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ABSTRACT 

 

DEVELOPMENT OF CLUSTERING AND CLASSIFICATION 

STRATEGIES FOR THE DETERMINATION OF GEOGRAPHICAL 

ORIGIN OF HONEY BY USING ATOMIC AND MOLECULAR 

SPECTROMETRY 

 

Honey is a natural, nutritious and healthy food produced by honeybees from the 

nectar of plants. The classification of honey based on geographical origin is of great 

interest since the quality of honey depends on its chemical composition and 

geographical origin. In this study, it is aimed to develop classification models using 

elemental and molecular composition of honey samples via atomic and molecular 

spectrometry. For this purpose, honey samples from different regions of Turkey were 

collected from producers and they were scanned with Fourier Transform infrared 

spectrometer equipped with attenuated total reflectance (FTIR-ATR) accessory, and 

fluorescence spectrophotometer (synchronous fluorescence mode and 3D excitation 

emission mode). Afterwards, any clustering of the samples based on their regions was 

investigated using principal component analysis (PCA) and hierarchical cluster analysis 

(HCA) and soft independent modeling of class analogies (SIMCA). Finally, inductively 

coupled plasma mass spectrometry was applied to determine the metal concentrations 

(Mg, Al, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba) in honey samples and then the same 

classification methods were performed to compare the results.  

In conclusion, molecular spectrometry gave better classification results based on 

geographical origin compared to the results obtained with atomic spectrometry. 

Molecular spectrometry is more advantageous for the classification of honey samples in 

the case of saving time, saving chemicals and ease of usage.   
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ÖZET 

 

ATOMĠK VE MOLEKÜLER SPEKTROMETRĠ 

KULLANILARAK BALIN COĞRAFĠK KÖKENĠNĠN BELĠRLENMESĠ 

ĠÇĠN SINIFLANDIRMA VE KÜMELEME STRATEJĠLERĠNĠN 

GELĠġTĠRĠLMESĠ 

 

Bal, bal arıları tarafından bitkilerin nektarlarından üretilen, besin değeri 

açısından önemli bir gıda maddesidir. Balların kalitesi, içeriği ve üretildiği bölgeye 

bağlı olmasından dolayı, sınıflandırılmaları büyük önem taĢımaktadır. Bu çalıĢmada, 

atomik ve moleküler spektrometri verilerine kemometrik analiz yöntemlerini 

uygulayarak sınıflandırma modellerinin kurulması amaçlanmıĢtır. Bu amaçla, 

Türkiye‟nin farklı yörelerinden bal örnekleri toplanmıĢtır.ve toplanan örnekler, Fourier 

transform infrared spektrometresinde zayıflatılmıĢ toplam reflektans aparatı (FTIR-

ATR) ve floresans spektrometresi (senkronize floresans ve uyarılma-emisyon modu) ile 

taranmıĢtır. Sonrasında, bölgelere göre kümelenme olup olmayacağını araĢtırmak için 

yönlendirmesiz sınıflandırma (unsupervised classification) metotlarından temel 

bileĢenler analizi (principal component analysis, PCA) ve hiyerarĢik kümeleme analizi 

(hierarchical cluster analysis, HCA) ve yönlendirmeli metotlardan kısmi bağımsız 

benzeĢim modeli (SIMCA) uygulanmıĢtır. Son olarak, örnekler bozundurularak 

indüktüf eĢleĢmiĢ plazma kütle spektrometre (inductively coupled plasma mass 

spectrometer-ICPMS) ile metal içerikleri (Mg, Al, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba) 

belirlenmiĢ ve karĢılaĢtırma yapmak amacı ile aynı sınıflandırma metotları 

uygulanmıĢtır.  

Sonuç olarak, balların coğrafik bölgelerine göre sınıflandırılmasında; moleküler 

spektrometri verilerinin atomik spektrometri verilerine göre daha baĢarılı olduğu 

belirlenmiĢtir. Moleküler spektrometri, analiz için harcanan süre, kimyasal madde 

kullanımı ve kullanım kolaylığı açısından avantajlıdır.  
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CHAPTER 1 

  

INTRODUCTION 

 

1.1. Honey 

  

Honey is a viscous, sweet, substance made by honey bees (Apis Mellifera) 

mostly from nectar of honey plants. Due to its special flavor and sweet taste, honey has 

been long valued as a desired natural sweetener consumed by humans. Being a valuable 

constituent of a rough daily diet, honey is also an important ingredient of other food 

products, beverages and pharmaceuticals. All the properties of honey, including 

nutritious and medicinal effects, result from its unique chemical composition and a 

specific processing subjected by bees to the collected sources (Arvanitoyannis et al. 

2005).  The main parts of honey are simple sugars and water (Figure 1.1). As regards 

the carbohydrates, the average content of fructose and glucose in honey is 38.2 and 31.3 

%, respectively (Pohl et al. 2009a). Other carbohydrates are maltose (7.3 % on average), 

saccharose (2.4 % on average), and few high sugars (1.5 % on average). The average 

moisture content is 17.2 %.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Percentage contributions of honey constituents 

(Source: Pohl et al. 2009) 
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Honey additionally contains proteins and enzymes (diastase, invertase, glucose 

oxidase, and catalase), amino acids, organic acids (acetic, butyric, citric, succinic, lactic, 

malic, gluconic, and ascorbic), vitamins (riboflavin, niacin, folic acid, panthothenic 

acid, and B6), flavonoids, and minerals (Belitz et al. 2004). Honey also includes major, 

minor, and traces metals. Their composition and content are characteristic to the floral 

type of honey, geochemical and climatic conditions attributed to the forage area, and 

locality of an apiary. Usually, the total content of all metals in flora honeys contribute to 

about 0.1–0.2% of their total composition.  

 

1.2. Classification of Honey 

 

Honey is very important food stuff due to its nutrient and therapeutic effects. It 

is the natural product obtained by honey bees (Apis Mellifera L.) from the nectar of 

flowers or from secretions of living parts of the plants. The botanical origin of the 

nectars or secretions determines the composition and characteristics of honey. 

According to different characteristics the classification of honey is possible and there 

are many studies on this topic.  

In literature, several different methods were used for the classification of honey 

samples. Conti et al. (2007) have characterized three types of Italian honey based on 

their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, 

Mg, Cu, Fe, and Mn). Principal components analysis (PCA) and linear discriminant 

analysis (LDA) were applied as pattern recognition methods. Thirty two samples of 

honey from La Pampa (Argentina) have been classified on the basis of their 

phosphorous, aluminum, iron, calcium, magnesium and sodium contents using inductive 

coupled plasma optical emission spectrometry (ICP-OES) by Camina et al. (2008). 

Classification was performed with PCA, cluster analysis (CA) and LDA. Nozal Nalda et 

al. (2005) have classified a total of 73 different honeys from seven botanical origins 

ling, heather, rosemary, thyme, honeydew, spike lavender and French lavender by 

applying discriminant analysis to their metal content data and other common 

physicochemical parameters. Torres et al. (2005) have determined eleven elements (Zn, 

P, B, Mn, Mg, Cu, Ca, Ba, Sr, Na and K) by ICP-OES in 40 honey samples from 

different places of Spain and four different botanical origins: eucalyptus, heather, 

orange-blossom and Rosemary. Then, PCA, cluster analysis and LDA were used for 
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differentiation of honeys according to botanical origin. It was found that Zn, Mn, Mg 

and Na concentrations were strongly dependent on the kind of botanical origin. The 

characterization of honey samples produced in Cordoba (Argentina) and their 

classification by geographical origin (North/South) with the use of 15 variables 

(glucose, pH, free acidity, free amino acids, calcium and zinc) have been reported by 

Baroni et al. (2009). Chudzinska and Baralkiewicz (2010) have studied the mineral 

content of fifty five honey samples, which represented three different types of honey: 

honeydew, buckwheat and rape honey from different areas in Poland. Determination of 

thirteen elements (Al, B, Ba, Ca, Cd, Cu, K, Mg, Mn, Na, Ni, Pb, and Zn) was 

performed using inductively coupled plasma-mass spectrometry (ICP-MS) and CA and 

PCA were applied to classify honey according to mineral content. CA showed three 

clusters corresponding to the three botanical origins of honey. PCA permitted the 

reduction of 13 variables to four principal components explaining 77.19% of the total 

variance.  The only work about the classification of Turkish honeys was performed by 

Senyuva et al. (2009). Seventy authentic honey samples of 9 different floral types 

(rhododendron, chestnut, honeydew, Anzer (thymus spp.), eucalyptus, gossypium, 

citrus, sunflower, and multifloral) have been used from 15 different geographical 

regions of Turkey. The profiles of free amino acids, oligosaccharides, and volatile 

components together with water activity were used for partial least squares (PLS) 

followed by linear discriminant analysis (LDA). 

Infrared spectroscopy is also used for classification. Fourier transform infrared 

(FTIR) spectroscopy coupled with partial least squares (PLS) regression analysis, 

factorial discriminant analysis (FDA), and soft independent modeling of class analogy 

(SIMCA) were used to verify the origin of honey samples (n=150) from Europe and 

South America (Hennessy et al. 2008) according to geographical origin. It was found 

that correct classifications of up to 100% were achieved using SIMCA. Ruoff et al. 

(2006a) also used FTIR spectroscopy for authentication of the botanical origin and the 

geographical origin of honey. Principal component analysis and linear discriminant 

analysis have been applied to evaluate the spectra. Ruoff et al. (2006b) have again used 

Fourier transform near-infrared spectroscopy (FT-NIR) for discrimination of acacia, 

chestnut, and fir honeydew honey from the other unifloral and polyfloral honey types 

studied. Corbella and Cozzolino (2006) have classified floral origin Uruguayan honeys 

using Moisture (M), pH, electric conductivity (EC) values with LDA. A study on 

geographical origin of 167 unfiltered honey samples (88 Irish, 54 Mexican, and 25 
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Spanish) and 125 filtered honey samples (25 Irish, 25 Argentinean, 50 Czech, and 25 

Hungarian) has been performed by Woodcock et al. (2007) using near infrared 

spectroscopy with PCA and SIMCA. Kelly et al. (2006) identified authentic honey and 

honey adulterated by beet sucrose, dextrose syrups, and partial invert corn syrup by the 

use of soft independent modeling of class analogy (SIMCA) and partial least-squares 

(PLS) classification with FTIR-ATR spectra of samples. This combination of 

spectroscopic technique and chemometric methods was not able to definitely identify 

adulteration by high-fructose corn syrup or fully inverted beet syrup. In other work, 

FTIR spectroscopy with ATR accessory has been used to quantify three different 

adulterants (corn syrup, high fructose corn syrup and inverted sugar) in honeys of four 

different locations of Mexico (Velazquez et al. 2009). The calibrations for the three 

adulterants were constructed with partial least squares (PLS) and classification of the 

Mexican honeys from the four different states was succeeded with soft independent 

modeling class analogy (SIMCA). SIMCA analysis was capable to classify correctly the 

origin of the Mexican honeys from four different states. There is not much study on the 

classification of honey with fluorescence spectrometric information. An example of 

such study has been performed by Karoui et al. (2006). In this research, front face 

fluorescence spectroscopy was suggested for seven honey types (acacia, alpine rose, 

chestnut, rape, honeydew, alpine polyfloral and lowland polyfloral). They used the first 

10 principal components (PCs) of the principal component analysis (PCA) extracted 

from each data set and then analyzed by factorial discriminant analysis (FDA).   

In addition, chromatographic methods have been also used in honey analysis for 

classification. Nozal et al. (2005) presented a study to characterize the botanical origin 

of honey from a single geographical area, the Province of Soria (Spain), using 

carbohydrate profiles and canonical discriminant analysis. Fourteen carbohydrates were 

quantified using high-performance liquid chromatography (HPLC) with pulsed 

amperometric detection (PAD) in 77 natural honeys, the botanical origins of which were 

ling, spike lavender, French lavender, thyme, forest, and multifloral. PCA was 

employed as a first approach to characterize the honey samples analyzed, showing 

similarities, then they achieved best discrimination with canonical discrimant analysis. 

Geographical origin of honeys based on volatile compounds profiles was examined by 

Stanimirova et al. (2010). The volatiles in honeys were analyzed by a head-space solid 

phase microextraction (SPME) combined with comprehensive two-dimensional gas 

chromatography–time-of-flight mass spectrometry (GCxGC–TOFMS). Linear 
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discriminant analysis (LDA), soft independent modeling of class analogies (SIMCA), 

discriminant partial least squares (DPLS) were used in this study to discriminate 

between Corsican and non-Corsican honeys. Head-space solid-phase microextraction 

(HS-SPME)-based procedure, coupled to comprehensive two dimensional gas 

chromatography–time-of-flight mass spectrometry (GC×GC–TOF-MS), was employed 

by Cajka et al. (2009) for classification of honey based on honey volatiles. In total, 374 

samples were collected over two production seasons in Corsica (n = 219) and other 

European countries (n = 155). For chemometric analysis, artificial neural networks with 

multilayer perceptrons (ANN-MLP) were tested. Thus, the best prediction (94.5%) and 

classification (96.5%) abilities of the ANN-MLP model were obtained.  

High resolution nuclear magnetic resonance (HR-NMR) data was used by Lolli 

et al. (2008) for the 71 honey samples in order to classify using PCA and general 

discriminant analysis (GDA). There is also one more study with NMR by Consonni and 

Cagliani (2008). Forty one honey samples have been analyzed (polyfloral and acacia) 

from different countries in terms of 1H NMR spectroscopy coupled with multivariate 

statistical methods. Subsequently, PCA and PLS-DA were used for investigation of 

geographical origin. An interesting work was developed by Dias et al. (2008). They 

have used an electronic tongue system based on 20 all-solid-state potentiometric sensors 

and chemometric data processing (PCA, LDA), with polymeric membranes applied on 

solid conducting silver-epoxy supports and a Ag-AgCl reference electrode.  

 

1.3. Classification Methods 

 

Most of the published studies in chemometrsics are on pattern recognition. 

Pattern recognition is used to classify the objects into sets based upon some similarity in 

properties (Einax et al. 1995). The aim is to classify data (patterns) based on either 

knowledge or on statistical information. In chemistry, there are many applications using 

data to determine the patterns. The following examples can be given: wine 

characterization based on the analysis of the biogenic amine composition using the 

chromatographic profiles (Garcia-Villar et al. 2007), verifying the geographical origin 

olive oils by near infrared spectroscopy (Woodcock et al. 2008) and monitoring of water 

quality using nitrate, sulphate, chloride, turbidity, conductivity, hardness, alkalinity, 

coliforms and Escherichia coli data (De Luca et al. 2008).  
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There are many methods for chemical classification. Classification methods in 

chemometrics are mainly divided into two groups: unsupervised and supervised 

techniques.  

 

1.3.1 Unsupervised Methods 

 

The main goal of unsupervised methods is to evaluate whether clustering exists 

in a data set and to find a property of objects using measurements on them. 

Unsupervised methods do not require any prior knowledge about the group structure in 

the data, but instead produce the grouping and this type of methods mainly analyzes the 

data. In some situations the class membership of the samples is known. If the aim is any 

grouping between samples or any outliers, unsupervised pattern recognition techniques 

such as principal component analysis (PCA), hierarchical cluster analysis (HCA) can be 

used. Thus, the class information is known or suspected but is not used initially. (Sharaf 

et al. 1986) 

 

1.3.1.1 Principal Component Analysis (PCA) 

 

In most studies, many variables are measured on each individual, which result a 

huge data set consisting of large number of variables. The dimensionality of the data set 

can often be reduced, without disturbing the main features of the whole data set by 

Principal Component Analysis (PCA) technique. It is a simple, non-parametric method 

of extracting relevant information from confusing data sets. PCA represents the 

relationship among the observations and reveals any deviating observations or groups of 

observations in the data. The main advantage of PCA is that once you can find the 

patterns in the data, and you compress the data (Lindsay 2002).  

While PCA is performed, the dataset is decomposed into two parts, namely, 

meaningful information and error (or noise). The transformation is often mathematically 

described as follows (Brereton 2002). 

   

                                                                                                                                      (1.1) 

where 
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• X is the original data  

• T is the principal component scores and has as many rows as the original data matrix; 

• P is the principal component loadings and has as many columns as the original data 

matrix; 

• E is an error matrix  

Many chemometricians use a "hat" notation to indicate a prediction so  is the 

"prediction" of X using the PC model. 

In other words, the projection of X down on to a d-dimensional subspace by 

means of the projection matrix P gives the object coordinates in this plane, T. The 

columns in T are the score vectors and the rows in P are called loading vectors. Both 

vectors are orthogonal (Otto 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.2. Principal component analysis  

(Source: Brereton 2002) 

 

 

Each score matrix consists of a series of column vectors and each loading matrix 

a series of row vectors. These vectors are denoted by ta and pa, where a is the number of 

principal component (1,2,3,…, A,) The matrices T and P have such vectors one for each 

principal component. Decomposition of the correlation matrix into eigenvalues and 

eigenvectors leads to the linear combination with the dataset simplifications. PCA starts 

with the determination of the number of principal components by the percentage of 

explained variance, eigenvalues, and cross-validation. Eigenvalue is called as the size of 
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each component. The most significant component has the largest size. Simple definition 

of eigenvalue of a principal component is the sum of squares of the scores, so that  

 

                               (1.2) 

 

where is the ga is a
th

 eigenvalue and tia is score vectors. The eigenvectors represent the 

linear combination coefficients and the corresponding eigenvalues represent the 

variance described by each linear combination. As the eigenvalues are in non-

decreasing order, the first linear components account for the largest amount of variance. 

The principal components are determined on the basis of the maximum variance 

criterion (Figure 1.3).  The significance of the each principal component can be tested 

by cross-validation. In cross-validation, each sample is removed once from the data set 

and PCA is performed on the remaining samples. Different scores and loadings matrices 

are obtained depending on removed sample. In this way, all samples are removed once 

and the remaining sample is predicted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 A row plot of data in a two-measurement system, with the first two principal 

component axes.  

 

Each subsequent principal component describes a maximum of variance that is 

not modeled by the former components. According to this, most of the variance of the 

data is contained in the first principal component. In the second component, there is 
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more information than in the third, etc. Finally, as many principal components as are 

computed, those are needed to explain a preset percentage of the variance.   

 In conclusion, PCA is mainly used for; 

- Visualization of multivariate data by scatter plots 

- Transformation of highly correlating x-variables into a smaller set of uncorrelated 

latent variables that can be used by other methods 

- Separation of relevant information (described by a few latent variables) from noise 

- Combination of several variables that characterize a chemical-technological process 

into a single or a few „„characteristic‟‟ variables (Varmuza and Filzmoser 2008). 

 

1.3.1.2. Hierarchical Cluster Analysis  

 

Hierarchical cluster analysis (HCA) is an unsupervised technique concerning 

with forming groups of similar objects based on several measurements of different 

kinds made on the objects. The main idea is to examine the interpoint distances between 

all the samples and represents that information in the form of two dimensional plots as a 

dendrogram. This idea has been applied in many areas including astronomy, 

archeology, medicine, chemistry, education, psychology, linguistics and sociology. 

While constructing a dendrogram, the first step is to determine the similarities 

between objects. It is possible with measuring the distances between objects. There are 

many different methods for measuring a distance and the most used ones for 

hierarchical cluster analysis are as follows: 

1) Euclidean distance: The distance between samples k and l is defined by: 

 

 

                                                                                                                          (1.3) 

 

where there are j measurements and xkj is the j
th

 measurement on sample k. 

 2) Manhattan distance: This is defined slightly differently to the Euclidean 

distance and is given by: 

 

              (1.4) 
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3) Mahalanobis distance: This method is similar to the Euclidean distance; it 

takes into account that some variables may be correlated, thus it measures more or less 

the same properties. 

              (1.5) 

 

Where C is the covariance matrix. The Mahalanobis distance is as same as with 

Euclidean distance if the covariance matrix is the identity matrix.     

After measurement the distances between the objects, the next step is to link 

these objects. The most frequent approach is agglomerative clustering where single 

objects are gradually connected to each other in groups. There are various ways of 

doing this. 

Single linkage: Here the shortest distance between opposite clusters is 

calculated. Thus, the first cluster is one with two observations that have the shortest 

distance. 

Complete linkage: This is similar to single linkage except that this is based on 

the maximum distance; minimum distance is not considered. The maximum distance 

between any two individuals in a cluster represents the smallest (minimum diameter) 

sphere that can enclose the cluster. 

Average linkage: Here the average distance from samples in one cluster to 

samples in other clusters are used. There are two different way of doing this, according 

to the size of each group being joined together.  

i) Unweighted average linkage: with this method the number of objects in a 

cluster is used for weighting the cluster distances. 

ii) Weighted average linkage: the sizes of clusters and their weights are 

assumed to be equal. 

Centroid (Mean) Method: Euclidean distance is measured between centroids of 

two clusters. 

Ward’s method: This method is distinct from all other methods because it uses 

an analysis of variance approach to evaluate the distances between clusters. In short, 

this method attempts to minimize the Sum of Squares (SS) of any two (hypothetical) 

clusters that can be formed at each step.  

There are also various linkage methods, but it is not needed to use too many 

combinations of similarity and linkage methods. However, the general way is to check 

the result of using a combination of approaches. 
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 The next steps consist of ongoing to group the data, until all objects have joined 

one large group. Since there are four original objects, there will be three steps before 

this is achieved. At each step, the most similar pair of objects or clusters is identified, 

and then they are combined into one new cluster, until all objects have been joined 

Figure 1.4 (Brereton 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Simple example illustrating the protocol for cluster analysis. (a) Data set 

consisting of four objects, each characterized by two characters, (b) Objects 

plotted in character space, (c) Similarity matrix showing dissimilarity 

between objects. (d) and (e) Derived similarity matrices used in successive 

steps of the clustering process, (f) Dendrogram. (Source: Varmuza and 

Filzmoser 2008) 

 

1.3.2. Supervised Methods 

 

Supervised methods are used when the goal is to construct a model to be used in 

the classification of future samples. An example of a supervised model is one developed 
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for classifying different raw materials. Measurements are taken on samples for each raw 

material (class) and a model is constructed that the best discriminates the classes. The 

class of new material is predicted with the constructed model to verify the identity. The 

K-Nearest Neighbor (KNN), soft independent modeling of class analogies (SIMCA), 

discriminant analysis are some of the supervised pattern recognition techniques. The K-

Nearest Neighbor (KNN) is supervised technique in which models are constructed using 

the physical closeness of samples in multidimensional space. KNN uses only the 

physical closeness of samples to construct models while soft independent modeling of 

class analogies (SIMCA) uses the position and shape of the object formed by the 

samples in row space. In SIMCA, multidimensional box is constructed for each class 

using PCA and the classification of future samples is performed by determining within 

which box the sample belongs. 

The purpose of discriminant analysis is to classify objects into one of two or 

more groups based on a set of features that describe the objects. Thus, in discriminant 

analysis, the dependent variable (Y) is the group and the independent variables (X) are 

the object features that might describe the group. The dependent variable is always 

category (nominal scale) variable while the independent variables can be any 

measurement scale (i.e. nominal, ordinal, interval or ratio). Discriminant analysis uses 

continuous variable measurements on different groups of items to highlight aspects that 

distinguish the groups and to use these measurements to classify new items (Beebe et al. 

1998). 

In the present study, the unsupervised methods like principal component analysis 

(PCA) and hierarchical cluster analysis (HCA) were used for classifying honey samples 

from different regions of Turkey. Afterwards, same samples were analyzed with a 

supervised technique which was soft independent modeling of class analogies 

(SIMCA).  

 

1.3.2.1. Soft Independent Modeling of Class Analogies (SIMCA) 

 

In principal component analysis (PCA), the class information is not used in the 

construction of the model and PCA just describes the overall variation in the data. 

However, PCA can be coupled with the class information in order to give classification 

models by means of soft independent modeling of class analogy. SIMCA was first 
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introduced by Svante Wold in the early 1970s. It is defined as “soft” since no 

hypothesis on the distribution of variables is made and “independent” since classes are 

modeled one at a time i.e. each class model is developed independently (Sun 2009).  

In SIMCA, a PCA is performed on each class in the data set, and a sufficient 

number of principal components are kept to explain for most of the variation within 

each class. Therefore, a principal component model is used to represent each class in the 

data set. The number of principal components retained for each class is usually 

different. Thus, the class models may represent lines, planes, boxes or hyper boxes as 

demonstrated in Figure 1.5.  

 

 

Figure 1.5. Principle of SIMCA modeling and classification 

(Source: Varmuza and Filzmose 2008). 

 

Group A can be modeled by a single prototype point (usually the center of the 

group) and a sphere with an appropriate radius. Group B is distributed along a straight 

line, and one principal component, PCB1, together with an appropriate radius defines a 

model with a cylindrical shape. Group C requires two principal components, PCC1 and 

PCC2, and the geometric model is a rectangular box. The single object D would be 

recognized not to belong to any of the groups A–C. 

Deciding on the number of principal components that should be retained for 

each class is important, as retention of too few components can distort the signal or 

information content contained in the model about the class, whereas retention of too 

many principal components diminishes the signal-to-noise. A procedure called cross-
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validation ensures that the model size can be determined directly from the data. To 

perform cross-validation, segments of the data are omitted during the PCA. Using one, 

two, three, etc., principal components, omitted data are predicted and compared to the 

actual values. This procedure is repeated until every data element has been kept out 

once. The principal component model that yields the minimum prediction error for the 

omitted data is retained (Brereton 2002) 

SIMCA develops principal component models for each training class separately 

and provides information including critical distances which can be calculated as the 

geometric distance of each object from the principal component models. Following the 

modeling for classes, each sample is fitted to each model and classification of the 

sample with corresponding class is achieved. SIMCA results can be graphically 

visualized. Thus, a plot of the loadings and the scores of the PCA performed on the 

training set provide information about outliers, sub-groupings and within-class 

structure. Moreover, a useful tool for the interpretation of SIMCA results is the so-

called Cooman‟s plot (Figure 1.6), which shows the discrimination of two classes.  

 

Figure 1.6. The Cooman‟s plot uses the distances of the objects to the PCA models of 

two groups. It visualizes whether objects belong to one of the groups, to 

both, or to none (Source: Varmuza and Filzmose 2008). 

 

The distance from the model for class 1 is plotted against that from model 2. The 

critical distances (usually at 95% of confidence level) are indicated on both axes. 
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Consequently, four zones are defined on the plot: class 1, class 2, overlap of classes‟ 1 

and 2, and outlier zone (far from both classes). By plotting objects in this plot it is easy 

to visualize how certain a classification is (Berrueta et al. 2007). The Cooman‟s Plot 

gives information about the class membership of the observations for two models 

simultaneously.  

 

1.4. Inductively Coupled Plasma Mass Spectrometry  

 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is an analytical 

technique used for trace multielement analysis, often at the part per trillion levels. The 

technique was commercially introduced in 1983 and has gained general acceptance in 

many types of laboratories. An ICP-MS combines a high-temperature ICP (Inductively 

Coupled Plasma) source with a mass spectrometer.  

Plasma is collection of electrons, ions and neutral atoms that is electrically 

neutral. It is an ionized gas, usually argon, which is sustained by a radio frequency (RF) 

generator. The RF generator applies an electric force through a copper coil that as 

consequence ionizes the argon gas onto Ar
+
 ions and electrons. The argon gas is 

selected among others because is the noble gas found in more abundance in the 

atmosphere and has a low ionization energy (15.68 eV) relative with other noble gases 

with less atomic mass. In the plasma, the temperature can reach 10,000 K and the high 

temperature of the ICP ensures almost complete decomposition of the sample into its 

constituent atoms, and the ionization conditions within ICP result in highly efficient 

ionization of the most elements in the periodic table.  

The sample is typically introduced into the ICP plasma as an aerosol, either by 

aspirating a liquid or dissolved solid sample into a nebulizer or using a laser to directly 

convert solid samples into an aerosol. Once the sample aerosol is introduced into the 

ICP torch, it is completely desolvated and the elements in the aerosol are converted first 

into gaseous atoms and then ionized towards the end of the plasma. Once the elements 

in the sample are converted into ions, they are then brought into the mass spectrometer 

via the interface cones. The interface region in the ICP-MS transmits the ions traveling 

in the argon sample stream at atmospheric pressure (1-2 torr) into the low pressure 

region of the mass spectrometer (<1 x 10-5 torr). This is done through the intermediate 

vacuum region created by the two interface cones; the sampler and the skimmer. The 



     16 

sampler and skimmer cones are metal disks with a small hole (~1mm) in the center. The 

purpose of these cones is to sample the center portion of the ion beam coming from the 

ICP torch (Jarvis et al. 1992) (Figure 1.7). 

 

 

 

 

Figure 1.... Schematic diagram of an Agilent 7500 Series ICP-MS instrument. 

 

 

 

 

 

 

Figure 1.7 Schematic illustration of an ICP-MS instrument with quadrupole analyzer 

(Source Jarvis et al, 1992). 

 

In the mass spectrometer part, firstly ions are removed from the plasma by a 

pumped extraction system. An ion beam is produced and focused further into the actual 

unit. There are several different types of mass analyzers which can be employed to 

separate isotopes based on their mass to charge ratio. Quadrupole analyzers are compact 

and easy to use but offer lower resolution when dealing with ions of the same mass to 

charge (m/z) ratio. Double focusing sector analyzers offer better resolution but are 

larger and have higher capital cost.  

The quadrupole mass filter is made up of four metal rods aligned in a parallel 

diamond pattern. In this type, 4 rods (approximately 1 cm in diameter and 15-20 cm 

long) are arranged. In a quadrupole mass filter, alternating AC and DC voltages are 

applied to opposite pairs of the rods. These voltages are then rapidly switched along 

with an RF-field. The result is that an electrostatic filter is established that only allows 

ions of a single mass-to-charge ratio (m/z) pass through the rods to the detector at a 

given instant in time. So, the quadrupole mass filter is really a sequential filter, with the 

settings being change for each specific m/z at a time. However, the voltages on the rods 

can be switched at a very rapid rate. Many combinations of voltages are chosen which 

allows an array of different m/z ratio ions to be detected. 
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The most common type of ion detector found in an ICP-MS system is the 

channeltron electron multiplier. This cone or horn shaped tube has a high voltage 

applied to it opposite in charge to that of the ions being detected. Ions leaving the 

quadrupole are attracted to the interior cone surface. When they strike the surface 

additional secondary electrons are emitted which move farther into the tube emitting 

additional secondary electrons. As the process continues even more electrons are 

formed, resulting in as many as 108 electrons at the other end of the tube after one ion 

strikes at the entrance of the cone (Jarvis et al. 1992). 

 

1.5. Fourier Transform Infrared (FTIR) Spectrometry 

 

The region starts from 4000 cm
–1

 and ends at 400 cm
–1

 in the electromagnetic 

spectrum assigns the middle infrared region. Infrared radiation is not sufficient to cause 

the transitions between the electronic states. The vibrational levels and infrared spectra 

are generated by the characteristic twisting, bending, rotating and vibrational motions of 

atoms in a molecule. All of the motions can be described in terms of two types of 

molecular vibrations. One type of vibration, a stretch, produces a change of bond length. 

A stretch is a rhythmic movement along the line between the atoms so that the 

interatomic distance is either increasing or decreasing. The second type of vibration, a 

bend, results in a change in bond angle. These are also called scissoring, rocking or 

wigwag motions. Each of these two main types of vibration can have variations. A 

stretch can be symmetric or asymmetric (Figure 1.8).  

In a Fourier Transform Infrared Spectrometer, a continuum source of light is 

used to produce light over a broad range of infrared wavelengths. Light coming from 

this continuum source is split into two paths using a half-silvered mirror; this light is 

then reflected from two mirrors back onto the beam splitter, where it is recombined. 

Because the path that one beam travels is a fixed length and the other is constantly 

changing as its mirror moves, the signal which exits the interferometer is the result of 

these two beams “interfering” with each other. The resulting signal is called an 

interferogram which has the unique property that every data point (a function of the 

moving mirror position) which makes up the signal has information about every 

infrared frequency which comes from the source. 
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Figure 1.8. Types of molecular vibrations. + indicates motion from the page toward the 

reader; - indicates the motion away from the reader. (Source: Skoog et al. 

1998)  

 

In infrared instruments, Nernst glower, globar, tungsten filament, mercury arc or 

CO2 laser are used as a source. Due to the heat property of sources, the detectors should 

be resistant to the heat. Thermocouples, bolometer, photoconducting tubes or 

pyroelectrics are generally used detectors in infrared spectrometers and also the mostly 

used one as an interferometer is the Michelson interferometer. Figure 1.9 shows the 

optical diagram of an infrared instrument. 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Optical diagram of Fourier transform infrared spectrometer 

(Source: wikipedia.com 2011) 
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The analysis of aqueous solutions is complicated by the solubility of the NaCl 

cell window in water. One way to obtaining infrared spectra on aqueous solutions is to 

use attenuated total reflectance (ATR) instead of transmission. Figure 1.10 shows a 

diagram of a typical ATR sampler, consisting of an IR-transparent crystal of high 

refractive index, such as ZnSe, surrounded by a sample of lower-refractive index. 

Radiation from the source enters the ATR crystal, where it goes through a series of total 

internal reflections before exiting the crystal. During each reflection, the radiation 

penetrates into the sample to a depth of a few microns. The result is a selective 

attenuation of the radiation at those wavelengths at which the sample absorbs.  

 

 

 

 

 

 

 

 

Figure 1.10. Attenuated total reflectance (ATR) cell used in infrared spectroscopy. 

(Source: Harvey 2000) 

 

Solid samples also can be analyzed by means of reflectance. The ATR sampler 

described for the analysis of aqueous solutions can be used for the analysis of solid 

samples, provided that the solid can be brought into contact with the ATR crystal. 

 

1.6. Fluorescence Spectrometry 

 

Photoluminescence is divided into two categories: fluorescence and 

phosphorescence. Absorption of an ultraviolet or visible photon promotes a valence 

electron from its ground state to an excited state with conservation of the electron‟s 

spin. For example, a pair of electrons occupying the same electronic ground state has 

opposite spins (Figure 1.11) and are said to be in a singlet spin state. Absorbing a 

photon promotes one of the electrons to a singlet excited state. Emission of a photon 

from a singlet excited state to a singlet ground state is called fluorescence. Fluorescence 

decays rapidly after the excitation source is removed. In some cases an electron in a 

singlet excited state is transformed to a triplet excited state in which its spin is no longer 
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paired with that of the ground state. Emission between a triplet excited state and a 

singlet ground state is called phosphorescence (Skoog et al. 1998).   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. Singlet/Triplet excited states 
 

The process which occurs between the absorption and emission of light are 

usually illustrated by a Jabloński diagram (Figure 1.12.). Jabloński diagram typically 

explains the fluorescence and phosphorescence in terms of energy level. Three non-

radiational processes are also explained here. These are internal conversion (IC), 

intersystem crossing (ISC), and vibrational relaxation. Internal conversion is the 

transition between energy states of the same spin state. The transition between the 

different spin states called as intersystem crossing. The last non-radiational process 

vibrational relaxation occurs in a molecule which is in excited vibrational and rotational 

sates. 

 

 

 

 

 

 

 

 

 

 

 

 

 



     21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Partial energy diagram for a photoluminescent system 

(Source: Skoog et al. 2002) 

 

The basic design of instrumentation for monitoring molecular fluorescence and 

molecular phosphorescence is similar to that found for other spectroscopies. A typical 

instrumental block diagram for molecular fluorescence is shown in Figure 1.13. In 

contrast to instruments for absorption spectroscopy, the optical paths for the source and 

detector are usually positioned at an angle of 90°. Two basic instrumental designs are 

used for measuring molecular fluorescence. In a fluorometer, the excitation and 

emission wavelengths are selected with absorption or interference filters. The excitation 

source for a fluorometer is usually a low pressure mercury vapor lamp that provides 

intense emission lines distributed throughout the ultraviolet and visible region. When a 

monochromator is used to select the excitation and emission wavelengths, the 

instrument is called a spectrofluorometer. With a monochromator, the excitation source 

is usually a high-pressure Xe arc lamp, which has a continuum emission spectrum. 

Either instrumental design is appropriate for quantitative work, although only a 

spectrofluorometer can be used to record an excitation or emission spectrum. Generally, 

the fluorescence signal is a low intensity, therefore photomultiplier tubes are the most 
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common transducer in fluorescence instruments. Diode-array and charge transfer 

detectors have been also proposed for spectrofluorometers (Skoog et al. 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. Block diagram for molecular fluorescence spectrometer. 

 

1.7. Aim of This Work  

 

 Honey is considered as natural and healthy product that has a highly 

concentrated solution of a complex mixture of carbohydrates. The quality of a honey 

depends on its chemical composition and botanical origin. Therefore, classification of 

honey according to geographical origin is of great interest. In this study, it is aimed to 

develop classification models of honey produced in Turkey based on geographical 

origin via atomic and molecular spectrometry. The honey samples were taken from 

different regions of Turkey and then they were scanned with molecular spectrometric 

methods. Afterwards, unsupervised and supervised methods were used for the 

classification of honey samples. Finally, the metal content of honey samples was 

investigated through ICP-MS measurements and the same methods were again applied 

for classification based on geographical origin. 
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CHAPTER 2 

 

EXPERIMENTAL 

 

2.1. Chemicals and Reagents 

 

Nitric acid (Merck) and hydrogen peroxide (Riedel de Haën) were of analytical 

grade. Calibration standards were prepared from ICP multielement standard (Merck). 

Glassware and plastic ware used in digestion analysis were cleaned by soaking in 10 % 

(v/v) nitric acid and rinsed with distilled water prior to use. 18 M ultra pure water was 

used throughout studies. 

 

2.2. Samples 

 

Totally 145 honey samples which were from different regions of Turkey were 

collected from locally bee keepers, Altıparmak Gıda San. ve Tic. Koll. ġti and Doğa 

Arıcılık. The samples stored in dark and at room temperature until they were analyzed. 

During the examination of classification methods (PCA, HCA and SIMCA) for honey 

samples, all of the samples were not used. Since the collected honey samples were 

received in different geographic regions of the TURKEY from east to west, it was worth 

to investigate if there is any clustering of the samples based on their regions. The 

collected samples were scanned with middle infrared spectrometer equipped with 

attenuated total reflectance (MIDIR-ATR), and fluorescence spectrophotometer 

(synchronous fluorescence mode and 3D excitation emission mode). In addition, the 

collected samples were digested and the metal concentrations were determined with 

inductively coupled plasma mass spectrometer (ICP-MS). The sampling regions, 

collected numbers of samples and the labels given are listed in Table 2.1. 
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Table 2.1. The sampling region and number of honey samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sampling region Number of samples Label given

Ġzmir 35 I

Denizli 6 DN

Aydın 6 AY

Datça 6 D

Marmaris 11 M

Antalya 1 AN

Adana 3 AD

Kayseri 9 K

Malatya 2 ML

Sivas 3 S

KırĢehir 3 KI

Afyon 1 AF

EskiĢehir 1 E

Balıkesir 1 BL

Bozcaada 1 BO

Trakya 12 T

Safranbolu 1 SF

Giresun 1 G

Diyarbakır 11 DY

MuĢ 10 MU

Bingöl 2 BN

Bitlis 2 BT

Urfa 7 U

Yüksekova 7 Y

Ardahan 1 AR

Kars 1 KR
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2.3. Measurements Using Fourier Transform Infrared-Attenuated 

Total Reflectance (FTIR-ATR) 

 

Fourier Transform infrared spectra of the honey samples were collected at room 

temperature on Perkin Elmer Spectrum 100 FTIR Spectrometer (Waltham, MA, USA) 

between 630 and 4000 cm
-1

. Since honey is a viscous liquid attenuated total reflectance 

with diamond was used for measurements. The spectra were saved as log 1/R and the 

resolution was 8 cm
-1

. Background spectrum was obtained empty and dry ATR cell. 

Before and after each sample analyses background was collected to reduce the 

contaminations that would come from the ATR crystal. ATR crystal was cleaned with 

pure ethanol and allowed to dry. 

 

2.4. Measurements Using Fluorescence Spectrophotometer 

 

The honey samples were diluted with 1/5 (w/v) ratio with distilled water as the 

honey is viscous liquid. The fluorescence spectra of diluted samples were obtained 

using a Varian Cary Eclipse spectrophotometer (Varian, Inc. Hansen Way, Palo Alto, 

CA). The instrument is equipped with a xenon flash lamp and spectra were collected in 

2 modes: excitation emission 3D scan mode (EEF) and synchronous fluorescence (SF) 

mode. The EEF spectra were collected between 400 and 700 nm emission wavelength 

by exciting the samples with a wavelength increment of 10 nm (Δλ) from 330 to 380 

nm. The slit widths were 10 nm for excitation and 5 nm for emission monochromators. 

The SF spectra of the samples were recorded between 250 and 600 nm with a Δλ of 15 

nm. The slit widths of excitation and emission monochromators were set to 5 nm in SF 

modes. 
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2.5. Measurements Using Inductively Coupled Plasma Mass 

Spectrometer 

 

An Agilent 7500ce quadrupole (Tokyo, Japan) inductively coupled plasma mass 

spectrometer (ICP-MS) with a high solid nebulizer was used to determine the 

concentration of Mg, Al, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba, Pb in honey samples. The 

operating conditions of the instrument are given in Table 2.2. 

 

Table 2.2. ICP-MS operating conditions. 

 

Forward power 1500 W 

Reflected power 1W 

Coolant gas flow rate 15 L min
-1

 

Auxilary flow rate 0.90 L min
-1

 

Sample uptake time 25 sec 

Integration time 100 msec 

 

 

Before metal analysis the honey samples were needed to transfer to the aqueous 

media by digestion. Two different types of digestion procedures were tested with brown 

bread certified reference material (CRM,BCR 191) in order to decide the digestion 

procedure before ICP-MS analysis: microwave digestion and wet digestion without 

applying heat.   

A CEM Mars 5 Plus (Matthews, North Carolina, USA) microwave digestion 

system was used. Approximately 0.5 g of honey was placed in a PTFE vessel and 6 mL 

of concentrated HNO3 (65%,m/v) and 2 mL of H2O2 (30%, m/v) were added. The 

vessels were capped, tightened and placed in the rotor of the microwave oven. The 

digestion was carried out with the following digestion program: 1000 W/10 min up to 

170 °C; then 1000 W/15 min at 170 °C. Ventilation was performed for 20 min after the 

end of the second step. Finally the vessels were cooled, opened and the contents 

quantitatively transferred to falcon tubes then completed to 25 mL with ultrapure water. 

Finally the samples were diluted in 1/10 ratio with ultrapure water for ICP-MS analysis.  

For wet digestion without applying heat, just about 0.5 g of honey samples was 

weighed and the mixture of 6 mL HNO3 and 2 mL H2O2 was added to sample. After 

that the mixture was homogenized with shaking and then waited one night for digestion 
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by itself. The mixture was completed to 25 mL with ultrapure water. Finally the 

solution is diluted in 1/10 ratio before ICP-MS analysis. 

 

2.6. Statistical Classification Studies 

 

The multivariate unsupervised classification analyses (principal component 

analysis, PCA and hierarchical cluster analysis, HCA) were carried out by Minitab 15 

(Minitab Inc.) and the supervised classification analysis (SIMCA) were performed by 

SIMCA-P v.10.5 (Umetrics, Umea, Sweden). Data obtained from analyses were put in a 

matrix with the rows relating to the honey varieties and geographical origins for and the 

columns relating to the individual absorbance or intensity values (k variables). Prior to 

multivariate analysis, the data were pre-processed by the standard procedure. This 

procedure includes mean-centering (the mean value of each variable is calculated and 

subtracted from the data) and normalization. 

The models were developed for classification of honey samples according to 

geographical origin. PCA results were illustrated on the plot of the firs component vs 

the second component and meanwhile HCA results were shown on dendrograms. In 

SIMCA models on principal components, the distance from the model for class 1 was 

plotted against that from model 2. The discrimination of each class was shown in the 

Cooman‟s plots of the class models. 
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CHAPTER 3 
 

RESULTS AND DISCUSSION 

 

3.1. Classification Studies with Molecular Spectrometric Data 

 

3.1.1. Results of Unsupervised Methods  

 

It is worth to investigate the clustering of the collected honey samples based on 

their regions as they are received in different geographic regions of TURKEY from east 

to west. For this purpose, four different scenarios were tested and they were decided 

according to their sample size and the regions. The first group was based on the samples 

from Trakya, Kayseri, Malatya and Sivas and the second one was established on the 

samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa. The third group 

was formed with the honey samples collected from Ġzmir, Datça and Marmaris and 

finally, the fourth group was figured out with samples from Trakya, MuĢ Bingöl and 

Bitlis. The sample names are coded according to city from where they are collected. 

The sample codes are illustrated in Table 2.1. 

The mentioned four groups were scanned with the spectroscopic methods, such 

as FTIR, synchronous fluorescence and excitation-emission fluorescence and then 

analyzed with PCA and HCA.  

 

3.1.1.1 FTIR-ATR Results  

 
Fourier Transform infrared spectrometer is used for classifying the honey 

samples based on their spectral features. The spectrometer is equipped with attenuated 

total reflectance (FTIR-ATR) accessory that carries a dimond-ZnSe crystal plate. The 

samples are scanned between 4000 and 600 cm
–1

 and the collected spectra are shown in 

Figure 3.1. 
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Figure 3.1. The FTIR-ATR spectra of honey samples. 

 
 

The absorption region 750 and 1500 cm
-1

 in Figure 3.1 corresponds to 

monosaccharides of honey such as fructose and glucose and disaccharides such as 

sucrose. In the region 750–900 cm
-1

, the signals are matched with the anomeric region 

and are characteristic of the saccharide configuration. The wave numbers of C–O and 

C–C stretching modes are in the region of 900-1150 cm
-1

 and around 1200–1480 cm
-1

 

are due to the bending modes of O–C–H, C–C–H and C–O–H. The bands at 2800–3000 

cm
-1

 are corresponding to the stretching mode of C–H groups and O–H of carboxylic 

groups. Bands around 3600 and 1600 cm
-1

 are related to O–H stretching mode and to 

residual water (Bertelli et al. 2007). 

After scanning the honey samples with FTIR-ATR spectrometer, the collected 

spectra were used for PCA and HCA by Minitab software. As it is known PCA is an 

unsupervised classification method and is generally used to obtain a lower dimensional 

graphical representation which describes the maximum variation in a data set. The first 

principal component accounts for as much of the variability in the data as possible, and 

each succeeding component accounts for as much of the remaining variability as 

possible (Beebe et al. 1998).  

The first combination is made with two groups which consist of honey samples 

from Trakya, Kayseri, Malatya and Sivas. The score plot of the first component versus 

the second component is demonstrated in Figure 3.2. The first and second principal 

components explained 73 % of the variation of the data.  
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Figure 3.2. The score plot of the first component versus the second component for 

honey samples from Trakya, Kayseri, Malatya and Sivas using FTIR 

spectra. 

 

When the score plot of the samples is examined, it is seen that all of the Trakya 

samples except T7 were characterized with positive value of the first component; 

nevertheless, all of the Kayseri, Malatya and Sivas samples, except K6 and M1, were 

classified on the negative side of the first component. Since Trakya is located on the 

northwest and Kayseri, Sivas and Malatya are located nearly central of the Turkey, the 

samples from these regions are classified separately.  

Following the PCA analysis, another unsupervised classification method which 

is also commonly used to demonstrate the similarities between the samples is applied to 

the same spectroscopic data set. This method is called hierarchical cluster analysis 

(HCA) and it generates rectangular tables of variables and objects that are called 

dendrograms. The aim of HCA is to find out the grouping of the objects (samples) and 

variables (features) in addition to similarities possibly, in terms of a hierarchy of 

embedded groups. Briefly, two main steps are repeated. The first step is to investigate 

the distance matrix for the two closest objects (or variables) whereas the second one is 

used to consider this pair of objects as a single individual and to recompute the 

distances between this new element and the rest of the objects. (Devillers et al. 2002). 

As it can be directly applied to raw data set, it is also possible to apply HCA to the PCA 

score vectors and loading vectors. In fact, when the original data contains too many 

variables (e.g. spectroscopic data contains several absorbance values at corresponding 

wavelengths or wave numbers), it is better to preprocess the data with PCA so that the 
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dimensionality of the original data (either normalized or not) can be reduced to a few 

most important PC‟s. After PCA analysis, the resulting significant score and loading 

vectors can be used to cluster the objects and variables, respectively. If there are only a 

few original variables in the data set, HCA can be directly applied to the original data. 

In the present study, the FTIR spectra of the honey samples have contained around 1800 

individual wave numbers and therefore, the HCA analysis has to be applied to PCA 

score and loading vectors. Figure 3.3 depicts the dendrogram of honey samples from 

Trakya, Kayseri, Malatya and Sivas obtained with HCA. The first three PC score 

vectors that are accounted 85 % of the total variability in the original spectral data are 

used in the distance calculation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Dendrogram for honey samples from Trakya, Kayseri, Malatya and Sivas 

using FTIR spectra. 

 

Altough the samples in dendrogram were not separated in two main classes 

according to their sampling regions, the clusters contained the samples from the same 

city; for example, Trakya samples were clustered together and Kayseri samples were 

classified separately. Dendrogram also shows the closeness of the samples. 

The next combination was made up with the samples from Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa. It is important to investigate the classification since 

these regions are very close to each other on the map of the Turkey. The score plot of 

the first component versus the second component is presented in Figure 3.4. The two 

PC‟s explain approximately 71 % of the total variance of the data. 
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Figure 3.4. The score plot of the first component versus the second component for 

honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa 

using FTIR spectra. 

 

As can be seen from the Figure 3.4, the samples from Urfa were classified in the 

negative region of both components whereas Yüksekova samples were characterized 

with the positive side of the second component and MuĢ samples with the positive side 

of the first component. Nonetheless, the honey samples from Diyarbakır were not 

classified and scattered on four regions.  

In order to see the closeness of the honey samples, HCA dendrogram is applied 

by using five principal components which are explained 92 % variation of the original 

data and the dendogram is depicted in Figure 3.5. It is clearly seen that there are two 

main classes, and one of the main cluster which is located on the right side contains 

Urfa samples. Other samples are not clustered according to sampling city and it can be 

concluded that FTIR spectra is not sufficient enough to classify the samples in which 

the regions are very close. 

 

 

 

 

 

 

 

403020100-10-20-30-40

20

10

0

-10

-20

First Component

S
e
c
o

n
d

 C
o

m
p

o
n

e
n

t

U7

U6

U5

U4

U3

U2
U1DY11

DY10

DY9

DY8

DY7

DY6

DY5

DY4

DY3

DY2

DY1

BT2

BT1

BN2BN1

MU10

MU9

MU8

MU7MU6

MU5

MU4

MU3

MU2

MU1

Y7

Y6

Y5

Y4
Y3

Y2

Y1



     33 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Dendrogram for honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, 

Diyarbakır and Urfa using FTIR spectra. 

 

The following trial for geographical grouping was again performed with the 

honey samples of close regions which were Ġzmir, Datça, Marmaris and one sample 

from Antalya. PCA result is illustrated in Figure 3.6. The first and the second 

components cover 77 % of the total variance of the data. PCA result explains that there 

is no grouping of the honey samples according to their geographical origins as the 

samples from all regions are overlapped on the PC graph.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. The score plot of the first component versus the second component for 

honey samples from Ġzmir, Datça, Marmaris and Antalya using FTIR 

spectra. 
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Furthermore, HCA also demonstrates that similar samples are clustered in the 

same region (Figure 3.7). The number of PCs for HCA is 3 which explained about 85 % 

of the variation in the data.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Dendrogram for honey samples from Ġzmir, Datça, Marmaris and Antalya 

using FTIR spectra. 

 

As it can be concluded from Figure 3.7, most of the honey samples from Ġzmir 

are clustered at right cluster and the others at the left cluster. Although the samples were 

from very close neighbor regions they were clustered mainly with some exceptions.  

The last combination was constructed with honey samples from Trakya, MuĢ, 

Bingöl and Bitlis. The result of classification analysis with PCA is shown in Figure 3.8 

and 73 % of the total variance of the data is explained with the first two components. 
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Figure 3.8. The score plot of the first component versus the second component for 

honey samples from Trakya, MuĢ, Bingöl and Bitlis using FTIR spectra. 

 
The score plot clearly represents that all of the honey samples from Trakya are 

separated from the others except the samples labeled T8 and T9. Since Bitlis, MuĢ and 

Bingöl are neighbor cities, their samples are classified positive part of the first 

component. In order to investigate the similarities between the honey samples, HCA 

was performed with six principal components. The dendrogram is illustrated in Figure 

3.9 and the same conclusions can be done. As, Trakya (North West) samples were 

clustered at the right side, the honey samples from east are clustered together. The 

samples labeled T8, T9 and T10 are clustered in the second main class. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Dendrogram for honey samples from Trakya, MuĢ, Bingöl and Bitlis using 

FTIR spectra. 
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3.1.1.2. Synchronous Fluorescence Results  

 

Synchronous fluorescence (SF) spectrum was recorded by scanning 

simultaneously both the excitation and emission monochromators at the same speed 

with a fixed wavelength interval (Δ) between the excitation and emission wavelengths 

for each honey samples. SF spectra has the advantage of absorption as well as the 

emission characteristics of a given compound, so sharper spectral features representing 

different components of a multi component system can be observed. 

In order to compare the classification results using different molecular 

spectrometric methods, the honey samples were scanned with fluorescence spectrometer 

using the synchronous mode between 250 and 600 nm with a Δλ of 15 nm. The 

synchronous fluorescence spectra of samples are represented in Figure 3.10. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Synchronous fluorescence emission spectra of 61 honey samples between 

250 and 600 nm (Δ=15 nm). 

 

 
The same combinations of the samples that are given in FTIR were used for PCA 

and PCA-HCA analysis in order to compare the results. The first grouping had included 

Trakya, Kayseri, Malatya and Sivas honey samples. The PCA result using synchronous 

fluorescence is shown in Figure 3.11.  
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Figure 3.11. The score plot of the first component versus the second component for 

honey samples from Trakya, Kayseri, Malatya and Sivas using 

synchronous fluorescence spectra. 

 

As seen from the plot, all Trakya samples were located on the positive side 

whereas many of Kayseri, Malatya and Sivas samples were placed on the negative side 

of the first component on score plot. It can also be observed that the sample labeled T7 

which was from Trakya was located far away from the others. Hence, it can be 

concluded that the first component can characterize the honey samples based on the 

geographical origin using synchronous fluorescence spectra. The two principal 

components which were used to construct this score plot were able to cover about 80% 

the variation in the spectra of honey samples.  

PCA-HCA results using six of the first principal components are depicted in 

Figure 3.12 and these three PC‟s explained 90% of the variability within the data set.  
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Figure 3.12. Dendrogram for honey samples from Trakya, Kayseri, Malatya and Sivas 

using synchronous fluorescence spectra. 

 

 

As seen from Figure 3.12, the differentiation of honey samples was obviously 

performed according to sampling region; however, the samples labeled K6 and S2 were 

misclassified. 

 The second combination of the samples consists of Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa. The score plot is given in Figure 3.13 and the 

resulted two-component graphs explain 88 % of total variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. The score plot of the first component versus the second component for 

honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa 

using synchronous fluorescence spectra. 
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Although the sampling regions of the honey samples were very close to each 

other, classification of the samples was again achieved interestingly. For example, all 

Yüksekova samples were separated from the others and characterized on both positive 

sides of the principal components. In addition, all Urfa samples were located on the 

positive region of the second component. Nevertheless, the rest of the samples were 

overlapped on the plot.  

Figure 3.14 represents the HCA dendrogram obtained with three principal 

components covering again 93 % of the variability in the data set. This dendrogram 

shows similarity with the result obtained by PCA and shows the closeness of the 

samples. As can be seen, most of the samples from cities formed small clusters with 

respect to each other and samples from Yüksekova were separated from others as 

observed in PCA plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Dendrogram for honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, 

Diyarbakır and Urfa using synchronous fluorescence spectra. 

 

Honey samples from Ġzmir, Datça, Marmaris and Antalya were analyzed and the 

PCA plot in Figure 3.15 was obtained. The plot showed that there was no clear 

differentiation between the classes, but most of Datça and Marmaris samples were 

placed on the positive part of the fist component 
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Figure 3.15. The score plot of the first component versus the second component for 

honey samples from Ġzmir, Datça, Marmaris and Antalya using 

synchronous fluorescence spectra. 

 

In addition, the samples from Ġzmir were also scattered on the PC plot. PCA-

HCA dendrogram shown in Figure 3.16 was generated with three PC‟s (90 % variation) 

to investigate the similarities between the samples. There were two main classes in 

dendrogram and most of the samples from Datça and Marmaris were clustered 

separately.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Dendrogram for honey samples from Ġzmir, Datça, Marmaris and Antalya 

using synchronous fluorescence spectra. 

 

The last trial was performed with honey samples from Trakya, MuĢ, Bingöl and 

Bitlis and the resulting PC plot obtained with Minitab is presented in Figure 3.17. ın the 
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figure, obvious classification of the samples was observed even for all cities and gave 

better results compared to FTIR data. There were three different classes: the first one 

included Trakya samples and located on the positive region of the first component, the 

second class is constructed by samples from Bitlis and Bingöl and placed on left bottom 

of the plot; finally, the third class corresponded to the samples from MuĢ and it was on 

left upper region of the plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. The score plot of the first component versus the second component for 

honey samples from Trakya, MuĢ, Bingöl and Bitlis using synchronous 

fluorescence spectra. 

 

PCA-HCA results using three of the first principal components covering 93 % of 

the variability in the data set is demonstrated in Figure 3. 18.  The dendrogram showed 

up the same results with the principal component analysis, however, only the sample 

coded as T7 was out of the clusters as indicated with FTIR results. In the present plot, 

even MuĢ samples constructed separate class from Bingöl and Bitlis samples.  In 

conclusion, synchronous florescence data were quite successful in the classification of 

honey samples according to geographical origin even for very close neighbor samples. 
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Figure 3.18. Dendrogram for honey samples from Trakya, MuĢ, Bingöl and Bitlis using 

synchronous fluorescence spectra. 
 

3.1.1.3. Excitation-Emission Fluorescence Results  

 

Spectra with excitation-emission fluorescence mode were collected by changing 

excitation wavelengths with 10 nm intervals between 330 to 380 nm while emission 

intensities were scanned in the range of 400 and 700 nm. Figure 3.19 illustrates a three 

dimensional excitation-emission spectrum of a honey sample. As can be seen from the 

figure, the honey sample gave the maximum emission intensity at approximately 500 

nm. 
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Figure 3.19. Excitation and emission fluorescence spectra of a honey sample between 

400 and 700 nm emission wavelengths and between 330 and 380 nm 

excitation wavelengths. 

 

After collecting three dimensional spectra of all honey samples, PCA and HCA 

analysis were performed with the same combinations of regions mentioned above in 

order to compare molecular spectrometric methods for the classification of honey 

samples based on the geographical region and the score plot obtained is represented in 

Figure 3.20. The explained total variation in the result of PCA was 81 % with the honey 

samples from Trakya, Kayseri, Malatya and Sivas. West and central samples were 

classified separately as in the case of the other spectrometric methods, however, there 

were some exceptions like the samples labeled as T5, T12 and K6. 
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Figure 3.20. The score plot of the first component versus the second component for 

honey samples from Trakya, Kayseri, Malatya and Sivas using excitation-

emission fluorescence (EEF) spectra. 

 

Finally, HCA was processed with 3 principal components that were explained 

by 93 % variation of the data and the resulting dendrogram is represented in Figure 

3.21. As observed from the figure, the samples were clustered effectively based on the 

sampling region, but there were some exceptions in samples labeled as K6 and K1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Dendrogram for honey samples from Trakya, Kayseri, Malatya and Sivas 

using excitation-emission fluorescence (EEF) spectra. 
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The results of principal component analysis for the honey samples from 

Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa is demonstrated in Figure 3.22. As 

can be seen from the figure, the samples from Diyarbakır and Yüksekova formed 

different classes, nevertheless, MuĢ, Bingöl and Bitlis samples were overlapped and 

combined to form a unique class. The sample labeled as DY2 was from Diyarbakır and 

was placed far away from the others and could be said that it didn‟t show similar 

fluorescence characteristics when compared with the others.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. The score plot of the first component versus the second component for 

honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa 

using excitation-emission fluorescence (EEF) spectra. 

 

 

After the PCA analysis, the HCA method is applied and the result of 

dendrogram is depicted in Figure 3.23. As can be seen, there was obvious separation of 

Yüksekova samples as mentioned previously, Diyarbakır samples were also clustered 

together and seemed to have similar characteristics to Yüksekova samples. In 

conclusion, the PCA results were in consistent with the dendrogram.  
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Figure 3.23. Dendrogram for honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, 

Diyarbakır and Urfa using excitation-emission fluorescence (EEF) 

spectra. 

 

The next trial was constructed with the samples from Ġzmir, Datça, Marmaris 

and Antalya and the plot of the first two components which were accounted for 88 % 

variation are illustrated in Figure 3.24. All Datça and Marmaris samples were located at 

the positive side of the fist component as observed with the other two spectrometric 

methods. However, Ġzmir samples were not distinguished and spread over the plot. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. The score plot of the first component versus the second component for 

honey samples from Ġzmir, Datça, Marmaris and Antalya using excitation-

emission fluorescence (EEF) spectra. 
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Two PCs (89% variation) were used for figuring the HCA dendrogram presented 

in Figure 3.25. Surprisingly, although samples were from close neighbor regions, they 

were differentiated in different clusters. Ġzmir samples were also grouped together and 

constructed with two main clusters at the left side. Finally, Datça and Marmaris clusters 

were located as neighbors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. Dendrogram for honey samples from Ġzmir, Datça, Marmaris and Antalya 

using excitation-emission fluorescence (EEF) spectra. 

 

 

The last combination was figured out with the honey samples from Trakya, MuĢ, 

Bingöl and Bitlis. The score plot of the first component versus the second component is 

shown in Figure 3.26. The two PC‟s explain approximately 83% of the total variance of 

the data. The plot showed us a clear differentiation between the honey samples from 

west to east. The positive side of the first component included Trakya samples whereas 

the negative part of the first component included east samples. 
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Figure 3.26. The score plot of the first component versus the second component for 

honey samples from Trakya, MuĢ, Bingöl and Bitlis using excitation-

emission fluorescence (EEF) spectra. 

 

To see the closeness of the honey samples, HCA dendrogram is drawn using 

three principal components and the dendrogram is demonstrated in Figure 3.27. 

According to the dendrogram, the results of the principal component was supported by 

drawing two main clusters, but only one sample from Trakya (T7) was beside from 

other Trakya samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. Dendrogram for honey samples from Trakya, MuĢ, Bingöl and Bitlis using 

excitation-emission fluorescence (EEF) spectra. 
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3.1.2. Classification Studies with Supervised Methods  

 

After the classification studies with unsupervised methods, the same 

combinations were tested with a supervised method SIMCA.  In principal component 

analysis (PCA), the class information is not used in the construction of the model and 

PCA just describes the overall variation in the data. However, PCA can be coupled with 

the class information to give classification models by means of soft independent 

modeling of class analogy. In SIMCA, a PCA is performed on each class in the data set, 

and a sufficient number of principal components are kept to explain for most of the 

variation within each class. Therefore, a principal component model is used to represent 

each class in the data set. The number of principal components retained for each class is 

usually different. SIMCA develops principal component models for each training class 

separately and provides information including critical distances which can be calculated 

as the geometric distance of each object from the principal component models. SIMCA 

models on principal components were developed for classification of honey samples 

according to geographical origin. The distance from the model for class 1 was plotted 

against that from model 2. The discrimination of each class was shown in the Cooman‟s 

plots of the class models. 

 

3.1.2.1 FTIR-ATR Results  

 

The spectra collected were used for SIMCA software. Prior to multivariate 

analysis, the data were pre-processed by the standard procedure. This procedure 

includes mean-centering (the mean value of each variable is calculated and subtracted 

from the data) and normalization. As it is known SIMCA does not use all of the 

principal components, but the principal components are selected by the cross validation. 

The calculated principal components of honey sample classes according to regions of 

the model and their explained variances are given in the Table 3.1. The distance from 

the model for class 1 was plotted against that from model 2. The discrimination of each 

class was shown in the Cooman‟s plots of the class models.  
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Table 3.1. Number of PCs used and general statistics of each honey sample classes for 

FTIR spectral data 

 

Honey sample classes Number of PCs 
% explained  

variance 

Trakya (n=12) 5 96 

Kayseri, Malatya,Sivas (n=13) 9 93 

Yüksekova (n=7) 3 88 

MuĢ, Bingöl, Bitlis (n=14) 6 94 

Ġzmir (n=35) 16 100 

Datça, Marmaris, Antalya (n=18) 8 97 

 

The same scenarios were also investigated and the first combination was figured 

out with two groups which consisted of honey samples from Trakya, Kayseri, Malatya 

and Sivas. The Cooman‟s plot for honey samples is exhibited in Figure 3.28. When 

Cooman‟s plot is examined, Kayseri, Malatya and Sivas samples were designed as a 

class and successful differentiation was achieved. All of the samples except the sample 

labeled as T4 were placed in their class regions on the plot, T4 is in outlier region.   

The next combination was made with the samples from Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa. These groups of samples were from neighbor cities 

and since SIMCA differentiate two classes of samples, the samples from Yüksekova 

were introduced as class 1 whereas the samples from MuĢ, Bingöl, and Bitlis were as 

class 2. The others were not defined as classes in order to see the behavior of the honey 

samples. The results obtained from SIMCA are displayed in Figure 3.29. As can be seen 

from the figure, most of the honey samples were discriminated effectively according to 

geographical origin although they are neighbors and the samples which were not 

defined as class (Diyarbakır, Urfa) were located in the outlier region. 
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Figure 3.28. Cooman‟s plot for classification of honey samples from Trakya, Kayseri, 

Malatya, Sivas using FTIR spectra ((■)Trakya and () Kayseri, Malatya, 

Sivas) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29. Cooman‟s for classification of honey samples from Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa using FTIR spectra ((■)Yüksekova, () 

MuĢ, Bingöl, Bitlis and (▲) Diyarbakır, Urfa). 

 

The following trial was performed with the honey samples from Ġzmir, Datça, 

Marmaris and Antalya for their geographical grouping. Figure 3.30 represents the 

Cooman‟s plot for honey samples from those regions. The differentiation between 

honey samples from Ġzmir, Datça, Marmaris and Antalya seemed clearly even the 
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region so close to each other, only a sample from Ġzmir labeled as I10 was misclassified 

and it was located in the overlap region.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. Cooman‟s for classification of honey samples from Ġzmir, Datça, Marmaris 

and Antalya using FTIR spectra ((■) Ġzmir, () Marmaris, Datça, Antalya).   

 

 

The last combination included the samples from Trakya, MuĢ, Bingöl and Bitlis 

and was compared with FTIR results. The resulted Cooman‟s plot is depicted in Figure 

3.31. As can be seen from the figure, all honey samples from that region were classified 

but there was only one exception (T4). The sample labeled as T4 was in outlier region 

when Trakya samples were matched with Kayseri and Malatya samples and it was not 

seemed belong to its class.   
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Figure 3.31. Cooman‟s for classification of honey samples from Trakya, MuĢ, Bingöl 

and Bitlis using FTIR spectra (■) Trakya, () MuĢ, Bingöl and Bitlis).   

 

3.1.2.2. Synchronous Fluorescence Results 

 

In order to compare the classification results using different molecular 

spectrometric methods, the honey samples were scanned with fluorescence spectrometer 

via synchronous mode. Afterwards, the same combinations of the samples that were 

given in FTIR were used for SIMCA analysis in order to compare the results. Table 3.2 

represents the calculated principal components of the model for honey sample classes 

according to regions and their total variances.  
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Table 3.2. Number of PCs used and general statistics of each honey sample classes for 

synchronous florescence spectral data 

 

Honey sample classes 
Number of 

PCs 

% explained 

variance 

Trakya (n=12) 5 79 

Kayseri, Malatya, Sivas (n=13) 6 96 

Yüksekova (n=7) 3 94 

MuĢ, Bingöl, Bitlis (n=14) 6 97 

Ġzmir (n=35) 16 98 

Datça, Marmaris, Antalya (n=18) 8 97 

 

The first grouping had included Trakya, Kayseri, Malatya and Sivas samples. 

The classification results with SIMCA are indicated in Figure 3.32 with the help of 

Cooman‟s plot. As seen from the figure, all of the samples were classified according to 

their geographical origin and there was no sample in neither overlap nor outlier regions. 

Distance of sample which was coded as S2 was larger than others ant it was located far 

away from the members of the class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32. Coomans‟ plot for classification of honey samples from (■) Trakya, () 

Kayseri, Malatya, Sivas using synchronous fluorescence spectra.  
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When honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa 

samples were analyzed, the Cooman‟s plot in Figure 3.33 was obtained. The plot 

showed that the honey samples in Yüksekova, MuĢ, Bingöl, Bitlis were differentiated 

clearly according to synchronous spectral data and most of Diyarbakır and Urfa samples 

were separated in outlier region. Five of Urfa samples and one of Diyarbakır samples 

were located on the critical line. It is understood that those samples were close to 

Yüksekova samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33. Cooman‟s for classification of honey samples from (■) Yüksekova, () 

MuĢ, Bingöl, Bitlis and (▲) Diyarbakır and Urfa using synchronous 

fluorescence spectra. 

 

 

The next trial was performed with honey samples from Ġzmir, Datça, Marmaris 

and Antalya. The resulting plot obtained with SIMCA is illustrated in Figure 3.34. 

When a comparison was done with the FTIR results, a similar trend was not obtained 

and it was unsuccessful to classify the honey samples based on geographical region. 

Some Ġzmir samples and the half of Datça, Marmaris samples were located in the 

overlap region.   
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Figure 3.34. Cooman‟s for classification of honey samples from (■) Ġzmir, () Datça, 

Marmaris and Antalya using synchronous fluorescence spectra.       

 

The last examination for geographical region was constructed with honey 

samples from Trakya, MuĢ, Bingöl and Bitlis. Since Trakya is North West whereas 

MuĢ, Bingöl and Bitlis are in the east of Turkey, the classification of these groups was 

expected. The Cooman‟s plot was obtained after SIMCA analysis and it was 

demonstrated in Figure 3.35. As can be concluded from the figure, all of the samples 

were discriminated according to their classes as expected and there were no overlapping 

and outlier samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35. Cooman‟s for classification of honey samples from (■) Trakya, () MuĢ,  

and Bitlis using synchronous fluorescence spectra. 
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3.2.3. Excitation-Emission Fluorescence Results  

 
The same honey samples were scanned with excitation-emission fluorescence 

mode, and then the collected three dimensional spectra of honey samples were used in 

SIMCA analysis with the same combinations of regions mentioned before in order to 

compare molecular spectrometric methods for classification according to geographical 

region. The calculated principal components of the model for honey sample classes 

according to regions and their total variances during SIMCA analysis are indicated in 

Table 3.3.  

 

Table 3.3. Number of PCs used and general statistics of each honey sample classes for 

excitation-emission fluorescence spectral data. 

 

Honey sample classes 
Number of 

PCs 

% explained 

variance 

Trakya (n=12) 5 100 

Kayseri, Malatya,Sivas (n=13) 5 100 

Yüksekova (n=7) 3 92 

MuĢ, Bingöl, Bitlis (n=14) 6 100 

Ġzmir (n=35) 5 99 

Datça, Marmaris, Antalya (n=18) 8 99 

 

Figure 3.36 shows the Cooman‟s plot resulted after the analysis of honey 

samples from Trakya, Kayseri, Malatya, Sivas using excitation-emission spectral data. 

When compared with the other molecular spectrometric methods, excitation-emission 

fluorescence data gave also the same differentiation of the honey samples from Trakya, 

Kayseri, Malatya, Sivas. All of the samples except sample T12 were in the right class 

and T12 was observed as outlier. 
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Figure 3.36. Coomans‟ plot for classification of honey samples from (■) Trakya, () 

Kayseri, Malatya, Sivas using excitation-emission fluorescence spectra 

 

The following trial was with the honey samples from Yüksekova, MuĢ, Bingöl, 

Bitlis, Diyarbakır and Urfa and the Cooman‟s plot in Figure 3.37 represents that the 

samples were mainly classified according to their geographical origin. There was only 

one Yüksekova sample observed in outlier region, nevertheless, there were no samples 

in the overlap region. As observed with other molecular spectrometric data, some of 

Urfa samples were very close to the class of MuĢ, Bingöl, Bitlis while they were located 

on the critical line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37. Cooman‟s for classification of honey samples from (■) Yüksekova, () 

MuĢ, Bingöl, Bitlis, (▲)Diyarbakır and Urfa using excitation-emission 

fluorescence spectra. 
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The analysis result of honey samples from Ġzmir, Datça, Marmaris and Antalya 

is displayed in Figure 3.38. When Cooman‟s plot is examined, a good differentiation of 

the samples was not clearly observed according to their region. Only one 

misclassification was seen that belonged to sample from Ġzmir in the outlier region, 

nonetheless, half of the Datça, Marmaris samples were located in overlap region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38. Cooman‟s for classification of honey samples from (■) Ġzmir, () Datça, 

Marmaris and Antalya using excitation-emission fluorescence spectra. 

 

The last combination was constructed with honey samples from Trakya, MuĢ, 

Bingöl and Bitlis as seen in Figure 3.39. The previously obtained differentiation was 

also observed using excitation-emission profiles. There was only one sample (T12) that 

exceeded the critical limit and the samples were classified according to their 

geographical origin.  
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Figure 3.39. Cooman‟s for classification of honey samples from (■)Trakya, () MuĢ, 

Bingöl and Bitlis using excitation-emission fluorescence spectra. 

 

3.2. Classification Studies with Atomic Spectrometric Data 

 

3.2.1. Calibration Plots and Detection Limits of Investigated Elements 

 

In order to compare the classification results obtained with molecular 

spectroscopy, the honey samples were also analyzed with atomic spectroscopic data. 

For this purpose, the collected samples were firstly digested and then the metal 

concentrations were determined by inductively coupled plasma mass spectrometer.  The 

metal ions detected with ICP-MS are Mg, Al, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba and Pb. 

The metal that has the highest concentration is Mg and the metals that have the lowest 

concentrations are Pb and Co. The aqueous standard solutions were prepared from 

multielement standard and the calibration plots of metals for ICP-MS readings were 

constructed according to concentration ranges in digested aqueous honey samples. 

Figure 3.40 and Figure 3.41 represents the calibration plots obtained with ICP-MS 

measurements for the studied elements.  

 

 

 

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n

c
e
 t

o
 M

u
s,

 B
in

g
ö

l,
 B

it
li

s

Distance to Trakya

SIMCA-P 10.5 - 12/21/2010 6:49:30 AM



     61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40. Calibration plots of (a) Mg (y = 1815.7x + 8701.6; R
2
 = 0.9985), (b) Al      

(y = 916.51x + 1468.8; R
2
 = 0.9997, (c) Mn (y = 10449x + 421.53;              

R
2
 = 0.9988), (d) Fe (y = 11886x + 20835; R

2
 = 0.9992), (e) Ni                

(y = 5169.8x + 306.7 R
2
 = 0.9987), (f) Co (y = 22060x + 400.52;             

R
2
 = 0.999). 
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Figure 3.41. Calibration plots of (a) Cu (y = 13096x + 3362.8; R
2
 = 0.9954), (b) Zn     

(y = 2029x + 1500.6; R
2
 = 0.9995, (c) Sr (y = 9957x + 309.52;                 

R
2
 = 0.9993), (d) Ba (y = 2335.4x + 161.69; R

2
 = 0.9965), (e) Pb                

(y = 27797x + 1860; R
2 

= 0.9984). 

 

 

 The detection limits were also calculated for each metal based on 3σ of the blank 

and the results are given in Table 3.4. 

 

 

 

 

 

y = 13096x + 3362.8

R
2
 = 0.9954

0

25000

50000

75000

100000

125000

150000

0 2 4 6 8 10

Cu concentration (µg L
-1

)

S
ig

n
a
l

y = 2029x + 1500.6

R
2
 = 0.9995

0

25000

50000

75000

100000

125000

0 10 20 30 40 50

Zn concentration (µg L
-1

)

S
ig

n
a
l

y = 9957x + 309.52

R
2
 = 0.9993

0

30000

60000

0 1 2 3 4 5

Sr concentration (µg L
-1

)

S
ig

n
a
l

y = 2335.4x + 161.69

R
2
 = 0.9965

0

2000

4000

6000

0 0.5 1 1.5 2

Ba concentration (µg L
-1

)
S

ig
n

a
l

y = 27797x + 1860

R
2
 = 0.9984

0

20000

40000

60000

0 0.5 1 1.5 2

Pb concentration  (µg L
-1

)

S
ig

n
a
l

(a)

(c)

(b)

(e)

(d)

y = 13096x + 3362.8

R
2
 = 0.9954

0

25000

50000

75000

100000

125000

150000

0 2 4 6 8 10

Cu concentration (µg L
-1

)

S
ig

n
a
l

y = 2029x + 1500.6

R
2
 = 0.9995

0

25000

50000

75000

100000

125000

0 10 20 30 40 50

Zn concentration (µg L
-1

)

S
ig

n
a
l

y = 9957x + 309.52

R
2
 = 0.9993

0

30000

60000

0 1 2 3 4 5

Sr concentration (µg L
-1

)

S
ig

n
a
l

y = 2335.4x + 161.69

R
2
 = 0.9965

0

2000

4000

6000

0 0.5 1 1.5 2

Ba concentration (µg L
-1

)
S

ig
n

a
l

y = 27797x + 1860

R
2
 = 0.9984

0

20000

40000

60000

0 0.5 1 1.5 2

Pb concentration  (µg L
-1

)

S
ig

n
a
l

y = 13096x + 3362.8

R
2
 = 0.9954

0

25000

50000

75000

100000

125000

150000

0 2 4 6 8 10

Cu concentration (µg L
-1

)

S
ig

n
a
l

y = 2029x + 1500.6

R
2
 = 0.9995

0

25000

50000

75000

100000

125000

0 10 20 30 40 50

Zn concentration (µg L
-1

)

S
ig

n
a
l

y = 9957x + 309.52

R
2
 = 0.9993

0

30000

60000

0 1 2 3 4 5

Sr concentration (µg L
-1

)

S
ig

n
a
l

y = 2335.4x + 161.69

R
2
 = 0.9965

0

2000

4000

6000

0 0.5 1 1.5 2

Ba concentration (µg L
-1

)
S

ig
n

a
l

y = 27797x + 1860

R
2
 = 0.9984

0

20000

40000

60000

0 0.5 1 1.5 2

Pb concentration  (µg L
-1

)

S
ig

n
a
l

(a)

(c)

(b)

(e)

(d)



     63 

Table 3.4. Detection Limits for Metals by ICP-MS 

 

Metals 
Limit of Detection 

(LOD) (µg L
-1)

 

Mg 10.3 

Al 0.49 

Mn 0.008 

Fe 1.38 

Co 0.022 

Ni 0.037 

Cu 0.04 

Zn 0.26 

Sr 0.024 

Ba 0.009 

Pb 0.014 

 

3.2.2. Method Validation for Digestion Procedures 

 

Samples are in the form of a solution in most of the measurement techniques. 

The sample should not contain high amounts of insoluble particles and its viscosity 

should not be too high. These requirements affect the choice of the pre-treatment 

method. Even though honey is soluble in water, it can be pre-treated just dissolving in 

water or acidic solutions for metal determination, samples are usually decomposed 

before measurements. Finally, the mineral components are transferred to the resulting 

digests. This treatment decomposes the organic matrix of honey and extracts metal 

species. It also prevents variations in physico-chemical properties of sample solutions 

and eliminates accumulation or deposition carbonaceous residues in the burner heads or 

the nebulizers of spectrometers used (Pohl 2009b). Honey is treated with different 

digestion procedures before the metal analysis. Generally, dry ashing (Silici et al. 2008, 

Terrab et al. 2003, Osman et al. 2007, Downey et al. 2005), wet acid digestion (Torres 

et al. 2005, Rashed and Soltan 2004, Devillers et al. 2002, Tuzen et al. 2007) and 

microwave digestion (Stankovska et al. 2008, Tuzen et al. 2007, Frazzoli et al. 2007, 
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Ajtony et al. 2007) have been used to disrupt the organic substances and release metals 

from the complex sample matrix into solution.  

In this study, two types of digestion procedures were tried and compared 

according to characteristics such as easy in application, digestion without loosing metals 

and time saving. These methods were microwave digestion, and wet digestion without 

applying heat. A certified reference material was used in order to determine the best 

digestion procedure prior to ICP-MS analysis. Additionally, accuracy of the method was 

tested through the use of Brown Bread BCR CRM 191, one of the reference materials 

with a high content of carbohydrate and therefore closes enough to the complex matrix 

of honey. Table 3.5 shows the certified metal concentrations in BCR CRM 191.  

 

Table 3.5. Certified values of elements in CRM BCR 191. 

 

CRM BCR-191 

Elements Certified value Uncertainity 

Cd 28.4 µg/kg 1.4 µg/kg 

Pb 187 µg/kg 14 µg/kg 

Cu 2.63 mg/kg 0.07 mg/kg 

Zn 19.5 mg/kg 0.5 mg/kg 

Fe 40.7 mg/kg 2.3 mg/kg 

Mn 20.3 mg/kg  0.7 mg/kg 

 

 

Reference material was weighed as 0.5 g and digested with the two digestion 

procedures as explained in experimental section. Subsequently, the digested samples 

were analyzed with ICP-MS for the metals demonstrated in Table 3.5. The determined 

concentration values and recoveries are indicated in Table 3.6 and Table 3.7, 

respectively, for two digestion procedures.  
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Tablo 3.6. Recovery results of CRM BCR 191 for microwave digestion method 

 

Elements 
Certified value 

(µg/kg) 

Found  

(µg/kg) 
% Recovery 

Mn 20300 23518 ± 1990 116 

Fe 40700 41556 ± 3223 102 

Cu 2630 2683 ± 220 102 

Zn 19500 18655 ± 1375 96 

Cd 28.4 15.0 ± 2 54 

Pb 187 198 ± 47 106 

 

 

Tablo 3.7. Recovery results of CRM BCR 191 for wet digestion without heating 

method. 

 

Elements 
Certified value 

(µg/kg) 

Found  

 (µg/kg) 
% Recovery 

Mn 20300 23012 ± 999 113 

Fe 40700 39495 ± 3800 97 

Cu 2630 2772 ± 330 105 

Zn 19500 18524 ± 2030 95 

Cd 28.4 22 ± 2 78 

Pb 187 207 ± 21 111 

 

 

Once the recovery values were compared for microwave digestion and wet 

digestion without heat procedures, it was seen that there were no such differences 

between recovery results and generally values were near 100 %. However, there was 

one exception with Cd recovery results for both digestion procedures and the results 

showed the loss of Cd during digestion process. Nevertheless, Cd concentration was 

always below the detection limit while performing the preliminary studies of honey. 

Therefore, the wet digestion without applying heat was decided as the digestion 

procedure, in addition, for every analysis, one honey sample was digested with 

microwave and this sample was used as a control sample for checking whether there 

was any difference between readings. 
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3.2.3. Classification Studies with Unsupervised Methods 

 
In order to compare the classification results using molecular spectroscopic data 

with atomic spectroscopic data, the collected samples were digested and metal 

concentrations were determined with inductively coupled plasma mass spectrometer.  

The metals which of the concentrations were determined are Mg, Al, Mn, Fe, Co, Ni, 

Cu, Zn, Sr, Ba.   The metal concentrations of the collected honey samples are shown in 

Table 3.8.  

The metal Pb was also determined but the concentration values nearly all 

samples were below the detection limit, and the others have concentration values close 

to detection limit. For the reason that the relative standard deviation (RSD) values were 

so high, hence the results can not be reliable. As can be seen from Table 3.8, the metal 

that has the highest concentration was Mg and the metal that has the lowest 

concentration was Co.  Mg concentrations in honey samples were changing between 10 

and 120 mg/kg. The highest concentration value for Co in honey samples was 26 µg/kg 

and in some samples Co concentrations could not be detected because of very low 

values.  

Afterwards the same ICP-MS data are processed with the principal component 

analysis (PCA), then with the hierarchical cluster analysis (HCA) in order to see 

whether there is grouping and to observe their closeness. The fact that the element 

content ranges were changing such as Mg concentration was at ppm level on the other 

hand Co was in ppb level, it was a necessity to mean center and normalize the data. 

After this preprocessing PCA was applied the first two PC‟s were chosen to examine 

the data set. 
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Tablo 3.8. The concentrations (µg/kg) of the elements determined by ICP-MS in honey samples (BDL: Below the Detecetion Limit) (N=3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   (cont. on the next page) 

 

Mg 10199 ± 1117 15025 ± 1697 9321 ± 361 8154 ± 246 9046 ± 528 12733 ± 541 16108 ± 358 23858 ± 5594 12836 ± 1258 15495 ± 178

Al 567 ± 105 1158 ± 175 569 ± 27 723 ± 34 618 ± 18 691 ± 152 1031 ± 90 675 ± 85 596 ± 33 874 ± 62

Mn 104 ± 10 137 ± 13 119 ± 7 110 ± 10 94 ± 10 97 ± 3 133 ± 2 298 ± 39 408 ± 183 131 ± 9

Fe 2286 ± 332 3202 ± 267 2269 ± 142 2359 ± 272 3159 ± 97 2261 ± 130 3307 ± 452 5995 ± 767 3572 ± 172 3034 ± 262

Co 3.8 ± 0.2 3.2 ± 0.7 4.5 ± 0.8 32.8 ± 2.9 1.3 ± 0.1

Ni 24 ± 5 22 ± 3 5 ± 2 12 ± 3 16 ± 9 2594 ± 193 31 ± 7

Cu 214 ± 24 370 ± 70 187 ± 14 189 ± 24 193 ± 13 56 ± 2 152 ± 5 152 ± 59 194 ± 90 111 ± 9

Zn 2147 ± 228 3944 ± 521 1359 ± 95 1591 ± 96 3641 ± 203 6809 ± 261 3109 ± 109 6332 ± 592 6144 ± 11 2476 ± 313

Sr 103 ± 15 206 ± 20 57 ± 3 96 ± 9 153 ± 13 224 ± 4 184 ± 7 305 ± 29 202 ± 20 157 ± 6

Ba 62 ± 4 75 ± 7 43 ± 9 60 ± 0.5 72 ± 30 15 ± 3 31 ± 1 31 ± 2

Mg 18137 ± 638 19915 ± 5321 17647 ± 246 21634 ± 9044 9747 ± 706 30012 ± 2742 20964 ± 669 28430 ± 538 11906 ± 239 12972 ± 262

Al 419 ± 32 643 ± 23 759 ± 29 872 ± 148 837 ± 48 3779 ± 208 975 ± 8 738 ± 101 3326 ± 265 2210 ± 47

Mn 429 ± 19 220 ± 15 183 ± 16 327 ± 74 552 ± 37 816 ± 59 381 ± 13 460 ± 32 402 ± 8 340 ± 12

Fe 1787 ± 264 3240 ± 750 3714 ± 203 1699 ± 397 1652 ± 180 6892 ± 974 8243 ± 155 3117 ± 138 6459 ± 352 6107 ± 827

Co 1.3 ± 0.1 1.6 ± 0.7 6.1 ± 0.7 8.3 ± 1.9 2.0 ± 0.2 0.8 ± 0.2 1.7 ± 0.4

Ni 25 ± 4 18 ± 9 17 ± 1 20 ± 9 41 ± 4 82 ± 8 24 ± 6 59 ± 3 15 ± 4 11 ± 2

Cu 40 ± 12 1171 ± 135 95 ± 14 67 ± 22 336 ± 78 33 ± 7 365 ± 3

Zn 4759 ± 4 3667 ± 42 5397 ± 533 3277 ± 709 1483 ± 65 742 ± 144 2613 ± 29 4640 ± 97 812 ± 3 749 ± 5

Sr 387 ± 7 180 ± 8 318 ± 55 211 ± 44 188 ± 14 255 ± 44 429 ± 11 740 ± 21 173 ± 6 168 ± 6

Ba 109 ± 23 17 ± 3 31 ± 17 117 ± 3 179 ± 19 135 ± 6 235 ± 14 111 ± 20 138 ± 4

Mg 14700 ± 1560 23686 ± 5467 13264 ± 1956 20611 ± 666 22852 ± 1116 13255 ± 1915 14225 ± 2772 20204 ± 790 10369 ± 1258 17079 ± 129

Al 2595 ± 91 3234 ± 495 3415 ± 236 2529 ± 61 1233 ± 95 1313 ± 195 1119 ± 210 1345 ± 22 1348 ± 97 1444 ± 143

Mn 377 ± 37 1529 ± 20 442 ± 38 480 ± 40 254 ± 17 750 ± 88 345 ± 63 1053 ± 21 594 ± 44 621 ± 52

Fe 4135 ± 105 8960 ± 383 5422 ± 455 5628 ± 486 2224 ± 374 3229 ± 452 1738 ± 449 2470 ± 182 1568 ± 1 7641 ± 858

Co 8.6 ± 2.4 36.6 ± 1.8 28.0 ± 2.5 25.7 ± 3.2 16.6 ± 1.3 10.4 ± 0.3 13.1 ± 1.4 12.6 ± 1.2 11.4 ± 0.7 19.8 ± 0.6

Ni 12 ± 4 112 ± 11 40 ± 2 25 ± 8 55 ± 3 62 ± 12 33 ± 8 94 ± 7 47 ± 8 40 ± 2

Cu 469 ± 76 432 ± 74 417 ± 18 446 ± 33 152 ± 31 129 ± 2 189 ± 56 66 ± 4 92 ± 22 236 ± 51

Zn 645 ± 11 4214 ± 68 975 ± 35 469 ± 162 2624 ± 309 670 ± 27 1816 ± 197 2420 ± 107 483 ± 83 1116 ± 118

Sr 172 ± 23 313 ± 5 219 ± 19 253 ± 23 292 ± 17 200 ± 3 102 ± 20 243 ± 10 229 ± 22 122 ± 19

Ba 185 ± 10 178 ± 4 193 ± 50 215 ± 15 170 ± 1 175 ± 62 157 ± 1 165 ± 11 119 ± 6 233 ± 27

DY8

BDL BDL BDL

BDL BDL
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Tablo 3.8.(cont.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     (cont. on the next page) 

 

Mg 15485 ± 259 33007 ± 6610 19039 ± 532 17026 ± 1269 22743 ± 2010 20221 ± 1197 33395 ± 1469 21577 ± 1434 61349 ± 999 54791 ± 3244

Al 1222 ± 77 4111 ± 972 798 ± 61 439 ± 35 429 ± 35 436 ± 22 1316 ± 13 770 ± 33 48 ± 3 140 ± 5

Mn 707 ± 8 848 ± 172 279 ± 20 324 ± 14 336 ± 3 327 ± 3 262 ± 9 374 ± 18 1157 ± 22 305 ± 7

Fe 2164 ± 123 3971 ± 512 2682 ± 144 2619 ± 342 2903 ± 11 3546 ± 405 4497 ± 195 3628 ± 321 2094 ± 70 3411 ± 355

Co 10.4 ± 0.5 24.9 ± 3.7 12.2 ± 1.9

Ni 60 ± 2 97 ± 4 58 ± 13 36 ± 1 34 ± 2 51 ± 1 59 ± 5 56 ± 3 132 ± 9 83 ± 2

Cu 42 ± 11 401 ± 60 412 ± 25 258 ± 37 447 ± 42 380 ± 12 756 ± 23 375 ± 49 346 ± 18 350 ± 1

Zn 666 ± 66 449 ± 125 1379 ± 222 1850 ± 111 3142 ± 385 2070 ± 281 2543 ± 357 2395 ± 33 1882 ± 98 2274 ± 100

Sr 188 ± 8 170 ± 36 262 ± 16 185 ± 20 368 ± 29 150 ± 41 347 ± 6 290 ± 18 378 ± 61 265 ± 12

Ba 92 ± 4 281 ± 3 162 ± 27 89 ± 6 80 ± 3 72 ± 3 75 ± 5 115 ± 3 213 ± 9 97 ± 10

Mg 45066 ± 4469 98571 ± 3592 65358 ± 2324 53176 ± 403 71799 ± 721 63577 ± 3118 30037 ± 587 72800 ± 1068 73019 ± 832 87214 ± 1523

Al 170 ± 3 577 ± 18 410 ± 10 252 ± 41 1847 ± 233 3692 ± 284 700 ± 60 3048 ± 92 2618 ± 96 2677 ± 160

Mn 254 ± 4 1419 ± 72 675 ± 71 430 ± 1 874 ± 31 1051 ± 47 647 ± 59 905 ± 50 1041 ± 18 1527 ± 37

Fe 1437 ± 155 5131 ± 118 10557 ± 170 2876 ± 111 3911 ± 594 4215 ± 396 2729 ± 632 3561 ± 136 7234 ± 35 12502 ± 3971

Co 9.6 ± 1.8 8.4 ± 0.4 6.1 ± 0.4 8.3 ± 0.9 11.7 ± 0.5 11.5 ± 0.9

Ni 71 ± 12 167 ± 0 132 ± 9 96 ± 2 476 ± 57 169 ± 5 47 ± 2 359 ± 4 227 ± 68 276 ± 18

Cu 419 ± 23 1234 ± 107 508 ± 17 391 ± 14 746 ± 78 795 ± 4 366 ± 22 771 ± 76 872 ± 8 2679 ± 237

Zn 3931 ± 738 4223 ± 694 4998 ± 132 2105 ± 116 2215 ± 179 1761 ± 299 1323 ± 382 1046 ± 42 3509 ± 394 2820 ± 711

Sr 232 ± 20 441 ± 57 233 ± 10 266 ± 28 191 ± 62 548 ± 8 2301 ± 38 143 ± 1 100 ± 18 130 ± 25

Ba 127 ± 8 365 ± 19 90 ± 13 113 ± 13 205 ± 92 81 ± 8 53 ± 3 116 ± 12 67 ± 5 90 ± 4

Mg 39965 ± 804 49033 ± 1358 79118 ± 1208 79029 ± 1574 40311 ± 3262 24576 ± 2811 26818 ± 414 95894 ± 5025 90153 ± 2866 87909 ± 6727

Al 2142 ± 48 2254 ± 131 2352 ± 43 3792 ± 350 2614 ± 102 2521 ± 495 2318 ± 105 2014 ± 7 2152 ± 319 1947 ± 104

Mn 587 ± 25 884 ± 23 951 ± 5 1141 ± 87 542 ± 35 305 ± 37 7530 ± 399 745 ± 40 871 ± 34 1044 ± 76

Fe 5084 ± 425 3663 ± 242 4413 ± 268 3541 ± 143 3353 ± 199 4472 ± 292 14386 ± 45 5506 ± 750 9784 ± 209 9012 ± 568

Co 8.2 ± 0.9 7.6 ± 0.7 11.7 ± 1.1 11.3 ± 5.3 5.2 ± 0.5 3.1 ± 0.1 1.2 ± 0.5 2.7 ± 0.2

Ni 212 ± 22 161 ± 3 135 ± 12 172 ± 12 140 ± 19 114 ± 15 66 ± 6 965 ± 57 157 ± 5 267 ± 15

Cu 558 ± 84 699 ± 26 915 ± 19 1256 ± 67 682 ± 66 375 ± 23 341 ± 34 1644 ± 42 1118 ± 50 1801 ± 14

Zn 3514 ± 282 2235 ± 216 1800 ± 271 4040 ± 1354 2240 ± 167 2550 ± 348 1421 ± 150 1940 ± 427 2245 ± 768 1347 ± 353

Sr 164 ± 12 217 ± 15 88 ± 6 193 ± 2 172 ± 13 306 ± 51 317 ± 29 137 ± 8 420 ± 6 113 ± 13

Ba 58 ± 7 70 ± 10 46 ± 1 159 ± 19 127 ± 16 185 ± 5 870 ± 8 41 ± 14 145 ± 11 77 ± 3

D1 D2 D3 D4 M1 M2T3 T4 T5 T6

MU10 K1 K2 K3 K4 K5 K6 K7

BDL BDL BDL BDL BDL
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BDL BDL BDL BDL

D5 D6 M3 M4 M8 AD

BDL BDL

M5 M6 G M7

 

6
8
 



     69 

Tablo 3.8.(cont.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     (cont. on the next page) 

 

Mg 77736 ± 2959 69353 ± 3664 61205 ± 4846 77183 ± 1355 54265 ± 4830 38617 ± 2438 29371 ± 323 54728 ± 2921 34357 ± 2300 67845 ± 3643

Al 3486 ± 157 2896 ± 56 19348 ± 1475 3556 ± 154 1441 ± 169 1344 ± 94 1179 ± 42 2629 ± 80 1137 ± 66 1342 ± 80

Mn 945 ± 28 769 ± 46 810 ± 51 987 ± 15 653 ± 27 433 ± 9 389 ± 14 667 ± 26 488 ± 12 715 ± 40

Fe 8293 ± 330 5393 ± 234 9793 ± 684 13505 ± 1973 3098 ± 318 2668 ± 242 3255 ± 381 8765 ± 973 3518 ± 349 3482 ± 359

Co 25.7 ± 5.7 17.1 ± 0.8 26.8 ± 1.8 19.3 ± 0.4 11.9 ± 1.2 10.5 ± 0.7 5.8 ± 0.8 8.6 ± 1.5 3.0 ± 0.2 6.1 ± 0.2

Ni 320 ± 17 319 ± 21 414 ± 1 324 ± 19 54 ± 3 78 ± 8 54 ± 3 178 ± 5 27 ± 3 43 ± 5

Cu 1184 ± 47 1044 ± 111 1055 ± 125 1168 ± 31 598 ± 125 348 ± 39 176 ± 59 389 ± 98 294 ± 67 219 ± 32

Zn 83 ± 7 1429 ± 49 4668 ± 154 3274 ± 558 4852 ± 105 7026 ± 726 1864 ± 95 4103 ± 540 2523 ± 597 4398 ± 284

Sr 228 ± 22 241 ± 9 352 ± 34 464 ± 49 1425 ± 96 847 ± 17 757 ± 63 705 ± 78 767 ± 0 1852 ± 113

Ba 236 ± 26 189 ± 16 219 ± 16 253 ± 21 337 ± 15 255 ± 16 242 ± 9 188 ± 19 304 ± 12 294 ± 3

Mg 50640 ± 9569 28310 ± 566 45032 ± 920 43535 ± 1945 13732 ± 862 53699 ± 1785 55270 ± 3594 28295 ± 733 33420 ± 213 32184 ± 1016

Al 2811 ± 153 24841 ± 1129 7392 ± 378 2578 ± 62 2119 ± 720 3575 ± 217 3449 ± 316 3984 ± 526 3616 ± 432 1077 ± 108

Mn 561 ± 10 915 ± 120 908 ± 21 952 ± 145 74 ± 18 831 ± 36 728 ± 80 333 ± 112 342 ± 74 311 ± 41

Fe 5206 ± 363 6535 ± 461 3103 ± 470 14262 ± 2177 843 ± 135 261329 ± 43767 5201 ± 486 5955 ± 752 4716 ± 641 3434 ± 181

Co 8.2 ± 1.2 5.2 ± 0.2

Ni 75 ± 3 197 ± 10 152 ± 1 214 ± 34 51 ± 8 133 ± 9 383 ± 13 83 ± 3 177 ± 18 95 ± 3

Cu 450 ± 23 591 ± 2 695 ± 2 518 ± 13 128 ± 12 1112 ± 46 820 ± 69 396 ± 25 553 ± 17 325 ± 14

Zn 31994 ± 65 2300 ± 235 1213 ± 87 9421 ± 782 1017 ± 145 7231 ± 879 5551 ± 838 8288 ± 953 1372 ± 349 1071 ± 241

Sr 1273 ± 84 249 ± 6 143 ± 3 694 ± 148 299 ± 247 194 ± 15 184 ± 67 247 ± 31 164 ± 3 420 ± 17

Ba 294 ± 13 126 ± 4 164 ± 10 271 ± 48 111 ± 9 155 ± 24 158 ± 31 172 ± 5 87 ± 10 124 ± 11

Mg 8238 ± 524 32945 ± 343 56941 ± 1761 29358 ± 300 35384 ± 2811 15271 ± 810 57026 ± 3640 22496 ± 550 13193 ± 536 79561 ± 588

Al 522 ± 25 2025 ± 213 2941 ± 282 2662 ± 604 34795 ± 2660 1003 ± 143 1539 ± 857 1133 ± 249 1698 ± 558 2036 ± 3

Mn 150 ± 10 341 ± 16 682 ± 25 306 ± 5 982 ± 99 189 ± 43 416 ± 6 401 ± 32 263 ± 8 659 ± 1

Fe 4287 ± 362 3258 ± 355 12628 ± 1386 5379 ± 0 4682 ± 968 6882 ± 699 1796 ± 510 4292 ± 317 1849 ± 479 4849 ± 7

Co 4.3 ± 0.4 7.8 ± 0.5 3.8 ± 0.0 20.3 ± 0.4 0.5 ± 0.0 1.0 ± 0.2 3.6 ± 0.5 2.7 ± 0.2 13.1 ± 0.2

Ni 89 ± 10 233 ± 4 62 ± 4 203 ± 5 28 ± 3 152 ± 13 22 ± 2 31 ± 2 136 ± 0

Cu 176 ± 12 386 ± 10 849 ± 11 358 ± 21 661 ± 35 129 ± 12 232 ± 1 287 ± 8 178 ± 24 580 ± 11

Zn 1991 ± 251 892 ± 24 1378 ± 124 881 ± 151 1382 ± 196 1813 ± 33 2575 ± 402 2957 ± 891 3377 ± 133 677 ± 1

Sr 23 ± 5 373 ± 31 262 ± 20 86 ± 19 315 ± 34 114 ± 12 165 ± 17 498 ± 31 185 ± 17 285 ± 0

Ba 62 ± 2 89 ± 4 82 ± 6 65 ± 17 134 ± 3 43 ± 5 123 ± 22 141 ± 7 87 ± 10 87 ± 0

M9 T7 M10 M11 U2 U3 DY11 U4 BL U5

U6 I1 AY1 I2 I3 I4 I5 I6
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Tablo 3.8.(cont.)  

 

 

 

 

 

 

 

 

 

 

Mg 41731 ± 582 34868 ± 960 67074 ± 2648 10838 ± 75 12210 ± 505 10664 ± 281 9487 ± 47 61478 ± 1269 66079 ± 5094 27441 ± 1222

Al 9179 ± 615 2304 ± 364 359 ± 64 684 ± 192 1729 ± 466 519 ± 40 533 ± 103 764 ± 119 571 ± 63 3494 ± 65

Mn 321 ± 30 527 ± 20 3441 ± 177 369 ± 22 492 ± 38 220 ± 2 209 ± 17 1793 ± 106 4231 ± 74 1141 ± 47

Fe 2182 ± 7 2976 ± 113 2427 ± 63 3655 ± 7 2827 ± 615 1575 ± 235 1337 ± 298 2902 ± 100 7496 ± 444 5600 ± 920

Co 17.3 ± 0.9 13.0 ± 0.5 6.7 ± 0.5 2.6 ± 2.8 4.4 ± 0.5 3.8 ± 0.6 24.8 ± 2.6

Ni 44 ± 2 61 ± 4 159 ± 10 36 ± 4 33 ± 1 24 ± 4 15 ± 2 73 ± 7 90 ± 9 99 ± 7

Cu 518 ± 115 461 ± 22 243 ± 27 128 ± 11 90 ± 3 128 ± 11 120 ± 4 241 ± 29 252 ± 25 213 ± 8

Zn 2447 ± 430 14302 ± 16414 1860 ± 42 1229 ± 126 1336 ± 56 5374 ± 168 2471 ± 410 3574 ± 38 10703 ± 1175 1867 ± 178

Sr 221 ± 31 295 ± 20 350 ± 12 150 ± 12 243 ± 42 138 ± 37 153 ± 7 218 ± 19 349 ± 53 252 ± 18

Ba 63 ± 7 142 ± 67 339 ± 44 146 ± 34 86 ± 8 105 ± 69 70 ± 7 262 ± 18 291 ± 28 350 ± 27

Mg 51972 ± 982 36243 ± 1934 22618 ± 716 64362 ± 2752 27298 ± 1652 24062 ± 1593

Al 623 ± 42 1106 ± 27 1581 ± 50 5336 ± 338 853 ± 210 1398 ± 553

Mn 2356 ± 55 357 ± 11 536 ± 17 1063 ± 201 1005 ± 112 544 ± 12

Fe 11636 ± 880 2215 ± 144 14520 ± 460 14315 ± 2415 8897 ± 1826 1833 ± 80

Co 5.0 ± 0.2 18.7 ± 1.5 8.7 ± 0.0

Ni 65 ± 2 62 ± 5 93 ± 3 2021 ± 336 85 ± 15 30 ± 3

Cu 202 ± 4 307 ± 3 295 ± 9 1782 ± 560 212 ± 39 101 ± 9

Zn 3841 ± 129 2520 ± 366 3868 ± 123 2646 ± 319 2496 ± 210 2089 ± 224

Sr 361 ± 45 251 ± 16 131 ± 4 92 ± 15 268 ± 12 721 ± 36

Ba 190 ± 10 173 ± 2 153 ± 5 53 ± 21 181 ± 19 139 ± 11

BDLBDLBDL

BDL BDL BDL

BT2 BLKI2 KI3 T9 BN2 T10 S2

T11 E I10 I11 I12 U7

BN3 BT1
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As mentioned earlier, since the collected honey samples were received in 

different geographic regions of the Turkey from east to west, any clustering of the 

samples based on their regions was investigated. For this purpose, the same four 

scenarios as mentioned before were tested. The first combination was made with two 

groups which consist of honey samples from Trakya, Kayseri, Malatya and Sivas. The 

score plot of the PC1 versus PC2 is shown in Figure 3.42. The first and second principal 

components explained 58 % of the variation of the data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42. The score plot of the first component versus the second component for 

honey samples from Trakya, Kayseri, Malatya and Sivas using metal 

concentration data. 

 

When PC score plot is examined, most of the Trakya samples (seven of eleven) 

were characterized based on the first component. Likely samples from east of Turkey 

except S2 and K1 were differentiated according to first component and located on the 

negative part. HCA method was also applied to same samples in order to see the 

relationship between them. (Figure 3.43). 
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Figure 3.43. Dendrogram for honey samples from Trakya, Kayseri, Malatya and Sivas 

using metal concentration data. 

 
The dendrogram supported strongly PCA result, two main clusters were 

observed and the classes were clustered separately as east and west samples. In addition 

the sample coded as T4 were characterized separately but in its region class. We can say 

that metal concentration data were successful in separating samples from east and west.  

The next combination was made with the samples from Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa. The score plot of PC1 versus PC2 is shown in 

Figure 3.44. The two PC‟s explain approximately 58 % of the total variance of the data. 

According to the plot, the exact grouping according to the geographical origin cannot be 

observed; however the samples from same cities were located very close and also Urfa 

samples were separated from others.  
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Figure 3.44. The score plot of the first component versus the second component for 

honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa 

using metal concentration data. 

 

In order to see the closeness of the honey samples, HCA dendrogram was drawn 

using the metal concentration data directly (Figure 3.45). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.45. Dendrogram for honey samples from Yüksekova, MuĢ, Bingöl, Bitlis, 

Diyarbakır and Urfa using metal concentration data. 

 

HCA result confirmed that the samples constructed separate clusters according 

to sampling cities.  The differentiation of Yüksekova samples were very obvious from 

others. In addition Diyarbakır samples formed small separate clusters also. The 
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differentiation was not fully clear but it can be said that that classification was not failed 

with metal concentration data. 

The third trial for geographical grouping was again performed with the honey 

samples which were Ġzmir, Datça, Marmaris and one sample from Antalya as mentioned 

previously. All of Ġzmir samples were not digested and thirteen of them were selected 

for analysis with ICP-MS because of limited time and in order to equalize the number of 

samples in groups. The plot for the first two principal components which explained 

about 50% of the variation in the data is illustrated in Figure 3.46. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46. The score plot of the first component versus the second component for 

honey samples from Ġzmir, Datça, Marmaris and Antalya using metal 

concentration data. 

 

The plot showed us that Ġzmir samples were differentiated according to first 

component and located negative part. On the other hand most of Datça and Marmaris 

samples were charactherized based on the second component and placed on the positive 

part of it.  Also, HCA dendrogram shown in Figure 3.47 was generated to investigate the 

similarities between the samples.  
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Figure 3.47. Dendrogram for honey samples from Ġzmir, Datça, Marmaris and Antalya 

using metal concentration data. 

 

As can be seen from the dendrogram the samples constructed two main clusters 

and some of Ġzmir samples were classified in the cluster on the right side. Datça and 

Marmaris samples were not differentiated since they were located very close to each 

other on the map.  

Lastly the classification of honey samples from Trakya, MuĢ, Bingöl and Bitlis 

was investigated and the PCA plot is depicted in Figure 3.48. The resulted two-

component graphs explain 62 % of total variance. 
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Figure 3.48. The score plot of the first component versus the second component for 

honey samples from Trakya, MuĢ, Bingöl and Bitlis using metal 

concentration data. 

 

The metal content data is also succesful in differentiate the samples from east 

and west of the country. Again the first component distinguishes two classes. The result 

of cluster analysis was illustrated in dendrogram in Figure 3.49.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.49. Dendrogram for honey samples from Trakya, MuĢ, Bingöl and Bitlis using 

metal concentration data. 

 

 Also the dendrogram supports discrimination of classes and the samples formed 

perfect two main clusters as east and west. In conclusion metal concentration data were 

also successful in differentiation samples from different regions. 
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3.2.4. Classification Studies with Supervised Methods 

 

Following the classification studies with PCA and HCA, SIMCA is also used for 

metal concentration data. The same combinations of grouping were investigated and the 

first grouping was figured out with the samples from Trakya, Kayseri, Malatya and 

Sivas. The Cooman‟s plot for honey samples is exhibited in Figure 3.50. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.50. Cooman‟s plot for classification of honey samples from Trakya, Kayseri, 

Malatya, Sivas using metal concentration data ((■)Trakya and () Kayseri, 

Malatya, Sivas) 

 

When Cooman‟s plot is examined, all of Trakya samples were on their own class 

region but the samples from Kayseri Malatya and Sivas samples were overlap region. 

This results means the samples were differentiated other than the samples were similar. 

The next combination was made with the samples from Yüksekova, MuĢ, Bingöl, Bitlis, 

Diyarbakır and Urfa. The results obtained from SIMCA are on the plot in Figure 3.51. 
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Figure 3.51. Cooman‟s plot for classification of honey samples from Yüksekova, MuĢ, 

Bingöl, Bitlis, Diyarbakır and Urfa using metal concentration data 

(■:Yüksekova ; : MuĢ, Bingöl, Bitlis; ▲: Diyarbakır, Urfa). 

 

 

The plot showed us that most of Yüksekova samples were differentiated 

obviously according to metal concentration data and the half of  Diyarbakır and Urfa 

samples were separated in outlier region, on the contrary the other were classified with 

MuĢ, Bingöl Bitlis samples. The next trial was formed with honey samples from Ġzmir, 

Datça, Marmaris and Antalya and the resulting plot by SIMCA is illustrated in Figure 

3.52. 

 
Figure 3.52. Cooman‟s for classification of honey samples from Ġzmir, Datça, Marmaris 

and Antalya using metal concentration data ((■) Ġzmir, () Marmaris, 

Datça, Antalya).   
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As can be seen from the Figure 3.52. most of the honey samples were not 

discriminated according to geographical origin, all samples were in overlap region 

meaning the software identified samples as a class. The last examination for 

geographical examination was constructed with honey samples from Trakya, MuĢ, 

Bingöl and Bitlis. The plot in Figure 3.53 was obtained after analysis by SIMCA.  

 
 

Figure 3.53. Cooman‟s for classification of honey samples from Trakya, MuĢ, Bingöl 

and Bitlis using metal concentration data (■) Trakya, () MuĢ, Bingöl and 

Bitlis).   

 

 

As shown in Cooman‟s plot mainly, all honey samples from Trakya were 

classified, conversely all of MuĢ, Bingöl and Bitlis samples were in overlap region. In 

conclusion metal concentration data was not successful in classification using 

supervised method such as SIMCA like molecular spectrometric data. The metal 

concentration data was not sufficient for SIMCA to separate honey samples according 

to sampling regions.  
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CHAPTER 4  

 

CONCLUSION 

 

In this thesis, it is aimed to develop classification models of honey produced in 

Turkey based on geographical origin via atomic and molecular spectrometry. The honey 

samples were taken from different regions of Turkey and then they were scanned with 

molecular spectrometric methods (FTIR-ATR, and fluorescence spectrophotometer with 

synchronous fluorescence mode and 3D excitation emission mode). Afterwards, 

unsupervised (PCA, HCA) and supervised (SIMCA) methods were used for the 

classification of honey samples. Finally, the metal content of honey samples was 

investigated through ICP-MS measurements and the same methods were again applied 

for classification based on geographical origin. 

Differentiation of honey samples was examined based on their geographical 

origins. For this purpose, four different scenarios were tested. The first one was based 

on the samples from Trakya, Kayseri, Malatya and Sivas and the second one was 

established on the samples from Yüksekova, MuĢ, Bingöl, Bitlis, Diyarbakır and Urfa. 

The third group was formed with the honey samples collected from Ġzmir, Datça and 

Marmaris, lastly, fourth group was figured with samples from Trakya, MuĢ Bingöl and 

Bitlis. Successful differentiations were obtained even with samples from neighbor 

regions (Ġzmir and Datça, Marmaris) by processing molecular spectrometric data. The 

most winning separation according to geographical origin was obtained with the 

samples Trakya, MuĢ Bingöl and Bitlis because of their far locations. Three of the 

molecular spectrometric data discriminated the honey samples with four combinations.  

In addition, the honey samples were digested and the metal concentrations (Mg, 

Al, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba) were determined in order to process and use for 

classification. The differentiation with honey samples from far regions were achieved 

using unsupervised techniques.  

In conclusion, molecular spectrometry gave better classification results based on 

geographical origin compared to the results obtained with atomic spectrometry. 

Molecular spectrometry is more advantageous for the classification of honey samples in 

the case of saving time, saving chemicals and ease of usage.   
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