short Training Sequence: This is the case when the length of the training se-

quence is shorter than two times the channel length. Assuming no guard intervals, in this

case the convolution matrix A does not wholly consist of the training sequence symbols

and includes unknown real data before and after the training sequence. Inclusion of the

unknown data degrades the performance of the correlation. The system can be modeled

as

y = Ah+Dh+ η. (5.23)

The term D is the unknown data before and after the training sequence. Multiplying both

sides of the equation with AT produces

ATy = ATAh+ ATDh+ ATη (5.24)

and assuming

ATA ≈ NI, (5.25)

the correlation estimate is,

hcorr =
1

N
ATy (5.26)

Substituting Equation 5.23 into 5.26,

hcorr =
1

N
AT (Ah+Dh+ η) (5.27)

hcorr =
1

N
ATAh+

[
1

N
ATDh+

1

N
ATη

]
(5.28)

hcorr =
1

N
ATAh+ ε, (5.29)

where
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ε =

[
1

N
ATDh

]
︸ ︷︷ ︸

data interference

+

[
1

N
ATη

]
︸ ︷︷ ︸

colored noise

(5.30)

Comparing Equation 5.28 with 5.21, the error ε in Equation 5.28 and given in Equation

5.30 includes unknown data interference and the colored noise. Whereas in long training

sequence case, the only source of error is colored noise as shown in Equation 5.21.

Another point which may not be obvious from Equation 5.29 is that the matrix
1
N

(ATA) is not as close to the identity as in the long training sequence case.

It can be concluded that the long training sequence correlation estimate has a

good performance with a penalty to the channel utilization. The performance of the short

training sequence correlation estimate gets poorer as the length of the training sequence

decreases. And its output is expected to be highly noisy due to the interference from

unknown data symbols.

5.4.4. Blended Least Squares Channel Estimation

Blended least squares channel estimation method proposed by Özen, Zoltowski

and Fimoff (2002) aims to combine the correlation and least squares based methods to

produce a better channel estimate. BLS uses the correlation method and thresholding

for an initial estimate of the possible tap positions. CFAR or protection window based

thresholding can be applied after correlation. As shown in Figure 5.1, in a real chan-

nel estimation context, actual tap positions need not be at the sampling instants. Using

this fact, BLS represents each tap as a weighted sum of three half-sample spaced pulse

matched filter (PMF) impulse responses to the right and left of the sampling instant. Then

using the least squares, BLS estimates the three weights for each channel tap and there-

fore each tap is represented by a weighted sum of three half-sample spaced PMF impulse

responses. Using this three weights for each channel tap, BLS recovers a finer resolution

channel estimate including low amplitude pulse tails which otherwise would be buried

under noise and lost.

64



Figure 5.1. BLS algorithm: Each channel tap is represented by the weighted sum of
3 half-sample spaced PMF impulse responses to the right and left of the
actual time of arrival. (Source: Özen (2003))

5.4.5. Linear Deconvolution Based Channel Estimation

Direct linear deconvolution, in other words, zero-forcing deconvolution or inverse

filtering is generally disregarded as an effective channel estimation method due to its ill-

posed nature. Its regularized form, Wiener deconvolution or Wiener filtering alleviates

this problem by incorporating the noise variance into the solution.

It is known that the signal received by a receiver is the convolution of the transmit-

ted signal with the channel impulse response, therefore it is straightforward to think that

when a training sequence is transmitted, linear deconvolution of the received signal with
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that training sequence should readily yield the channel impulse response. Assuming no

guard intervals around the training sequence, the received signal during training sequence

transmission is the convolution of the channel impulse response h(n) with the training

sequence q(n) and the surrounding data d(n) plus the random noise η(n). This can be

described in discrete time domain by the convolution equations

y(n) = (q(n) + d(n)) ∗ h(n) + η(n) (5.31)

y(n) = q(n) ∗ h(n) + d(n) ∗ h(n) + η(n) (5.32)

and in summation form

y(n) =
∞∑

k=−∞

(q(k) + d(k))h(n− k) + η(n). (5.33)

The deconvolution in time domain is not quite obvious from Equation 5.33. How-

ever, more conveniently, convolution in time domain is equivalent to multiplication in

Fourier domain such that

Y (ω) = H(ω)(Q(ω) +D(ω)) +N(ω) (5.34)

Y (ω) = H(ω)Q(ω) +H(ω)D(ω) +N(ω), (5.35)

where Y (ω), H(ω), Q(ω), D(ω) and N(ω) are the Fourier transforms of the received sig-

nal y(n), the channel impulse response h(n), the training sequence q(n), the surrounding

data d(n) and the noise term η(n) respectively. The deconvolution in Fourier domain for

the channel estimate Hest is

Hest(ω) =
Y (ω)

Q(ω)
(5.36)

Substituting Equation 5.35 into Equation 5.36 produces

Hest(ω) =
H(ω)Q(ω) +H(ω)D(ω) +N(ω)

Q(ω)
(5.37)

Hest(ω) = H(ω) +
H(ω)D(ω) +N(ω)

Q(ω)
, (5.38)

where the channel error term for deconvolution is
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εDEC =
H(ω)D(ω) +N(ω)

Q(ω)
. (5.39)

The channel estimate in Equation 5.38 consists of an actual channel term H(ω), the in-

terference from noise N(ω) and data symbols D(ω) coming before and after the training

sequence. This means, even in the absence of noise, the channel estimate will not con-

verge to the actual channel due to the unknown data interference sometimes referred to as

self-noise.

Random noise N(ω) is not generally the prime factor in deconvolution and cor-

relation based channel estimations unless the SNR is very low. Instead, the interference

from unknown data symbols coming immediately before and after the training sequence

has more significance on the estimate. And this interference along with the random noise

N(ω) will be amplified if Q(ω), the denominator in Equation 5.38, has zeros or near

zeros. The solution as in all ill-posed inverse problems is regularization. Wiener decon-

volution (filter) is the regularized form of the direct linear deconvolution (inverse filter).

Both filters are defined by the equations

Inverse filter: Hest(ω) =
Y (ω)

Q(ω)
(5.40)

Wiener filter: Hest(ω) =
Q∗(ω)Y (ω)

Q∗(ω)Q(ω) + σ2
, (5.41)

where the regularization parameter is given by σ2 = σ2
n/σ

2
a. σ2

a is the variance of the

training sequence signal and σ2
n is the variance of the noise plus data interference. It

is important to note that even in the absence of random noise, regularization is still

necessary since data interference acts as a noise in the deconvolution operation. Data

interference is thus sometimes called self-noise.
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5.4.6. Permuted Deconvolution (PDEC) Based Channel Estimation

Introduction:

This subsection presents a new deconvolution method called permuted deconvo-

lution (PDEC) which is particularly suited to estimate long delay sparse channels using

relatively short training sequences. It is known that data preceding and following training

sequences interferes with channel estimation by producing an unwanted component in the

estimation output. This can be avoided by using guard intervals which penalize channel

utilization. PDEC makes use of the subsequential diversity in training sequences to re-

duce that data interference component lowering the required threshold level and therefore

offering a better estimation in short training sequence and long delay channel scenarios.

Estimation of channel impulse response (CIR) is necessary for receivers to

effectively equalize channel and detect correct symbols. Training sequences known both

by the receiver and transmitter are periodically sent by the transmitter to identify the

CIR. For multi-path channels the samples received by the receiver are the convolution of

the CIR with the transmitted symbols. Therefore, deconvolution of the training sequence

from the received samples will produce the CIR. There are different techniques for

deconvolution depending on channel delay and training sequence length. If the training

sequence is sufficiently longer than the channel delay, least squares (LS) or maximum

likelihood (ML) solution is possible. If the training sequence length is short and close to

the channel delay, LS or ML solutions are not feasible. In that case, a sparse recovery

technique can be used provided that training sequence length is above the channel delay.

Correlation and Wiener deconvolution are lower complexity alternatives. Diversity

techniques such as multi-antenna setup can also be used to increase the estimation

performance. Sparse recovery techniques which assume that the channel is very sparse

are iterative with high complexities. Correlation is a fast and low complexity estimation

technique but suffers from large inter-tap and unknown data interference in the estimation

output. Wiener deconvolution uses regularization which prevent excessive interference

due to low spectral components in the training sequence but still suffer from significant

unwanted interference component in its output which require high threshold values for

estimation. PDEC uses Wiener deconvolution together with the subsequential diversity

in training sequences to reduce the unwanted interference component in the estimation
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output reducing the required threshold for a better estimate. PDEC which can be

implemented by a linear transversal filter is not iterative and does not assume that the

channel is very sparse.

Motivation: Subsequential Diversity

Channel estimation using short training sequence suffer from interference from

data immediately preceding and following the training sequence if no guard intervals

are used. The motivation behind the PDEC method is that a training sequence have

multiple subsequences each of which can be used as a different training sequence to

produce subsequential diversity. Estimates from each subsequences can be superimposed

and averaged to produce a better estimate. In each estimate, real channel coefficients

will be in phase and will add up. However the same is not valid for the unwanted data

interferences which are not necessarily in phase for different training sequences. Sum-

ming and averaging the interference components will reduce the cumulative interference

level in the estimation output allowing to use a lower threshold for channel tap estimation.

Description of PDEC:

PDEC uses Wiener deconvolution. Let h(n) be the CIR, q(n) be the training se-

quence, y(n) be the received samples and d(n) be the data preceding and following the

training sequence and let H(ω), Q(ω), Y (ω) and D(ω) be their respective Fourier trans-

forms. Since the received samples are the convolution of the channel impulse response

with the transmitted symbols, the channel convolution equation in Fourier domain is given

by

Y (ω) = H(ω) [Q(ω) +D(ω)] . (5.42)

In order to estimate the channel H(ω), Y (ω) need to be deconvolved with Q(ω). Wiener

deconvolution of Y (ω) with Q(ω) will produce two components as shown in Equation

5.43 below.

Q(ω)∗Y (ω)

Q(ω)∗Q(ω) + λ︸ ︷︷ ︸
deconvolution

=
Q(ω)∗Q(ω)H(ω)

Q(ω)∗Q(ω) + λ︸ ︷︷ ︸
channel component

+
Q(ω)∗H(ω)D(ω)

Q(ω)∗Q(ω) + λ︸ ︷︷ ︸
interference component

, (5.43)

where λ is the positive regularization parameter. As shown in Equation 5.43, Wiener

deconvolution has two components. One of them is the channel component with a slight
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perturbation caused by small λ. The other is the interference component caused by the

convolution of the unknown data and the channel.

Let Qi(n) represent the subsequences of the parent training sequence Q(n). Hav-

ing the same length with Q(n), Qi(n) are produced by zeroing a certain fraction of ele-

ments in Q(n) permuted for each i. Using Equation 5.43 for each i, summing over i and

averaging produces the equation

1

N

N∑
i=1

Qi(ω)∗Y (ω)

Qi(ω)∗Qi(ω) + λ︸ ︷︷ ︸
deconvolution

=
1

N

N∑
i=1

Qi(ω)∗Qi(ω)H(ω)

Qi(ω)∗Qi(ω) + λ︸ ︷︷ ︸
channel component

(5.44)

+
1

N

N∑
i=1

Qi(ω)∗H(ω)Di(ω)

Qi(ω)∗Qi(ω) + λ︸ ︷︷ ︸
interference component

.

Di contains the unknown data D and the elements of Q not included in Qi. Since for

different i Qi and Di will vary, the interference component summation in Equation 5.44

will not be a coherent sum and after division by N is expected to be smaller than the in-

terference component in Equation 5.43. The channel components in Equation 5.44 which

involve the same channel except for a slight perturbation caused by the small positive

number λ is highly coherent because for small positive λ

Qi(ω)∗Qi(ω)

Qi(ω)∗Qi(ω) + λ
≈ 1 and

Qi(ω)∗Qi(ω)H(ω)

Qi(ω)∗Qi(ω) + λ
≈ H(ω). (5.45)

Therefore, Equation 5.44 becomes

1

N

N∑
i=1

Qi(ω)∗Y (ω)

Qi(ω)∗Qi(ω) + λ
= H + Ψ(ω) (5.46)[

1

N

N∑
i=1

Qi(ω)∗

Qi(ω)∗Qi(ω) + λ

]
Y (ω) = H + Ψ(ω) (5.47)

PD(ω)Y (ω) = H + Ψ(ω). (5.48)

The error term Ψ(ω) contains the interference component in Equation 5.44 plus the

regularization error in the channel component due to λ. The term in brackets in Equation

5.47 is the PDEC estimator (PD). PD can be precomputed and stored offline for a given
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training sequence using a very large N . pd(n), the inverse Fourier transform of PD(ω),

can be used as a transversal channel estimation filter which convolves pd(n) with the

received samples y(n) to give an estimate of the channel h(n) with error Ψ(n).

Complexity and Implementation:

 

 

 

 

 

             

 

   
PDEC CHANNEL ESTIMATION FILTER

CHANNEL ESTIMATE 

SAMPLES
EQUALIZER

SYMBOLS 

Figure 5.2. PDEC Channel Estimation Filter: PDEC filter is a time domain transversal
filter.

The complexity of the PDEC filter is that of a transversal convolutional filter

since its coefficients need be computed only once. Therefore it is a low complexity one

dimensional symbol by symbol filter. Typical implementation is shown in Figure 5.2.

Noise:

The MMSE criteria sets the regularization parameter λ to be equal to σ2
n/σ

2
x, where

σ2
n is the noise variance and σ2

x is the signal variance. Empirical tests of PDEC show that

a wide range of values for λ produces acceptable results due to the diversity in PDEC.

Since all Qi(ω)s have zeros or near zeros at different positions, PDEC is more immune

to noise and interference than the Wiener filter described in Equation 5.43 which use the

parent training sequence q(n) only.
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5.4.7. Comparison of Sparse Channel Estimation Methods

Comparison of different training sequence based channel estimation methods are

shown in Figure 5.3 at SNR = 20 dB, in Figure 5.4 at SNR = 10 dB, in Figure 5.5 at SNR

= 5 dB and in Figure 5.6 at SNR = 0 dB. A channel of length 576 and a training sequence

of length 704 is used for testing. Four methods, PDEC, Wiener deconvolution, correlation

and regularized least norm are tested at 20 dB, 10 dB, 5 dB and 0 dB SNRs.

Each figure consists of 5 plots. Plot (a) is the original channel taps. Plot (b) is the

PDEC test. Plot (c) is the Wiener deconvolution test. Plot (d) is the correlation test. Plot

(e) is the regularized least norm test.
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Figure 5.3. Comparison of different training sequence based channel estimation meth-
ods at SNR = 20 dB. a) Original channel taps. b) PDEC c) Wiener decon-
volution d) Correlation e) Regularized least norm
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Figure 5.4. Comparison of different training sequence based channel estimation meth-
ods at SNR = 10 dB a) Original channel taps. b) PDEC c) Wiener decon-
volution d) Correlation e) Regularized least norm
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Figure 5.5. Comparison of different training sequence based channel estimation meth-
ods at SNR = 5 dB a) Original channel taps. b) PDEC c) Wiener deconvo-
lution d) Correlation e) Regularized least norm
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Figure 5.6. Comparison of different training sequence based channel estimation meth-
ods at SNR = 0 dB a) Original channel taps. b) PDEC c) Wiener deconvo-
lution d) Correlation e) Regularized least norm
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5.4.8. Test Results

PDEC performance is very prominent in comparison to correlation and Wiener

deconvolution in Figure 5.3 at 20 dB SNR. The variance of interference in PDEC is around

4 dB less than that of the Wiener deconvolution and around 9 dB less than that of the

correlation. Besides, correlation has considerable number of spurious taps.

At 10 dB SNR depicted in Figure 5.4, PDEC has an interference 3.85 dB less

than that of Wiener deconvolution and 8.60 dB less than that of correlation. Wiener

deconvolution has a lower interference than that of correlation.

At 5 dB SNR depicted in Figure 5.5, PDEC has an interference 3.92 dB less

than that of Wiener deconvolution and 7.10 dB less than that of correlation. Wiener

deconvolution has a lower interference than that of correlation.

At 0 dB SNR depicted in Figure 5.6, PDEC has an interference 3.69 dB less

than that of Wiener deconvolution and 4.19 dB less than that of correlation. Wiener

deconvolution has now nearly equal interference to that of correlation.

In all tests PDEC had a stable and superior performance over other methods. Reg-

ularized least norm is just given to show that it is not a preferable solution even at high

SNR levels. PDEC is prominently superior at high SNR levels because interference over-

shadows random noise when SNR is high. While Wiener deconvolution is superior to

correlation at high SNR, the gap closes as SNR goes to zero and the performance of both

methods become very poor.
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CHAPTER 6

SPARSE CHANNEL EQUALIZATION

6.1. Equalization

Equalization like channel estimation is an inverse problem. Equalization aims

to equalize (flatten) the frequency response of the channel between the transmitter and

receiver in order to make the overall channel appear like an ideal uni-path channel in

which each individual sample received is the delayed and scaled version of a transmitted

symbol. In other words, equalizer aims to remove inter symbol interference from received

samples. The eventual purpose of channel estimation is to provide CIR to a channel

estimation based equalizer.

The purpose of the overall channel estimation and equalization system is to de-

crease the symbol or bit error rate of the incoming digital stream down to the point that

the remaining errors can be corrected by the error correction modules. Otherwise, the er-

ror rate of the incoming stream might be too high to be error corrected, particularly under

noisy and weak signal conditions.

6.2. Equalizers

Equalizers are physical devices that perform equalization to remove ISI from re-

ceived samples. There are different equalizer implementations. Some equalizers work

with stored sequences and are called sequence estimators. They are better in terms of

performance but are more computationally complex. Besides, they require larger storage.

One well-known example is the maximum likelihood sequence estimator (MLSE) which

is optimum if the noise is additive white Gaussian noise (AWGN). Other more practical

equalizers are filters which perform symbol-by-symbol detection without a large storage

and computation. They are called symbol-by-symbol equalizers (SSE). Some SSE equal-

izers may self-adapt to a channel using the detected symbols and a training sequence

without any need for channel estimation. However, they are slow to adapt and therefore
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are not robust enough to be used in high symbol and compression rate transmissions.

Channel estimation based SSE equalizers are faster and more robust since they do not

need a self-adaptation period. SSE equalizers can be classified as:

• Linear equalizers

– Zero forcing linear equalizers (ZF-LE).

– Minimum mean square error linear equalizers (MMSE-LE).

• Decision feedback equalizers (DFE).

6.3. Linear Equalizers

There exist mainly two types of linear equalizers. They are the zero forcing linear

equalizer (ZF-LE) and minimum mean square error linear equalizer (MMSE-LE).

6.3.1. Zero Forcing Linear Equalizer

Zero forcing linear equalizer (ZF-LE) introduced by Lucky (1965) is an inverse

filter whose frequency response is the inverse of the channel frequency response. As-

suming H(ω) is the Fourier transform of the channel h(t), the frequency response of the

ZF-LE is given by

F (ω) =
1

H(ω)
. (6.1)

The received samples y(t) are the convolution of the channel impulse response h(t) with

the transmitted symbols s(t) plus noise η(t), whose Fourier transforms are Y (ω), H(ω),

S(ω), and N(ω) respectively. The convolution of the ZF-LE impulse response f(t) with

the received samples will therefore yield the equalizer output x(t) such that in Fourier

domain

X(ω) = Y (ω)F (ω) (6.2)

X(ω) = [S(ω)H(ω) +N(ω)]
1

H(ω)
(6.3)

X(ω) = S(ω) +
N(ω)

H(ω)
. (6.4)
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The inverse Fourier transform of X(ω) given by x(t) = F−1(X(ω)) is the equalizer

output which is expected to be close to s(t). It is obvious from Equation 6.4 that if

the channel impulse response h(t) has deep spectral nulls, the noise will be excessively

amplified and equalization will fail. ZF-LE can only work if the CIR has no deep spectral

nulls and the noise is very low. These limitations prohibit its use as a practical equalizer.

In the inverse problems context, inverse filtering and therefore zero forcing equal-

ization is an ill-posed problem and needs to be regularized.

6.3.2. Minimum Mean Square Error Linear Equalizer

The regularized form of ZF-LE is called MMSE-LE (Lucky, Salz and Weldon

1968), which regularize the equalizer output by minimizing the mean square error.

MMSE-LE frequency response is given in frequency domain by

F (ω) =
H(ω)∗

H(ω)∗H(ω) + λ
. (6.5)

Therefore, the MMSE-LE filter coefficients are

mf = F−1 [F (ω)] , (6.6)

where F−1 is the inverse Fourier transform.

The filter coefficients in time domain are

mf = (HHT + λI)−1Hδ0, (6.7)

where H and δ0 is the channel convolution matrix and the cursor position respectively as

described in Subsection 6.4.1. and Figure 6.4.

The regularization parameter λ prevents the filter frequency response from having

deep spectral nulls. Noise amplification is limited and the filter output is regularized. The

regularization parameter λ is dependent on the signal to noise ratio and is given by,

λ =
NoisePower

SignalPower
=
σ2
n

σ2
s

, (6.8)

where σ2
n is the noise variance and σ2

s is the signal variance.
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Figure 6.1. Detector pulse (DP) shapes. Tails to the left convolve with future symbols
to produce future symbol ISI and tails to the right convolve with past sym-
bols to produce past symbol ISI. a) Ideal unit pulse with zero tail and zero
ISI. b) and c) Practical detector pulses with nonzero tails and nonzero ISI.

Detector Pulse: The convolution of the coefficients f of a linear equalizer with

the channel impulse response h produces the detector pulse DP = f ∗ h and it should

ideally give a unit impulse at the position of the symbol to be detected. In practice, the

DP is not an exact unit impulse but a pulse with tails on both sides as shown in Figure

6.1 b and c. This is due to the finiteness of the filter length and regularization of the filter

coefficients. Nonzero tails indicate the presence of ISI. The tails to the left of the main

pulses cause the ISI from future symbols and tails to the right of the main pulses cause

the ISI from the past symbols.

6.4. Decision Feedback Equalizers (DFE)

Decision feedback equalizer is a nonlinear equalizer first introduced by Austin

(1967). DFE has a feedback filter which evaluates the interference caused by the previ-

ously detected symbols and subtracts it from the feedforward filter output. This way, DFE

eliminates the ISI caused by the already detected symbols (assuming they are all correct)
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leaving only the ISI caused by future symbols. Therefore DFEs perform much better than

the linear equalizers. Since MLSE is not practically feasible for long channels and large

signal constellations, DFEs are the only plausible option for equalizing such channels.

DFEs suffer from error bursts if erroneous symbols are fed back.

 

 

SAMPLES SYMBOLSFFF

FBF

ISI

Figure 6.2. DFE Block Diagram. FFF: Feedforward filter. FBF: Feedback filter.
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Figure 6.3. Detector pulse (DP) shapes of the DFE feedforward filter (top) and Overall
DFE (bottom).

DFE consists of two filters as shown in Figure 6.2. Feedforward filter (FFF) is a

regularized linear filter. Feedback filter (FBF) is also a linear filter. The coefficients of

both filters are jointly optimized for a given criterion usually for MMSE. If the feedback

filter is removed, FFF still works as a linear equalizer with a much lower performance.
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One important consideration in DFE performance is the length of filters which

depend on a couple of factors given as,

• Channel Length

• Hardware Constraint

• Target Performance

Using too long or too short filters may degrade the performance. Filter lengths should be

comparable to the channel length.

Another important factor in DFE performance is the cursor position. Cursor posi-

tion is the delay that FFF detects a symbol. Cursor position affects both the FBF length

and detection performance. Cursor can be anywhere through the length of FFF but it

should not be very close to the edges. Performance jumps may be observed if cursor

position is even slightly changed particularly for short filter designs due to hardware lim-

itations (Al-Dhahir 1996).

6.4.1. Inverse Problem Derivation of Minimum Mean Square Error

DFE Filter Coefficients

Figure 6.4 describes the convolution of the transmitted symbols xwith the channel

impulse response h = [h0, h1, h2, ..., hL] using a convolution matrix H . Figure 6.4 em-

phasizes that the transmitted symbol vector x can be partitioned into a past symbol vector

xp, and a future symbol vector xf . This partitioning will help understand the operational

mechanism of DFEs. DFEs use past decisions xp to subtract the part of the ISI caused by

them. Therefore, it will prove to be useful to partition the symbol vector into past and fu-

ture symbol vectors in order to understand the DFE operation. The convolution equation

described in Figure 6.4 is

y = Hfxf +Hpxp, (6.9)

where

H = [Hf |Hp] and x =
[
xf
xp

]
.

If the contributionHpxp due to the symbols already detected is subtracted from y, the new
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Figure 6.4. Convolution of transmitted symbols x with channel impulse response h
using a channel convolution matrix H (noiseless).

equation is

y −Hpxp = Hfxf . (6.10)

Using the pseudo inverse of the matrix of Hf , xf is given by

xf = HT
f (HfH

T
f )−1(y −Hpxp). (6.11)

Since HfH
T
f may not be well posed, a regularization term λI is normally added. The

regularized equation is

xf = HT
f (HfH

T
f + λI)−1(y −Hpxp). (6.12)

Rewriting the above equation produces

xf = HT
f (HfH

T
f + λI)−1y −HT

f (HfH
T
f + λI)−1Hpxp. (6.13)

The symbol x0 to be detected is at the cursor position and is given by x0 = xTf δ0, where

δ0 = [0, 0, .., 0, 1, 0, .., 0]T . x0 = xTf δ0 is given by

x0 = xTf δ0 = yT (HfH
T
f + λI)−1Hfδ0︸ ︷︷ ︸

Feedforward

−xTpHT
p (HfH

T
f + λI)−1Hfδ0︸ ︷︷ ︸

Feedback

. (6.14)
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Equation 6.14 reveals the feedforward and feedback parts of DFE.

Feedforward filter coefficients are:

mf = (HfH
T
f + λI)−1Hfδ0, (6.15)

Feedback filter coefficients are:

mb = HT
p (HfH

T
f + λI)−1Hfδ0 (6.16)

mb = HT
p mf (6.17)

It needs to be noted that from whatever process the feedforward coefficient mf

are obtained, they are used also to produce the feedback coefficients by convolving mf

with the channel impulse response to produce the detector pulse DP. The feedback filter

coefficients are the values of the DP to the right of the main pulse as shown in Figure 6.3.

The regularization parameter λ that minimizes the mean square error is,

λ =
Noise Power

Signal Power
=

σ2
n

σ2
x

(6.18)

This standard derivation of DFE filter coefficients isolates the past and future symbols

xp and xf and partitions the convolution matrix into two parts Hf and Hp and calculates

the FFF coefficients using only Hf submatrix. This has the advantage that Hf is more

deterministic compared to the underdetermined matrix H and therefore interference from

future symbols will be greatly reduced. The main disadvantage of this derivation is that

the FFF coefficients are derived on the assumption that all past decisions are correct. In

this derivation, past symbols xp and corresponding part of H , Hp is neglected. This has

the consequence of larger FBF coefficients in turn for a lower ISI from future symbols

which may increase the probability and the duration of burst errors at high noise levels. In

low or no noise cases, DFE can achieve very low error rates which is not possible using

linear equalizers (Proakis 1995).
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6.5. Frequency Compensated Linear Equalizer (FC-LE)

6.5.1. Introduction

In this section, a new equalizer architecture called frequency compensated linear

equalizer (FC-LE) is introduced. It is well known that linear equalizers (LE) suffer from

noise amplification when the channel has deep fades namely very low spectral compo-

nents. Figure 6.5 shows a typical fading channel (Proakis 1995) and its magnitude re-

sponse. Linear equalizers can not achieve very low error rates at low noise levels or even

in the absence of noise. Therefore linear equalizers are not a choice for high performance

equalization. DFEs suffer from frequent burst errors particularly at high noise levels but

they perform well in the low to no-noise region. FC-LE combines the simplicity of linear

equalizer with the probability based decision capability of optimal detector MLSE.

6.5.2. Architecture and Operation

As shown in Figure 6.6, frequency compensated linear equalizer consists of three

consecutive blocks, prefilter, linear equalizer, and a decision device. Prefilter filters re-

ceived symbols before applying a linear equalization. If channel impulse response has

a low pass characteristic, prefilter is a low pass moving sum filter or if the channel im-

pulse response has a high pass characteristic, prefilter is a high pass moving difference

filter. Linear equalizer receives either the sum or difference of two samples. This way,

frequency components of the received and filtered symbols will have been lowered at po-

sitions the channel have fades and hence noise amplification will be somewhat reduced.

Depending on the prefilter type, the output of the linear equalizer will now be groups of

two symbols added or subtracted instead of a single symbol. A decision device at the

output of the linear equalizer will determine the most likely symbol.
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Figure 6.5. a) Coefficients of the channel in Figure 10.2.5(b) in Proakis (1995). b)
magnitude responses of the channel (black) and the low-pass prefilter
(gray-dashed). c) Combined MMSE-LE and prefilter magnitude response
(black) and MMSE-LE magnitude response (gray-dahed) for SNR = 10
dB. d) Combined MMSE-LE and prefilter magnitude response (black) and
MMSE-LE magnitude response (gray-dahed) for SNR = 20 dB.

6.5.3. Description of the FC-LE Blocks

Low Pass Prefilter: It is a simple moving sum filter. It convolves the input samples with

the vector [1,1]. It sums two consecutive samples.

High Pass Prefilter: It is a simple moving difference filter. It convolves the input

samples with the vector [-1,1]. It subtracts two consecutive samples.

Linear Equalizer: Minimum mean square error linear equalizer.

Low Pass Decision Device (LPDD): LPDD slices the output of the linear equalizer into

three regions. Let u[n] represent the linear equalizer output and x[n] represent the symbols

outputted by the decision device. Then the rules that produces the symbols are given as
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LP PREFILTER 
         [1,1] 

HP PREFILTER 
         [-1,1] 

LINEAR EQUALIZER SAMPLES SWITCH

LP DECISION

SYMBOLS

HP DECISION

SWITCH

Figure 6.6. Blocks of a frequency compensated linear equalizer (FC-LE)

follows,

− 1 ≤ u[n] ≤ 1 x[n] = −x[n− 1]

u[n] ≥ 1 x[n] = 1

u[n] ≤ −1 x[n] = −1

High Pass Decision Device (HPDD): Like LPDD, HPDD slices the output of the linear

equalizer into three regions. Then the rules that produces the symbols are given as

follows,

− 1 ≤ u[n] ≤ 1 x[n] = x[n− 1]

u[n] ≥ 1 x[n] = 1

u[n] ≤ −1 x[n] = −1

The only difference between LPDD and HPDD is that when the equalizer output

u[n] is between minus one and one LPDD inverts the previous symbol whereas HPDD

outputs the previous symbol as the current symbol.

88



6.5.4. Embedded Prefilter FC-LE Architecture

As shown in Figure 6.7, an alternative architecture for FC-LE is the one which

combines each prefilter with linear equalizer to produce two linear equalizers each for

low and high pass channels. Decision devices are as described in Subsection 6.5.3.. The

 

LOW PASS LINEAR EQUALIZER

SAMPLES SWITCH

LP DECISION

SYMBOLS

HP DECISION

HIGH PASS LINEAR EQUALIZER

Figure 6.7. Embedded prefilter architecture for the frequency compensated linear
equalizer (FC-LE).

advantage of the embedded prefilter architecture is that the number of switches are re-

duced to one and prefilter blocks are eliminated.

6.5.5. FC-LE Linear Equalizer Coefficients and Detector Pulses

The equalizer coefficients in the non embedded FC-LE are derived according

to the MMSE criteria as described in Subsection 6.3.2.. In the embedded prefilter

architecture, MMSE-LE coefficients are convolved with the vector [1,1] for the low pass

linear equalizer and with the vector [-1,1] for the high pass linear equalizer.
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Figure 6.8. Detector pulse (DP) shapes of the MMSE-LE filter (top) and FC-LE filter
(bottom) for the channel of Figure 10.2.5(b) in Proakis (1995). The linear
equalizers of both filters are identical. Note that the pulse magnitude of
the MMSE-LE is lower than that of the FC-LE and the tails of the MMSE-
LE have larger coefficients than those of the FC-LE. This indicates larger
noise and ISI amplification.

As shown in Figure 6.8, FC-LE makes double symbol detection instead of the

single symbol detection of LEs. Detector pulses in Figure 6.8 clearly indicate that fre-

quency compensation in FC-LE greatly reduces the inter-symbol interference and noise

amplification by reducing the pulse tail coefficients and increasing the pulse magnitude.

6.5.6. Performance

Performance comparison between FC-LE and DFE for the channel of Figure

10.2.5(b) in Proakis (1995) yields the data in Table 6.1. As shown in Table 6.1, in the

low SNR range DFE performs better than FC-LE by around 2.8 dB. In the high SNR

range above 15 dB, the difference decreases towards zero. FC-LE has a non-feedback

configuration and its performance is close to DFE in medium to high SNR region.
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Table 6.1. Error probability versus SNR for FC-LE and DFE.

Error Probability SNR FC-LE SNR DFE SNR Difference

10−6 20.0 dB 18.5 dB 1.5 dB

10−5 19.0 dB 16.7 dB 2.3 dB

10−4 17.6 dB 15.3 dB 2.3 dB

10−3 15.7 dB 13.0 dB 2.7 dB

10−2 12.8 dB 10.0 dB 2.8 dB
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CHAPTER 7

DTV CHANNEL ESTIMATION

7.1. DTV Channel

                          
                              DTV Data Transmission Model 
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Figure 7.1. General DTV data transmission model block diagram.

The DTV transmission model depicted in Figure 7.1 consists of three main parts.

The first part is the transmitter where the digital data is passed through a root-raised

cosine pulse shaping filter for better ISI immunity. The second part is the receiver where

received samples are passed through a pulse matched filter and equalized for the channel.

The third part is the physical channel which may have multi-path characteristics. There

exists a channel estimation module in the receiver for channel equalization purposes.
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7.2. Properties of DTV CIR Data

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

delay

am
pl

itu
de

Brazil D-Super Test Channel 1

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

delay

am
pl

itu
de

Brazil D-Super Test Channel 6

Figure 7.2. Two Brazil D-Super test channels are shown. These channels are designed
to measure the performance of DTV receivers against different real-life
channel characteristics. Note the sparsity of the channel with only a few
major taps and their tails as compared to the channel lengths of 512.

In digital communications, channel impulse response (CIR) data is represented by

a vector of complex numbers. Each vector element represents a time delayed and scaled

reception of the transmitted stream due to a reflection. The index of each vector element

is the amount of delay in symbol periods and the value of each element is the strength of

the reception at this time delay. For example, if there are 12 multi-path receptions perhaps

due to 11 reflecting objects and 1 direct reception, there will be 12 significant values on

the CIR vector all others being close to zero. These significant values are called taps and

will be used in the calculation of equalizer filter coefficients. As transmission bit-rate goes

high, the length of the CIR vector becomes longer because time intervals in terms of bit

periods is proportional to the bit-rate as indicated in the equation δ = (L/c)BR, where L

is the path difference, c is the speed of light, δ is the time difference in bit periods, BR

is the transmission bit-rate. For example, for a 12 Mbit/s DTV transmission, 1 km path

difference between two nearest receptions is roughly equal to (1000/c)12.106 = 40 bits.

This means that there are 39 zero taps between the two receptions. It is not unusual to
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have 10 km difference between the closest and farthest receptions making the CIR length

at least 400 bits for HDTV broadcasts. Number of objects causing significant multi-path

reflections are generally limited and are much less than the channel length. Therefore CIR

for DTV broadcasts are sparse having usually less than 10% of their taps nonzero. High

bit-rate channels can be said to have 3 main properties. 1) They are long. 2) They are

sparse. 3) In general, the magnitude of significant taps decreases as their index increase

indicative of the fact that larger index taps represent farther receptions and hence weaker

signals. The sparsity of the CIR is an important advantage in its estimation as will be

indicated in the following sections. Figure 7.2 depicts two examples of DTV channels as

seen from the PMF output in the receiver.

7.3. Terrestrial DTV Frame Structure and Channel Estimation

Challenge

The 8-VSB Digital Broadcast Standard has been standardized in ATSC (1995)

for the terrestrial video broadcasting in the United States. As shown in Figure 7.3, this

standard has a frame structure consisting of 313 segments. Each segment has 832 sym-

bols. First four symbols of each segment are allocated for segment synchronization. First

segment of each frame has 700 frame synchronization symbols following the first 4 sym-

bols for segment synchronization. The subsequent 128 symbols in the first segment are

reserved. Each of the remaining 312 segments have 828 data symbols following the

first 4 segment synchronization symbols. Therefore each 8-VSB DTV frame consists

of 313 × (4 + 828) = 260416 symbols. Of which 312 × 828 = 258336 symbols are

for data, 313 × 4 = 1252 symbols are for segment synchronization and 700 symbols for

frame synchronization. It should be noted that all synchronization symbols are known by

both the transmitter and receiver. Although the 700 frame synchronization symbols are

not truly intended for channel estimation, it is possible to utilize them for this objective.

The challenge here is 700 symbols plus the first four symbols making 704 total are not

sufficient to get a least squares estimate of a channel more than 352 symbols long. And

indeed, DTV channels are almost always longer than 352 symbols ranging between 500

and 600 symbols. That long a channel makes the system heavily underdetermined and

hence unsolvable unless some other constraints are available. Luckily, besides being very

94



long, DTV channels are very sparse. Otherwise estimating a 576 symbols long channel

using only a 704 symbols long sequence would not be possible. The challenge here is to

estimate a long delay spread sparse channel using a short training sequence. The problem

can be treated as a ULDIP type inverse problem and sparse recovery techniques such as

SP, CoSamp, SCR and CR which have been introduced in the previous chapters can be

applied.

 
8-VSB DTV FRAME 

 
 
 
 
 
 
 

4 700 128 
4 828 
4 828 
4 828 
4 828 
4 828 
  

4 828 

313 Segments

Figure 7.3. The 8-VSB DTV Frame Structure is shown (ATSC 1995). Each frame
consists of 313 segments. Each segment begins with 4 symbols allocated
for segment synchronization. The remaining 828 symbols in each segment
is the payload carrying video and audio data and associated overhead. The
first 704 symbols in the first segment of every frame are for frame synchro-
nization, the remaining 128 symbols are reserved. As a secondary purpose,
these 704 bits can be used for channel estimation.

7.4. Estimation of Long Delay Spread Sparse DTV Channels through

Sparse Recovery Methods Using Short Training Sequences

7.4.1. Problem Statement

As stated in the previous section, in 8-VSB standard there are only 704 training

symbols available to estimate a channel of length more than 500 samples. In order to
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evaluate a least squares estimate of the channel, a linear discrete forward problem must

be formulated and the corresponding inverse problem must be solved. The system can

be described by the well known formula y = Ah + n where y is the received samples,

A is the Toeplitz matrix constructed from the training sequence, h is the channel impulse

response and n is the noise. It is known that the received samples are the convolution

of the transmitted symbols with the channel impulse response (CIR). This convolution is

formulated in discrete time by using a Toeplitz matrix A whose each row is a one sample

shifted version of the row above itself. This can best be explained by an example. Assume

that a training sequence of length 10 is given by

T = [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9]

To estimate a channel of length 7 using the received data corresponding only to the known

symbols, the following 4 by 7 Toeplitz matrix must be constructed.

A =


a3 a4 a5 a6 a7 a8 a9

a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7

a0 a1 a2 a3 a4 a5 a6


Then the forward system of convolution y = Ah+ n is


y0

y1

y2

y3

 =


a3 a4 a5 a6 a7 a8 a9

a2 a3 a4 a5 a6 a7 a8

a1 a2 a3 a4 a5 a6 a7

a0 a1 a2 a3 a4 a5 a6

 ·



h0

h1

h2

h3

h4

h5

h6


+


n0

n1

n2

n3



This is an underdetermined system since the matrix A has more columns than rows. From

this example, it can be seen that if a training sequence of length L is used to estimate a

CIR of length N using received samples corresponding only to known training symbols,

a Toeplitz convolution matrix of dimension M ×N is needed where M = L−N + 1.
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For the case of 8-VSB DTV channel case, there is a training sequence of length

L = 704 and a CIR more than 500 samples long. For the time being, a channel length

of N = 576 samples will be assumed. The convolution Toeplitz matrix will then be a

129 × 576 matrix. This indeed is a heavily underdetermined matrix whose number of

rows are less than one forth of number of columns and hence the stated problem is a

ULDIP type problem requiring sparse recovery algorithms to solve.

7.4.2. Solution

The solution to the inverse problem stated in above subsection is to use one of the

sparse recovery methods developed for ULDIP type problems whose solution is expected

to be highly sparse. Among such methods as mentioned in Chapter 2 are SCR, CR, SP,

CoSamp or IHT. The best way to evaluate their performances on this particular problem

is to make test simulations. In the following subsection, simulations are carried out and

their results are displayed for comparison.

7.4.3. Testing CR and SP for Long Delay Spread DTV Channel

Estimation

Test Environment:

DTV channels 5 through 10 are used for testing. Their delay and attenuation

values c(t) are given in Appendix A. Referring to the DTV transmission model block

diagram in Figure 7.1, the physical CIR c(t) represents the physical multi-path channel as

seen between the transmitter and receiver antennas. Overall channel CIR h(t) represents

the channel between the input of the pulse shaping filter in the transmitter and the output

of the pulse matched filter in the receiver. In the following tests, only the channel impulse

response h(t) will be recovered. The CIR h(t) of the channel observed from the pulse

matched filter output in the receiver is the triple convolution of the physical channel c(t)

with the pulse shaping filter impulse response q(t) in the transmitter and pulse matched

filter impulse response q∗(−t) in the receiver and is given by the convolution equations

h(t) = c(t) ∗ p(t), where p(t) = q(t) ∗ q∗(−t).
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DTV Physical Channel Impulse Response c(t)  Versus  Overall Channel Impulse Response  h(t) 

 
TRAINING 
SEQUENCE 

PSF 
q(t) 

PMF 
q*(-t) 

SAMPLER 

c(t)
Antenna Antenna 

h(t) 

PSF  : Pulse Shaping Filter 
PMF : Pulse Matched Filter 
c(t)  : Physical channel between the antennas 
h(t)  : Overall channel between the input of PSF and the output of PMF 

  h(t) = c(t) * q(t) * q*(-t) 

Figure 7.4. c(t) versus h(t). Impulse response c(t) between the transmitter and re-
ceiver antennas versus impulse response h(t) between the input of the
pulse shaping filter in the transmitter and the output of the pulse matched
filter in the receiver. Therefore h(t) is the triple convolution of the phys-
ical channel impulse response c(t) and the transmitter pulse shaping filter
impulse response q(t) and the receiver pulse matched filter q∗(−t) as given
by the equation h(t) = c(t) ∗ p(t), where p(t) = q(t) ∗ q∗(−t).

For 8-VSB DTV channels, pulse shaping and pulse matched filters are identical q(t) =

q∗(−t).

There will be 6 tests using the CR and SP algorithms for no noise and 20 dB

SNR cases. 704 symbols long 8-VSB training sequence (ATSC 1995) will be used as the

training sequence. The tests will be carried out for no noise case and for 20 dB SNR with

Gaussian noise. A 129 by 576 Toeplitz matrix will be formed for sparse recovery.

Each figure for all 6 tests will have vertically positioned 5 plots (a), (b), (c), (d)

and (e). The top most plot (a) will be the original CIR h(t) of the corresponding channel.

Plots (b) and (c) will depict the CR output for noiseless and 20 dB SNR cases respectively.

Plots (d) and (e) will depict the SP output for noiseless and 20 dB SNR cases respectively.
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Figure 7.5. a) Channel 5 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.

99



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Brazil D-Super Test Channel 6

a)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
CR     No Noise

b)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
CR    SNR = 20 dB

c)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
SP       No Noise

d)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
SP      SNR = 20 dB

e)       

Figure 7.6. a) Channel 6 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.

100



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Brazil D-Super Test Channel 7

a)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
CR     No Noise

b)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
CR    SNR = 20 dB

c)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
SP       No Noise

d)       

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
SP      SNR = 20 dB

e)       

Figure 7.7. a) Channel 7 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.8. a) Channel 8 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.9. a) Channel 9 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.10. a) Channel 10 b) CR estimate without noise c) CR estimate at SNR = 20
dB d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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7.4.4. Test Results

Tests with channel 5 in Figure 7.5 show that both CR and SP have estimated all

the taps but SP seems to introduce some small spurious taps at 20 dB SNR. Tests with

channel 6 in Figure 7.6 show that CR has small spurious taps in the no noise case. But SP

has more spurious taps at 20 dB SNR. Both algorithms exhibit similar performances in

the tests with channel 7 as shown in Figure 7.7. SP performs good in the test with channel

8 for the no noise case but has more spurious taps at 20 dB SNR as shown in Figure 7.8.

Both algorithms exhibit nearly equal performances for channel 9 and channel 10 as shown

in Figures 7.9 and 7.10.

It is of primary importance to estimate correctly the channel tap positions rather

tan the channel tap values since once the positions of the major taps are determined,

method of least squares of a small dimension can be used to accurately determine the tap

values. In all tests, CR seems to loose low amplitude tails slightly more than SP. However

at 20 dB SNR, SP introduces spurious taps slightly more than CR. This is more prominent

in Figures 7.6 and 7.7. All 6 tests demonstrate that both SP and CR algorithms can recover

sparse DTV channels with nearly equal performances.

7.4.5. Direct Estimation of the Physical Channel Taps c(t)

Problem Statement: As can be seen from the tests in the previous subsection

and from the sample channel in Figure 7.11, the overall channel impulse response h(t) to

be recovered may not be perfectly sparse although the underlying physical channel c(t)

is perfectly sparse having only a few nonzero taps as shown in the table in Appendix A.

Due to the convolution with PSF and PMF impulse responses, the taps in h(t) has long

and sometimes overlapping tails which are non zero as shown in Figure 7.11. Since the

sparse recovery methods that estimate the CIR assumes that the channel h(t) is perfectly

sparse, their performance may suffer by missing some low amplitude tails particularly in

the presence of noise as shown in the tests in the previous subsection.

The Solution: The solution to this problem is to estimate the physical CIR c(t)

directly instead of the overall CIR h(t). Since c(t) is much sparser than h(t) as shown

in Figure 7.11, much better performance is expected from sparse recovery algorithms
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Figure 7.11. A sample physical channel impulse response c(t) (top) versus overall chan-
nel impulse response h(t) (bottom). Note that c(t) is much sparser than
h(t).

for the estimation of c(t). Once c(t) is estimated, it is trivial to obtain h(t) through the

convolution operation h(t) = c(t) ∗ p(t). Instead of using the 8-VSB training sequence

(ts) of 704 symbols directly, it will be convolved with the PSF and PMF filter impulse

responses before being used in the sparse recovery of the channel. The new training

sequence tsnew will be calculated by the convolution tsnew = ts ∗ p(t) where p(t) =

q(t) ∗ q∗(−t) is the combined impulse response of the PSF and PMF. The system matrix

A which has previously been used to estimate h(t) will now be the Toeplitz of tsnew

instead of ts, that is, A = Toeplitz(tsnew). Using the new convolved training sequence

tsnew instead of ts and solving the ULDIP type problem y(t) = A × c(t), the physical

channel taps c(t) can be estimated.

7.4.6. Tests for Estimating the Physical CIR c(t)

DTV channels 5 through 7 are used for testing. Their delay and attenuation values

c(t) are given in Appendix A. Referring to the DTV transmission model block diagram

in Figure 7.1, the physical CIR c(t) represents the physical multi-path channel as seen

between the transmitter and receiver antennas. There will be 6 tests using the CR and
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SP algorithms for no noise and 20 dB SNR cases. 704 symbols long 8-VSB frame syn-

chronization symbols (ATSC 1995) will be used as the training sequence. The tests will

be carried out for no noise case and for 20 dB SNR with Gaussian noise. A 129 by 576

Toeplitz matrix will be formed for sparse recovery.

Each figure for all 6 tests will have vertically positioned 5 plots (a), (b), (c), (d)

and (e). The top most plot (a) will be the original CIR h(t) of the corresponding channel.

Plots (b) and (c) will depict the CR output for noiseless and 20 dB SNR cases respectively.

Plots (d) and (e) will depict the SP output for noiseless and 20 dB SNR cases respectively.
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Figure 7.12. a) Channel 5 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.13. a) Channel 6 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.14. a) Channel 7 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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Figure 7.15. a) Channel 8 b) CR estimate without noise c) CR estimate at SNR = 20 dB
d) SP estimate without noise e) SP estimate at SNR = 20 dB.
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7.4.7. Test Results

Tests with channel 5 in Figure 7.12 show that both CR and SP have recovered

the physical taps correctly for the no noise cases. Both SP and CR seems to introduce

some small spurious taps at 20 dB SNR. Tests with channel 6 in Figure 7.13 show that

both CR and SP have recovered the physical taps correctly for the no noise cases. But

SP has several spurious taps and CR misses one tap at 20 dB SNR. Both algorithms

exhibit similar performances in the tests with channel 7 shown in Figure 7.14. Figure

7.15 demonstrates that both SP and CR perform well in the tests with channel 8 in the no

noise cases but both have several small spurious taps at 20 dB SNR.

All four tests show that it is possible to undo the effect of PSF and PMF filters and

recover the physical taps directly using sparse recovery algorithms.
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CHAPTER 8

CONCLUSION

In this thesis, a review of inverse problems and regularization has been presented,

some important signal processing problems particularly sparse channel estimation have

been studied from an inverse problem perspective. New solution methods for these prob-

lems are proposed and used for signal processing applications.

Inverse problems are generally harder to solve than direct problems. This is gener-

ally because of the scarcity of information available to solve the inverse problem. In many

practical inverse problems, despite large number of sensory measurements taken, infor-

mation is still very scarce due to physical constraints and indirect sampling. Large number

of near identical sensory measurements makes the inverse problem ill-posed and its solu-

tion very sensitive to measurement errors and noise. Direct solution of inverse problems

generally produce unrealistic, irregular solutions. Additional constraints are needed to

make the solutions regular i.e. realistic. This enforcement of additional constraints is

called regularization. Regularization is usually done by imposing norm minimization on

the solution. Mostly L2 norm (energy) of the solution is minimized. Tikhonov regu-

larization which enforce parametric L2 norm minimization both on the solution and the

error of the inverse problem has a convenient closed form. L0 norm minimization is not

feasible and is not necessary unless the solution has to be sparse. L1 norm minimization

is more robust against outliers than L2 norm minimization but has no convenient closed

form. In addition, L1 norm minimization induces sparsity which may not be necessary in

some practical cases. With a very convenient closed form, Tikhonov regularization stands

out as the most practical regularization method. Optimum regularization parameter se-

lection for regularization is being actively researched and some heuristic methods are

proposed. Manual selection by visual evaluation is still a preferred choice. If the energy

of the solution and noise variance are known a priori, optimum regularization parameter

for Tikhonov regularization is the variance of the noise divided by the variance of the

solution. Apart from the random noise, if measurement errors exist (measurement matrix

is perturbed) this error variance also need to be included in the regularization parameter.
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Most indirect (noninvasive) imaging problems such as biomedical and seismic

imaging fall into the class of overdetermined linear discrete inverse problems (OLDIP).

Practical OLDIP are ill-posed due to large number of proximate measurements required

for an image of useful resolution.

Some important inverse problems encountered in signal processing and communi-

cation are of underdetermined linear discrete inverse problem type (ULDIP). All ULDIP

are ill-posed by nature. They need to be regularized in a similar fashion to OLDIP. Among

infinitely many possible solutions to ULDIP, the one with the minimum norm is selected.

In contrast to ULDIP, practical OLDIP does not have sparse solutions and generally the

energy of the solution and the error is minimized. Some important practical ULDIP in

signal processing and communication have sparse or near sparse solutions. Therefore

L0 norm minimization need to be used. Since L0 norm minimization is not practically

feasible and not suitable for near sparse solutions, L1 norm minimization is preferred

as a substitute for L0 minimization provided that the measurement matrix satisfies the

restricted isometry property. Yet, the complexity of L1 norm minimization is not low

enough for most practical problems.

Alternative sparse recovery methods SP and CoSaMP based on the matching pur-

suit (MP) algorithm are proposed for ULDIP. The initial MP algorithm and its successor

OMP have very low complexities but they perform well only if the solution is guaran-

teed to be very sparse. MP based SP and CoSaMP algorithms perform satisfactorily for

less sparse solutions with some complexity penalty. The constraint removal (CR) algo-

rithm proposed in this thesis is another sparse recovery algorithm which is not based on

matching pursuit. The CR algorithm has better performance than all other sparse recovery

algorithms for zero-one type signals and a similar performance for Gaussian type signals.

Another additional advantage of CR is that it does not require prior sparsity knowledge in

contrast to SP and CoSaMP.

Sparse recovery algorithms SP and CR are demonstrated to be successful in long

delay sparse channel estimation with short training sequences. Yet, their complexities

are not low enough for practical real time channel estimation since all of them use least

squares evaluation at all iterations. They need to be computationally optimized before

they can be used for practical inverse problems. If the channel can be guaranteed to be

very sparse, matching pursuit or its derivative orthogonal matching pursuit can still be a

114



fast and feasible solution (Cotter and Rao 2002).

Being able to estimate long delay spread channels with short training sequences

is highly desirable for an increased channel efficiency. In addition, broadcast standards

(e.g. ATSC 1995) may not allow any training sequences other than what is available in

the standard. High data rate wireless transmissions such as DTV and HDTV broadcasts

involve channel impulse responses with several hundred samples length. Conventional

methods like ML, LS and MAP methods need accordingly long training sequences which

penalize the channel efficiency. Correlation and linear deconvolution are two possible

alternatives. Their performance is low if the channel is not very sparse and if the noise

variance is high. Diversity can be used to improve the estimation performance. Permuted

deconvolution (PDEC) which use the subsequential diversity within the training sequence

itself is proposed to improve the performance of linear deconvolution. PDEC can be

implemented by a low complexity 1-D transversal filter. It can either be used as a stand

alone channel estimator or as an initial step for other estimators.

From an inverse problem perspective, equalization is a ULDIP type inverse prob-

lem. For long delay sparse channels and for limited filter lengths, equalization becomes

a heavily underdetermined and therefore a severely ill-posed problem. Regularization

of this problem using SNR results in linear equalization. When the measurement sys-

tem is severely ill-posed, linear equalization performance becomes unsatisfactory despite

regularization. One remedy to this problem is decision feedback. In inverse problem

terms, decision feedback is equivalent to transforming a heavily underdetermined inverse

problem into a mildly underdetermined or overdetermined one by reducing the horizontal

dimension of the measurement (convolution) matrix. This model assumes that the previ-

ous decisions are correct and part of the convolution matrix corresponding to the previous

decisions can be truncated. In this thesis, a new linear equalizer called frequency com-

pansated linear equalizer (FC-LE) has been proposed. FC-LE is based on double sym-

bol detection to overcome intersymbol interference without a feedback path. FC-LE can

achieve very low error rates at high SNR levels in contrast to linear equalizers which have

an error floor even in the absence of noise. The ultimate goal of FC-LE idea is to achieve

blind equalization through frequency compensation and multiple symbol detection.

115



REFERENCES

Al-Dhahir N. (1996) Efficient computation of the delay-optimized Finite length MMSE-
DFE, IEEE Transactions on Signal Processing, vol. 44 no. 5, pp. 1288-1292.

ATSC. (1995) Digital television standard. A/53, September 1995.

Austin M.E. (1967) Decision-feedback equalization for digital communication over dis-
persive channels, M.I.T. Res. Lab. Electron., Tech. Rep. 461, Aug.

Bertero M., Mol C.D. and Pike E.R. (1985) Linear inverse problems with discrete data: I.
General formulation and singular system analysis, Inverse Problems., vol. 1, no.
4, pp. 301-330.

Bertero M., Mol C.D. and Pike E.R. (1988) Linear inverse problems with discrete data:
II. Stability and regularization, Inverse Problems., vol. 4, no. 3, pp. 573-594.

Bertero M. and Boccacci P. (1998) Introduction to Inverse Problems in Imaging. Institute
of Physics, Bristol.

Bertero M. and Piana M. (2006) Inverse problems in biomedical imaging: modeling and
methods of solution, in Complex Systems in Biomedicine, eds. Quarteroni A.,
Formaggia L., and Veneziani A., 1-33 (Springer, Berlin)

Biondi B. (2006) 3d Seismic Imaging: Three Dimensional Seismic Imaging. Society of
Exploration Geophysicists. ISBN 0-07-011117-0.

Boyd S. and Vandenberghe L. (2004) Convex Optimization. Cambridge Univ. Press.

Brown A.R. (2004) Interpretation of three-dimensional seismic data (sixth ed. ed.). Soci-
ety of Exploration Geophysicists and American Association of Petroleum Geol-
ogists. ISBN 0891813640.

Blumensath T. and Davies M.E., (2009) A simple, efficient and near optimal algorithm
for compressed sensing, in Proceedings of the Int. Conf. on Acoustics, Speech
and Signal Processing.

Blumensath T. and Davies M.E. (2010) Normalised Iterative Hard Thresholding; guaran-
teed stability and performance, IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 4, no. 2, pp. 298-309.

Candès E.J. and Tao. T. (2005) Decoding by linear programming. IEEE Trans. Inform.
Theory, vol. 51, no. 12, pp. 4203-4215.

Candès E.J., Romberg J., and Tao T. (2005) Stable signal recovery from incomplete and
inaccurate measurements, Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-
1223.

Candès E.J. (2006) Compressive sampling, in Proceedings of International Congress of
Mathematics, Madrid, Spain. vol. 3, pp. 1433-1452.

116



Candès E.J. and Tao T. (2006) Near optimal signal recovery from random projections:
universal encoding strategies? IEEE Trans. Inform. Theory, vol. 52, no. 12, pp.
5406-5425.

Candès E.J., Romberg J., and Tao T. (2006) Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 489-509.

Candès E.J and Tao T. (2007) The Dantzig selector: Statistical estimation when p is much
larger than n, Annals of Statistics, vol. 35, no. 6, pp. 2313-2351.

Candès E.J. (2008) The restricted isometry property and its implications for compressed
sensing. C. R. Math. Acad. Sci. Paris, Serie I, vol. 346, no. 9-10, pp. 589-592.

Chartrand R. (2007) Exact reconstruction of sparse signals via nonconvex minimization,
IEEE Signal Processing Letters, vol. 14, no. 10, pp. 707-710.

Chartrand R. and Yin W. (2008) Iteratively reweighted algorithms for compressive sens-
ing. IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP)., pp. 3869-3872.

Chen S.S., Donoho D.L., and Saunders M.A. (1998) Atomic decomposition by basis pur-
suit, SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33-61.

Cotter S.F. and Rao B. D. (2002) Sparse channel estimation via matching pursuit with
application to equalization, IEEE Trans. Commun., vol. 50, no. 3, pp. 374-377.

Dai W. and Milenkovic O. (2008) Subspace pursuit for compressive sensing: Closing the
gap between performance and complexity. CoRR, abs/0803.0811.

Dantzig G.B. (1951) Maximization of a linear function subject to linear inequalities, in T.
C. Koopmans (ed.), Activity Analysis of Production and Allocation, John Wiley
& Sons, New York, pp. 339-347.

Dantzig G.B. (1963) Linear Programming and Extensions, Princeton University Press,
Boston, MA.

Dantzig G.B. and Thapa M.N. (1997) Linear Programming. Springer, New York, NY.

Daubechies I., DeVore R., Fornasier M., and Güntürk C. (2010) Iteratively re-weighted
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APPENDIX A

TEST CHANNELS

The following Tables A.1 and A.2 from Özen (2003) list the DTV test channel

delays (time of arrivals) {τk} in symbol periods (T ), and the relative gains {|ck|}.

Table A.1 Simulated channel delays in symbol periods, relative gains for channels 1-6.

Taps Channel 1 Channel 2 Channel 3
k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2 −23.89216836 0.9848

−1 −1.6143357 0.6457

0 0 1 0 1 0 1

1 1.6143357 0.6457 32.8248259 0.7456 1.6143357 0.12

2 23.89216836 0.9848 63.06671468 0.8616 23.89216836 0.12

3 32.8248259 0.7456 63.82007134 0.315 32.8248259 0.12

4 63.06671468 0.8616 63.06671468 0.12

5 63.82007134 0.315 63.82007134 0.12

Taps Channel 4 Channel 5 Channel 6
k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2 −23.89216836 0.12

−1 −1.6143357 0.12 −0.957839182 0.7263

0 0 1 0 1 0 1

1 32.8248259 0.12 3.2286714 0.2512 3.55153854 0.6457

2 63.06671468 0.12 37.667833 0.631 15.25009125 0.9848

3 63.82007134 0.12 47.3538472 0.4467 24.03207745 0.7456

4 102.241261 0.1778 29.16566498 0.8616

5 136.6804226 0.0794
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Table A.2 Simulated channel delays in symbol periods, relative gains for channels 7-12.

Taps Channel 7 Channel 8 Channel 9
k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2
−1
0 0 1 0 1 0 1

1 5.16587424 0.65575 10.762238 1 15.541 0.46388

2 22.27783266 0.75697 21.524476 1 28.39 0.54405

3 31.2104902 0.87482 246.66 0.22324

4 61.45237898 1.01565

5 62.20573564 0.7379

Taps Channel 10 Channel 11 Channel 12
k {τk} {|ck|} {τk} {|ck|} {τk} {|ck|}
−2
−1 −19.0332 0.12589

0 0 1 0 1 0 1

1 1.5861 0.1 1.6143357 0.2045 32.8248259 0.1

2 19.0332 0.1 23.89216836 0.15

3 60.2718 0.31623 32.8248259 0.1

4 190.332 0.19953 63.06671468 0.2078

5 63.82007134 0.1509
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Technology as a specialist during its establishment phase until January 1997 and then

worked for the University of Ege as a Lecturer until April 1999. He later joined OZ

Optics Canada inc., Ottawa, Canada where he worked as a production and quality engi-

neer until July 2000. He continued his career as a research and development engineer in

Vestelkom inc., İzmir until January 2006. He then joined Vestek inc., İstanbul as a senior
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