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ABSTRACT 
 

PREPARATION AND CHARACTERIZATION OF RESORBABLE 
CALCIUM PHOSPHATE BASED BIOCERAMICS 

 

The main objective of this study was to determine the behavior of 

hydroxyapatite powders in solutions containing major ions found in human blood 

plasma. Research efforts however were focused on two different fields, chemical 

analysis and dissolution testing of hydroxyapatite. Arsenazo III-calcium analysis 

method was selected and modified for the low level calcium analysis whereas malachite 

green phosphate assay was used for phosphate determinations. Arsenazo III reagents 

with different dye concentrations and pH values were tested for the analysis of low 

levels of calcium. The effects of ions at their blood plasma concentration levels on the 

modified calcium analysis method were further evaluated. Effects of these ions on the 

accuracy of phosphate analysis by malachite green assay were  also investigated.  

Dissolution behavior of synthesized and commercial hydroxyapatite was 

investigated by immersing pellets in several solutions. Calcium and phosphate release 

kinetics in ultrapure water, sodium chloride and sodium bicarbonate solutions were 

investigated. Commercial hydroxyapatite pellets were also immersed separately in 

magnesium chloride, and sodium chloride/bicarbonate solutions. Calcium 

concentrations in solutions were found to decrease in the following order: sodium 

chloride > ultrapure water > bicarbonate. Phosphate concentrations in solutions were 

found to follow an order of sodium bicarbonate > sodium chloride > ultrapure water. 

Bicarbonate-phosphate ion exchange was observed in bicarbonate ion containing 

solutions. Magnesium-calcium ion exchange and adsorption of phosphates on 

hydroxyapatite surfaces were found to be effective in magnesium ion containing 

solution. 
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ÖZET 
 

ÖZÜMLENEBİLEN KALSİYUM FOSFAT BAZLI 
BİYOSERAMİKLERİN HAZIRLANMASI VE KARAKTERİZASYONU 

 

Bu çalışmanın temel amacı hidroksiapatit tozlarının kan plazmasındaki temel 

iyonları içeren çözeltilerdeki çözünürlük davranışının belirlenmesidir. Çalışmada 

uygulanan deneysel yaklaşımlar kimyasal analizler ve hidroksiapatitin çözünürlük 

davranışının sınanması alanlarında odaklanmıştır. Bu çalışmada Arsenazo III kalsiyum 

analizi düşük derişimlerdeki kalsiyumun belirlenmesi için seçilmiş ve modifiye 

edilmiştir. Fosfat analizi içinse malahit yeşili temelli fosfat analiz metodu kullanılmıştır. 

Farklı boya derişimlerine ve pH değerlerine sahip Arsenazo III belirteçleri düşük 

derişimlerdeki kalsiyumun belirlenmesi için araştırılmıştır. Ayrıca iyonların kan 

plazmasındaki konsantrasyonlarının kalsiyum analizi üzerine etkileri belirlenmiştir. Bu 

iyonların malahit yeşili bazlı fosfat tayini üzerine etkileri de araştırılmıştır. 

Ticari hidroksiapatit ve bu çalışmada sentezlenen hidroksiapatit tozlarının 

çözünürlük davranışları, bu tozlardan elde edilen pelletlerin çeşitli çözeltiler içerisinde 

tutulmasıyla araştırılmıştır. Saf su, sodyum klorür ve sodyum bikarbonat çözeltileri 

içerisindeki kalsiyum ve fosfat salınım kinetiği araştırılmıştır. Ayrıca ticari 

hidroksiapatit tozundan elde edilen pelletlerin magnesium klorür çözeltisi ve sodyum 

klorür ve sodyum bikarbonat karışımı içeren çözeltideki çözünürlük davranışları da 

incelenmiştir. En yüksek kalsiyum derişimi sodyum klorür çözeltisi içinde gözlenirken, 

sırası ile saf su ve sodyum bikarbonat çözeltilerinde daha düşük olarak bulunmuştur. En 

yüksek fosfat derişimi ise sodyum bikarbonat çözeltisinde gözlenirken, sırasıyla 

sodyum klorür çözeltisi ve saf suda daha düşük olarak belirlenmiştir. Bikarbonat içeren 

çözeltilerde, bikarbonat-fosfat iyon değişimi gözlenmiştir. Magnezyum içeren çözeltide 

ise magnezyum-kalsiyum iyon değişimi ile fosfat iyonlarının hidroksiapatit yüzeyine 

adsorpsiyonun etkin olduğu görülmüştür.    
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CHAPTER 1 

 

INTRODUCTION 

 
 Calcium phosphate materials are generally used as bone substitute materials in 

non-load bearing applications. They are also used as dental implants. Among all 

calcium phosphate phases, synthetic hydroxyapatite has received special interest in the 

studies of bone substitute materials due to its similarity with inorganic phase of the bone 

(apatite). Resorption of bone by osteoclasts and bone formation by osteoblasts, bonding 

of materials to the bone, dissolution of bone substitutes in time and replacement with 

newly formed bone are all directly related to the solubilities and dissolution behavior of 

bone and materials. Saturation level of the solutions with respect to calcium phosphate 

phases is the most important factor in the determination of behavior of hydroxyapatite 

in solution. Undersaturation, saturation and supersaturation degrees of solutions with 

respect to several calcium phosphates determine whether sample will dissolve or 

precipitation will occur. 

Solubility studies of calcium phosphate compounds are generally based on the 

determination of equilibrium calcium and phosphate concentrations and calculation of 

solubility product constants. However, immersion of several calcium phosphate 

compounds into simulated body fluids or several electrolytes and monitoring of calcium 

or phosphate release or both are also called as solubility testing. These studies are in 

fact batch dissolution studies and irrelevant to the determinations of thermodynamic 

solubility constant. Dissolution studies have been performed by batch dissolution 

experiments or constant composition dissolution kinetics tests. Batch dissolution 

experiments are based on immersion of powder into electrolytical solutions and 

monitoring of calcium and phosphate concentrations in the solutions. Hydroxyapatite 

dissolution studies by batch dissolution experiments are generally focused on the 

dissolution testing of powder in acidic solutions in order to predict osteoclastic 

resorption behaviors or in solutions buffered to physiological pH value.   

 The main disadvantage of batch dissolution experiments is the change of 

solution composition which changes the undersaturation level resulting in a variable 

thermodynamic driving force. This can be overcome by conducting experiments in a 
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constant composition dissolution kinetics methodology. Titrating dissolution medium 

with two titrant solutions (one containing all background ions and calcium and another 

containing all background ions and phosphate) is used to keep the composition of the 

dissolution medium constant by diluting the dissolution media. Volumes of the titrants 

used are plotted against time and dissolution rates are then calculated. Constant 

composition dissolution kinetics studies are valuable for the determination of 

dissolution and crystallization mechanisms because change of Gibb’s free energy is held 

constant during dissolution or crystallization. 

 Although solution compositions are not held constant in batch experiments and 

this is considered as their main disadvantage, changes in solution compositions are 

required in some cases. Calcium phosphate bone cement is the most common example. 

In bone cements, two or more calcium phosphate compounds are used. Phases are 

mixed with a solution in which calcium phosphate phases dissolve and hydroxyapatite 

precipitates. In these systems time dependent calcium and phosphate release from 

samples is important and results in cement setting. 

 The major objective of this study was to determine the dissolution behavior of 

hydroxyapatite powders in solutions containing major ions found in human blood 

plasma. However because of the problems associated with low levels of calcium and 

phosphate analysis in the presence of higher amount of background matrices, 

experiments were also performed on the chemical analyses methods. A calcium analysis 

method was modified for the  low levels of calcium in the solutions. The effects of the 

presence of several electolytical solutions on calcium analysis were determined. 

Similarly, interferences resulting from background ions on phosphate analysis were 

evaluated. By using calibration curves obtained in the presence of electrolytes, 

dissolution of hydroxyapatite powders in several electrolytical solutions were 

determined.  
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CHAPTER 2 

 

BIOCERAMICS BONE AND CALCIUM PHOSPHATES 

 
2.1. Bioceramics 

 
 A biomaterial was defined as “any substance (other than a drug) or combination 

of substances, synthetic or natural in origin, which can be used for any period of time, 

as a whole or as a part of a system which treats, augments or replaces any tissue, organ, 

or function of the body” by The National Institute of Health Consensus Development 

Conference (Dee et al., 2002). Several metallic, polymeric and ceramic materials or 

combinations of these have been used as biomaterials. Metals and their alloys are 

preferred for the load-bearing implant applications whereas polymers are used for the 

replacement and augmentation of soft tissues and in drug delivery systems and tissue 

engineering applications (Dee et al., 2002). Ceramic materials used in the repair, 

reconstruction and replacement of diseased or damaged parts are called bioceramics 

(Hench, 1998). Bioceramics are generally used in the orthopedic applications alone or 

as coatings for metallic implants and composites with polymeric materials.  

 Stainless steel 316L, alloys cobalt-chromium-molibdenum, titanium and 

Ti6Al4V are the most widely used metallic implant materials (Dee et al., 2002). 

Polyethylene, poly(vinyl chloride), silicone rubber, poly(ethylene terephthalate), 

poly(lactic acid), polytetrafluoroethylene, poly(methyl methacrylate), poly(lactide-co-

glycolide) and poly(glycolic acid) are the examples of polymers used in the biomedical 

applications (Dee et al., 2002). Although metallic implants are commonly used for load 

bearing applications, they are actually not the perfect biomaterials due to their lack of 

biocompatibility, insufficient corrosion resistance and mechanical properties which do 

not match with those of surrounding tissues (Dee et al., 2002). Dense fibrous tissue 

formation and encapsulation of metallic implant material, resulting with the improper 

stress distribution and loosening of the implants, are observed for almost all metallic 

implants (Suchanek and Yoshimura, 1998). Biological degradation of several polymers 

resulting in non-toxic products is advantageous, since new tissue is formed and it 

replaced the polymers as they are assisting in healing.  
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 In the case of bioceramics, several ceramic materials such as alumina (Al2O3), 

zirconia (ZrO2), bioactive glasses, hydroxyapatite (HA), tricalcium phosphate (TCP) 

(Dee et al., 2002; Hench, 1998), pyrolytic carbon (Dee et al., 2002), bioactive glass-

ceramics, calcium sulfate and calcium phosphate salts (Hench, 1998) are widely used. 

Bioceramic materials are mostly used in the orthopedic applications for the treatment of 

bone disease or injury. Table 2.1 summarizes the clinical applications of different 

bioceramics.  

 When any material is implanted into the bone, generally fibrous tissue is formed 

to encapsulate and isolate the material from the surrounding tissues (Kokubo, 1998). 

However, Hench (1998) has defined four types of implant and tissue responses       

(Table 2.2). When material implanted is toxic, it results with the death of the 

surrounding tissue. In the case of non-toxic but inert materials, fibrous tissue is formed.  

If non-toxic and bioactive material is used, interfacial bonding occurs between the 

biomaterial and the surrounding tissue. Non-toxic materials, which could dissolve, lead 

to the replacement of biomaterial with the surrounding tissue.  

 Hench (1998) has also classified the bioceramics according to types of 

bioceramic-tissue attachments considering these implant-tissue responses. Table 2.3 

summarizes the types of bioceramic-tissue attachment and examples of bioceramics. 
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Table 2.1. Medical applications of bioceramics 
(Source: Hench, 1998) 

Applications Materials 

Orthopedic 

Al2O3 
Stabilized ZrO2 
HA powders 
Bioactive glass powders 

Coatings for bioactive bonding HA 
Bioactive glass ceramics 

Bone space fillers Tricalcium phosphate 
Calcium phosphate salts 

Dental implants 
Al2O3 
HA 
Bioactive glasses 

Artificial tendon and ligament Polylactic acid-carbon-fiber composite 

 
Periodontal pocket obliteration 

HA 
HA-polylactic composite 
Tricalcium phosphate 
Calcium phosphate salts 
Bioactive glasses 

Alveolar ridge augmentation 
HA 
HA-autogeneous bone composite 
Bioactive glasses 

 
Maxillofacial reconstruction 

Al2O3 
HA 
Polyethylene-HA composite 
Bioactive glasses 

Spinal surgery Bioactive-glass ceramic 
HA 

Therapeutic treatment of tumors Rare-earth-doped aluminosilicate glasses 
Artificial heart valves Pyrolytic carbon coating 

Otolaryngological 

Al2O3 
HA 
Bioactive glasses 
Bioactive-glass ceramic 
Polyethylene-HA composite 
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Table 2.2. Types of  Implant-Tissue Response 
(Source: Hench, 1998) 

Types of Implant Tissue Response 

Toxic Death of surrounding tissue 

Nontoxic and biologically inactive 
(almost inert) 

Formation of fibrous tissue with variable 
thickness 

Nontoxic and biologically active 
(bioactive) 

Formation of an interfacial bond 

Nontoxic and dissolves Replacement of material with surrounding 
tissue 

 

  

 

Table 2.3. Types of Bioceramic Tissue Attachment and Bioceramic Classification 
(Source: Hench, 1998) 

Type of attachment Type of bioceramic 

Dense, nonporous, almost inert ceramics attach by bone 
growth into surface regularities by cementing the device 
into the tissue, or by press-fitting into a defect 
(morphological fixation)  

Al2O3 
ZrO2 

For porous implants, bone ingrowth occurs, which 
mechanically attaches the bone to the material 
(biological fixation) 

Porous hydroxyapatite 
Hydroxyapatite-coated  
porous metals 

Surface-reactive ceramics, glasses, and glass-ceramics 
attach directly by chemical bonding with the bone 
(bioactive fixation) 

Bioactive glasses 
Bioactive glass-ceramics 
Dense hydroxyapatite 

Resorbable ceramics and glasses in bulk or powder form 
designed to be slowly replaced by bone 
 

 

Calcium sulfate (plaster of 
Paris) 
Tricalcium phosphate 
Calcium phosphate salts 
Bioactive glasses 
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 Among bioceramics, alumina has been widely used in total hip prostheses, knee 

prostheses, bone screws, alveolar ridge and maxillofacial reconstructions, ossicular 

bone substitutes, keratoprostheses, segmental bone replacements and dental implants 

whereas zirconia has been used in total joint and hip prostheses (Hench, 1998). 

Excellent corrosion resistance, good biocompatibility, low friction, high wear resistance 

and high strength of alumina and high fracture toughness and tensile strength of zirconia 

make them suitable materials for the medical applications (Hench, 1998). 

 When a material is implanted into the body, fixation of implant is required. 

Formation of a fibrous tissue surrounding the biomaterial may result with failure. It is 

therefore required that the material should resist to the movements. This can be 

overcome by the use of porous biomaterials. Bone ingrowth into the pores increases the 

strength of the biomaterial to resist the movement. The limitation for the porous 

implants is that the pores should be higher than 100-150 μm. Pore size smaller than 100 

μm does not stimulate the formation of vascular tissue. Surrounding tissue could only 

be healthy and viable if the pore size is over 100-150 μm (Hench, 1998). In order to 

biologically fix several metallic implants into the tissues, porous hydroxyapatite 

coatings can be used to promote bone ingrowth. Bioactive ceramics and glasses which 

have the ability to form mechanically strong bond to bone are able to induce surface 

time dependent modifications after implantation and subsequently form a biologically 

active bone-like hydroxycarbonate apatite layer (Hench, 1998). The formation of bone-

like apatite layer on the surfaces can be the essential prerequisite for the bonding of 

bone to the implant material (Kokubo, 1998).  

 Resorbable bioceramics are based on the principle that the living tissues can 

repair themselves by the continuous cellular proliferation in time (Hench, 1998). They 

degrade over time and newly formed tissue replaces. Calcium phosphate based 

materials such as TCP are able to dissolve in the living tissue. Due to the brittleness of 

the ceramic materials, their use is restricted to the non-load bearing applications. 

Maintenance of strength and stability of the interface is the main complications. The 

other restriction in the use of resorbable bioceramics is that the dissolution rate of a 

resorbable bioceramic should be almost equal to the repair rate of living tissue. Among 

these restrictions, calcium phosphate based biomaterials and composites are the best 

candidates for bone repair since bone mineral itself is a calcium phosphate based 

mineral.  
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2.2. Bone  

 
 Bone has several functions. It supports body, moves muscles, protects vital 

organs, generates blood and retains the reserves of calcium, phosphate and the other 

ions (Sikavitsas et al., 2001; Asai et al., 2003). Bone itself is a natural inorganic/organic 

composite (Asai et al., 2003). It has 69 % mineral, 20 % organic matrix and 9 % water 

in weight (Suchanek and Yoshimura, 1998). Compositions of organic and inorganic 

phases of bone are shown in Table 2.4. Small quantities of proteins, polysaccharides as 

well as lipids are also present in the bone (Suchanek and Yoshimura, 1998). 

Compositions and physical properties of inorganic phases of enamel, dentine and bone 

are given in Table 2.5. 

 

 

Table 2.4. Composition of bone 
(Source: Murugan and Ramakrishna, 2005) 

Inorganic                                             
wt. % 

Organic   
wt.% 

Hydroxyapatite 
Carbonate 
Citrate 
 
 
 
Sodium 
Magnesium 
Other traces: Cl-, F-, K+, Pb2+, 
Zn2+, Cu2+, Fe2+ 

~60 
~4 
~0.9 
 
 
 
~0.7 
~0.5 
 
 

 

Collagen 
Water 
Non-collagenous proteins 
(osteocalcin, osteonectin, 
osteopontin, thrombospondin, 
morphogenic proteins, sialoprotein, 
serum proteins) 
 
 
Other traces: Polysaccharides, 
lipids, cytokines 
Primary bone cells: osteoblasts, 
osteoclasts 

~20 
~9 
~3 

 

 

  

 Organic matrix of the bone is mainly composed of Type I collagen and 

responsible for the bone tensile strength (Mickiewicz, 2001). Structural framework of 

collagen acts as a template for the calcium apatite growth (Song et al., 2005). 

Combination of hard inorganic material with an elastic collagen is responsible for the 

unique properties of the bone, such as low stiffness, resistance to tensile and 
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compressive forces and high fracture toughness (Song et al., 2005). Bone mineral has 

nano-sized, needle like calcium phosphate crystals (5-20 nm in width and 60 nm in 

length) (Ferraz et al., 2004). Bone apatite is non-stoichiometric and poorly crystallized 

(Ferraz et al., 2004) and contains CO3
2-, Na+, F- (Mickiewicz, 2001; Ferraz et al., 2004; 

Tampieri et al., 2005), Cl-, K+ (Mickiewicz, 2001), Mg2+ (Mickiewicz, 2001; Tampieri 

et al., 2005) and HPO4
2- (Tampieri et al., 2005). Apatite in the bone is highly oriented 

with resulted chemical stability and physical strength (Asai et al., 2003). It is found as 

its c-plane oriented parallel to the axis of collagen (Asai et al., 2003). Presence of 

HPO4
2- and CO3

2- anions and Mg2+and Na+ cations does not alter the structure, but 

decreases crystallinity and increases bioresorbability (Tampieri et al., 2005; Babini and 

Tampieri, 2004). 

 Carbonate is found in bone in 4-8% and its amount changes with the age (Babini 

and Tampieri, 2004; Tampieri et al., 2005). Two types of carbonate substitutions are 

observed and called A and B site carbonate substitution. A-type substitution (found in 

old bone) corresponds to the carbonate substitution in OH sites of apatite while B-type 

substitution (found in young human beings) is referred to the substitution in the PO4 

sites (Babini and Tampieri, 2004; Tampieri et al., 2005). Among the substitute cations 

in bone, Mg2+ is the most important one. Magnesium substitution results with low 

crystallinity, and improved solubility and resorbability, because magnesium acts as an 

accelerator of nucleation kinetics of hydroxyapatite and an inhibitor of crystallization 

(Tampieri et al., 2005). By optimizing over the most favorable stoichiometries and 

having the most likely composition of the bone, two formulas for the cation and anion 

substitutions were given by Tampieri et al. (2005):  

 

Cationic substitution: Ca10-xMx(PO4)6(OH)2 

Anionic substitution: Ca10-x/2-z/2[(HPO4)z(PO4)6-x-z(CO3)x][(OH)2-2y(CO3)y]. 
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Table 2.5. Composition and physical properties of inorganic phases of adult dentine, 
enamel and bone (Source: Suchanek and Yoshimura, 1998)  

 Enamel Dentine Bone 
Compositiona    

Calcium, Ca2+ b 36.5 35.1 34.8 
Phosphorus, as P 17.7 16.9 15.2 
(Ca/P) molarb 1.63 1.61 1.71 
Sodium, Na+ 0.5 0.6 0.9 
Magnesium, Mg2+ b 0.44 1.23 0.72 
Potassium, K+ b 0.08 0.05 0.03 
Carbonate, as CO3

2- c 3.5 5.6 7.4 
Fluoride, F- b 0.01 0.06 0.03 
Chloride, Cl- b 0.30 0.01 0.13 
Pyrophosphate, P2O7

4- 0.022 0.10 0.07 
Total inorganic (mineral) 97.0 70.0 65.0 
Total organicd 1.5 20.0 25.0 
Adsorbed H2O 1.5 10.0 10.0 
Trace elements: Sr2+, Pb2+, Zn2+, Cu2+, 
Fe3+, etc. 

   

    
Crystallographic properties    

Lattice parameters (±0.003 Å)    
a-axis 9.441 9.42 9.41 

      c-axis 6.880 6.88 6.89 
Crystallinity indexe 70-75 33-37 33-37 
Crystallite size (aver.), Å 1,300 x 3 200 x 40 250 x 30 

Ignition products (800 °C) β – TCP+HA 
β – 
TCP+HA 

HA+CaO 
  a Wt. %, b Ashed sample, c Unashed sample, IR method, d Principle organic component: enamel,    
noncollageneous; dentine and bone, collageneous, e Calculated from ratio of coherent/incoherent 
scattering, mineral, Hap = 100.  
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 Mature bone includes two main types, compact and cancellous bone. Adult 

skeleton has cortical (or compact) bone in 80 % and cancellous bone (or trabecular) 

bone in 20 % (Skavitsas et al., 2001). Proportions differ at various locations in the 

skeleton. Compact bone has 10 % porosity and it includes spaces only for osteocytes, 

canaliculi and blood vessels (Skavitsas et al., 2001). Compact bone is highly porous 

(50-90%) and high porosity makes modulus of elasticity and ultimate compressive 

strength almost 10 times less than that of cortical bone (Skavitsas et al., 2001). 

Cancellous bone exhibits sponge-like morphology with a honeycomb of branching bars, 

plates and rods with varous sizes called trabeculae (Fig. 2.1) (Suchanek and Yoshimura, 

1998). 

 

 

 
Figure 2.1. SEM image of plate-like cancellous bone with columnar structure 

(Source: Suchanek and Yoshimura, 1998). 
 

 

 Macro, micro, ultra and molecular hiearchical levels of structural organization of 

bone make the analysis difficult. Figure 2.2 shows the hiearchial levels and structural 

organization of a human bone.  

 At the molecular level, 20-40 nm crystals of hydroxyapatite are oriented along 

the collagen fibers. These mineralized collagen fibers are arranged into the lamellar 

sheets with a thickness of 3-7 µm. 4-20 lamellae builds a concentric ring around the 

Haversian canal and form osteon.  
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 When cross-section of the compact bone is determined, cylindrical osteons 

(Haversian system) with blood vessels running along Haversian canals, (in the center of 

each osteon) are observed (Fig.2.3). Canaliculi, lacunae and Volkmann’s canals are 

connected with marrow cavity and their intercommunicating system allows the 

transportation of metabolic substances. Several interconnecting systems are filled with 

the body fluids and their volume can be up to 19 % (Suchanek and Yoshimura, 1998). 

Canaliculi is a canal extending outward from the central canal (Haversian canal) and 

Volkmann’s canals run perpendicular to the central canal and connect them to the 

periosteal surface (Skavitsas et al., 2001).  

 

 

 

 

 
Figure 2.2. Hierachial structure of bone, from micro to nano-assembly 

(Source: Murugan and Ramakrishna, 2005). 
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Figure 2.3. Optical image of transverse cross section of compact lamellar human    

femoral bone (Source: Suchanek and Yoshimura, 1998). 
 

 

2.3. Calcium Phosphate Based Ceramics 

 
 Calcium phosphate compounds include calcium orthophosphates, calcium 

metaphosphates, calcium pyrophosphates and calcium polyphosphates. This main 

classification is indeed based on the nature of phosphate found in the compound. 

Phosphate in a compound may exist in the following forms; ortho (PO4
3-), meta (PO3

-), 

pyro (P2O7
4-), and poly (PO3)n

n- and the compound is named as calcium orthophosphate, 

calcium metaphosphate, calcium pyrophosphate and calcium polyphosphate, 

respectively (Dorozhkin, 2007; Wang and Nancollas, 2008). Calcium phosphates will 

be used to refer calcium orthophosphates in this thesis since the focus of this thesis is 

one of the important members of the calcium orthophosphates, namely hydroxyapatite. 

 

2.3.1 Calcium Orthophosphates 

 
 Calcium phosphates have been the subject of special interest in the scientific 

literature due the following reasons: 

1) Natural calcium phosphate minerals are used to produce phosphoric acid, 

phosphorous containing chemicals and agricultural fertilizers (Dorozhkin and Epple, 

2002; Dorozhkin, 2007).  
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2)   Hydroxyapatite is the inorganic component of bone and teeth. 

3)  Some members (octacalcium phosphate and amorphous calcium phosphate) 

are also involved in biomineralization processes together with hydroxyapatite 

(Nancollas, 1992). 

4)  Calcium phosphates are also important in the pathological mineralizations 

(cellular microcalcifications in vascular dementia, Alzheimer’s and Parkinson’s 

diseases, astrogliomas and post-traumatic epilepsy, dystrophic calcifications like seen in 

the calcifications of medical devices and bioprosthetic heart valves,  renal calculi 

formation, atherosclerosis, pseudogout, gallstone formations, salivary and dental calculi 

formations) (Königsberger and Königsberger, 2007). 

5)  Synthetic hydroxyapatite in dense, powder, granular or porous forms and 

biphasic calcium phosphates (especially hydroxyapatite and TCP) have been used as 

bone substitute materials. 

6) Members such as monocalcium phosphate monohydrate, dicalcium phosphate 

dehydrate, dicalcium phosphate anhydrous, β-TCP, amorphous calcium phosphates are 

used in the food industry as a food additive (Dorozhkin, 2007). 

7) Calcium phosphates are used as filling material or intermediate for 

reminaralization in dentistry and toothpaste ingredients as polishing and caries 

protecting agents (Dorozhkin, 2007). 

8) Calcium phosphates are coated on dental and orthopaedic implants in order to 

improve their bone bonding abilities (Vallet-Regi and Gonzales-Calbet, 2004).  

9) Hydroxyapatite is used for the separation of proteins and other biomolecules 

in the liquid chromatography (Dorozhkin, 2007).  

10) Due to its sparingly soluble nature of hydroxyapatite, it is used to isolate and 

store radioactive materials. 

11) Several calcium phosphates (monocalcium phosphate monohydrate, 

dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, amorphous calcium 

phosphate, hydroxyapatite, α-tricalcium phosphate, β- tricalcium phosphate, and 

tetracalcium phosphate) are used in the calcium phosphate based bone cements (Bohner 

et al., 2005).  
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A general ternary system describing a compound AX in an aqueous solution, 

A(OH)n-HnX-H2O, where A(OH)n is a base and HnX is a weak acid is defined as 

Ca(OH)2-H3PO4-H2O (Martin and Brown, 1997; Fernandez et al., 1999) or as CaO-

P2O5-H2O (Elmore and Farr, 1940; Martin and Brown, 1997) for the calcium phosphate 

compounds. By considering the low and high temperature phases and grouping the all 

substituted compounds in a general phase (e.g. apatites), there are eleven different 

calcium phosphate phases in this ternary system (Dorozhkin, 2007). Besides their 

crystallographic properties, the most important parameter describing these calcium 

phosphate phases is their calcium to phosphate molar ratios (Ca/P). These phases 

together with their Ca/P ratios, acronyms, specific mineral names and their pH stabilitiy 

ranges are given in Table 2.6. Additionally crystallographic properties and densities of 

several calcium phosphate compounds are shown in Table 2.7. 

The diversity of calcium phosphates is directly related to the presence phosphate 

species in the system (Lynn and Bonfield, 2005; Dorozhkin, 2007). Phosphoric acid is a 

polyprotic acid with three ionization constants (Christian, 1994).  

 

              −+ +↔ 4243 POHHPOH      K1 = 1.1 x 10-2 (pKa1 = 1.96)               (2.1) 

 
−+− +↔ 2

4
2

42 HPOHPOH       K2 = 7.5 x 10-8 (pKa2 = 7.12)              (2.2)  

 
                         −+− +↔ 3

44 POHHPO             K3 = 4.8 x 10-13 (pKa3 = 12.32)          (2.3) 

 
 
 When fractions of each phosphate species in the phosphoric acid ionization in 

the pH range of 0-14 were calculated using above stated ionization constant, one can 

obtain species distribution with respect to pH (Figure 2.4) (Christian, 1994).  

 According to Figure 2.4, only a single component is found at pH values of 1 and 

14 and the pH ranges of 4-5 and 9-10. Even fractions of other components seem to 

equal zero, but they are not zero at all, indeed negligibly small. At other pH values, two 

different phosphate species always exist. Therefore when calcium and phosphate 

species are found in an aqueous solution, pH, solution calcium and phosphate 

concentrations as well as solubilities of calcium phosphates determine the phases to be 

formed.     
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Table 2.6. Calcium phosphate compounds 
 (Source: Bohner, 2000; Dorozhkin, 2007; and Dorozhkin, 2009) 

Ca/P Ratio Compound Acronym/ 
Mineral Name Chemical Formula pH stability ranges 

at 25 °C 

0.5 Monocalcium phosphate monohydrate MCPM Ca(H2PO4)2·H2O 0.0-2.0 

0.5 Monocalcium phosphate anhydrous MCPA Ca(H2PO4)2 stable above  

100 °C 

1.0 Dicalcium phosphate dihydrate DCPD/ 

brushite 

CaHPO4·2H2O 2.0-6.0 

1.0 Dicalcium phosphate anhydrous DCPA (DCP)/ 

monetite 

CaHPO4 stable above  

100 °C 

1.33 Octacalcium phosphate OCP Ca8(HPO4)2(PO4)4·5H2O 5.5-7.0 

1.5 α-Tricalcium phosphate α-TCP α-Ca3(PO4)2 can not be precipitated  

1.5 β-Tricalcium phosphate β-TCP β-Ca3(PO4)2 can not be precipitated 

1.2-2.2 Amorphous calcium phosphate ACP CaxHy(PO4)z·nH2O  

n:3-4.5, 15-20 % H2O 

~ 5-12 

always metastable 

1.5-1.67 Calcium-deficient hydroxyapatite or 

precipitated hydroxyapatite 

CDHA or 

PHA 

Ca10-x(HPO4)x(PO4)6-x(OH)2-x 

(0<x<1) 

6.5-9.5 

1.67 Hydroxyapatite HA  Ca10(PO4)6(OH)2 9.5-12 

1.67 Fluorapatite FA  Ca10(PO4)6(F)2 7-12 

1.67 Oxyapatite OXA Ca10(PO4)6O - 

2.0 Tetracalcium phosphate TTCP  Ca4(PO4)2O can not be precipitated 

16 
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Table 2.7. Crystallographic properties of several calcium phosphates 
 (Source: Dorozhkin and Epple, 2002; Dorozhkin, 2007) 

Calcium Phosphate 
Compound Unit Cell Parameters Space Group Number of Formula Units 

per Unit Cell 
Density 
(g/cm3) 

MCPM 
a =5.6251(5) Å, b =11.889(2) Å, c = 6.4731(8) Å 

α = 98.633(6)°, β = 118.262(6)°, γ = 83.344(6)° 
triclinic P1 2 2.23 

MCPA 
a = 7.5577(5) Å, b = 8.2531(6) Å, c = 5.5504(3) Å 

α = 109.87(1)°, β = 93.68(1)°, γ = 109.15(1)° 
triclinic P1 2 2.58 

DCPD 
a = 5.812(2) Å, b = 15.180(3) Å, c = 6.239(2) Å 

β = 116.42(3)° 
monoclinic Ia 4 2.32 

DCPA 
a = 6.910(1) Å, b = 6.627(2) Å, c = 6.998(2) Å 

α = 96.34(2)°, β = 103.82(2)°, γ = 88.33(2)° 
triclinic P1 4 2.89 

OCP 
a = 19.692 (4) Å, b = 9.523(2) Å, c = 6.835(2) Å 

α = 90.15(2)°, β = 92.54(2)°, γ = 108.65(1)° 
triclinic P1 1 2.61 

α-TCP 
a = 12.887(2) Å, b = 27.280(4) Å, c = 15.219(2 ) Å 

β = 126.20(1)° 
monoclinic P21/a 24 2.86 

β - TCP a = b= 10.439(1) Å, c = 37.375(6) Å, γ = 120° rhombohedral R3cH 
21 

(per hexagonal unit cell) 
3.07 

a = 9.84214(8) Å, b = 2a, c = 6.8814(7) Å, γ = 120° (monoclinic) monoclinic P21/b 4  

HA a = b = 9.4302(5) Å, c = 6.8911(2) Å, γ = 120° (hexagonal) hexagonal P63/m 2 
3.16 

FA a = b =  9.367 Å, c =  6.884 Å, γ = 120° hexagonal P63/m 2 3.20 

TTCP 
a = 7.023(1) Å, b = 11.986(4) Å, c = 9.473(2) Å 

β = 90.90(1)° 
monoclinic P21 4 3.05 

17 
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Figure 2.4. Fractions of phosphate species of phosphoric acid ionization with respect to 

pH. 

 

 

Among the eleven different calcium phosphates, only MCPM, DCPA, DCPD, 

OCP, ACP and CDHA are precipitated in aqueous solutions at room temperatures, 

whereas MCPA, α-TCP, β-TCP, sintered HA and OXA are the products of thermal 

processing (Bohner, 2000).  

Monocalcium phosphate monohydrate is the most acidic calcium phosphate 

compound and precipitates in highly acidic conditions during fertilizer production 

(Dorozhkin and Epple, 2002; Dorozhkin, 2007) since it is the most stable phase at the 

strong acidic pH values, pH<2 (Table 2.6) (Dorozhkin, 2009). MCPM is also the most 

water-soluble calcium phosphate compound (Dorozhkin and Epple, 2002; Bohner, 

2000; Dorozhkin, 2007). Figure 2.5 show solubilities of calcium phosphate compounds 

with respect to pH values where the solubility is given as the total calcium 

concentration in the solution. It can be seen from Figure 2.5 that MCPM is the most 

soluble calcium phosphate compound at all pH values (Bohner, 2000). Because of its 

high solubility and acidity, single use of MCPM as bone substitution is restricted; 

however it is used as bone cement together with other phases (Bohner, 2000; Dorozhkin 

and Epple, 2002; Dorozhkin, 2007). 
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Figure 2.5. Solubilities of calcium phosphate compounds as total calcium concentration 

in the solution with respect to solution pH (Source: Bohner, 2000).  

 

 

Monocalcium phosphate anhydrous as its name suggests is the dehydrated form 

of MCPM obtained by removal of water from MCPM. Crystallization of MCPMA 

occurs at the similar conditions where MCPM crystallizes but temperature should be 

over 100 °C in order to exclude water from the crystal structure (Dorozhkin and Epple, 

2002; Dorozhkin, 2007). Its highly acidic and hygroscopic nature restricts its biological 

and commercial applications (Dorozhkin, 2007). 

Dicalcium phosphate dihydrate is one of the most easily precipitated calcium 

phosphate compounds from aqueous solutions (Bohner, 2000; Dorozhkin and Epple, 

2002; Dorozhkin, 2007). Its crystal structure is built up of parallelly arranged CaPO4 

chains having interlayered water molecules (Wang and Nancollas, 2008).  DCPD is 

found in pathological calcifications such as urinary stones, dental calculi, pseudogout 

(Dorozhkin, 2007; Königsberger and Königsberger, 2007). It was also proposed as an 

intermediate phase in bone formation and its absence was related to the technical 

difficulties in detection methods (Wang and Nancollas, 2008). However, the presence of 

an acid phosphate containing species which is different than DCPD and OCP phases 
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were determined in the newly formed bone mineral (Boskey, 1998).  Behavior of DCPD 

in an aqueous solution is pH dependent. It is reported as stable below pH 6.5 (Wang and 

Nancollas, 2008). However, it is converted to anhydrous form below pH 6 (Bohner, 

2000). Metastable nature of DCPD makes it transform into octacalcium phosphate when 

pH was between 6 and 7 and into precipitated hydroxyapatite over pH 7 (Bohner, 2000). 

Although DCPD is biodegradable in vivo and converted into PHA, release of 

phosphoric acid upon conversion into PHA causes undesirable inflammatory reactions 

(Bohner, 2000). 

DCPA, anhydrous dicalcium phosphate dehydrate, can be obtained by 

dehydration of DCPD over 80°C or precipitation in the similar conditions where DCPD 

precipitates but at temperatures above 100 °C (Dorozhkin, 2007). Infact, hydrolysis of 

DCPD results in transformation of DCPD into DCPA by dehydration when temperature 

is between 60 and 100 (Ito and Onuma, 2003). It is generally used in the preparation of 

bone cements (Bohner, 2000, Dorozhkin, 2007) and production of tetracalcium 

phosphate together with calcium carbonate by solid state reactions (Neira et al., 2009; 

Gbureck et al., 2004). 

Octacalcium phosphate is a calcium phosphate phase showing structural 

similarities to hydroxyapatite. It consists of apatitic layers which are separated by 

hydrated layers (Johnsson and Nancollas, 1992; Dorozhkin and Epple 2002; Dorozhkin 

2007) containing lattice water and calcium and phosphate ions (Johnsson and 

Nancollas, 1992). OCP is considered as a precursor phase in teeth and bone 

mineralization (Bohner, 2000; Dorozhkin, 2007) and an intermediate in the precipitation 

of hydroxyapatite and calcium deficient hydroxyapatite (PHA or CDHA) (Dorozhkin, 

2007).  

Tricalcium phosphate is a calcium phosphate that can only be obtained by 

thermal processing. It has three different crystallographic forms, high temperature forms 

α-TCP and super α-TCP and low temperature from β-TCP (Ito and Onuma, 2003). TCP 

phases can not be obtained by precipitation due to their unstable nature in aqueous 

solutions. However, when divalent ions such as magnesium smaller enough to fit into 

calcium vacancies in β-TCP are present in the solution, stabilized β-TCP, whitlockite 

(β-(Ca, Mg)3(PO4)2, can be obtained in aqueous solutions (Johnsson and Nancollas,  

1992). Although it was reported that β-TCP can not be obtained by precipitation in 

aqueous solutions (Dorozhkin, 2007) precipitation of amorphous calcium phosphate 

phase and conversion into β-TCP in methanol at room temperature was reported (Bow 
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et al., 2004). β -TCP is generally obtained by thermal treatment of CDHA over 800 °C 

(Bohner, 2000; Dorozhkin, 2007) or calcinations of mixtures containing equal moles of 

DCPD and CDHA with Ca/P molar ratio 1.67 (Bohner, 2000). β –TCP transforms into 

α-form at high temperature. This transition temperature is 1125 °C where α- to super α- 

transition occurs at 1430°C (Ito and Onuma, 2003). Quenching prevents α to β 

transformation or absence of water vapor and excess calcium oxide retards this phase 

transformation until cooling down to 840 °C (Eisenberger, 1940). However, 

transformation of super α- form can not be prevented by quenching (Ito and Onuma, 

2003). 

 Amorphous calcium phosphate is the first phase which precipitates in highly 

supersaturated solutions of calcium and phosphate at neutral pH and especially at high 

pH values (Johnsson and Nancollas, 1992; Ito and Onuma, 2003). Generally Ca/P ratio 

of amorphous calcium phosphate is considered as 1.5 (Ito and Onuma, 2003). However 

this ratio depends on the solution composition and pH and it might be between 1.18 and 

2.50 (Dorozhkin 2007; Wang and Nancollas, 2008). ACP is believed to be a precursor 

phase in calcium phosphate formation in vivo (Nancollas, 1992). ACP is highly 

metastable and in aqueous solutions it transforms to HA (Wang and Nancollas, 2008). 

 Tetracalcium phosphate is a high temperature phase. Since it can not be 

precipitated from aqueous solutions, solid state reactions are used to synthesize TTCP. 

Generally calcium carbonate and DCPA are used (Neira et al., 2009; Gbureck et al., 

2004). The presence of water vapor in the heating environment, however, results in the 

HA formation on TTCP particles (Dorozhkin 2007).  Common methods to avoid HA 

formation are to supply dry air or nitrogen gas into furnaces or to quench the TTCP 

from high temperature to room temperature (Dorozhkin, 2007).  

 Calcium deficient hydroxyapatite, hydroxyapatite, oxyapatite and fluorapatite all 

belong to apatite family. A general formula of A5(XO4)3Z defines the members of 

apatite family where A can be barium, calcium, cerium, potassium, sodium, lead, 

strontium and yttrium, X can be arsenic, phosphorous, silicon and vanadium and Z can 

be fluoride, chloride, oxygen and hydroxyl ion (Magalhães and Williams, 2007). A 

wide range of minerals other than calcium phosphate apatites such as lead phosphates, 

calcium arsenates, lead arsenates and etc. are all classified as apatite since they have 

similar structure (Magalhães and Williams, 2007).  

Due to the presence of various cations and anions, ionic substitutions also occur 

in apatite lattice. Geologically, calcium phosphate apatites are generally in the form of 
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fluorapatite, Ca10(PO4)6F2. Partial substitutions of calcium by Sr, Ba, Mg, Mn, K, Na, 

Fe, phosphate by AsO4
3-, CO3

2- and VO4
3- and fluoride by OH-, Cl-, Br-, CO3

2- and O2- 

in natural apatite occurs in the nature (Dorozhkin, 2007) However, substitutions in 

biological apatites are restricted to only ions found in the human body, F-, Cl-, Na*, K+, 

Fe2+, Zn2+, Sr2+, Mg2+, CO3
2- and citrate (Wopenka and Pasteris, 2005). 

 Substitutions in the apatite are governed by the rule of maintaining charge 

neutrality, and the presence of the exchangeable sites in the crystal lattice and by the 

geometrical fitting between exchanging ions (Wopenka and Pasteris, 2005). If an ion 

substitutes into lattice, either oppositely charged ion is incorporated or vacancies are 

formed to provide charge balance.  Possible phases of substituted calcium phosphate 

apatites together with four end members (fluorapatite, chlorapatite, carbonated apatite 

and hydroxyapatite) are shown in Table 2.8. It should be noted that Table 2.8 excludes 

the phases formed by cationic incorporations upon anionic substitutions. 

Hydroxyapatite, Ca10(PO4)6(OH)2, is an unsubstituted pure apatite and so its 

Ca/P molar ratio is equal to 1.67. Two forms of hydroxyapatite exist, hexagonal and 

more stable monoclinic form (Wang and Nancollas, 2008).  At room temperature, 

presence of hexagonal form is only possible by incorporation of substituting ions into 

the lattice thereby deviating Ca/P ratio from the stoichiometric value of 1.67 (Wang and 

Nancollas, 2008; Dorozhkin, 2007). Stoichiometric apatite is generally produced by 

high temperature calcinations of precipitated apatite which is obtained by precipitation 

in carbon dioxide freebasic conditions from solutions having stoichiometric amounts of 

calcium and phosphate and ageing in the precipitation medium (Dorozhkin, 2007). Solid 

state synthesis, hydrothermal and sol gel methods are also used to obtain stoichiometric 

hydroxyapatite (Dorozhkin, 2007). Because high temperatures are employed in the 

synthesis, Ca/P ratio determines the phases obtained (Huang and Best, 2007). If the 

ratio is higher than 1.67, β-TCP and other calcium phosphates will also be obtained 

together with HA, whereas at lower Ca/P ratios calcium oxide and hydroxyapatite will 

be formed (Huang and Best, 2007). Even the powder has the stoichiometric Ca/P ratio, 

the presence of water vapor in the system and temperature affect the phases formed. In 

dry environments oxyapatite formation from hydroxyapatite occurs when the 

temperature is above 900 °C (Bohner, 2000; Dorozhkin, 2007). Whether water vapor is 

present or not, tetracalcium phosphate and α-TCP are formed at temperatures higher 

than 1300 °C by decomposition of hydroxyapatite (Bohner, 2000). Because 

stoichiometric HA is obtained by high temperature processing, it is highly crystalline. 
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Table 2.8. Possible substituted calcium phosphate apatite phases 
(Source: Wopenka and Pasteris, 2005) 
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Compound 
Ca/P Molar 

Ratio 
Ca10(PO4)6(OH)2 
hydroxyapatite, end-member 

1.67 

Ca10(PO4)6F2 
fluorapatite, end-member 

1.67 

Ca10(PO4)6(OH,F)2 

mixed hydroxyl-fluorapatite 
1.67 

Ca10(PO4)6(Cl)2 
chlorapatite, end-member 

1.67 

Ca10(PO4)6(Cl,F)2 
mixed chlor-fluorapatite 

1.67 

Ca10(PO4)6CO3 
A-type carbonated apatite unhydroxylated, end member 

1.67 

Ca10-x[(PO4)6-2x(CO3)2x]F2 

B-type carbonated fluorapatite, end member, 
francolite* 

≥ 1.67 

Ca10-x[(PO4)6-2x(CO3)2x](OH)2 
B-type carbonated hydroxyapatite, end member, 
dahllite* 

≥ 1.67 

Ca10-x[(PO4)6-2x(CO3)2x]CO3 
mixed A-type and B-type carbonated apatite 

≥ 1.67 

Ca10-x[(PO4)6-x(CO3)x]OH2-x 

Ca- and OH- deficient B-type carbonated apatite 
1.67 

Ca10-x[(PO4)6-x(HPO4)x]OH2-x 

HPO4
- containing apatite 

≤ 1.67 
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Its high crystallinity makes it the second most stable calcium phosphate phase in 

aqueous solutions after fluorapatite. Since all biological apatites, dentine, enamel and 

bone are carbonated apatites containing Na, Mg, K, F and Cl (Suchanek and Yoshimura, 

1998), stoichiometric hydroxyapatite is not found in biological systems (Dorozhkin, 

2007). 

 Calcium deficient hydroxyapatite, Ca10-x(HPO4)x(PO4)6-x(OH)2-x 0<x<1, is 

obtained by substitution of HPO4
2- ions into the lattice and generation of vacancies in 

calcium and hydroxide sites upon substitution (Dorozhkin, 2007).  Calcium to 

phosphorous molar ratio of CDHA is lower than 1.67 since the calcium vacancies are 

generated by substitution of HPO4
2- ions. Maximum level of substitution is the 

incorporation of 1 mol HPO4
2- ions (when x equals to 1). At this level, Ca/P becomes 

9/6, which is equal to 1.5. Calcium to phosphorus ratio of CDHA therefore ranges 

between 1.5 and 1.67 (Bohner, 2000; Dorozhkin 2007). CDHA is poorly crystalline 

having broad X-ray diffraction peaks. CDHA is easily precipitated from calcium and 

phosphate solutions where carbon dioxide is expelled by boiling, but counter ions in the 

solutions possibly incorporate into the apatite structure (Dorozhkin, 2007). In fact this is 

the reason why CDHA is not found in biological systems and bone and teeth also 

contains sodium, potassium, magnesium, strontium, fluoride and chloride (Dorozhkin, 

2007). In solutions containing dissolved carbon dioxide or in human body due to the 

presence of bicarbonate in blood plasma, carbonate is also present in the CDHA. Ion 

substituted CDHA is much more similar to biological apatites than stoichiometric 

apatite. 

Fluorapatite, Ca10(PO4)6F2 where hydroxyl ions in hydroxyapatite were 

exchanged with fluoride ions, is a calcium phosphate compound characterized with its 

highest stability and lowest solubility (Dorozhkin, 2007).   

 

2.3.2 Calcium Phosphate Bone Cements 

 
In bone grafting applications, only two calcium phosphate phases HA and TCP 

had been widely used in orthopedic applications in powder, dense, granular and porous 

forms, as coatings (only HA) or as biphasic combinations until the discovery of calcium 

phosphate bone cements (CPC). Development of CPCs made other calcium phosphate 

compounds as important as HA and TCP. 
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Calcium phosphate bone cement is based on a hardening reaction of a mixture of 

solid phase containing one or more calcium phosphate compounds and aqueous 

solution. Mixture obtained upon mixing is either injectable or putty like material which 

can be molded into a desired shape. The most unique property of calcium phosphate 

bone cement is the setting (hardening reaction) of the mixture in a defined time interval. 

In orthopedic surgery, CPC cement is used during the surgical operation environment. 

Surgeon mixes two phases and applies into the bone defect by injection or by molding 

with the aid of spatula. As soon as mixing the solid and liquid parts, hardening of the 

cement starts. Therefore, setting time should neither be too short or too long. It should 

be long enough to be mixed and injected into the defect. It should harden in a short 

period of time after the application into the bone defect. 

There are at least twenty three different commercially available calcium 

phosphate cements manufactured by at least thirteen companies in the orthopedic 

materials market (Table 2.9). Commercial names, compositions, final setting products 

and manufacturers of these cements are shown in Table 2.9.  Calcium phosphate 

compounds used in these cement formulations are MCPM, DCPD, DCPA, ACP, β- and 

α-TCP, ACP, PHA and HA. In addition to calcium phosphate compounds CaCO3, 

Mg3(PO4)2, SrCO3 and CaSO4 are used.  
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Table 2.9. Commercially available calcium phosphate cements, their compositions and manufacturers 
(Source: Bohner et al., 2005; Ishikawa, 2008) 

Commercial Cement 
Name Composition of Powder Composition of Solution Setting Product Manufacturer 

α-BSM 

Embare 

Biobone 

 

ACP (50%), DCPD (50 %) 

 

H2O (unbuffered saline) 

 

Apatite 

 

ETEX 

BoneSource TTCP (73%), DCPA (27%) H2O, mixture of Na2HPO4 and NaH2PO4 Apatite Stryker-Leibinger Corp 

Cementek® 
TTCP, α-TCP mixture (87 %) 

Sodium glycerophosphate (13 %) 
H3PO4 (13.8 %), Ca(OH)2 (3.4 %), H2O (82.8 %) Apatite Teknimed 

Cementek® LV 

TTCP, α-TCP mixture (87 %) 

Sodium glycerophosphate (12 %) 

Polydimethylsiloxane (1 %) 

H3PO4 (13.8 %), Ca(OH)2 (3.4 %), H2O (82.8 %) Apatite Teknimed 

Calcibon® (Biocement D) 
α-TCP (58 %), PHA (8.5 %), 

DCPA (25 %), CaCO3 (8.5 %) 
H2O, Na2HPO4 (1 %) Apatite Biomet 

Mimix™ TTCP, α-TCP, C6H5O7Na3·2H2O H2O, citric acid Apatite Biomet 

QuickSet Mimix™ - - Apatite Biomet 

Biopex® 
α-TCP (75%), TTCP (20 or 18 %), 

DCPD (5%), HA (0 or 2 %) 

H2O, sodium succinate (12 or 13 %), sodium 

chondritin sulphate (5 or 5.4 %) 
Apatite Mitsubishi Materials 

Biopex®-R 
α-TCP, TTCP, DCPD, HA 

Mg3(PO4)2 

H2O, sodium succinate, sodium chondritin 

sulphate, NaHSO3 
Apatite Mitsubishi Materials 

KyphOs™ α-TCP (77%), Mg3(PO4)2 (14 %), 

MgHPO4 (4.8 %), SrCO3 (3.6 %) 
H2O, (NH4)2HPO4 (3.5 M) 

Apatite Kyphon 

(Cont. on next page) 
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Table 2.9. (cont.) 

 

Commercial Cement Name Composition of Powder Composition of Solution 
Setting 

Product 
Manufacturer 

Callos™ - - Apatite Skeletal Kinetics 

Rebone TTCP, DCPA H2O Apatite 
Shangai Rebone 

Biomaterials Co., Ltd. 

Norian® SRS 
α-TCP (85%), CaCO3 (12 %), 

MCPM (3 %) 
H2O, Na2HPO4 Apatite Synthes-Norian 

Norian® CRS 
α-TCP (85%), CaCO3 (12 %), 

MCPM (3 %) 
H2O, Na2HPO4 Apatite Synthes-Norian 

Norian® SRS Fast Set Putty - - Apatite Synthes-Norian 

Norian® CRS Fast Set Putty - - Apatite Synthes-Norian 

Primafix® TTCP, DCPA Sodium hydrogen sulfite Apatite NGK Spark Plug Co. 

Cerapaste® TTCP, DCPA Sodium dextran sulfate sulfur 5 Apatite NGK Spark Plug Co. 

ChronOS™ Inject 

β-TCP (73%), MCPM (21 %), 

MgHPO4·3H2O (5%), MgSO4 (<1%), 

Na2H2P2O7 (<1 %) 

H2O, sodium hyaluronate (0.5 %) Brushite Synthes-Norian 

Eurobone® β-TCP (98%), Na4P2O7 (2 %) H2O, H3PO4 (3.0 M), H2SO4 (0.1 M) Brushite Kasios 

VitalOs 
Component 1: β-TCP (1.34g), Na2H2P2O7 (0.025g), H2O, salts (0.05 M pH 7.4 PBS solution) 

Component 2: MCPM (0.78g), CaSO4·H2O (0.39g), H2O, H3PO4 (0.05M) 
Brushite CalciphOs 
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CHAPTER 3 

 

PHOSPHATE AND CALCIUM ANALYSES 

 
3. 1. Phosphate Analysis 

 
 Colorimetric phosphorous analysis methods are generally based on the 

formation of phosphomolybdate complex when molybdate is added to dilute 

orthophosphate solutions under acidic conditions (Cogan et al., 1999). If this reaction is 

performed in the presence of vanadium, yellow vanadomolybdophosphoric acid is 

produced and color is proportional to the orthophosphate concentration (Eaton et al., 

1995). When the reaction is performed in the absence of vanadium, colorless 

phosphomolybdate complex is turned into molybdenum blue by the reduction of 

phosphomolybdate complex by the use of several reducing agents such as sulfite and 

aminonaptholsulfonic acid mixture, stannous chloride, ascorbic acid and ascorbate in 

the presence bismuth or antimony (Cogan et al., 1999).   

 Among these methods, three of them (vanadomolybdate phosphoric acid, 

stannous chloride and ascorbic acid methods) were given in Standard Methods for the 

Examination of Water and Waste Water published by American Public Health 

Association (Eaton et al., 1995). In these methods, phosphorous is converted into 

dissolved orthophosphate and dissolved orthophosphate is then analyzed 

colorimetrically.  Due to the form of phosphorous in the samples, acid hydrolysis or 

digestion can be applied. Phosphorous analyzed without hydrolysis and oxidative 

digestion is the reactive phosphorous which is a measure of orthophosphate.   

Particulate or dissolved condensed phosphates can be converted into dissolved 

orthophosphates by acid hydrolysis. Oxidative digestion of organic matters is used to 

convert organically bound phosphorous to orthophosphate. The vanadomolybdate 

phosphoric acid, stannous chloride and ascorbic acid methods are selected depending on 

the concentration of phosphorous in the samples. For routine analysis within the range 

of phosphorous concentrations between 1 to 20 mg/L (corresponding to 3 to 60 mg/L), 

vanadomolybdate phosphoric acid method is used. However, stannous chloride and 

ascorbic acid method are used for the range of 0.01 to 6 mg/L (0.03 to 18 mg PO4
3-/ L). 
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Minimum detectable concentrations are 0.2 ppm, 0.003 ppm, and 0.01 ppm 

phosphorous (corresponding to 0.6, 0.009 and 0.03 mg PO4
3-/L) for 

vanadomolybdatephosphoric acid, stannous chloride and ascorbic acid methods, 

respectively.  

 The sensitivities of the colorimetric methods can be increased by the addition of 

cationic dyes (such as malachite green, crystal violet and quinaldine red) into the system 

(Cogan et al., 1999).  Changes in the color of these dyes when added into the 

phosphomolybdic acid containing solutions are the basis of these assays. Malachite 

green dye is yellow colored in the 0.45 M H2SO4 concentration (corresponding to nearly 

pH 0.5) in the assay conditions and blue-green colored above pH 2. Addition of 

phosphate into the system results with the phosphomolybdate complex and it 

consequently turns the color of the solution into blue-green due to the electrostatic 

binding between blue-green form of dye and phosphomolybdate complex.  Final acidity, 

molybdate and malachite green concentrations and necessity of stabilizators in order to 

avoid reduction of the color complex are the main parameters in malachite green based 

system.  

 Van Veldhoven and Mannaerts (1987) tested the effects of final acidity and 

different color stabilizators on the complex formation between malachite green dye and 

phosphomolybdate complex. They found that 0.9 N (0.45 M) H2SO4 as an optimum 

final acidity and poly vinyl alcohol with a final concentration of 0.05 (w/v) % as an 

optimum stabilizator.  Cogan et al. (1999) reported the optimum final concentrations of 

malachite green and heptamolybdate as 6 mM and 120 µM, respectively in a microplate 

adapted malachite green assay which was automated by robotics system. They tested 

other cationic dyes; crystal violet and qiunaldine red together with ascorbate reduction 

and antimonyl-modified ascorbate method in a microplate adapted format in automated 

system. The highest sensitivity was observed in malachite green assay. They also found 

that malachite green assay was suitable for the analysis of compounds containing 

organic phosphates or polyphosphates.  

 Interferences are one of the main obstacles which restrict the applicability of the 

assays. Microplate based malachite green assay were tested for its suitability for the 

analysis of phosphorous in water and soil (D’Angelo et al., 2001). Interferences rising 

from CaCl2, KCl, HCl and NaOH with concentrations 0.1, 0.2, 0.3, 0.4 0.5 and 1 M on 

aqueous samples containing 0.5 mg P/L were tested. Concentrations lower than or equal 

to 0.1 M had no effect on the absorbances. NaOH concentration of 0.4 M and HCl 
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concentration of 0.2 M inhibited the absorbance where as CaCl2 concentration greater 

than 0.1 M increased the absorbance. No interference was observed in the case of 1M 

KCl.  These results show that malachite green method can be applicable for the complex 

solutions containing CaCl2, KCl, HCl and NaOH with higher concentrations when 

compared with the concentration range of phosphorous analysed. Phosphate dissolved 

in several acidic solutions was tested by Attin et al., (2005b) who used the modification 

of malachite green method in microplate based assay. They used HCl instead of sulfuric 

acid and no color stabilizator like PVA were used in their study. HCl, perchloric acid 

(HClO), oxalic acid, maleic acid, tartaric acid, citric acid, lactic acid and acetic acid was 

used to adjust pH of 2 in the phosphate solution. Malachite green method was found to 

be suitable for phosphate analysis in all acid solutions except citric acid.   

 Microplate readers have been in use for the microscale colorimetric analyses, for 

example for the analysis of inorganic N, urea, enzyme activity, C source utilization and 

in the immunoassays (D’Angelo et al., 2001). A microprocessor has a multichannel 

optical system which enables measuring absorbance of solutions at the defined 

wavelength (D’Angelo et al., 2001). The microplate system used in this study is a 

microprocessor controlled photometer system which makes possible to read and print 

the results of 96 well in a short time. Advantages of microplate based methods are high 

sensitivity, reduction in time required for the measurement of absorbance, accuracy, 

precision, high throughput, and low waste production (D’Angelo et al., 2001).   

 Microplate based malachite green assay have been widely used for phosphorous 

analyses in standard solutions (Cogan et al., 1999), in acidic solutions (Attin et al., 

2005a), soil extracts (D’Angelo et al., 2001), phospholipids (Cogan et al., 1999), soil 

microbial biomass (Jeannotte et al., 2004), and beverages either modified by addition of 

calcium or calcium plus phosphate plus fluoride during testing of the enamel erosion by 

acidic soft drinks (Attin et al., 2005b).    

 Apatite dissolution or solubility testing requires the analysis of calcium and 

phosphate ions released into the aqueous solutions. Wide ranges of temperatures and pH 

values can be used to study apatite solubility and dissolution. Different aqueous 

electrolyte solutions having several ions and buffers can also be used to measure 

solubility or dissolution rate of to determine in vitro dissolution behavior. For these 

reasons, a phosphorous analysis method should give accurate results within the wide 

range of pH values and electrolyte contents. Since the interfering concentrations are 

high when compared to phosphate concentrations and method is suitable for the wide 
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range of acidic solutions, malachite green phosphate analysis can be used to analyze 

phosphate ions during apatite dissolution.   

 By the advantages of microplate based system, quick and accurate determination 

of phosphate ions during the apatite dissolution in several electrolyte solutions may be 

possible. We therefore preferred the microplate based malachite green phosphate assay 

in this study.  

 

3.2. Calcium Analysis 

 
 Calcium analysis in solutions can be performed by inductively coupled plasma, 

atomic absorption spectroscopy, ion chromatography or spectrophotometric methods. 

Selection of the method depends on the availability of instrumentation, cost, sensitivity 

of the method, lowest limit of quantization, interferences and ease of use. The solution 

composition is generally important for the selection of the method. Interferences arising 

from the solution composition lead to inappropriate results.  Among the above 

mentioned methods, the spectrophotometric assays are generally preferred due to the 

ease of application, low cost and availability.  

 One of the spectrophotometric methods for the calcium analysis was reported by 

Michaylova and Ilkova (1971). Their method based on the blue complex formation 

between calcium and Arsenazo III dye. The method was highly sensitive at pH 9.0 with 

maximum absorbance however better selectivity was reported at pH 5-6. By their 

methods concentration range of 025-1.25 ppm Ca could be analyzed. They also showed 

that calcium can be analyzed even in the presence of 100 folds magnesium and 

manganese.  

 Arsenazo III based calcium method has also been used for the calcium 

determination in the serum and plasma with some modifications (Lamkin and Williams, 

1965; Gawoski and Walsh, 1989; Leary et al., 1992a; Leary et al., 1992b). Attin et al. 

(2005a) determined the suitability of microplate based Arsenazo-III method to analyze 

calcium dissolved in different acidic solutions. Wide range of acidic solutions 

(hydrochloric phosphoric, maleic, oxalic, lactic, tartaric, acetic, and citric acid) were 

used in their study. This method was not found suitable for tartaric acid, oxalic acid and 

citric due to their chelating abilities with calcium. Calcium with 0.25 ppm to 2 ppm 

levels could be analyzed with all other acidic solutions.  
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  Arsenazo III - calcium determination was used to analyze calcium in the 

dissolution testing of hydroxyapatite (Bloebaum et al., 1998). They tested dissolution of 

particulate hydroxyapatite in solutions at three different pH levels (cacodylate buffer pH 

of 5.0, 6.0, and 7.1). Total calcium concentrations were analyzed by bichromatic end 

point methodology by Arsenazo III dye. Another application of Arsenazo III for the 

determination of calcium release was reported (Hannig et al., 2005). They determined 

calcium release from bovine enamel samples incubated in acetic, malic, tartaric, 

phosphoric, hydrochloric and lactic acid. These studies show that Arsenazo-III method 

can be used for the calcium determination in the solutions in which any calcium 

phosphate solubility is of interest.  
 Hydroxyapatite has a low solubility at and above physiological pH levels. This 

will lead to release of low levels of calcium into the solutions.  Since Arsenazo III 

method enables the determination of calcium at ppm level, it can be used for the 

determination of calcium released from hydroxyapatite. The aim of this study is to 

determine hydroxyapatite solubility in solutions having ions found in human blood 

plasma at the same concentration levels, it is necessary to use a method which correctly 

determine calcium levels within the presence of other ions. Arsenazo-III method can 

also be used for this purpose because it has been used for the determination of serum or 

plasma calcium levels.    

 Arsenazo III is a synthetic organic molecule which have chromotrophic nucleus 

with two analytical o´-arsono-o´-oxyazo groups (Alimarin and Savvin, 1966). Two 

different conformations (extended and contracted) of Arsenazo III are shown in Figure 

3.1. Eight different ionizable groups are present on the Arsenazo III molecule and their 

pK values are pK1 = -2.5, pK2 = 0, pK3 = 2.5, pK4 = 2.5, pK5 = 5.3, pK6 = 5.3, pK7 = 7.5 

and pK8 = 12.4 (Rowatt and Williams, 1989). A site in extended form and B site in 

contracted form are reported as the sites where large and small cations bind, 

respectively (Rowatt and Williams, 1989).  

 Double and triply charged cations form 1:1 complexes with Arsenazo III 

(Basargin et al., 2000).  Possible structures found in the metal-Arsenazo III complexes 

suggested by Alimarin and Savvin (1966) are shown in Figure 3.2. Figure 3.2.A shows 

the possible structure which can be found with bivalent and trivalent metals which 

forms Arsenazo III complexes by 1:1 complexation and with tetravalent metals forming 

1:2 (MeR2) complexes. The structure found with tetravalent cations forming 1:1 

complexes is shown in Figure 3.2.B. Alimarin and Savvin (1966) also suggested that 
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these structures can not be generalized to all elements and whole pH ranges. They also 

note that several studies contradict the direct involvement of oxy group of napthelene 

nucleus in the metal binding (Alimarin and Savvin, 1966).  

 

 

 

 
Figure 3.1. Contracted (A) and extended conformations (B) of Arsenazo III 

(Source: Rowatt and Williams, 1989). 
 

 

 

 
                 A           B 
 
Figure 3.2. Postulated structures found with bivalent and trivalent cations forming 1:1 

complexes and trivalent ions forming 1:1 complexes (A), with tetravalent 
cations forming 1:1 complexes (B). 

 

A 

B 
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 Spectral characteristics and interaction of Arsenazo III with cations have 

received special attention (Kendrick et al., 1977; Bauer, 1981; Rowatt and Williams, 

1989; Kratochvil and He, 1990; Hosten and Rohwer, 1997; Rohwer et al., 1997). Free 

Arsenazo III shows absorption maxima at 520-530 nm however metal Arsenazo III 

complexes show maximum absorption at 655-665 nm (Marczenko and Balcerzak, 2000; 

Rowatt and Williams, 1989).  Rowatt and Williams (1989) reported that absorption of 

Arsenazo III at 540 nm is constant between pH 1 and 7.4 but shifts to higher 

wavelengths above pH 7.4. Changes in spectra were attributed to the ionization of 

phenolate groups at and above pH 8. Absorption of metal-dye complex is also 

dependent on pH (Mikhaylova and Ilkova, 1971). The presence of the second peak at 

610 nm seen upon complex formation is attributed to the symmetry breakdown of the 

Arsenazo III molecule upon involvement of only one analytical group with 

complexation (Basargin et al., 2000).  

 Calcium and Arsenazo III binding stoichimetries have also been studied in detail 

(Bauer 1981; Brown and Rydqvist, 1981; Ahmed et al., 1980; Chiu and Haynes, 1980). 

Bauer (1981), Ahmed et al. (1980) and Chiu and Haynes (1980) showed that 1:1 

complexation occurs between calcium and Arsenazo III in contrast to studies suggesting 

1:2 complexation. However, Brown and Rydqvist (1981) showed 1:2 and 1:1 

complexation depending on the method. Calcium binding was also suggested to occur 

with atom fitting between phenol hydroxyl and the arsono groups (Rowatt and 

Williams, 1989). 

  Arsenazo III-calcium complexation has also been used in many commercial 

calcium analyses kits (Table 3.1). These analyses kit includes Arsenazo III reagents in 

which Arsenazo III concentration ranges between 120 and 200 μM. Buffers are 

generally imidazole, MES and good’s buffer with concentrations between 50 and 100 

mM. pH values of the ragents are 6.5 or 6.8. Standard solutions are mixed with dye 

reagents generally in 10:1000 (solution to reagent ratio) volumetric ratio.  Since calcium 

concentration in standard solutions is almost 100 mg/L and solutions are 1:100 diluted 

after mixing, total calcium concentration in the mixture is 1 mg/L. If solution have 1 

mg/L calcium before analysis, it seems impossible to determine calcium concentrations. 

Therefore a method is needed to determine lower levels of calcium in the solutions. 
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Table 3.1. Commercial Arsenazo III-calcium determination kits 

Company CAIII  
(µM) 

Buffer type 
& pH 

CBuffer  
(mM) 

Standard 
Conc. 
(mg/L) 

Reagent 
Volume 

(µL) 

Sample 
(Standard) 

Volume 
(µL) 

Wavelength 
(nm) 

Linearity 
(mg/L) 

Detection 
Limit 

(mg/L) 
Reference 

Diagnosticum Rt.a 200 MES 6.5 100 100 1000 10 650 (600)* 160 NS 

Department of 
Biochemistry 

Faculty of 
Medicine 

University of 
Szeged, 2010 

Chema 
Diagnosticab 200 Good’s 

buffer 6.8 50 100 2000 20 660 (650)* 200 1 
Chema 

Diagnostica, 
2010 

BioLabo SA 
Francec >180 Imidazol  

6.8 >90 100 1000 20 650 (640-
660)* 150 2.1 BioLabo, 

2010 

Infinity™ Thermo 
Fisher Inc. USAd 136 NS NS NS 300 or 

350 5 

Primary 
600-660 

Secondary 
700 

Between 
60-150 NS 

Thermo 
Scientific, 

2010 

Pointe Scientific, 
USAe >150 NS NS 100 1000 10 650 150 NS 

Pointe 
Scientific, 

2010 
National 

Biochemicals 
Corp. USAe 

>150 NS NS 100 3000 30 650 150 NS 
National 

Biochemicals, 
2010 

AMS Diagnosticsd 200 
 

Imidazole 
6.75 100 NS 1000 20 650 10 to 150 10 

AMS 
Diagnostic, 

2010 

(Cont. on next page) 
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Table 3.1. (cont.) 

     
    *optional wavelength, NS not stated, a 600 nm is not suggested when absorbance of working reagent greater than 1.5, b Bichromatic reading at 660/700 nm is also    

suggested, reagent contains stabilizer, c For bichromatic readings 700 nm was suggested as second wavelength, sensitivity was reported as 1 mg/L, color was reported to be 
stable for 1 hour away from light, d Reagent contains surfactant and 0.05 % sodium azide, e Reagent contains surfactant and 5.0 mM 8-hydroxyquinoline sulfonate, color 
was reported to be stable for 1 hour, f Reagent contains detergent, g Stated as measuring range, h Reagent contains surfactant, color was reported to be stable for 1 hour, 
iReagent contains 8-hydroxyquinoline 5-sulfonic acid, k Reagent contains 5.0 mM 8-hydroxyquinoline sulfonate and stabilizer, color was reported to be stable for 1 hour.

Company CAIII  
(µM) 

Buffer type 
& pH 

CBuffer  
(mM) 

Standard 
Conc. 
(mg/L) 

Reagent 
Volume 

(µL) 

Sample 
(Standard) 

Volume 
(µL) 

Wavelength 
(nm) 

Linearity 
(mg/L) 

Detection 
Limit 

(mg/L) 
Reference 

Fluitest 
Analyticonf 120 Imidazol 6.5 100 100 1000 10 650 (640-

660)* 2 to 300g 2 
Analyticon 

Diagnostics, 
2010 

Bt productsh 200 Imidazol 
6.75 100 NS 1000 20 650 (600-

660)* 1 to 150 NS BT Products, 
2010 

Mindrayi 120 Phosphate 
buffer NS 50 NS 1000 10 650 4 to 150 4 

Mindray 
Medical, 

2010 

mti-diagnostics 
GmbH 120 Good’s 

buffer 6.5 100 100 1000 10 650 (640-
660)* 2 to 300g 2 

mti 
diagnostics, 

2010 

CIMA 
ScientificTM

k 150 NS NS 100 1000 10 650 5 to 150 NS 
CIMA 

Scientific, 
2010 

36 
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CHAPTER 4 

 

SOLUBILITY AND DISSOLUTION OF CALCIUM 

PHOSPHATES 

 
Solubility and dissolution are two different phenomena which are important in 

the behavior of calcium phosphates in aqueous solutions. Solubility is directly related to 

equilibrium conditions (Lorimer and Cohen-Adad, 2003) whereas dissolution is 

generally considered as a removal of ions or molecules from the sample and transfer 

into the solution (Dorozhkin, 1999). 

Solubilities of calcium phosphates particularly that of hydroxyapatite are of 

great importance because bone and teeth formation, fracture repair, caries formation and 

pathological mineralizations are all directly related to the solubilities of calcium 

phosphates. Dissolution however is important in caries formation, disease associated 

with bone loss, osteoclastic resorption of bone during bone turnover.  

 

4.1. Solubility of Calcium Phosphates 

 
Solubility of a soluble or highly soluble solid is generally expressed as the 

maximum amount of the solute dissolved in a given amount of the solvent. The brief 

definition of solubility is indeed the composition of the homogeneous mixture (solution) 

which is saturated (at equilibrium) with respect to one of its components (Lorimer and 

Cohen-Adad, 2003).  Composition at the equilibrium as mass or moles of solute per 

mass of solvent or solution, or mass or moles of solute per volume of solvent or solution 

is generally used to express solubility (Mullin, 1993).  

When equilibrium concentrations determined at various temperatures at constant 

pressure are plotted against temperature, typical solubility diagram is obtained (Figure 

4.1). Three regions are present in solubility diagram, stable, metastable and labile 

regions (Mullin, 1993). Solid line in Figure 4.1 represent the solubility line where solid 

and liquid are at equilibrium. At the solubility line solution is saturated with respect to 

solute. However, solution is supersaturated above this line. The region under the 

solubility line is called stable region. At this region solution is undersaturated with 
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respect to solute meaning that crystalization is impossible. When equilibrium attained 

between solid and solvent, solvent in fact dissolves slightly more solid. This is called 

super solubility (Mullin, 1993) and represented as dashed line in Figure 4.1. The region 

between solubility and super solubility line is therefore called metastable region. At the 

metastable region, solution is stable until any disturbance in the solution occurs. 

Disturbances e.g addition of a seed results in the initiation of crystallization (Mullin, 

1993; Lorimer and Cohen-Adad, 2003). Third region in solubility diagram is the region 

over the super solubility line (labile region) where spontaneous crystallization is 

possible.  

 

 
Figure 4.1 Solubility diagram  

(Source: Mullin, 1993) 
 

 

 When a sparingly soluble substance is of interest, solubility is expressed as 

solubility product rather than mass or moles of the compound with respect to mass or 

moles of solvent. Solubility product can either be concentration solubility product or 

activity solubility product (Mullin, 1993). When the saturation concentrations are lower 

than 10-3 mol/L concentration solubility product is used since activity coefficients 

become equal to 1 at infinite dilutions (Mullin, 1993). Activity solubility product 

constant is used for more concentrated solutions. Dissociation of a simple sparingly 

soluble compound and solubility product constants are shown below (Mullin, 1993): 
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−+ +⇔ zz
yx yAxMAM                                                 (4.1) 

( ) ( )yx
c ccK −+=                                                             (4.2) 

( ) ( ) ( ) ( )yxyx
a ccaaK −−++−+ == γγ                                (4.3) 

ca ∗= γ                                                                         (4.4) 

 where z+ and z- are valencies of the ions, c+ and c- are concentrations of ions,  γ+ and  γ- 

are activitiy coefficients and  a+ and a- are ionic activities for a satutated solution. Kc and 

Ka are concentration and activity solubility products, respectively. 

 For example, thermodynamic solubility product constant of stoichiometric 

hydroxyapatite based on the activities of ions are as follows 
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   or 
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As shown in Equations 4.5 and 4.6, solubility product constant for 

hydroxyapatite can be calculated by two different expressions. Chemical composition of 

hydroxyapatite molecule is Ca5(PO4)3OH. However, chemical formula of 

Ca10(PO4)6(OH)2 is frequently used in order to show that the unit cell of hydroxyapatite 

contains two hydroxyapatite molecules (Dorozhkin, 2007). Thermodynamic solubility 

product constant can be calculated by using different equations depending on the 

chemical formula used to describe hydroxyapatite.  

 If activity solubility product is to be calculated, prediction of activity 

coefficients is needed. In order to calculate activity coefficients, ionic strength of the 

solution are calculated first. Ionic strength of a solution is the total electrolyte 

concentration and calculated as follows (Christian, 1994); 

 

∑= 2

2
1

ii zcI                                                     (4.7) 

 

where I is the ionic strength, ci and zi are the concentration and charge of the ith ion. 
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 Activity coefficients are calculated using theoretical expression derived by 

Debye-Hückel (Christian, 1994); 

 

        
I
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where αi is the effective diameter of the hydrated ion. 

 This equation can be used for ionic strength up to 0.2. A simplified form of 

Debye-Hückel equation however can be used for ionic strengths less than 0.01 

(Christian, 1994). 
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 There are several equations developed for the higher ionic strengths such as 

Davies modification of the Debye-Hückel equation. Davies modification is used for 

ionic strength up to 0.6 (Christian, 1994). 
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 Solubilities of bone mineral have received great attention in order to reveal the 

chemistry of bone resorption and formation in healthy state and bone loss in several 

pathological cases. In early reports, different strategies were used for the solubility 

determinations of bone and calcium phosphate phases. Holt et al. (1925) for example 

titrated H3PO4 solution with Ca(OH)2 and calculated the solubility products of CaHPO4 

and Ca3(PO4)2 by using activity coefficients. According to the analysis of the 

precipitates, they assumed that precipitates were CaHPO4·2H2O and Ca3(PO4)2. Logan 

and Taylor (1937) also studied the solubility products of the precipitates obtained by 

direct precipitation or by adding precipitates and powdered bone into the supersaturated 

solutions at pH 7.0-8.0. Like Holt et al. (1925) they assumed the chemical formula of 

the precipitates as Ca3(PO4)2. Greenwald (1942) however used the composition of 

Ca(CaHPO4) to avoid inconsistencies obtained in the solubilities when the composition 
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of Ca3(PO4)2 is assumed.  The use of compositions of Ca3(PO4)2 and Ca(CaHPO4) has 

possibly let erroneous solubility product constants since many different calcium 

phosphate species may exist in aqueous solutions depending on the pH and it is now 

well known that Ca(H2PO4)2·H2O, CaHPO4·2H2O, Ca8(HPO4)2(PO4)4·2H2O, amorphous 

calcium phosphate, hydroxyapatite and calcium deficient hydroxyapatite can be 

precipitated in solutions at physiological temperatures (Dorozhkin, 2007). Additionally, 

dissolution of the calcium phosphate compounds and precipitation of a new calcium 

phosphate compounds as well as formation of different calcium phosphate phases and 

hydrolysis of several calcium phosphates in aqueous solutions are also known. For 

example, hydroxyapatite formation from incongruent dissolution of CaHPO4 or 

CaHPO4·2H2O in aqueous solutions was reported in the study of Brown (1992).  

 In contrast to early studies, Levinkas and Neuman (1955) used pure 

stoichiometric hydroxyapatite in order to represent bone mineral. They equilibrated the 

hydroxyapatite powder in saline solutions for the solubility determination. Solubility 

was represented as calcium and phosphate concentrations rather than solubility product 

constant. Contradictory to early studies in which equilibrations for 19 months were 

required, end point in the equilibrations was reached and remained stable from 1 to 77 

days. The most important finding in their study was that the solubility was varied 

depending on the amount of powder used. Solution calcium to phosphate ratios were 

found to be higher than that of the solid phase indicating an incongruent solubility. 

Strates et al. (1957) also studied the solubility of bone mineral. They used 

supersaturated solutions at nearly neutral solutions and only determined the precipitate 

formation. They did not use bone powder sample in their study. Precipitation from 

supersaturated solutions was found to occur when the ion activity product of the 

solutions were above the solubility product of CaHPO4·2H2O. Determination of calcium 

and phosphate contents of the precipitates showed that Ca/P ratios of the precipitates 

were equal to unity immediately after mixing and then increased to higher values at 

alkaline pH values. They suggested that precipitates hydrolyzed to hydroxyapatite and 

precipitation at alkaline regions were governed by the solubility of hydroxyapatite. 

 Rootare et al. (1962) studied the changes in the solubility products of 

hydroxyapatite powders with the change in solid to solution ratios. The solubility 

activity product was found to be dependent on solid to solution ratio and solubility was 

found to be lower when higher amounts of powder were dissolved. Apparent solubility 

of the hydroxyapatite was postulated to be governed by the hydrolysis of terminal 
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phosphate groups, release of ions according to hydrolysis reaction and the formation of 

surface complex of Ca2(HPO4)(OH)2. Incongruent dissolution behavior was not only 

observed by Rootare et al. (1962), Smith et al. (1974) also showed congruent 

dissolution (solution Ca/P ratio was 1.67) for the solid to solution ratios lower than 8 g/l 

upon equilibration of the powders 0.1 M KCl solution with pH 4.5 adjusted by 

hydrochloric acid. For the higher solid to solution ratios, dissolution was incongruent as 

Ca/P ratio of the solutions being higher than 1.67. Incongruent dissolutions was 

attributed to the variations in the surface layers of the unit cells associated with the 

preparation of the powder especially acetone washing of the powder. 

Moreno et al. (1968) suggested that the variations of the solubility products of 

hydroxyapatite in some extent was due to the use of impure powders or very finely 

divided powders without stoichiometric Ca/P ratio. The presence of more acidic 

calcium phosphate compounds especially octacalcium phosphate and its decomposition 

products were regarded as the one of the major problems in the solubility 

determinations. For this reason they prepared hydroxyapatite powders by avoiding 

octacalcium phosphate precipitation. In order to obtain highly crystalline samples and to 

avoid contaminations of carbonate and acidic calcium phosphates, powders were 

subjected to heat treatment at 1000 °C in air and steam and washed with dilute 

phosphoric acid solution. Solubility studies were performed by equilibrating the 

powders in phosphoric acid solutions at 25 °C. During the calculations of the solubility 

products for hydroxyapatite powders, association constants for the ion-pairs of 

[CaHPO4]° and [CaH2PO4]+ was taken into account. Solubility products were calculated 

as 3.73 x 10-58 and 2.51 x 10-55 for the steam and air heated hydroxyapatite powders, 

respectively by using the formula of Ca5(PO4)6OH. Together with heat treated 

hydroxyapatite powders, Moreno et al. (1968) also used precipitated hydroxyapatite 

powder without heat treatment. However, they could not calculate Ksp values for as 

prepared powder. Large variations in the solubility product values of as prepared 

powder were attributed to the presence of acidic calcium phosphate compounds and to 

the presence of foreign ions such as CO3
2- in the sample.  

Moreno et al. (1968) also discussed the previous studies on the solubility product 

of hydroxyapatite. Inability to obtain reliable solubility products for hydroxyapatite 

powders was attributed to the inhomogeneity of the powders used in previous studies. 

They also criticized the surface complex postulated by Rootare et al. (1962). They 

suggested that although stoichiometry of the surface of the powder was different than 
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that of bulk it is not reasonable to assume any specific composition for the surface 

complex. They also stated that if any surface complex was present it should be 

considered as another solid phase in the solubility calculations. Potential plots (-log 

(Ca2+)(OH-)2 vs. –log (H+)3(PO4
3-)) were used to determine the reciprocal of Ca/P ratio 

in the solid phases. They found Ca/P ratios of 1.69 and 1.68 for air and steam heated 

powders. They also used the values reported by Rootare et al. (1962) and plotted in 

potential plot. According to the slopes obtained in potential plots, data from Rootare et 

al. (1962) did not yield Ca/P ratio of surface complex of Ca2(HPO4)(OH)2.  

Solubility of precipitated hydroxyapatite which did not exposed to heat 

treatment was determined at 5, 15, 25, and 37 °C by equilibrating the powder in 

phosphoric acid solutions by McDowell et al. (1977).  Solubility products of 

hydroxyapatite at 5, 15, 25, and 37 °C were found to be 2.92x10-59, 3.23x10-59, 3.04x10-

59 and 2.35x10-59, respectively. They suggested 4.7x10-59 as the best solubility product 

constant at 25°C. Temperature dependence of the solubility product was represented by 

the following equation. 

 

TTK sp 098215.06657.1/41.8219log −−−=                         (4.11) 

 

 Carbonate substitution is one of the most frequently observed ionic substitutions 

in hydroxyapatite. Bone mineral itself is a magnessium, sodium and carbonate 

substituted apatite. Beacuse carbonate substitution in hydroxyapatite results in the 

change of crystal dimensions and decrease in the crystallinity of hydroxyapatite, 

solubility and dissolution behavior of hydroxyapatite is enhanced by the carbonate 

substitution (Baig et al., 1999). Because of the dependence of the solubility of 

hydroxyapatite on carbonate substitions, solubility behaviors of carbonated apatite have 

also received special attention. Solubility properties of B- type (PO4 carbonated) and A, 

B –type carbonated apatites (PO4 and OH carbonated) were studied by Kurata et al. 

(2006). They showed that solubility product values were dependent on the degree of the 

carbonate substitution. Incongruent dissolution of the powder and precipitation of 

projections on the original powder were observed when B-type carbonated apatite was 

equilibrated in the solutions. However, central core dissolution was characteristic for A-

type carbonated apatite.   
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In contrast to lower crystallinities of carbonate apatites where phosphate ions 

were replaced by carbonate ions, OH-carbonated apatites are highly crystalline. Since 

increase in solubility of carbonate apatites due to lattice defect formation are not valid 

for OH carbonated apatites, solubilities of OH carbonated apatites 

(Ca10(PO4)6(CO3)x(OH)2-2x) were studied by Ito et al. (1997). The solubilities of OH 

carbonated apatites were determined in 0.1 M acetic acid sodium acetate buffers instead 

of phosphoric acid solutions. pH range used was 4.0-5.8 and constant CO2 partial 

pressure of 10-3.52 was used throughout solubility determinations. Incrase in solubility of 

hydroxyapatite upon carbonate substitution in OH- sites were observed. In order to 

avoid sorption of ions from solution onto powder during the solubility measurements, 

measurements performed at isoelectric point were used as solubility constants whereas 

other Ksp were considered as apparent solubility constants. pKsp values obtained at 

isoelectric point were expressed as 

 
4176.2

2 .%)(47316.065.118 wtCOpK sp ×−=                            (4.12) 

   

State of a solution for the precipitation of any phase is determined by 

undersaturation, saturation and supersaturation levels of the solutions with respect to 

that phase. Ion activity product of a solution is calculated by using solution activities of 

ions which compose the solid phase.  For a solid phase of MxAy dissolved in aqueous 

solution, ion activity product of the solution for MxAy is given as follows; 

 

                                         ( ) ( ) ( ) ( )yxyx
AM ccaaI

yx −−++−+ == γγ                                 (4.13) 

 

For example, ion activity product of solutions for hydroxyapatite is calculated by 

equations given as follows:    
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 For the calculation of ion activities, all chemical equilibrium reactions in the 

solutions are taken into account. Equations for activity coefficients, equilibrium 

reactions, species balances, equation for charge neutrality together with equation used to 

calculate ionic strength are written and solved simultaneously to find activities of all 

ions found in the solution. Ion activity of the solution with respect to phase of interest is 

then calculated. Undersaturation ratio (s) or relative undersaturation (σ) is used to 

describe solution undersaturation, saturation and supersaturation level. Undersaturation 

ratio is calculated by the flowing formula; 
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in which I and Ksp are ion activity of the solution and thermodynamic solubility product, 

respectively and n is number of ions in a unit formula of dissolving phase. n equals to 

18 or 9 depending on the formula of hydroxyapatite used to calculate I and Ksp. If s is 

lower than unity, solution is undersaturated with respect to phase of interest and 

precipitation of that phase is improbable. If s is higher than unity, solution is 

supersaturated and precipitation occurs in the solution. When s equals to unity, ionic 

activity of the solution and thermodynamic solubility product constant are equal to each 

other. Solution in this case is saturated with respect to phase of interest. Solution is 

stable unless any disturbance in the system occurs. If any disturbance in the system is 

provided, precipitation is observed. Relative undersaturation (Equation 4.17) is also 

used to describe the saturation level of the solutions.  

 

         s−= 1σ                                                 (4.17) 
 

 As far as undersaturation ratio is known, thermodynamic driving force for the 

precipitation which is the change in the Gibss free energy can be calculated as follows; 

 

                               sRTG ln−=Δ                                      (4.18) 
 

where ΔG is change in Gibbs free energy (J/mol), R is the universial gas constant 

(J/mol*K), T is absolute temperature (K) and s is undersaturation ratio (Lu and Leng, 

2005).  
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 Because of the variable solubility product constants found for carbonated 

apatites in week acid solutions, metastable equilibrium solubility concept was used to 

describe solubility behavior of carbonated apatites (Chhettry et al. 1999). It is suggested 

that in acetate buffered systems, carbonate apatites show initial rapid dissolution and 

system reaches metastable equilibrium where dissolution is almost stopped and no 

nucleation or crystal growth is observed (Chhettry et al. 1999). This metastable 

equilibrium solubility behavior together with surface complexes was found to govern 

solubility behavior of carbonated apatites (Chhettry et al. 1999; Baig et al., 1999; 

Heslop et al, 2005). Chhettry et al. (1999) equilibrated carbonated apatite in acetate 

buffers with various Ca/P ratios the pH range of 4.5-6.5. Solution ion activity products 

were calculated by assuming CaHPO4, Ca8(PO4)6(H)2, Ca3(PO4)2, Ca10(PO4)6(OH)2, 

NaxCa10-x(PO4)6-x(CO3)x(OH)2 (x was taken as 0.30, 0.49, 0.91 depending on the 

carbonate contents of the powders), Ca4(PO4)2(OH)2 as the surface complexes. When 

the solution ion activity products calculated were plotted against fraction of carbonated 

apatite dissolved, surface complex with a stoichiometry of Ca10(PO4)6(OH)2 was shown 

to govern solubility behavior of carbonated apatites.  

 Metastable equilibrium solubility study of carbonated apatites and human dental 

enamel was also performed to determine increase in solubilities due to changes in 

crystallinities upon carbonate substitution (Baig et al., 1999).  The decrease of 

crystallite size and increase of microstrain which are both responsible of decrease of 

crystallinity were refined and their effect on the solubility of carbonated apatites and 

human dental enamel was elucidated. They found that microstrain rather than crystallite 

size was the dominant factor controlling solubilities of carbonated apatites. Metastable 

equilibrium solubility behaviors and surface complexes of carbonated apatites with high 

and low cystallinities were also determined by using pH and solution strontium as the 

independent variables (Heslop et al., 2005). Surface complexes of Ca6Sr4(PO4)6(OH)2 

and Ca6Sr4(PO4)6(OH)2 were found to govern solubility behavior of carbonated apatites 

with high and low crystallinities, respectively in the solutions with higher Sr/Ca ratios. 

When the strontium to calcium ratios in the solutions were lower (strontium content of 

the solution was equal and lower 40 % of calcium), surface complexes of 

Ca10(PO4)6(OH)2 and Ca9(HPO4)(PO4)5(OH) were found to control solubility of highly 

crystalline carbonated apatite and carbonate apatite with low crystallinity, respectively. 
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 Not the solubility of hydroxyapatite but the solubilities of other calcium 

phosphate phases also are important. pH stabilities and solubilities of calcium 

phosphates are important in the precipitation of calcium phosphates from aqueous 

solutions. Hydrolysis, dissolution and reprecipitation reactions are observed when 

calcium phosphates are immersed in aqueous solutions. All reactions of calcium 

phosphates in aqueous solutions are governed by the solubilities of the calcium 

phosphates. Solubility product constants reported for hydroxyapatite is given Table 4.1 

whereas solubility product constants of other calcium phosphate compounds are shown 

in Table 4.2. These solubility constants are used to construct solubility diagrams which 

show solution calcium or phosphate compositions as a function of pH values 

(Fernández et al. 1999; Chow, 2009).  

 

 

Table 4.1. Solubility product constants reported for hydroxypatite 

Sample -log Ksp Reference 

HA* 

1000 °C heat treated in air 54.60 (25 °C) Moreno et al., (1968) 

HA*  
1000 °C heat treated in steam 57.43 (25 °C) Moreno et al., (1968) 

HA* 

(precipitated) 

58.53 (5 °C) 
58.49 (15 °C) 
58.52 (25 °C) 
58.63 (37 °C) 

McDowell et al., (1977) 

HA* 
(precipitated) 58.69 (37 °C) Markovic et al., (2004) 

HA 114 (37 °C) Gupta et al., (1987) 

Nano-HA  
(9.1 wt. % carbon) 93.48 (21 °C) Chow et al., (2004) 

Crystalline HA 117 (21 °C) Chow et al., (2004) 

Fully OH carbonated apatite 
Ca10(PO4)6(CO3)2 

102.8 (25 °C) Ito et al., (1997) 

      * Formula of Ca5(PO4)3(OH) was used to calculate Ksp. 
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Table 4.2. Solubility product constants for calcium phosphate phases other than 
hydroxyapatite 

Sample -log Ksp Reference 
MCPM 1.14 Dorozhkin, (2007) 
MCPA 1.14 Dorozhkin, (2007) 

DCPD 6.59 (25 °C) 
6.63 (37 °C) Dorozhkin, (2007) 

DCPA 

6.71 (5 °C) 
6.79 (15 °C) 
6.90 (25 °C) 
7.04 (37 °C) 

Sutter et al., (1971) 

OCP 

48.3 (4 °C) 
48.3 (4.8 °C) 
48.2 (6 °C) 
48.3 (18 °C) 

48.4 (23.5 °C) 
48.7 (37 °C) 

Tung et al., (1988) 

OCP 49.6 (25 °C) 
49.8 (45 °C) Heughebaert and Nancollas, (1985) 

α- TCP 25.5 (25 °C) 
25.5 (37 °C) Dorozhkin, (2007) 

β- TCP 28.9 (25 °C) 
29.5 (37 °C) Dorozhkin, (2007) 

ACP 25.7 (25 °C) Combes and Rey, (2010) 

CDHA 85.1 (25 °C) 
85.1 (37 °C) Dorozhkin, (2007) 

FA 120.0 (25 °C) 
119.2 (37 °C) Dorozhkin, (2007) 

TTCP 38-44 (25 °C) 
37-42 (37 °C) Dorozhkin, (2007) 

 

 

 

 

 

 

 

 

 

 

 



 49

4.2. Dissolution of Calcium Phosphates 

 
Dissolution of calcium phosphate compounds is the removal of ions from the 

calcium phosphate compounds and transfer into the aqueous solutions. Since currently 

there is no method to follow the detachment of a single ion or a molecule from the 

material and its transfer into solution (Dorozhkin, 1999), dissolution studies are 

restricted to experimentation techniques available. Batch dissolution studies in which 

calcium phosphates are immersed into different aqueous solutions (Ducheyne et al., 

1993; Valsami-Jones et al., 1998; Hankermeyer et al., 2002; Fulmer, 2002), and 

constant composition dissolution studies (Chin and Nancollas, 1991; Zhang and 

Nancollas, 1992; Tang et al., 2001; Tang et al., 2003a; Tang et al., 2003b) have been 

used to determine dissolution behavior of calcium phosphate compounds.   

Batch dissolution studies of calcium phosphate compounds are based on the 

inbucation calcium phosphate compounds in different aqueous solution at a defined 

temperature. For example, Ducheyne et al. (1993) used calcium and phosphate free Tris 

buffer solution with a pH of 7.4 for the determination of several calcium phosphates and 

their biphasic mixtures at 37 °C. The dissolution rates of calcium phosphates were 

found to decrease in the order of tetracalcium phosphate, α-tricalcium phosphate, β-

tricalcium phosphate, oxyhydroxyapatite, calcium deficient hydroxyapatite, 

stoichiometric hydroxyapatite.  

Valsami-Jones et al. (1998) determined the dissolution behavior of natural 

fluorapatite and synthetic hydroxyapatite in aqueous solutions in the pH range of 2-7 at 

25 °C in the absence and presence of lead and cadmium in the solutions. Dissolution 

media used were 0.1 M NaNO3, 1 % HNO3 (NaOH was used to adjust pH) and HCl/KCl 

buffer. Natural fluorapatite was found to have higher dissolution rate than synthetic 

hydroxyapatite although it had a higher solubility. In the presence of lead in the 

solution, they observed that lead substituted hydroxypatite precipitation occured upon 

dissolution of synthetic hydroxyapatite. When cadmium was present in the solutions, 

calcium-cadmium phosphate precipitation was observed.   

 Fulmer et al. (2002) studied the dissolution rates of three different apatite 

samples were tested in Tris buffer solutions at pH of 7.3 at 37 °C. Among the 

hydroxyapatite samples, two of them were the apatite samples obtained by calcium 

phosphate cements; BoneSource (Ca9.970(HPO4)0.080(PO4)5.892(CO3)0.080(OH)1.944 and 
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NorianCRS (Ca8.8(HPO4)0.7(PO4)4.5(CO3)0.7(OH)1.3). They compared the dissolution 

behavior of these powders together with sintered hydroxyapatite (calcitite, 

Ca10(PO4)6(OH)2). Initial dissolution rates together with their solubility product 

constants were measured. Initial dissolution rates after 10 min were found to be 0.0465, 

0.1589 and 0 mg/min whereas solubility product constants were calculated as  1.19 x 

10-35, 1.49 x 10 -35and 2.92 x 10-42 for BoneSource, NorianCRS and calcitite samples, 

respectively.    

 In order to predict osteoclastic degredation of calcium phosphate samples   in the 

body, acidic solutions simulating the osteoclastic degredation environment have also 

been used to determine dissolution or degredation of calcium phosphates. Koerten et al. 

(1999) used 0.1 M sodium acetate buffers at pH values of 4.0, 4.8 and 5.6 for the 

determination of degredation hydroxyapatite, β-tricalcium phosphate and fluorapatite 

whereas Bloebaum et al. (1998) studied the dissolution behavior of hydroxyapatite 

samples in 0.4 cacodylate buffers at cytoplasmic ( pH 7.1), phagosomal (pH 6.0) and 

lysosomal (pH 5.0) pH levels. Similarly dissolution behavior of calcium deficient 

hydroxyapatite (Ca8.8(HPO4)0.7(PO4)4.5(CO3)0.7(OH)1.3) obtained from NorianSRS 

cement was tested in closed and open systems using hydrochloric acid solutions 

(Hankermeyer et al., 2002).  

 In contrast to dissolution determinations in buffered solutions with various pH 

values, simulated body fluid is sometimes used for the solubility or dissolution 

behaviors of the calcium phosphates (Monteiro et al. 2003; Porter et al., 2004; Sprio et 

al. 2008).  Infact, immersion of the samples into simulated body fluids are generally 

used to predict in vitro bioactivities (bone bonding abilities) of the materials (Kokubo 

and Takadama, 2006). Simulated body fluid is first developed by Kokubo and co-

workers (Kokubo et al., 1990). Simulated body fluid is an artificial solution which 

contains ions found in blood plasma (Kokubo et al., 1990; Oyane et al. 2003a). This 

solution does not contain cells, proteins or organic compounds such as glucose present 

in blood. pH values of the solutions are adjusted to 7.4 by either using Tris or Hepes 

buffers (Oyane et al. 2003a). Several modified forms of simulated body fluids have 

been developed since its first use in biomaterials field (Oyane et al. 2003a; Lu and 

Leng, 2005). Compositions of different simulated body fluids are given in Table 4.3.  
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Table 4.3. Composition of simulated body fluids 
(Source: Tas, 2000; Oyane et al., 2003a) 

Concentration (mM) Ion 
Blood 

plasma 
c-SBF r-SBF i-SBF m-SBF Tas’ SBF 

Na+ 142.0 142.0 142.0 142.0 142 142.0 
K+ 5.0 5.0 5.0 5.0 5.0 5.0 
Mg2+ 1.5 1.5 1.5 1.0 1.5 1.5 
Ca2+ 2.5 2.5 2.5 1.6 2.5 2.5 
Cl- 103.0 147.8 103.0 103.0 103.0 125 
HCO3

- 27.0 4.2 27.0 27.0 10 27.0 
HPO4

2- 1.0 1.0 1.0 1.0 1.0 1.0 
SO4

2- 0.5 0.5 0.5 0.5 0.5 0.5 
Buffer - Tris Hepes Hepes Hepes Tris 
 

 

 The first simulated body fluid developed is conventional simulated body fluid 

(c-SBF) (Kokubo et al., 1990). Its chloride ion concentration is higher than that in 

plasma whereas bicarbonate ion content is lower than that of blood plasma. Only 

revised simulated body fluid (r-SBF) includes ions in concentrations equal to their 

concentrations in blood plasma. The concentrations of all ions except bicarbonate in 

modified simulated body fluid (m-SBF) are equal to concentrations in blood plasma. 

Bicarbonate concentration was reduced from 27 mM to 10 mM in m-SBF. Ionized 

simulated body fluid (i-SBF) was developed to simulate free ion concentrations in blood 

plasma (Oyane et al., 2003). Since 0.5 mM Mg+ of total magnessium concentration are 

bound to proteins and 0.9 mM and 0.3 mM Ca2+ are bound to proteins and inorganic 

ions (such as phosphate and carbonate), magnesium and calcium concentrations was 

reduced 1.0 and 1.6 mM, respectively by subtracting concentrations of protien bound 

forms from their total concentrations in plasma (Oyane et al., 2003a).  Another type of 

simulated body fluid was developed by Tas (2000). With his formulation, concentration 

of bicarbonate in c-SBF was increased from 4.2 mM to 27 mM while decreasing Cl- 

concentration from 147.8 mM to 125 mM, closer to that of blood plasma.  

 pH values of the all simulated body fluids are adjusted to 7.4 at 37 °C with either 

Tris or Hepes (Tas, 2000, Oyane et al., 2003a, Kokubo and Takadama, 2006). When 

Tris was used as a buffer, pH adjustment was performed with 1 M HCl solution. In the 

case of Hepes, NaOH solution was used. Table 4.4 shows the amounts of reagents used 

to prepare 1 liter of simulated body fluids.  
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Table 4.4. Reagents used to prepare simulated body fluids 
 (Source : Tas, 2000; Oyane et al., 2003a) 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 
 

                    a Reagents are dissolved in the given order 
                                         b Solution is buffered to pH 7.4 at 36.5 °C with Tris and 1 M HCl  
                                         c Solutions are buffered to pH 7.4 at 36.5 °C with Hepes and 1 M NaOH 
                                         d Solution is buffered to pH 7.4 at 37 °C with Tris and 1 M HCl 
                                         e Hepes was added as  dissolved in 100 mL  
                                         f Hepes was added as  dissolved in 100 mL of 0.2 M NaOH 
                           g Purities were 99.0 % for  KCl and MgCl2·6H2O and 99.5 % for Na2SO4 and Tris. 

Amount (g) Reagenta Purity (%) c-SBFb r-SBFc i-SBFc m-SBFc Tas’ SBFd 

NaCl > 99.5 8.036 5.403 5.585 5.403 6.547 
NaHCO3 > 99.5 0.352 0.740 0.965 0.504 2.268 
Na2CO3 > 99.5 - 2.046 1.765 0.426 - 
KCl > 99.5 0.225 0.225 0.225 0.225 0.373g 

K2HPO4·3H2O > 99.0 0.230 0.230 0.230 0.230 - 
Na2HPO4·3H2O > 99.5 - - - - 0.178 
MgCl2·6H2O > 98.0 0.311 0.311 0.217 0.311 0.305g 

1.0 M HCl - 40 mL - - - 15 mL 
0.2 M NaOH - - - - 100 mL - 
Hepes > 99.9 - 11.928 11.928e 17.892f - 
CaCl2 > 95.0 0.293 0.293 0.191 0.293 - 
CaCl2·2 H2O > 99.0 - - - - 0.368 
Na2SO4 > 99.0 0.072 0.072 0.072 0.072 0.071g 

Tris > 99.9 6.063 - - - 6.057g 

1.0 M HCl - ≈ 0.2 mL - - - 25 mL 
1.0 M NaOH - - ≈ 0.8 mL ≈ 0.8 mL ≈ 15 mL - 
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 Details of the preparation of simulated body fluids are briefly described in the 

articles of Tas (2000), Oyane et al. (2003a) and Kokubo and Takadama (2006). 

Concentrations of ions shown in Table 4.3 are given in Tas (2000) and Oyane et al. 

(2003a). However when concentrations of Cl- and Na+ added as HCl and NaOH 

solutions, respectively for the pH adjustments are taken into consideration, Cl- 

concentration in c-SBF and Tas’ SBF are found as 187.8 and 165.0 mM, respectively 

while Na+ concentration in m-SBF is 157.0 mM (Lu and Leng, 2005). Among the all 

SBF solution, r-SBF is the most similar solution to blood plasma with respect to its total 

concentration of each ion.  

 Preparation of simulated body fluids should be performed carefully. The 

addition of reagents should be followed in the order given in Table 4.4 (Tas, 2000, 

Oyane et al., 2003a). For the preparation of c-SBF, prior to addition of calcium chloride, 

solution is addidified by adding 40 mL of 1 M HCl in order to avoid calcite 

precipitation. Reduction of pH results in the loss of bicarbonate by volatilization of 

carbon dioxide from the solution (Takadama et al. 2004). Oyane et al. (2003a) found 

that bicarbonate ion concentration in c-SBF was lower than nominal concentration. This 

was attributed to the loss of bicarbonate ion as carbondioxide gas because of the 

reduction of pH to 2 after addition of 1 M HCl. A new methodology was recently 

suggested for the preparation of SBF solution with the composition of c-SBF in which 

loss of bicarbonate ion was avoided (Takadama et al., 2004). Two SBF solutions (np-

SBF and nl-SBF) were prepared. np-SBF solution was prepared by sequential powder 

dissolving methodology. In contrast to c-SBF, Hepes and 1 M NaOH were first 

dissolved to adjust pH to 7.4 at 36.5 °C and NaHCO3 was dissolved just before the final 

pH adjustment. nl-SBF was however prepared by mixing two solutions. Calcium 

solution which contained all ions other than phosphate and bicarbonate was prepared. In 

this calcium solution concentrations of ions were equal to concentrations in c-SBF but 

calcium concentration was doubled. Similarly phosphate solution which contains all 

ions except calcium was prepared. This phosphate solution contained ions in 

concentrations found in c-SBF but phosphate and bicarbonate concentrations was 

doubled. pH values of these two solutions were adjusted to 7.4 at 36.5 °C with Hepes 

and 1 M NaOH. By mixing of calcium and phosphate solutions in equal volumes, nl-

SBF solution was prepared. 
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Because simulated body fluids contain bircarbonate, calcium and phosphate 

ions, saturation levels of simulated body fluids with respect to calcite and 

hydroxyapatite were reported by Oyane et al. (2003a). With respect to calcite, r-SBF 

and i-SBF solutions are supersaturated, m-SBF solution is saturated and c-SBF solution 

is undersaturated whereas all are supersaturated with respect to hydroxyapatite. Because 

of the saturation and supersaturation levels of these metastable solutions, calcite or 

apatite nucleation occurs upon changes in the solution properties. Calcite and 

hydroxyapatite nucleation in the solutions or on the surfaces of the materials are likely 

to occur upon immersion in m-SBF, i-SBF and r-SBF. In the case of c-SBF only 

hydroxyapatite nucleation is possible. Oyane et al. (2003b) showed that calcium 

phosphate clusters with initial hydrodynamic diameter of 1 nm were formed in c-SBF 

and m-SBF whereas in addition to calcium phosphate clusters, calcium carbonate 

clusters with initial hydrodynamic diameter of 10-30 nm were formed in r-SBF and i-

SBF. They suggested m-SBF for the bioactivity testing of the materials and bone-like 

apatite formation on the samples because of its long term stability and similarity to 

blood plasma.  

 Thorough study of the nucleation driving forces and nucleation rates of calcium 

phosphate phases in SBF solutions was performed by Lu and Leng (2005) using 

classical crystallization theories of thermodynamics and kinetics. Thermodynamic 

driving force (ΔG, change in Gibss free energy) for the hydroxyapatite was found to be 

higher than those of OCP and DCPD. Although hydroxyapatite was found to be 

thermodynamically stable in SBF solutions, nucleation rate of OCP was calculated to be 

higher than nucleation rate of HA indicating that OCP nucleation is kinetically favored. 

According to its thermodynamic driving force for nucleation, DCPD nucleation was 

found to be improbable unless the increase in concentrations of calcium and phosphate. 

If calcium and phosphate concentrations in SBF is increased, DCPD precipitation in 

SBF is probable since the thermodynamic driving force for DCPD precipitation 

becomes the most greatest among those of other calcium phosphate phases. Authors 

also found that thermodynamic driving force for carbonate apatite precipitation was 

equal to that of stoichiometric hydroxypatite precipitation whereas thermodynamic 

driving force for calcium deficient hydroxyapatite was calculated to be lower than that 

for stoichiometric apatite precipitation. However precipitation of both carbonate apatite 

and calcium deficient apatite were found to be more kinetically favored than 

stoichiometric apatite.   
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 In order to elucidate the mechanism of dissolution of calcium phosphate 

compounds, constant composition (Chin and Nancollas, 1991; Zhang and Nancollas, 

1992; Tang et al., 2001; Tang et al., 2003a) or dual constant composition kinetics 

studies (Wu et al., 2001; Tang et al., 2003b; Chow et al., 2003) have been used. The 

most important feature of these studies is that the thermodynamic driving for dissolution 

is kept constant. Since thermodynamic driving force for dissolution is the function of 

solution composition, it is kept constant by keeping the solution composition constant 

throughout the dissolution. Undersaturated solutions at constant ionic strength and pH 

value are prepared in double walled Pyrex glass vessels thermostated at 37 °C. 

Dissolution is started introducing known amounts of seeds into the system and system is 

continuously stirred. Titrant solutions are added into the system by stepper-motor driven 

burettes in order to keep the solution composition constant. A potentiometer or pH-stat 

system employing a pH electrode is used to control the titrant addition into the system. 

Once the volume of titrants added into the system, titrant volume can be potted vs. 

recorded time, this gives overall dissolution rate. When two constant composition 

devices are incorporated into the system employing two different electrodes (pH and 

calcium electrode), system is called as dual constant composition kinetics study. This 

system is very useful when the dissolution of mixed phases is of interest (Tang et al., 

2003b; Chow et al., 2003).   

 Ebrahimpour and colleagues was the first who introduced the use of dual 

constant composition system (Chow et al., 2003). A modified method of dual constant 

composition has been described by Chow et al. (2003). The principle behind this 

technique is that when the calcium phosphate phase is dissolving, its dissolution can be 

considered as dissolving its corresponding amount of base, acid and water thus 

Ca(OH)2, H3PO4 and water. Only Ca(OH)2 and H3PO4 solutions are added into the 

reaction vessel throughout the dissolution, however since dissolution is performed under 

water based system and liberated water upon dissolution is comparatively very small. 

Ca and P titrants having the same concentrations in the dissolution medium are added 

into the system by the help of calcium and pH electrode used in conjuction with 

reference electrode of pH electrode. In contrast to their names Ca titrant has no Ca(OH)2 

but have other components at the same concentrations in demineralizing solution. 

Similarly P titrant has no H3PO4 but have others. Ca titrant addition is achieved by Ca 

ion electrode where P titrant is added via the response of pH electrode. Without the 

knowledge of the stoichiometry of the solution, one can use the dual constant 
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composition dissolution kinetic study to maintain constant composition of the 

dissolution media. Data obtained by titration can be used to calculate the dissolution 

rate as well as stoichiometry of the dissolving phase. System used by Chow et al. (2003) 

is shown in Figure 4.2. These authors used 40 mL dissolution medium in the 

experiments but kept the volume constant at 60 mL by the removal of dissolution 

medium. 

 

 

Figure 4.2. Dual-constant composition titration system 
(Source: Chow et al., 2003). 

 

 

 Constant composition dissolution kinetics system was used to investigate the 

dissolution behavior of fluorapatite (Chin and Nancollas, 1991), octacalcium phosphate 

(Zhang and Nancollas, 1991), β-tricalcium phosphate (Tang et al., 2001), carbonated 

apatite (Tang et al. 2003a), brushite, β-tricalcium phosphate, octacalcium phosphate, 

hydroxyapatite and carbonated apatite in the absence and presence of citric acid (Tang 

et al., 2003b) whereas dual constant composition dissolution kinetics system was used 

to determine dissolution behavior of mixtures of octacalcium phosphate and tricalcium 

phosphate (Wu et al. 2001; Tang et al. 2003b) and hydroxyapatite, dicalcium phosphate 

dihydrate and calcium phosphate cements prepared by mixing powder equimolar 

tetracalcium phosphate and dicalcium phosphate anhydrous with water (Chow et al., 

2003). All these studies provided data for the elucitation of mechanisms controlling 

dissolution of calcium phosphate compounds. 
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 Because of the importance of surface properties and surface complexes in the 

behavior of calcium phosphate phases in aqueous solutions, recent studies have been 

focused on the determination of surface properties (surface composition and surface 

complexation) together with solubility or dissolution determinations (Skartsila and 

Spanos, 2007; Chaïrat et al., 2007;  Bengtsson et al., 2009). Skartsila and Spanos (2007) 

determined the point zero charge of hydroxyapatite in contact with aqueous solutions 

containing KNO3 by potentiometric titration, ζ-potential measurements and surface 

complex modelling. They found the point zero charge value of hydroxyaptite as 6.5±0.2 

which was lower than the values found before. They stated that considerable fraction of 

solution H+ is consumed by the species coming from the dissolution because of the 

increase in the dissolution with the decrease in pH.  They therefore suggested that these 

H+ ions should be taken into consideration for the calculations of true value of point 

zero charge and surface charges at different pH values. 

 Surface characterization and dissolution of non-stoichiometric hydroxyapatite 

with a composition of Ca8.4(HPO4)1.6(PO4)4.4(OH)0.4 was studied using potentiometric 

titrations, zeta potential measurements, batch dissolution studies together with 

Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) 

and X-ray Photoelectron spectroscopy by Bengtsson et al. (2009). They studied the 

dissolution and surface complexation of this apatite sample in 0.1 M NaCl solutions in a 

pH range of 3.5-10.5 at 25 °C. Within the pH range studied, three different regions were 

determined. Below pH 4.5, dissolution was dominant. Solution Ca/P ratio was similar to 

that of surface of hydroxyapatite. Dissolution and surface complexation were observed 

between pH 4.5 and 8.2. At low pH values, solution Ca/P ratio was found to reach to 

that of surface of the hydroxyapatite whereas Ca/P at neutral pH was ≈ 25. This very 

high Ca/P ratio was attributed to the readsorption of phosphate ions onto hydroxyapatite 

surface. Surface complexation was however dominant above pH 8.2. 

 Similarly surface properties of fluorapatite in aqueous solution were also 

investigated by potentiometric titrations, batch dissolution experiments, zeta potential 

measurements and ATR-FTIR analysis (Chaïrat et al., 2007). Exchange reactions 

between H+ and Ca2+ and OH- and F- ions and formation of a Ca or F depleted but P 

enriched layer at the surface of fluorapatite were observed. They suggested that this 

layer was in composition of CaHPO4 and controlled the apparent solubility of 

fluorapatite.  
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Whether batch dissolution tests or constant composition dissolution kinetics 

methodology is used, dissolution data together with data obtained from potentiometric 

titrations, zeta potential measurements and surface characterization methods such as X-

ray photoelectron electron spectroscopy and atomic force microscopy provide useful 

information on the behavior of hydroxyapatite in different aqueous solutions especially 

in the presence of physiologically important ions. The behavior of hydroxyapatite in 

such solutions will therefore be useful for the understanding of the mechanism of bone 

formation and resorption, caries formation and hydroxyapatite dissolution and 

crystallization phenomena. 
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CHAPTER 5 

 

MATERIALS AND METHODS 

 
5.1. Materials 

 
 Ultrapure water with a resistivity of 18.2 MΩ·cm at 25 °C was used in this 

study. All the materials used and their specifications are given in Table 5.1.  

 NaH2PO4, NaCl, KCl and Na2SO4 were dried for 24 h at 105 °C at reduced 

pressure of approximately -0.9 bar in a vacuum oven (Selecta, Vaciotem-T) before use. 

All other materials were used as received. 

 

5.2. Methods  

 

 Methods used in this study are divided into two groups; 

a) Chemical analyses 

b) Powder synthesis, characterization and dissolution testing of the 

powders 

 In the section of chemical analysis, low level calcium and phosphate analyses 

methods were used. Calcium analysis method was modified and tested for the analysis 

of different calcium levels. Suitability of the method for the analysis of calcium in 

different electrolytes containing releatively higher concentrations of several ions was 

further evaluated.  Phosphate analysis method was tested for the suitability of phosphate 

determination when background ions were present in the system.  

 In the second section hydroxyapatite powder was synthesized and characterized 

together with commercial powder. Finally dissolution of the powders in different 

electrolytes was determined by calcium and phosphate analyses methods. 
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Table 5.1. Materials used and their specifications 

No Materials Producer and Code Specifications 
1 Dowex 50WX4-100 Sigma Aldrich 

428663 
 

2 Arsenazo III Fluka 11090  
3 HCl Merck 1.00314 37 %, extra pure 
4 Imidazole Sigma Aldrich I 2399 ≥ 99 % 
5 Sodium acetate AppliChem A1522 Min 99 %, anhydrous 
6 Acetic acid Merck 1.00056 100 %, glacial 
7 Formic acid Merck 1.00263  
8 Potassium hydroxide Panreac 

141515.12.11 
85 %, purissimum 

9 CaCl2·2H2O Merck 1.02382 99.8- 103.3 % 
10 Sulfuric acid Merck 1.00713 95-98 %, extra pure 
11 Filter papers Filtrak Grade 288 80 g/m2, d=110 mm 
12 NaCl Merck 1.06404 ≥ 99.5 % 
13 NaHCO3 Merck 1.06329 99.7-100.3 % 
14 KCl Merck 1.04936 Min 99.5 % 
15 Na2SO4 Merck 1.06637 Min 99 % 
16 NaH2PO4 Merck 1.06370 99.99 % 
17 MgCl2·6H2O Merck 1.05833 99.0-102.0 % 
18 Ammonium 

molybdate 
tetrahydrate 

Sigma A7302  

19 Malachite green 
oxalate 

Merck 1.01398 C. I. 42 000 

20 Poly(vinyl alcohol) 
(PVA) 

Aldrich 36,062-7 80 % hydrolyzed 
Average MW 9,000-
10,000 

21 Microplates, 96-well 
plate 

Thermo Scientific 
 

Cliniplate, Sterile, with 
lid 

22 Hydroxyapatite Sigma C5267 34.0-40.0 % calcium 
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5.2.1. Chemical Analyses 

 
 In order to determine low levels of calcium, Arsenazo III calcium assay was 

modified and tested for the calcium determination in 0.25-1 ppm, 1-8 ppm and 10-80 

ppm calcium containing solutions.  

 

5.2.1.1. Optimization of Microplate Based Arsenazo III Calcium 
Analysis 

 

 Arsenazo III calcium analysis method was selected and applied to microplate 

reader. First of all calcium initially present in the dye was removed using cation 

exchange column chromatography method suggested by Vogel et al. (1983). Details of 

the calcium removal from the dye are given in Appendix A. Determination of Arsenazo 

III concentration in the purified dye solution was performed according to Minganti et al. 

(1983) and described in Appendix B. Arsenazo III concentration was found to be 800 

μM. Arsenazo III dye reagents were prepared by using this stock Arsenazo III solution.  

 Arsenazo III dye reagents prepared at three different pH values were tested for 

the analysis of three different ranges of calcium concentrations (0.25-2 ppm, 1-8 ppm 

and 10-80 ppm calcium). pH values of 3.8, 5.4 and 6.5 were selected. For the 

preparation of dye reagents at pH 3.8, 5.4 and 6.5, acetate, formate and imidazole 

buffers were used, respectively.  Dye reagents with different Arsenazo III 

concentrations were prepared at these pH levels. Preparation methods for these reagents 

are given in Appendix C. Table 5.2 summarizes Arsenazo III solutions used for the 

analysis of different calcium concentration ranges. 
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Table 5.2. Arsenazo III dye reagents and the range of calcium concentrations used in this study 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        * Solutions were prepared by diluting the dye reagent with ultrapure water in 1:1 (volumetric) ratio.  

 
 

Arsenazo III Reagent 
No 

CArsenazo III (μM) Buffer CBuffer pH 

Reagent 
Volume (µL) 

Concentration range of 
Ca2+ standards (ppm) 

Volume of 
Standards (µL) 

1 60 acetate 100 5.4 150 0.25-2 150 
2 60 acetate 100 5.4 150 1-8 150 
3 60 acetate 100 5.4 150 10-80 150 
4* 60 acetate 100 5.4 150 0.25-2 150 
5* 60 acetate 100 5.4 150 1-8 150 
6* 60 acetate 100 5.4 150 10-80 150 
7 120 acetate 100 5.4 150 1-8 150 
8 60 formate 220 3.8 150 0.25-2 150 
9 60 formate 220 3.8 150 1-8 150 

10 60 formate 220 3.8 150 10-80 150 
11* 60 formate 220 3.8 150 0.25-2 150 
12 120 formate 220 3.8 150 10-80 150 
13 60 imidazole 100 6.5 150 0.25-2 150 
14 60 imidazole 100 6.5 150 1-8 150 
15 60 imidazole 100 6.5 150 10-80 150 
16* 60 imidazole 100 6.5 150 0.25-2 150 
17* 60 imidazole 100 6.5 150 1-8 150 
18 60 imidazole 200 6.5 150 0.25-2 150 
19 60 imidazole 200 6.5 150 1-8 150 
20 60 imidazole 200 6.5 150 10-80 150 
21 200 imidazole 200 6.5 150 1-8 150 
22 200 imidazole 200 6.5 150 10-80 150 
23 500 imidazole 200 6.5 150 10-80 150 
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5.2.1.1.1. Preparation of Calcium Standard Solutions 

 
 Three sets of calcium standards were prepared in this study; 

a) 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2 ppm  

b) 1, 2, 3, 4, 5, 6, 7, 8 ppm 

c) 10, 20, 30, 40, 50, 60, 70, 80 ppm 

Main calcium stock solution with a concentration of 2500 mg/L was prepared by 

dissolving 0.2293 g CaCl2·2H2O in ultrapure water and adjusting the volume to 25 mL 

in a glass volumetric flask by ultrapure water. This solution was transferred into high 

density-polyethylene bottle. 

Intermediate standard solutions of 25 ppm and 100 ppm were prepared for the 

preparation of standards of sets a, and b, respectively. In order to prepare 25 ppm 

calcium standard solution, 250 µL from 2500 mg/L standard solution was transferred 

into 25 mL capacity glass volumetric flask. Solution volume was adjusted to 25 mL by 

ultrapure water. Solution was finally mixed well and transferred into high density-

polyethelene bottle. For the preparation of 100 ppm calcium standard, 1 mL 2500 mg/L 

calcium solution was added into a 25 mL capacity glass volumetric flask. Ultrapure 

water was then added into the volumetric flask and volume was brought to 25 mL. 

Solution was then mixed thoroughly and taken into plastic sample bottle.      

For the preparation of 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 ppm standards, 

250, 500, 750, 1000, 1250, 1500, 1750, and 2000 microliters of 25 ppm solution were 

transferred into 25 mL glass volumetric flasks, respectively. Volumes of the solutions 

were brought to 25 mL by ultrapure water. All solutions were mixed thoroughly and 

transferred into plastic sample bottles. 

Calcium standards, 1-8 ppm (set b), were prepared by taking 250, 500, 750, 

1000, 1250, 1500, 1750, and 2000 microliters from 100 ppm solution into 25 mL glass 

volumetric flask for 1, 2, 3, 4, 5, 6, 7 and 8 ppm, respectively. Volumes of the solutions 

were adjusted to 25 mL by ultrapure water. Solutions were finally mixed well and 

transferred into high density-polyethelene bottles. 

Calcium standards with concentrations 10-80 ppm were directly prepared by 

taking 100, 200, 300, 400, 500, 600, 700 and 800 microliters from 2500 mg/L solution 

for 10, 20, 30, 40, 50, 60, 70, and 80 ppm, respectively. Volumes were brought to 25 

mL and solutions were mixed well. Solutions were taken into plastic sample bottles. 
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All standard solutions were kept frozen at -18 °C when they are not in use. 

When they were to be used, they were first thawed and left to stand in order to reach 

room temperature. 

 

5.2.1.1.2. Analysis 

 
 Calcium analysis was performed in 96 well plates in a plate reader Multiskan® 

Spectrum (Thermo Electron Corporation, Finland). Ultrapure water treated in similar 

way used in the calcium solutions was used as a blank. 

 One hundred fifty microliters of desired solution were transferred into the wells 

of a 96 well microplate in 5 replicates.  After adding the solutions, 150 µL of dye 

solutions to be tested was added into each well. The microplate was then incubated for 5 

min at 25 °C in Multiskan® Spectrum plate reader. After incubating the plates in the 

microplate reader, absorbances were measured at 650 and 600 nm with a bandwidth of 2 

nm at 25 °C. Spectra of the solutions were recorded between 400 and 700 nm with a 

step size of 5 nm and bandwidth of 2 nm. 

 

5.2.1.1.3. Data Analysis 

 
 Five replicates were used for each concentration in absorbance measurements. 

Therefore, average values and standard deviations of absorbances for each 

concentration of calcium were calculated and standard deviations were reported in the 

figures as error bars. For spectrum scanning, spectrum of only one replicate for each 

calcium standard was reported.  

 Since wells containing blanks are specified by the user and instrument averages 

these values and subtracts from the absorbances of the solutions in calculations, only 

absorbance values were saved and blank subtraction was performed by mathematical 

calculations. Standard deviations in this case was calculated by Equation 5.1 and 

reported in the figures as error bars. 

 

                  )( 22
blanksss +=                                            (5.1) 
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5.2.1.2. Calcium Determination in Different Electrolyte Solutions by 
Microplate Based Arsenazo III-Calcium Analysis 

  

 Interferences of the several ions on the calcium determination by Arsenazo III 

method were tested by the preparation of calcium standard solutions in different 

electrolyte solutions. 200 µM Arsenazo III & 200 mM Imidazole-Cl pH 6.5 solution 

was used for the construction of calibration curves by using calcium standards prepared 

in several electrolyte solutions. Electrolytes tested were 142 mM NaCl, 27 mM 

NaHCO3, 115 mM NaCl and 27 mM NaHCO3 containing solution, 1.5 mM MgCl2·6 

H2O, 5 mM KCl, 0.5 mM Na2SO4, 1 mM H3PO4, 10 mM H3PO4. 

 

5.2.1.2.1. Preparation of Calcium Standard Solutions  

 
 Main standard solution (2500 mg/L calcium) and intermediate standard solution 

(100 mg/L calcium) were used to prepare working standard solutions. For the 

preparation of main standard solution, 0.2293 g calcium chloride dihydrate was 

dissolved in ultrapure water and solution was transferred into 25 mL capacity glass 

volumetric flask. Volume was adjusted to 25 mL by ultrapure water and solution mixed 

well. Finally solution was transferred in HD-PE plastic bottle.  

 Intermediate standard solution was prepared by transferring 1 mL of main 

standard solution into 25 mL glass volumetric flask. Volume was adjusted with 

ultrapure water. Solution was thoroughly mixed and then transferred into plastic sample 

bottle. 

 Working standard solutions were prepared by transferring 250, 500, 750, 1000, 

1250, 1500 and 1750 μL intermediate standard solutions into 25 mL glass volumetric 

flasks. Volumes were adjusted to 25 mL with ultrapure water. After mixing the 

solutions, they were transferred into plastic sample bottles. 

 Preparation of standard solutions in the presence of 142 mM NaCl, 1.5 mM 

MgCl2·6H2O, 5 mM KCl and 0.5 mM Na2SO4 were similar to the preparation of 

standard solutions in ultrapure water. Instead of ultrapure water, corresponding 

electrolyte was used as solvent. 

 

 



 66

 In the case of 27 mM NaHCO3 and 115 mM NaCl and 27 mM NaHCO3 

solutions, due to the risk of precipitation of calcium carbonate main and intermediate 

standard solutions were prepared in ultrapure water. Working standards in 27 mM 

NaHCO3 were prepared by adding required volumes of intermediate standard solution 

and 3 mL of 225 mM NaHCO3 and adjusting the volumes of the solutions to 25 mL. In 

the case of 115 mM NaCl and 27 mM NaHCO3, 5 mL of 575 mM NaCl and 3 mL of 

225 mM NaHCO3 were transferred into 25 mL volumetric flasks. After the addition of 

ultrapure water into the volumetric flasks, required volumes of intermediate standard 

solutions were added, and volumes were brought to 25 mL. 

 Because of the possibility of precipitation of calcium phosphate phases in 

solutions with high concentrations of calcium and phosphate, only working standards 

were prepared in H3PO4 solutions. Main and intermediate solutions were prepared in 

ultrapure water. Working calcium standard solutions in 1 mM H3PO4 were prepared as 

follows: 1 mL of 25 mM H3PO4 solution was transferred into 25 mL capacity glass 

volumetric flasks. Ultrapure water was added into flasks. For the standard solutions 

with calcium concentrations 1, 2, 3, 4, 5, 6 and 7 mg/L, 250, 500, 750, 1000, 1250, 1500 

and 1750 μL from intemediate standard solution was added into flasks, respectively. 

Solutions were brought to 25 mL with ultrapure water and mixed thoroughly.  Working 

standard solutions in 10 mM H3PO4 was prepared by the same way used in the 

preparation of working standard solutions in 1 mM H3PO4. However, 100 mM H3PO4 

solution was used instead of 25 mM H3PO4 and 2.5 mL from 100 mM H3PO4 solution 

were transferred into each flask. 

 

5.2.1.2.2. Analysis 

 
 Calcium analysis was performed in 96 well microplates. Electrolytical solutions 

used to prepare calcium standards were used as blank solutions in the analysis. 

 One hundred fifty microliters of each solution was added into wells of a 

microplate. For each set of calcium concentration, five replicates were used. After 

addition of the solutions into wells of a microplate, 150 µL of 200 µM Arsenazo III & 

200 mM imidazole-Cl pH 6.5 solution was added into each well. Solutions were mixed  

 by circular movement of a pipette tip in the wells (a pipette tip for the each set of 

concentrations). After mixing the solutions, microplate was shaken for 30 seconds at 
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300 spm (shakes per minute) in a linear shaking mode with linear shaking amplitude 

(width) of 10 mm in Multiskan® Spectrum plate reader. Microplate was then incubated 

for 5 minutes at 150 rpm and 25 °C in an incubator (MaxQ4000 Barnstead, UK) with 

their lids closed. After the incubation, microplate was finally shaken for 30 seconds at 

300 spm (shakes per minute) in a linear shaking mode with linear shaking amplitude 

(width) of 10 mm in Multiskan® Spectrum plate reader. After shaking, absorbances of 

the solutions in the wells of microplates were analyzed in Multiskan® Spectrum plate 

reader at wavelengths of 500, 600, 650 and 655 nm with a bandwidth of 2 nm. Spectra 

of the solutions were scanned between 400 and 700 nm with a stepsize of 5 nm and 

bandwidth of 2 nm. 

 Data analysis was preformed as described in Section 5.2.1.1.3.   
 

5.2.1.3. Microplate Based Malachite Green Phosphate Assay 

 
 Malachite green phosphate assay proposed by Van Veldhoven and Mannaerts 

(1987) with modifications of Cogan et al. (1999) was used in this study. MG assay of 

inorganic phosphate is based on the reaction between malachite green dye and 

phosphomolybdate complex formed when ammonium molybdate reacts with phosphate 

in acidic solutions.    

 According to Cogan et al. (1999), optimum final heptamolybdate and malachite 

green concentrations have been found as 6 mM and 120 μM, respectively. Final H2SO4 

and PVA concentrations were suggested as 0.45 M and 0.05 (w/v) %, respectively (Van 

Veldhoven and Mannaerts, 1987).  

 Microplate reader based assay used in this study made us to measure absorbance 

of 96 wells in very short time. This microscale phosphate assay avoids the use of large 

amounts of samples and solutions. Final volume of the solution and reagents were 300 

μL. According to the above mentioned optimum properties, reagent solutions with 

calculated concentrations were prepared.  
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5.2.1.3.1. Preparation of Reagents 

   
 Two reagent solutions (ammonium molybdate in sulfuric acid and malachite 

green and PVA containing solution) are used in the phosphate determination by 

malachite green based method. Preparation of reagent solutions is as follows; 

 

Reagent A (36 mM Ammonium heptamolybdate in 2.7 M H2SO4): 

 
 4.4561 g ammonium heptamolybdate tetrahydrate were dissolved in 

approximately 60 mL ultrapure water. Solution was mixed on a magnetic strirer. 

Fourteen point nine milliliters of concentrated H2SO4 were then added into solution. 

This solution was mixed thoroughly on a magnetic stirrer and left to cool down while 

stirring. After solution had been cooled, it was transferred to 100 mL glass volumetric 

flask and volume was adjusted to 100 mL with ultrapure water. Solution was then 

filtered through a Filtrak Grade 288 filter paper into 250 mL capacity screw capped 

glass bottle. In order to avoid possible light-induced changes in the solution, bottles 

were wrapped with aluminum foil. Reagent was stored at room temperature in the dark.  

 

Reagent B (0.72 mM Malachite Green & 0.3 (w/v) % PVA containing solution): 

 
 0.3 g polyvinyl alcohol (PVA) was dissolved in approximately 60 mL of 

ultrapure water in a 100 mL capacity screw capped glass bottle. In order to facilitate the 

dissolution of PVA, solution was incubated in a thermostated water bath for 

approximately 30 minutes at 80 °C and 150 rpm. Solution was then taken and mixed by 

a magnetic stirrer. Solution was left to cool down to room temperature while stirring. 

After cooling, 0.0742 g malachite green oxalate in a beaker was dissolved in this PVA 

solution. Solution was then mixed thoroughly on a magnetic stirrer. This malachite 

green and PVA containing solution was transferred into 100 mL glass volumetric flask. 

Solution volume was adjusted to 100 mL by ultrapure water and solution was mixed 

thoroughly. Solution was then filtered through a Filtrak grade 288 filter paper into a 100 

mL capacity polypropylene bottle. This blue-green reagent was protected from the light-

induced changes by wrapping aluminum foil around the bottle. Solution was kept at 

room temperature in dark.  
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5.2.1.3.2. Preparation of Phosphate Standard Solutions 

 
 Phosphate (PO4

3-) standard solutions with concentrations of 0.25, 0.5, 0.75, 1, 

1.25, 1.5, and 1.75 ppm were used in the malachite green based phosphate assay. This 

range of phosphate standard solutions was prepared in ultrapure water and calibration 

curve was constructed. Phosphate standards in different electrolyte solutions having 

several ions found in human plasma were also prepared. These electrolyte solutions 

were used in concentrations equal to their concentrations in human plasma. Possible 

interferences arising from these electrolytes were tested in malachite green based 

phosphate analysis. Whole phosphate concentration range was used for all electrolytes 

tested. Besides the determination of interferences arising from the electrolytes, testing 

of all standard concentrations made it possible to construct calibration curves when 

electrolytes exists as a matrix in the solutions. Table 5.3 shows the electrolytes present 

as a matrix in the standard solutions.  

 All main, intermediate and working standard solutions were prepared freshly. 

Number of replicates of solution preparations and repliactes of measurements are given 

in Table 5.4.  

 

 

Table 5.3. Electrolyte solutions used to prepare phosphate standards 

 

 

 

No Compound Cation Anion 
1 142 mM NaCl 142 mM Na+ 142 mM Cl- 
2 27 mM NaHCO3 27 mM Na+ 27 mM HCO3

- 

3 115 mM NaCl / 27 mM NaHCO3 142 mM Na+ 115 mM Cl- / 27 mM 
HCO3

- 

4 2.5 mM CaCl2·2H2O 2.5 mM Ca2+ 5 mM Cl- 
5 1.5 mM MgCl2·6H2O 1.5 mM Mg2+ 3 mM Cl- 
6 5 mM KCl 5 mM K+ 5 mM Cl- 
7 0.5 mM Na2SO4 1 mM Na+ 2 mM SO4

2- 

8 SBFA See Tables 5.5 and 5.6 

9 SBFB See Tables 5.5 and 5.6 
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Table 5.4. Number of replicates used in malachite green phosphate assay 

No Background electrolyte 
Replicates of 

Solution 
Preparation 

Replicates of 
Measurements 

for Each 
Phosphate 

Concentration 
Level 

Total Replicates 
of Measurements 

for Each 
Phosphate 

Concentration 
Level 

1 Ultrapure water 4 5 20 

2 142 mM NaCl 4 5 20 

3 27 mM NaHCO3 3 5 15 

4 115 mM NaCl / 27 mM 
NaHCO3 

3 5 15 

5 2.5 mM CaCl2·2H2O 3 5 15 

6 1.5 mM MgCl2·6H2O 3 5 15 

7 5 mM KCl 3 5 15 

8 0.5 mM Na2SO4 3 5 15 

9 SBFA 2 5 10 

10 SBFB 1 5 5 

  

 

 Main phosphate stock solution containing 2500 mg/L PO4
3- solution was 

prepared by dissolving 0.3158 g NaH2PO4 in ultrapure water and diluting to 100 mL in 

a glass volumetric flask by ultrapure water. Main stock solution was then mixed well 

and transferred into a high density polyethylene bottle. For the preparation of working 

standard solutions, an intermediate PO4
3- standard solution with a concentration of 25 

mg/L was prepared. For this reason, 250 µL of main standard solution was transferred 

into 25 mL capacity glass volumetric flask. Ultrapure water was then added into the 

volumetric flask and volume was adjusted to 25 mL with ultrapure water. Solution was 

mixed thoroughly and transferred into a HD-PE bottle. 

 Working standard solutions were prepared by transferring 250, 500, 750, 1000, 

1250, 1500 and 1750 µL of 25 mg/L intermediate standard solution into 25 mL capacity 

glass volumetric flasks for 0.25, 0.5, 0.75, 1, 1.25, 1.5 and 1.75 ppm PO4
3- standard 

solutions, respectively. Ultrapure water was added into the flasks. Volumes were 

adjusted to 25 mL with ultrapure water and solutions were mixed thoroughly. All 

working standard solutions were transferred in plastic sample bottles.  

 



 71

 Main, intermediate and working standard solutions in 142 mM NaCl, 2.5 mM 

CaCl2, 1.5 mM MgCl2, 5 mM KCl and 0.5 mM Na2SO4 were prepared by the same way 

used to prepare phosphate standards in ultrapure water. However, instead of ultrapure 

water 142 mM NaCl, 2.5 mM CaCl2, 1.5 mM MgCl2, 5 mM KCl and 0.5 mM Na2SO4 

solutions were used as solvents. 

 Preparation of phosphate standards in 27 mM NaHCO3, 115 mM NaHCO3 and 

27 mM NaHCO3 containing solution, SBFA and SBFB solutions was different. In the 

case of 27 mM NaHCO3, main phosphate standard solution (2500 mg/L) was prepared 

by dissolving 0.2268 g NaHCO3 and 0.3158 g NaH2PO4 in ultrapure water separately. 

Solutions were then combined and volume was brought to 100 ml with ultrapure water. 

Main standard solution containing 115 mM NaCl and 27 mM NaHCO3 was prepared by 

dissolving 0.6732 g NaCl, 0.3158 grams of NaH2PO4 and 0.2268 grams NaHCO3 

individually in ultrapure water. They were then combined and volume was brought to 

100 mL with ultrapure water. Intermediate and working standard solutions were 

prepared in a similar way used in the preparation of phosphate standard solutions in 

ultrapure water. However 27 mM NaHCO3 was used as solvent for the preparation of 

intermediate and working standards in 27 mM NaHCO3 whereas 115 mM NaCl and 27 

mM NaHCO3 containing solution was used for the preparation of intermediate and 

working standards in 115 mM NaCl and 27 mM NaHCO3 containing solution. 

 Solutions having ion concentrations similar to simulated body fluid, but 

excluding phosphate ions (SBFA and SBFB) were also used to prepare phosphate 

standards. Table 5.5 shows amounts of reagents used to prepare SBFA and SBFB 

solutions whereas ionic compositions of these solutions are given in Table 5.6   

 For the preparation of SBFA solution, two hundreds milliliters of ultrapure 

water was added into a glass beaker. Each reagent was dissolved completely in 

ultrapure water and added into the beaker. Sequence of reagent addition was followed in 

the order shown in Table 5.5. During the preparation, solution in the beaker 

continuously stirred by a magnetic stirrer and pH of the solution was monitored. After 

the addition of the final reagent, solution was transferred into 500 mL capacity glass 

volumetric flask and volume was adjusted to 500 mL by ultrapure water. Solution was 

finally mixed thoroughly. 

 SBFB was prepared in a similar way used in the preparation of SBFA. When 

compared to SBFA solution, SBFB contains calcium ions (Table 5.6). During the 

preparation, after the addition of the calcium chloride into the solution results with the 
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precipitation, probably calcium carbonate precipitates.  In order to avoid precipitation, 

before addition of calcium chloride, 15 mL 1 M HCl was added into the solution. After 

the addition of final reagent, solution was transferred into the 500 mL glass volumetric 

flask and volume was adjusted to 500 mL with ultrapure water. Solution was finally 

thoroughly mixed.  

 Main standards solutions were prepared in ultrapure water but intermediate and 

working standard solutions were prepared by using SBFA and SBFB solutions as 

solvents.  

 

 

Table 5.5. Reagents used to prepare SBFA and SBFB solutions 

  Amount (g) 
No Reagent SBFA SBFB 
1 NaCl 3.3480 3.3480 
2 NaHCO3 1.1341 1.1341 
3 KCl 0.1874 0.1874 
4 MgCl2 6H2O 0.1525 0.1525 
5 1 M HCl - 15 mL 
6 CaCl2 2H2O - 0.1838 
7 Na2SO4 0.0359 0.0359 

 

 

 

Table 5.6. Ionic compositions of SBFA and SBFB solutions 

  Concentration (mM) 
No Ion SBFA SBFB 
1 Na+ 142.0 142.0 
2 Cl- 122.0 142.0 
3 HCO3

- 27.0 27.0 
4 K+ 5.0 5.0 
5 Mg2+ 1.5 1.5 
6 Ca2+ - 2.5 
7 SO4

2- 0.5 0.5 
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5.2.1.3.3. Analysis 

 
 Malachite green based phosphate analysis was performed in 96 well plates in a 

plate reader Multiskan® Spectrum (Thermo Electron Corporation, Finland). Ultrapure 

water treated in the similar way used in the phosphate solutions was used as a blank. 

 Two hundred microliters from the desired solution were added into the wells of 

a 96 well microplate in 5 replicates. After the addition of the solutions, 50 μL of 36 mM 

ammonium molybdate in 2.7 M H2SO4 were added into the wells. Microplate was then 

shaken for 30 seconds at 300 spm (shakes per minute) in a linear shaking mode with 

linear shaking amplitude (width) of 10 mm in Multiskan® Spectrum plate reader. After 

shaking, microplate was incubated for 10 minutes at 150 rpm and 25 °C in a shaking 

incubator (Ivymen, Spain or MaxQ4000, Barnstead, UK).  Fifty microliters of reagent B 

(0.72 mM Malachite Green & 0.3 (w/v) % PVA containing solution) were added into 

each well. At this step, care should be taken to avoid bubble formation in the wells since 

the solution contained a surfactant (PVA). For this reason, reagent B was added into a 

well by careful pipetting. Attention was also paid to add reagent B into the solution in 

order to ensure mixing of reagent B with the mixture of sample and reagent B in the 

wells. For each well by using a new pipette tip, reagent B was added into the solutions 

not onto the solutions. After addition of the reagent B, a pipette tip for the each set of 

concentrations, was used to mix the solutions by circular movement of the tip in the 

wells. At this step, mixing of the solution by a pipette tip did not cause any significant 

loss from the solutions.  At the end of the addition of the reagent B into the wells, 

microplate was again shaken for 30 seconds at 300 spm (shakes per minute) in a linear 

shaking mode with linear shaking amplitude (width) of 10 mm in Multiskan® Spectrum 

plate reader. Microplate was then incubated for 30 minutes at 150 rpm and 25 °C in a 

shaking incubator. Microplate was finally shaken for 30 seconds at 300 spm (shakes per 

minute) in a linear shaking mode with linear shaking amplitude (width) of 10 mm in 

Multiskan® Spectrum plate reader. After shaking, solutions in the wells of microplates 

were analyzed in Multiskan® Spectrum plate reader at 25°C at 650, 640, 630, 620, 610 

nm with a bandwidth of 2 nm. Spectra of the solutions were measured between 400 and 

700 nm with a step size oh 5 nm and bandwidth of 2 nm. 
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 Above protocol was modified for the phosphate standards prepared in solutions 

containing HCO3
- ions. Addition of acid reagent results in the formation of carbon 

dioxide bubbles and these bubbles stick on the walls and at the bottom of the wells. For 

this reason, 2 mL from each standard solution were transferred into 15 mL capacity 

centrifuge tubes. Five hundred microliters of 36 mM ammonium molybdate in 2.7 M 

H2SO4 was added into each tube. Solutions were then vortexed in order to mix solutions 

well and remove carbon dioxide bubbles generated. After vortexing, 250 microliters 

from each solution were transferred into the wells of the microplate in five replicates. 

Analysis was then continued as stated above. 

 The lids of the microplates were removed during the transfer of standards and 

reagents into the wells, shaking in the Multiskan® Spectrum plate reader and during the 

analysis. However, during the incubations at 25°C in a thermoshake incubator, plates 

were incubated by their lids closed. 

 Data analysis was preformed as described in Section 5.2.1.1.3.   
  

5.2.2. Powder Synthesis and Characterization 

 
 Nano-sized hydroxyapatite was prepared by precipitation and resultant powder 

was characterized by several characterization methods. 

 

5.2.2.1. Synthesis of Nano-Sized Hydroxyapatite Powder 

 
 Calcium nitrate tetrahydrate and diammonium hydrogen phosphate were used to 

prepare hydroxyapatite powder. Carbondioxide from deionized water was removed by 

vacuuming and deionized water was heated to 37 °C. Two hundred milliliters 0.813 M 

Ca(NO3)2·4H2O and 200 mL of 0.484 M (NH4)2HPO4 solutions were prepared. While 

solutions were kept at 37 °C, their pH values were adjusted to 10 by the addition of 

concentrated NH4OH solution. Ca(NO3)2·4H2O solution was added into (NH4)2HPO4 by 

peristaltic pump with a rate of 10 mL/min. Solution was continuously stirred and 

reaction was carried out at 37 °C. Throughout the reaction, pH was continuously 

measured. During precipitation reaction, hydroxyapatite formation consumes OH- ions 

in the solution hence pH drops. Whenever pH dropped slightly below 10, it was 

adjusted to 10 by the addition of concentrated (NH4)2HPO4. Care was taken during pH 
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adjustments so that pH never exceeded 11. After the addition of all calcium nitrate 

solution, solution was aged for 24 hours at ambient temperature by continuous stirring. 

After ageing, precipitate was removed from the solution by centrifugation. 

Precipitate was washed twice by using deionized water with a pH of 10 which was 

adjusted by the addition of concentrated NH4OH.  Further washings were performed 

only with deionized water. Washing was continued until the conductivity of supernatant 

was < 15 µS/cm. During washing steps in deionized water, ultrasonic treatment was 

used to increase the efficiency of washing. Precipitate was dried at 37 °C after washing. 

During drying, precipitate was frequently mixed in order to provide homogenous drying 

and to avoid formation of a xerogel. Precipitate was finally ground in an agate mortar. 

 

5.2.2.2. Characterization of Powders 

 
 Crystalline structures, particle size and morphology, specific surface areas, 

thermal behaviors, calcium and phosphate contents as well as functional groups in the 

crystal lattice were determined by using X-ray diffraction analysis, scanning electron 

microscopy, nitrogen adsorption-desorption analysis, thermogravimetric analyses, 

calcium and phosphate analysis and FTIR analysis, respectively. 

 

5.2.2.2.1. X-Ray Diffraction Analysis 

 
 Crystallographic structures and properties of commercial hydroxyapatite and β- 

tricalcium phosphate powders were determined by Phillips X’Pert Pro X-ray 

diffractometer. X-ray profiles of the powders were evaluated at 2θ values between 5 to 

80°. Detector employed was Phillips Panalytical X’celerator detector. X-ray scans were 

performed at 45 kV and 40 mA with CuKα radiation at λ= 1.540. 

 

5.2.2.2.2. Thermogravimetric Analysis 

 
 Thermogravimetric analyses of the powders were performed by heating the 

powders up to 1100 °C with a heating rate of 10°C/min under 20 mL/ min nitrogen flow 

in Perkin Elmer TGA/DT analyzer. 
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5.2.2.2.3. BET Surface Area  

 
 BET surface areas and of the powders were evaluated by nitrogen adsorption-

desorption analysis at 77.44 K in Micromeritics ASAP 2010 pore size analyzer.   

 

5.2.2.2.4. Scanning Electron Microscopy 

 
 Samples for the SEM analysis were prepared by ultrasonical dispersion of the 

powders in 2 ml absolute ethanol. Dispersed particles were then spread over aluminum 

stubs. Crystal morphologies were determined in scanning electron microscope Phillips 

XL-30S FEG.  

 

5.2.2.2.5. Fourier Transform Infrared Radiation (FTIR) Analysis  

 
 Fourier transform infrared radiation (FTIR) analysis of the powders was 

performed by KBr pellet method. KBr pellets containing 2 wt.% powders were prepared 

by mixing 3 mg powders with 150 mg KBr and pressing into the pellet forms. Analysis 

was performed in Schimadzu FTIR 8400 S after three point baseline and zero baseline 

corrections. Absorbance data was recorded in a scan range of 4000-400 cm-1. Number 

of scans and resolution were 40 and 4.0, respectively.  

 

5.2.2.2.6. Determination of Calcium/Phosphate Molar Ratios 

 
 Calcium and phophate contents of the commercial and synthesized 

hydroxyapatite powders were determined by dissolving powders in HCl solutions. As a 

reference, calcium and phosphate contents of the commercial CaHPO4 powder was also 

evaluated. Powders (approximately 0.1 g) were dissolved in a mixture of 5 mL 1 M HCl 

and 20 mL ultrapure water. After complete dissolution, solutions were transferred into 

100 mL capacity glass volumetric flasks. Volumes were brought to 100 mL with 

ultrapure water and solutions were mixed thoroughly. These were used as main 

solutions in the calcium and phosphate determinations.  
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In order to obtain calcium concentrations within the calibration range, main 

solutions were diluted with ultrapure water in volumetric flasks. After dilutions, final 

HCl concentration in the solutions was 0.5 mM. Calcium in the final solutions were 

determined by Arsenazo III method. 

For the phosphate analysis, successive dilutions of main solutions were made. 

By this way final HCl concentration in solutions did not exceed 0.1 M. Phosphate 

concentrations of the final concentrations were determined by malachite green 

phosphate assay. 

Calcium and phosphate concentrations of the main solutions were calculated by 

taking dilution factors into consideration. Calcium and phosphate contents of the 

powders and Ca/P molar ratios were then calculated. 

 

5.2.3. Dissolution of Cold Isostatically Pressed Hydroxyapatite Pellets 

 
 Loosely pressed hydroxyapatite pellets were obtained by pressing 0.250 g 

powder in a 10 mm dye at 57 MPa. These pellets were then pressed in a cold isostatic 

press (CIP) at 2000 bar for approximately 20 minutes. 

 Equilibrations of pellets obtained from both commercial hydroxyapatite and 

hydroxyapatite synthesized in this thesis were performed in different electrolytes. The 

list of electrolyte solution used in dissolution tests is given in Table 5.7. 

 

 

Table 5.7. Electrolyte solutions used in dissolution of hydroxyapatite powders 

Commercial hydroxyapatite (HA) Synthesized hydroxyapatite (DHA) 

 
• Ultrapure water 

• 142 mM NaCl 

• CO2 free ultrapure water 

• CO2 free 142 mM NaCl 

• CO2 free 1.5 mM MgCl2 

• 27 mM NaHCO3 

• 115 mM NaCl and 27 mM NaHCO3 

containing electrolyte solution 

 
 

 

• CO2 free ultrapure water 

• CO2 free 142 mM NaCl 

• 27 mM NaHCO3 
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 Pellets were equilibrated in the electrolyte solutions for either 2 weeks or one 

month.  A single pellet was immersed in 50 mL corresponding equilibration media in 

100 mL capacity polypropylene bottles. Equilibrations were followed either for 1, 2, 3, 

8, 24, 48, 96, 192 and 336 hours or 1, 2, 4, 8, 24, 48, 96, 96, 192, 360 and 720 hours. 

Therefore 9 or 10 pellets were used for each equilibration experiment. Pellets were 

removed from the solution. Solutions were kept at 4 °C until pH, conductance, calcium 

and phosphate analysis. Solutions left on the pellets were removed by wiping with 

tissue paper. Washing the pellets by ultrapure water was avoided since it may alter the 

surface changes occured during equilibrations. 

 Calcium and phosphate analysis in the solutions were performed by diluting the 

samples in respective blank solutions if the dilution was necessary. Calcium and 

phosphate concentrations in the solutions were then analyzed by Arsenazo III-calcium 

and malachite green phosphate assays. Absorbance values measured at 650 nm were 

used to calculate ΔA values. ΔA values obtained by subtracting average of the 

absorbance values of the blank reagents from the average value of absorbances of the 

solutions were used to find concentrations in the solutions. Calibration curves 

constructed using ΔA values obtained from the absorbances measured at 650 nm were 

therefore used.  
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 
6.1. Chemical Analyses 

 
  For the determination of calcium in the dissolution media, first of all calcium 

analysis method was modified and tested for the determination of low levels of calcium. 

Interferences due to the presence of several ions on the calcium and phosphate analyses 

were determined. 

 

6.1.1. Optimization of Microplate Based Arsenazo III Calcium 
Analysis 

 
 Optimum Arsenazo III concentration, buffer strength and pH were determined 

for the low level calcium analysis in the solutions. The effects of the presence of several 

ions on the calcium determination were also verified. Arsenazo III dye reagents 

buffered to pH of 5.4, 3.8 and 6.5 with acetate, formate and imidazole buffers, 

respectively were tested for the analysis of calcium in the standard solutions with three 

different calcium concentration ranges (0.25-2, 1-8 and 10-80 ppm). 

 

6.1.1.1. Arsenazo III in Acetate Buffer  

 
 Spectrophotometric method for the analysis of calcium in ppm level by 

Arsenazo III in acetate buffer (pH 5.5) was reported by Michaylova and Ilkova (1971). 

They were able to analyze calcium in 0.030 - 1.5 ppm range by using Arsenazo III dye. 

They performed their analysis by combining calcium solutions with 10 mL 0.073 mM 

Arsenazo III in acetate buffer (pH 5.5) and diluting the solution to 25 mL. Absorbances 

of the solutions were measured at 600 nm. Final concentration of Arsenazo III in the 

solution was 29.2 μM. Two different Arsenazo III reagents were therefore tested for the 

calcium analysis in this study (60 μM Arsenazo III & 100 mM acetate buffer pH 5.4 and 

120 μM Arsenazo III & 100 mM acetate buffer pH 5.4).    
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60 µM Arsenazo III & 100 mM Acetate Buffer pH 5.4: 

 

 60 μM Arsenazo III was selected in order to obtain the same final concentration 

of the dye used by Michaylova and Ilkova (1971) when calcium solutions were mixed 

in equal amounts for the calcium analysis. 

 60 μM Arsenazo III in 100 mM acetate buffer pH 5.4 was tested for the 

construction of the calibration curves for the 0.25-2 ppm, 1-8 ppm, and 10-80 ppm 

calcium ranges. Absorption spectra between 400-700 nm were scanned for these three 

calcium ranges in order to determine possible alterations. Figure 6.1 gives the light 

absorption spectra of calcium standard solutions (0.25-1.75 ppm range) analysed using 

60 μM Arsenazo III in 100 mM acetate buffer pH 5.4. According to Figure 6.1, dye 

itself gives a maximum absorption peak at 540 nm; however a new peak at 650 nm 

appears with increasing in its intensity with increasing calcium concentration. 

Absorption maximum of free dye shifts through higher wavelengths upon reaction of 

dye with calcium. This shift was found to be 15 nm when 1.75 ppm calcium was present 

in the system. When the values of absorbances in the range of 400-700 nm were plotted 

by substracting the values of blank solution (Figure 6.2), two peaks located at 600 nm 

and 650 nm are observed. This shows that calcium-Arsenazo III complexation at pH 5.4 

results in light absorption at these two wavelengths. Figures 6.3 and 6.4 give the 

absorption spectra of the complex when calcium concentration is higher. Absorption 

peak at 595 nm clearly becomes visible at higher calcium concentrations when spectra 

obtained without blanking. When   calcium concentration in the standard solution was 

higher than 10 ppm, absorption peak of the dye shifts to 565 nm. This shift was 

approximately 25 nm.  Intensities at 650 nm were also found be increased as expected 

when compared to absorption of the dye-calcium complex obtained at low levels of 

calcium. When the blank values are subtracted from the absorption data (Figure 6.4), 

maximum absorbances can also be observed at 600 and 650 nm. 

 

 

 

 

 

 

 



 81

0.000

0.200

0.400

0.600

0.800

1.000

1.200

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

Wavelength (nm)

A
bs

or
ba

nc
e 

(A
.U

.)

Blank

0.75
ppm
1 ppm

1.25

 
Figure 6.1. Spectra of calcium standard solutions (0.25-1.75 ppm) - 60 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard- 150 μL dye reagent). 
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Figure 6.2. Spectra of calcium standard solutions (0.25-1.75 ppm) - 60 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard- 150μL dye reagent) obtained by 
subtracting blank values. 

  

 

  



 82

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

Wavelength (nm)

A
bs

or
ba

nc
e 

(A
.U

.)

Blank
30 ppm
40 ppm
50 ppm
60 ppm
70 ppm

 
Figure 6.3. Spectra of calcium standard solutions (10-70 ppm) - 60 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard- 150 μL dye reagent).  
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Figure 6.4. Spectra of calcium standard solutions (10-70 ppm) - 60 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard- 150 μL dye reagent), obtained by   
subtracting blank values. 
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Binding of bivalent and trivalent cations which form 1:1 complexes with 

Arsenazo III is suggested to occur by binding of metal ions to oxy groups of arson 

group and napthelene nucleus (Alimarin and Savvin, 1966) (Figure 3.2.A). It was also 

suggested that this type complexation can not be generalized to all cations and pH 

ranges of the complex formations (Alimarin and Savvin, 1966). In some cases, 

napthelene nucleus does not contribute directly to the complex formation (Alimarin and 

Savvin, 1966). 

It is well known that two peaks are observed upon reaction of Arsenazo III with 

metal cations at approximately 610 and 655 nm (Alimarin and Savvin, 1966, Rowatt 

and Williams, 1989, Basargin et al., 2000). The peak found at 610 was attributed to the 

breakdown of the symmetry of the dye molecule after binding to metal cations 

(Basargin et al., 2000). Metal ion inding to one analytical group reduces its ionic state 

and this reduction affects the ionic state of the conjugated system (Basargin et al., 

2000). In this study, the peak found at 650 nm was attributed to the absorption of 

calcium and dye complex whereas the peak obtained at 600 nm was suggested to be the 

result of the asymmetry of the dye molecules after complexation with calcium. 

Due to the observation that calcium-Arsenazo III complex gives two absorption 

maxima, calcium analysis in this study was performed at two different wavelengths 

(600 and 650 nm).  However calibrations curves obtained by absorbances measured at 

600 nm are given in Appendix F for the simplicity.   

For the analysis of different calcium concentration ranges first of all 0.25-2 ppm 

calcium standard solutions were used. Figure 6.5 shows the calibration curve obtained 

by measuring the absorbance values at 650 nm. Calibration obtained by subtracting the 

values of the blank solution from the absorbance values of the calcium standards were 

also presented in the same graphic. Linear calibration curve with a correlation 

coefficient of 0.9950 (Figure 6.5.a) was obtained with the values of absorbances 

measured at 650 nm. When the calibration curve was constructed by subtracting the 

average blank value from the average values of the solutions, correlation coefficient was 

slightly reduced to 0.9943. Figure 6.5 shows that it is possible to analyze 0.25-2 ppm 

calcium in the solution by Arsenazo III prepared in acetate buffer at 650 nm. However, 

absorbance response to the calcium standards used was in a narrow range (0.121 - 0.280 

for 0.25 - 2 ppm, blank was 0.097). 
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Figure 6.5. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 100   

mM acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 650 nm 
a. without subtracting blank values, b. with subtracting blank values. 

 

   

Similar behavior was observed for the absorbance values obtained at 600 nm 

(Figure F.1). Correlation coefficients for the calibration curves obtained at 600 nm were 

smaller than those obtained at 650 nm. Additionally, for each of the solution absorbance 

values was higher than those obtained at 650 nm. When the blank values obtained at 

both wavelengths were compared, average blank value obtained at 650 nm (0.097) was 

considerably smaller than the average blank value obtained at 600 nm (0.329). 

Absorption at 650 nm is due to the absorption of the calcium-dye complex whereas 

absorption at 600 nm is the result of the change in the ionic state of the Arsenazo III due 

to the symmetry breakdown. Higher absorbance values at 600 nm may be due the effect 

of pH on the ionic state of the molecule and deu to the reduction of symmetry of the dye 

molecule because of the calcium and dye complexation. Figure 3.1.B shows the 

ionizable groups found on the Arsenazo III. pK values of these ionizable groups are as 

follows: pK1 = -2.5, pK2 = 0, pK3 = 2.5, pK4 = 2.5, pK5 = 5.3, pK6 = 5.3, pK7 = 7.5 and 

pK8 = 12.4 (Rowatt and Williams, 1989). Repulsion forces exerted due the presence of 

ionized groups at pH 5.5 and calcium complexation may result in symmetry breakdown 

of the molecule and absorption at 600 nm occurs.  

a

b
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 Because of the lower absorbances of the calcium-Arsenazo III complexes, 

higher ppm level of calcium standards was therefore prepared and analyzed by 

Arsenazo III dye in acetate buffer. Figure 6.6 shows the results of the analysis of 1 to 8 

ppm calcium solutions with 60 µM Arsenazo III. Absorbance of calcium-Arsenazo 

complex reached to an equilibrium by the increase in calcium content. This was 

possibly due to the insufficient amount of the dye available to bound excess calcium. 

Since the complexation of calcium with Arsenazo III molecule is governed by the 

dissociation constant of Arsenazo III, a fraction of Arsenazo III bound to calcium is 

constant at defined dye concentration and pH regardless of the calcium concentration. 

This could be clearly observed when the calcium amounts in the solutions were further 

increased to 10-80 ppm range (Figure 6.7). By holding the concentration of Arsenazo III 

in the solution constant but increasing the calcium concentration, absorbances of the 

calcium dye complexes reached equilibrium at pH 5.4.  
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Figure 6.6. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting blank values, b. with subtracting blank values. 
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Figure 6.7. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 650 nm 
a. without subtracting blank values, b. with subtracting blank values. 

 

 

 Not only Arsenazo III concentration and pH, but also buffer used is important in 

the calcium analysis by Arsenazo III dye. Buffers may have small calcium binding 

ability (Bauer, 1981).  Especially, increase in negative logarithm of apparent 

dissociation constant (pKCa) of Arsenazo III was observed with a decrease in buffer 

concentration (Bauer, 1981). The reason for this was related to the increase of ionic 

strength due to the increase of the buffer concentration.  

 According to ionizable groups present on the dye molecule, Arsenazo III dye 

shows multiple protonation equilibria (Chiu and Haynes, 1980). Protonation reactions 

depending on pH can be written as follows; 

 

                 +− +⇔ HAIIIHAIIIH 78                  (6.1)                       

             +−− +⇔ HAIIIHAIIIH 2
67                                       (6.2)         

                                                +−− +⇔ HAIIIHAIIIH 3
5

2
6                                       (6.3)    

                                               +−− +⇔ HAIIIHAIIIH 4
4

3
5                                        (6.4) 

                                              +−− +⇔ HAIIIHAIIIH 5
3

4
4                                         (6.5) 

                                             +−− +⇔ HAIIIHAIIIH 6
2

5
3                                          (6.6)    

a 

b
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                                            +−− +⇔ HHAIIIAIIIH 76
2                                             (6.7) 

                                            +−− +⇔ HAIIIHAIII 87                                                  (6.8) 

 

 Chiu and Haynes (1966) reported that H3AIII5- and H4AIII4- are dominant forms 

between pH 5.4 and 7.0. When calcium is present in the system at these pH values the 

possible equilibria can be shown as follows: 

 
+−−+ +⇔+ HAIIICaHAIIIHCa 3

3
4

4
2                                   (6.9) 

 
+−−+ +⇔+ HAIIICaHAIIIHCa 4

2
5

3
2                                 (6.10) 

 

                                   +−−+ +⇔+ HCaHAIIIAIIIHCa 56
2

2                                    (6.11) 

 

Binding affinities for the calcium was reported to decrease in the order of 

H2AIII6-, H3AIII5- and H4AIII4- (Chiu and Haynes, 1966). In buffered systems, 

equilibrium reaction of the buffer is as follows: 

                                            

                                                    +− +⇔− HRHR                                                 (6.12) 

 

 Protonation reactions of Arsenazo III and buffer competes with hydrogen 

binding. When the buffer strength increases, more buffer molecules competes with 

hydrogen binding, this affects the fraction of ionized species of Arsenazo III (H2AIII6-, 

H3AIII5- and H4AIII4-). The decrease of dissociation constant of Arsenazo IIII with the 

decrease of buffer concentration may likely be due to the above stated possible 

protonation and complexation equilibria of Arsenazo III. 

Because of the effect of buffer strength on dissociation constant of Arsenazo III 

(Bauer, 1981), a dye reagent was prepared by diluting 60 µM Arsenazo III in 100 mM 

acetate buffer with ultrapure water in 1:1 (v/v) ratio. This reagent had 30 µM Arsenazo 

III and 50 mM acetate buffer. After mixing with calcium standards (150 µL of standard 

and 150 µL of ½ diluted reagent), total Arsenazo III and total buffer concentrations 

were 15 µM and 25 mM in the mixture, respectively. This ½ diluted reagent was used 

for the all calcium concentration ranges. Absorption spectra of the calcium-arsenazo III 

complexes are shown in Figure 6.8. Dye reagent itself exhibit maximum absorption at 
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540 nm. This absorption band shifts 15 nm through longer wavelengths upon 

complexation of the dye with calcium. Calcium-Arsenazo III complex shows maximum 

absorption at around 645 nm. Difference of the spectra of the calcium containing 

solutions from the spectra of the blank solution shows that two absorption bands are the 

result of complexation at 600 and 650 nm (Figure 6.9). 
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Figure 6.8. Spectra of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 100 mM 

acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent). 
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Figure 6.9. Spectra of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 100 mM 

acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) obtained by 
subtracting blank values. 
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 Calibration curve obtained at 650 nm was found to be linear when the 
calcium concentration range was 0.25-2 ppm (Figure 6.10). However correlation 
coefficients obtained were smaller than those obtained with 60 µM Arsenazo III. 
 
 

y = 0.0672x
R2 = 0.9818

y = 0.0628x + 0.0684
R2 = 0.9887

0.000

0.050

0.100

0.150

0.200

0.250

0 0.5 1 1.5 2 2.5

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
. U

.)

-0.050

0.000

0.050

0.100

0.150

0.200

0.250

ΔA

A
ΔA

 
Figure 6.10. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 

100 mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 

 
 
 
 When calcium standard solutions within the range of 1-8 ppm and ½ diluted 

were used, solution started to become saturated over 4 ppm standard solution 

concentration (Figure 6.11) like observed when 60 µM Arsenazo III in 100 mM acetate 

buffer was used. 

Saturation of Arsenazo III could easily be observed when the standard solutions 

with 10-80 ppm calcium concentration range were used. ½ diluted reagent turned out to 

be fully saturated when standard solution having 30 ppm or higher concentration of 

calcium (Figure 6.12). Total calcium concentration in the mixture was equal to 15 ppm 

when 30 ppm standard solution was combined with ½ diluted Arsenazo III solution 

(150 μL dye-150 μL standard). Total final Arsenazo III and buffer concentrations were 

15 μM and 25 mM, respectively. 

 

 

a 
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Figure 6.11. Absorbance values of calcium standards (1-8 ppm) - ½(60 μM AIII in 100 

mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 650 
nm a. without subtracting blank values, b. with subtracting blank values. 
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Figure 6.12. Absorbance values of calcium standards (10-80 ppm) - ½(60 μM AIII in 100 

mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 650 nm 
a. without subtracting blank values, b. with subtracting blank values. 
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 Calcium-Arsenazo III dissociation constants can be obtained by measuring 

absorbances of the solutions, dye alone and dye saturated with calcium. Following 

methodology was adapted from the studies of Bauer (1981) and Ahmed et al. (1980). 

Calculations are as follows; 

When 1:1 complex formation between calcium and Arsenazo III is assumed 

dissociation constant of calcium-Arsenazo III complex can be written as follows: 

 
 

                                                       DK = [ ][ ]
[ ]CaAIII

AIIICa +2

                                               (6.13) 

 
Total Arsenazo III concentration in the system are the sum of concentration of 

free Arsenazo III and concentration of Arsenazo III in the complex. Likewise, total 

calcium concentration equals to free calcium concentration and calcium concentration in 

the complex. 

 
 

               [ ] [ ] [ ]CaAIIICaCa ft +=                                          (6.14) 

 
                                                 [ ] [ ] [ ]CaAIIIAIIIAIII ft +=                                       (6.15) 

 
 
 It is reported that Arsenazo III shows slight absorption at 650 nm (Kendrick et 

al., 1977).  Absorption spectra of Arsenazo III obtained in different concentrations at 

three pH values, 3.8, 5.4 and 6.5 in this thesis confirmed this finding. 

  
Absorbance of the solution at 650 nm can be written as the sum of the 

absorbances of the complex and free dye.  

 
       [ ] [ ]CaAIIIlAIIIlA CaAIIIfAIII εε +=                                  (6.16) 

 
 When there is no calcium present in the system, the absorbance of the solution is 

the absorbance of the dye itself. It can be calculated as follows; 

 
       [ ]tAIII AIIIlA ε=min                                               (6.17) 
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 If the dye is saturated with calcium, all dyes molecules are complexed with 

calcium. Absorbance measured is equal to molar absorptivity of the complex multiplied 

with its concentration and pathlength.  

 
        [ ]CaAIIIlA CaAIIIε=max                                         (6.18) 

 
Since all dye molecules are in the complex when dye is saturated with calcium, 

maximum absorption can also be expressed with respect to total dye present in the 

solution. 

 
         [ ]tCaAIII AIIIlA ε=max                                          (6.19) 

 
 Molar absorptivities of dye and dye-calcium complex defined in Equations 6.17 

and 6.18 can be inserted to the Equation 6.16 to obtain following relation. 

 

         [ ] [ ] [ ] [ ]CaAIII
AIII
A

AIII
AIII
AA

t
f

t

maxmin +=                           (6.20) 

 
 Concentration of calcium dye complex can be expressed as [ ] [ ] ft AIIIAIII − . If 

this is inserted in place of the concentration of the complex in Equation 6.20, following 

equations are found.  

 

  [ ] [ ] [ ] [ ] [ ]( )ft
t

f
t

AIIIAIII
AIII
A

AIII
AIII
AA −+= maxmin                    (6.21) 

 
 

                                 [ ] [ ] [ ] [ ] [ ] [ ] f
t

t
t

f
t

AIII
AIII
A

AIII
AIII
A

AIII
AIII
AA maxmaxmin −+=               (6.22) 

 

By rearranging the Equation 6.22, one can obtain an equation relating the free 

dye concentration to total dye concentration. 

 

            [ ]
[ ] f

t

AIII
AIII

AA
AA

=
−
−

max

minmax                                     (6.23) 
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 By measuring the absorbances of the dye solution without calcium and in the 

saturating calcium concentrations and absorbance of dye and calcium mixture at any 

calcium level, free dye concentration can easily be found. 

 Ratio of calcium dye complex to total dye concentration defined as α can be 
converted into ratio of the complex to the free dye concentration as follows;   
 
 

         [ ]
[ ]tAIII
CaAIII

=α                                                     (6.24) 

 
 

                                       [ ]
[ ]

[ ] [ ]
[ ]t
t

t AIII
CaAIIIAIII

AIII
CaAIII −

=−=− 11 α                             (6.25) 

 
 

      [ ]
[ ] [ ]

[ ]
[ ] ft AIII
CaAIII

CaAIIIAIII
CaAIII

=
−

=
−α
α

1
                             (6.26) 

 
 When both sides of the equation Equation 6.26 are multiplied with dissociation 

constant of the calcium dye complex, relationship between free calcium concentration 

and dissociation constant is obtained. 

 

       [ ]
[ ] D

f
D K

AIII
CaAIIIK =

−α
α

1
                                      (6.27) 

 

           [ ] fD CaK =
−α
α

1
                                             (6.28) 

 

                                                   [ ] [ ]CaAIIICaK tD −=
−α
α

1
                                   (6.29) 

 
 According to Equation 6.24, [CaAIII] is equal to α[AIII]t. If [CaAIII] in 
Equation 6.29 is replaced with α[AIII]t, following equation is found; 
 
 

               [ ] [ ]( )tt
D

AIIICa
K

α
α

α
−=

−
1

1
                                 (6.30) 
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 By using Equations 6.14, 6.15, 6.23 and 6.24, α can be easily calculated from 

absorbance data measured at 650 nm. After the calculation of α, if α/(1- α) is plotted 

versus [Ca]t - α[AIII]t,  (Equation 6.30), dissociation constant of calcium and Arsenazo 

III complex can be found from the slope. 

 Calculation of apparent dissociation constant of calcium-Arsenazo III complex 

were performed for both 60 μM Arsenazo III  in 100 mM acetate buffer pH 5.4 reagent 

and ½ (60 μM Arsenazo III in 100 mM acetate buffer pH 5.4) reagent by using 

absorbance values recorded at 650 nm. These solutions were used for three different 

concentration ranges of calcium; 0.25-2 ppm, 1-8 ppm and 10-80 ppm. Absorbances 

found for 10-80 ppm calcium range reached the constant values (Figures 6.7 and 6.12). 

Constant absorbances showed that Arsenazo III was saturated with calcium. By using 

above stated methodology, α/(1- α) values were calculated and plotted versus [Ca]t-

α[Ar]t.  

Figure 6.13 shows the graphs of α/(1- α) vs. [Ca]t-α[Ar]t for 60 μM Arsenazo III 

in 100 mM acetate buffer pH 5.4 dye reagent for 0.25-2 ppm and 1-8 ppm. For both 

calcium ranges, straight lines were observed. Dissociation constants are calculated from 

the slopes of the straight lines. Dissociation constants were therefore found as 30.8 and 

29.8 μM for 0.25-2 ppm and 1-8 ppm calcium ranges, repectively. Negative logarithms 

of dissociation constants give pKD values. pKD vaules were calculated as 4.51 and 4.53, 

respectively. 

Graphs of α/(1- α) vs. [Ca]t-α[Ar]t for ½(60 μM Arsenazo III in 100 mM acetate 

buffer pH 5.4) dye reagent for 0.25-2 ppm and 1-8 ppm calcium containing standard 

solutions are shown in Figure 6.14. Straight lines were also observed for the 1:1 diluted 

reagent for both calcium ranges. Apparent dissociation constants were calculated and 

found as 25.4 and 26.0 μM when calcium standards with 0.25 to 2 ppm and 1 to 8 ppm 

concentration ranges were mixed with dye reagent, respectively. Resultant pKCa values 

were 4.60 and 4.58.  
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Figure 6.13. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: 60 μM Arsenazo III in 100 

mM acetate buffer pH 5.4 Calcium concentration of standard solutions: 
0.25-2 ppm and 1-8 ppm (Reagent to standard volume ratio of 150 μL/150 
μL). 
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 Figure 6.14. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: ½(60 μM Arsenazo III in 100 

mM acetate buffer pH 5.4) Calcium concentration of standard solutions: 
0.25-2 ppm and 1-8 ppm (Reagent to standard volume ratio of 150 μL/150 
μL). 
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 Dissociation constant generally does not depend on the initial concentrations of 

the species. However, Brown and Rdqvist (1981) reported the variation of KD with 

Arsenazo III concentration and ionic strength. They showed that increase in Arsenazo 

III concentration from 100 μM to 316 μM decreased KD from 389 μM to 102 μM at pH 

5.0. The same increase in concentration of Arsenazo III decreased KD from 137 to 41 

μM at pH 6.0 (Brown and Rdqvist, 1981).  Dissociation constants found for 60 μM 

Arsenazo III in 100 mM acetate buffer pH 5.4 reagent were slightly different than those 

found for ½ (60 μM Arsenazo III in 100 mM acetate buffer pH 5.4) reagent. Slight 

decrease in dissociation constant was observed upon 50 % reduction in Arsenazo III 

concentration. This was contrary to the findings of Brown and Rdqvist (1981). 

However, increase of apparent pKCa values hence decrease of dissociation constants 

with the decrease in buffer concentration was reported by Bauer (1981). Although 

buffer concentration was 50 % reduced slight decrase was observed in dissociation 

constants in this study. This was probably due to combined effect of Arsenazo III and 

buffer concentration on the dissociation constant. Buffer concentation was more 

effective than Arsenazo III concentration at pH 5.4.   

 

120 µM Arsenazo III & 100 mM Acetate Buffer pH 5.4: 

 

 Three different concentration ranges of calcium standard solutions were used to 

determine the suitability of 60 μM Arsenazo III in acetate buffer at pH 5.4 for the 

calcium analysis. Calcium standards with 1-8 ppm or 10-80 ppm range did not show 

linear absorbance response within each concentration range. Similar results were also 

obtained when dye reagent was diluted with ultrapure water 1:1 (v/v) ratio. A linear 

calibration curve was obtained with only 0.25-2 ppm calcium standard solutions when 

both 60 μM Arsenazo III in acetate buffer or ½ diluted 60 μM Arsenazo III in acetate 

buffer were used.  Absorbance values obtained for 0.25-2 ppm was in a narrow range. 

Practically, absorbance response to solution of interest should follow the Beer’s law and 

absorbance values should not be higher than 1 (Marczenko and Balcerzak, 2000).  

Absorbance value higher than unity means that solution transmits less than 10 % of the 

the power of incident beam. When absorbance values are greater than one, method is 

subjected to large errors.  
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Sensitivity is defined as the minimum amount or the minimum difference of the 

concentration of a compound which can be determined by the method of concern 

(Marczenko and Balcerzak, 2000). When the absorbance responses measured in the 

method are in a narrow range for the calibration, sensitivity will be lower than the 

sensitivity of the method when absorbances range between 0 and 1. Narrow range of 

absorbance response obtained with 60 μM Arsenazo III forced us to search for a 

calcium analysis system in which the absorption range of the solution changes between 

0 and 1. Therefore Arsenazo III concentration in the reagent was increased to 120 μM 

and tested for 1-8 ppm calcium concentration range. 

 Spectra of calcium standard solutions (1-7 ppm) mixed with 120 μM Arsenazo 

III in 100 mM acetate buffer pH 5.4 were scanned for the alterations in wavelengths 

where calcium-Arsenazo III complexes show maximum absorption. Figure 6.15 and 

6.16 show absorption spectra of calcium standards and 120 μM Arsenazo in 100 mM 

acetate buffer pH 5.4 (150 μL standard-150 μL dye) mixtures.  Increase in the 

concentration of Arsenazo III from 60 μM to 120 μM did not cause any changes in the 

absorption spectra. Dye itself again gave maximum absorption at 540 nm. When 

calcium standard solution with a concentration of 1 ppm is mixed with dye reagent, 

maximum absorption was still observed at 540 nm (Figure 6.15). When standard 

solutions containing calcium in concentrations higher than 1 ppm were mixed with dye 

reagent, peak of maxima of the blank solution shifted through longer wavelengths 

(Figure 6.16). Approximately 20 nm shift in the λmax of the blank solution was observed. 

Calcium-Arsenazo III complex gave absorbances at 650 nm. Additionally a new peak at 

around 595 and 600 nm (especially at 595 nm) became apparent at high calcium 

concentrations (Figure 6.16). When the absorption spectra obtained by subtracting blank 

values from absorbances of standard solution-dye complex (Figure 6.17) was 

determined, a peak at 600 nm is observed together with a peak at 650-655 nm.  

Calcium standard solutions in the range of 1-8 ppm were analyzed with 120 μM 

Arsenazo III containing reagent for the construction of a calibration curve. Figure 6.18 

shows the calibration curve obtained at 650 nm.  Absorbance values of standard 

solutions mixed with 120 μM Arsenazo in 100 mM acetate buffer at pH 5.4 obtained at 

650 nm did not give a linear calibration curve when plotted vs. concentrations of 

standard solutions. Especially, deviation from Beer’s law was started at 5 ppm or higher 

concentrations of standard solutions.  
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Figure 6.15. Spectra of blank and 1 ppm calcium standard solutions Dye: 120 μM AIII 

in 100 mM acetate buffer pH 5.4 (150 μL standard- 150 μL dye reagent). 
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Figure 6.16. Spectra of calcium standard solutions (2-7 ppm)-120 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard- 150 μL dye reagent). 
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Figure 6.17. Spectra of calcium standard solutions (1-8 ppm) - 120 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard - 150 μL dye reagent) obtained by 
subtracting blank values. 
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Figure 6.18. Absorbance values of calcium standards (1-7 ppm) - 120 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard - 150 μL dye reagent) at 650 
nm a. without subtracting blank values, b. with subtracting blank values. 
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 The method based on Arzenazo III in acetate buffer pH 5.5 was developed by 

Michaylova and Ilkova (1971). Absorbances within the range of calcium concentration 

of 0.030-1.5 ppm were found to follow Beer’s law. They also concluded that calcium 

could be successfully analyzed in the presence of 100 fold higher concentrations of 

magnesium and manganese (II) when calcium concentration did not exceed 25 ppm. 

Unfortunately, it was not possible to analyze calcium below 0.125 ppm (final total 

concentration of calcium in the dye-standard mixture) with different Arsenazo III in 

acetate buffer reagents used in this study. Final total concentrations of Arsenazo III in 

the calcium and dye mixtures used in the study of Michaylova and Ilkova (1971) were 

29.2 µM. First of all in this study, 60 µM Arsenazo III in 100 mM acetate buffer reagent 

was used for 0.25-2 ppm, 1-8 ppm, and 10-80 ppm. Linear calibration response was 

obtained for only 0.25-2 ppm level. When standard solutions were mixed with dye 

reagent in 1:1 (v/v) ratio, total concentration of Arsenazo III in the mixture was 30 µM. 

Total concentration of calcium in the mixture for the lowest calcium standard solution 

was 0.125 ppm. Reagent was also diluted with 1:1 ratio in order to avoid calcium 

binding which may arise due to binding of acetate to calcium, only 0.25-2 ppm calcium 

standard solutions exhibited linear calibration curve in this case. When dye 

concentration was increased to 120 µM to analyze 1-8 ppm calcium range, it was not 

possible to obtain linear calibration curve within 1 to 8 ppm calcium level. 

 

6.1.1.2. Arsenazo III in Formate Buffer 

 
 Absorbance of Arsenazo III-calcium complex is dependent on the pH 

(Michaylova and Ilkova, 1971; Bauer, 1981).  At pH 3-4 complexation of calcium and 

Arsenazo III starts and maximum absorption occurs at pH 9.0 (Michaylova and Ilkova, 

1971).   Complexation of divalent cations with Arsenazo III is suggested to occur by 

binding of the cation to oxy group of arson group and oxy group of naphthalene nucleus 

of the dye (Figure 3.2.A) (Alimarin and Savvin, 1966). At pH 9.0, the most of the 

functional groups on Arsenazo III are ionized (Figure 3.1). Two protonated forms of 

Arsenazo III, H3A5- and H2A6- exist at pH 9 (Nĕmcová and Metal, 1986). Increase in 

binding affinity for calcium was reported in the order of H4AIII4-, H3AIII5- and H2AIII6-

(Chiu and Haynes, 1966). When compared to other protonated forms found at lower pH 

values (H6A2-, H5A3- and H4A4-), these two forms have higher binding affinities for 
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calcium.  Fraction of calcium bound Arsenazo III becomes higher at high pH values. 

This may explain why maximum absorption of calcium-Arsenazo III complex was 

observed at pH 9.0. In this study pH of 3.8 was also used besides pH of 5.4. pH of 3.8 

was selected according to Arsenazo III calcium analysis protocol in which the reagent 

was buffered at pH 3.8 with formic acid and potassium hydroxide. This protocol was 

kindly provided by Dr. G.L. Vogel from National Institute of Standards and 

Technology, Maryland, USA (personal communication). Therefore Arsenazo III 

solutions with pH values of 3.8 were tested for different calcium concentration ranges. 

Formate buffer and potassium hydroxide were used to adjust pH to 3.8. 

  

60 µM Arsenazo III & Formate Buffer pH 3.8: 

  

 Sixty micromolar Arsenazo III in formate buffer were tested for all three 

calcium ranges.  The spectra of 0.25-1.75 ppm standard solutions mixed with 60 µM 

Arsenazo III in formate buffer is shown in Figure 6.19. Figure 6.19 shows that dye 

shows maximum absorption around 535-540 nm. However, absorption maxima of 

calcium-dye complex found at 650 nm did not appear at this calcium concentration level 

at pH 3.8. Spectra obtained by using 1-7 ppm calcium standard solutions were therefore 

used to determine the absorption spectra (Figures 6.20 and 6.21).   
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Figure 6.19. Spectra of calcium standard solutions (0.25-1.75 ppm)-60 μM AIII in 

formate buffer pH 3.8 (150 μL standard- 150 μL dye reagent). 
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Dye itself has a peak of maxima around 535-540 nm. Calcium-Arsenazo III 

solution showed a peak around 645-650 nm (Figure 6.20) which was not observed when 

calcium standards in 0.25 to 2 ppm concentration range were used. In order to 

determine only the spectra of calcium-dye complex, absorbance values of the spectra of 

blank solution were subtracted from absorbances of spectra of calcium-dye complex 

(Figure 6.21). Spectra of calcium-Arsenazo III in formate buffer complex gave two 

peaks of maxima at 600 nm and 650 nm wavelengths. 

Spectra of the calcium-Arsenazo III complexes also determined when higher 

amount of calcium containing solutions were used. Figure 6.22 shows absorption 

spectra of calcium-Arsenazo III complex between 400-700 nm. Absorption spectra vs. 

blank reagent were also graphically plotted in Figure 6.23 by subtracting blank values 

form absorbance values of the calcium-Arsenazo III complex. 

Dye solution exhibited maximum absorption at 540 nm whereas the complex of 

calcium-Arsenazo III had two maximum absorptions at 595 nm and 650 nm (Figure 

6.22). The peak observed at 540 nm was shifted through 560 nm when the calcium-

Arsenazo III complexes were formed. Peak at 650 nm was clearly visible when 10 ppm 

calcium standard were mixed with dye reagent. Peak at 595 nm was however become 

visible only at higher concentrations. 
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Figure 6.20. Spectra of calcium standard solutions (1-7 ppm)-60 μM AIII in formate 

buffer pH 3.8 (150 μL standard- 150 μL dye reagent). 
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Figure 6.21. Spectra of calcium standard solutions (1-7 ppm) - 60 μM AIII in formate 

buffer pH 3.8 (150 μL standard- 150 μL dye reagent) obtained by 
subtracting blank values.   
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Figure 6.22. Spectra of calcium standard solutions (10-70 ppm)-60 μM AIII in formate 

buffer pH 3.8 (150 μL standard- 150 μL dye reagent). 
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 Spectra of the complex vs. blank reagent (Figure 6.23) showed that maximum 

light absorption was observed at both 600 and 650 nm when blank values were 

subtracted from values of the calcium-Arsenazo III complex. 

 Calibration curve obtained by reacting 0.25-2 ppm calcium containing standard 

solution with 60 µM Arsenazo in formate buffer pH 3.8 are shown in Figure 6.24. 

 Figure 6.24 showed that absorbances of the calcium-Arsenazo III complex were 

linear for standard solutions containing 02.5-2 ppm calcium. At 650 nm, aveage 

absorbance value for the blank was 0.072. Absorbances for 0.25 and 2 ppm were found 

as 0.077 and 0.112. Correlation coefficient for calibration curve was found to be 0.9907. 

Although linear relation between the absorbance values of complex and concentrations 

of standard solutions was obtained, absorbance response was in very narrow range.  

  When calcium concentration in the standard solutions was increased to 1-8 ppm 

level, absorbances of the calcium-Arsenazo III complex were found to be linearly 

correlated with initial calcium concentration in the standard solutions (Figure 6.25). 

Absorbance values of the calcium-Arsenazo III complexes were in the range of 0.101-

0.217 at 650 nm. Correlation coefficient was found as 0.9944. 
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Figure 6.23. Spectra of calcium standard solutions (10-70 ppm) - 60 μM AIII in 

formate buffer pH 3.8 (150 μL standard- 150 μL dye reagent) obtained by 
subtracting blank values. 
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Figure 6.24. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting blank values, b. with subtracting blank values. 

 
 
 

 Calcium standard solutions in 10-80 ppm range did not give linear absorbance 

responses at 650 nm. Absorbances measured at 650 nm showed that Arsenazo III 

solution became saturated when higher levels of calcium were mixed with dye solution 

(Figures 6.26). 

 In order to determine the relation between absorbance of calcium-Arsenazo III 

complexes and calcium concentrations in standard solutions, 60 µM Arsenazo III in 

formate buffer pH 3.8 was diluted with ultrapure water in 1:1 (v/v) ratio and 150 µL 

standard solution was mixed with 150 µL ½ diluted dye reagent. Figure 6.27 shows the 

absorbance values obtained at 650 nm. Narrow range of absorbances of the complex 

(0.062 and 0.078 for 0.25 ppm and 2 ppm, respectively) showed that ½ diluted reagent 

was not useful for the analysis of calcium. 

The methodology for finding the dissociation constant of calcium-Arsenazo III 

complex used in the Section 6.1.1.1 was employed to find dissociation constant of the 

complex at pH 3.8. Dye reagent used was 60 μM Arsenazo III in formate buffer pH 3.8. 

Absorbances measured at 650 nm were used in calculations. Saturation of the Arsenazo 

III was obtained when 10-80 ppm calcium range was used. Maximum absorbance 

obtained at the saturation and absorbance of the blank solution was used in the 

calculations. 

a 
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Figure 6.25. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting blank values, b. with subtracting blank values. 
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Figure 6.26. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting blank values, b. with subtracting blank values. 
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Figure 6.27. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 

formate buffer pH 3.8) (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting  blank values, b. with subtracting blank values. 

 
 
 Plots of α/(1-α) vs. [Ca]t-α[Ar]t are shown in Figure 6.28. In both calcium ranges 

(0.25-2 ppm and 1-8 ppm), linear relationship between α/(1-α) and [Ca]t-α[Ar]t was 

found. The slopes of the linear regression lines were used to calculate apparent 

dissociation constant of calcium-Arsenazo III complex. Apparent dissociation constant 

was calculated as 256 μM when 0.25-2 ppm calcium containing standard solutions were 

used. Apparent dissociation constant was calculated as 209 μM in the case of 1-8 ppm 

calcium concentrations. When compared to those found in pH 5.5, apparent dissociation 

constant was appreciably higher. Increase of dissociation constant with decrease of pH 

was reported by Brown and Rydqvist (1981). They found that apparent dissociation 

constant as 389 μM for 100 μM Arsenazo III at pH of 3.0, 4.0, 5.0. However 

dissociation constant was reported as 137 μM at pH 6.0. According to species 

distribution diagram where fraction of protonated species were plotted against pH only 

H5A3- and H4A4- forms of Arsenazo III are found in the solutions at pH 4.0 (Nĕmcova et 

al., 1986). Concentration of H5A3- is considerably higher than that of H4A4-. However 

when pH is raised to 5.4 fraction of H4A4- is greater than H5A3-. Lower dissociation 

constants found at pH 5.4 states that binding affinity of H4A4- for calcium is greater that 

that of H5A3-. 
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Figure 6.28. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: 60 μM Arsenazo III in formate 

buffer pH 3.8 Calcium concentration of standard reagents :0.25-2 ppm and 
1-8 ppm (Reagent to standard volume ratio of 150 μL/150 μL). 
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120 µM Arsenazo III & Formate Buffer pH 3.8: 

  

 The use of 60 µM Arsenazo III in formate buffer pH 3.8 showed that dye 

reagent became saturated with calcium when 10-80 ppm standard solutions were used. 

For this reason, for the analysis of 10-80 ppm level, Arsenazo III concentration was 

doubled in the reagent. First of all, spectra of the calcium-Arsenazo III complex were 

determined (Figure 6.29). 
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Figure 6.29. Spectra of calcium standard solutions (10-70 ppm) - 120 μM AIII in 

formate buffer pH 3.8 (150 μL standard- 150 μL dye reagent). 
 
 

 When 120 µM Arsenazo III in formate buffer at pH 3.8 was used. Blank solution 

exhibited maximum absorption at 540 nm. By increasing the concentration of calcium 

in the solutions, absorption at 540 nm was reduced and the peak shifted through 560 

nm. Peak at 650 nm was clearly visible for the calcium-dye complexes. Another 

absorption peak at 595 nm became clearly visible at higher calcium concentrations.  

Spectra of the complexes obtained by subtracting absorbances of the blank showed that 

calcium-Arsenazo III complex exhibited two absorption maxima at 600 nm and 650 nm 

like in previous cases (Figure 6.30). 
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Figure 6.30. Spectra of calcium standard solutions (10-70 ppm) - 120 μM AIII in 

formate buffer pH 3.8 (150 μL standard- 150 μL dye reagent) obtained by 
subtracting blank values. 

 

 

 When calcium standard solutions in 10-80 ppm calcium range were combined 

with 120 µM Arsenazo in formate buffer pH 3.8, it was observed that Arsenazo III 

solution started to became saturated. Absorbances of the complexes deviate from 

linearity at or above 30 ppm calcium concentration of standard solutions. This can 

easily be observed from Figure 6.31.  

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50 60 70 80 90

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
.U

.)

0.000

0.200

0.400

0.600

0.800

1.000

1.200
ΔA

A
ΔA

 
Figure 6.31. Absorbance values of calcium standards (10-80 ppm) - 120 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 650 nm a. 
without subtracting blank values, b. with subtracting blank values. 
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 Two different Arsenazo III concentrations were used for the three different 

calcium concentration ranges. Sixty micromolar Arsenazo III solution at pH 3.8 

exhibited linear absorbance response for 0.25-2 ppm and 1- 8 ppm calcium containing 

standard solutions. However, absorbances ranged between 0.077 and 0.112 for 0.25-2 

ppm calcium concentration and between 0.101 and 0.217 for 1-8 ppm calcium range at 

650 nm. Dye reagent became saturated and relation between absorbance and standard 

concentration deviated from Beer’s law when the calcium concentrations in the standard 

solutions were in the range of 10 to 80 ppm. When the reagent was used after 1:1 

diluted with ultrapure water absorbances almost stayed constant even calcium 

concentration range was 0.25 to 2 ppm. Increase of the concentration of Arsenazo III to 

120 μM resulted in the saturation of the dye and deviation from Beer’s law was 

observed at 30 ppm calcium concentration. Low absorbances and saturation of the dye 

at pH 3.8 was possibly the result of the higher apparent dissociation constant of 

Arsenazo III. 

 

6.1.1.3. Arsenazo III in Imidazole-Cl Buffer 

 
 Calcium analysis by Arsenazo III dye depends on the pH used. Two pH values 

5.4 and 3.8 were used for the construction of calibration curves to be used in the 

calcium analysis for three different calcium ranges. Analysis employed at those pH 

values did not give calibration curves with proper absorbance ranges with respect to 

calcium concentration in the standard solution. Absorption of the calcium-Arsenazo III 

complex was found to be dependent on pH and maximum absorption was found at pH 

9.0 (Michaylova and Ilkova, 1971). Since the aim of this study was to determine 

calcium and phosphate release from hydroxyapatite in electrolytes solutions and 

solubility of hydroxyapatite is very low in neutral and basic solutions, low level calcium 

analysis method was needed. The selection of pH 9.0 in Arsenazo III method was 

avoided due to the possibility of calcium phosphate or calcium carbonate precipitation 

in the samples. Therefore pH of 6.5 was selected for the Arsenazo III method. For this 

reason several Arsenazo III dye reagents were prepared in imidazole buffer. Two 

different buffer strengths and different Arsenazo III concentrations were selected. 

Selection of the buffer and Arsenazo III concentration as imidazole buffer was based on 

the commercial calcium analysis kits (Table 3.1). Samples and dye reagent are generally 
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mixed in 1:100 volumetric ratio in these analysis kit. Buffer concentration of 50 to 100 

mM and Arsenazo III concentration of 120 to 200 μM are generally used. Since sample 

and dye are mixed in 1:100 ratio, buffer and Arsenazo III concentrations are not 

affected by the dilution due to the mixing of dye reagent and sample. Because the 

absorbance of calcium-Arsenazo III complex depends on the pH strong buffering is 

needed. For these reasons 100 mM and 200 mM imidazol concentrations were selected.  

 Reagent solutions containing Arsenazo III with concentrations of 60, 200, and 

500 μM were used to obtain linear calibration curves for 0.25-2, 1-8 and 10-80 ppm 

calcium containing solutions in this study. When the dye reagents were mixed with 

standard solutions in 1:1 volumetric ratio total Arsenazo III concentrations in the 

mixtures was the half of the dye concentration in the reagents. Arsenazo III 

concentration of 30 μM was used by Michaylova and Ilkova (1971).  Dye concentration 

of 60 μM was selected on the basis of the study of Michaylova and Ilkova (1971) 

whereas selection of the dye concentration of 200 μM was based on commercial kits 

(Table 3.1). Arsenazo III concentration of 500 μM was however used depending on the 

results obtained with the dye reagents having 60 μM and 200 μM Arsenazo III. 

 

60 µM Arsenazo III & 100 mM Imidazole-Cl  pH 6.5: 

 

 Sixty micromolars Arsenazo III in imidazole-Cl pH 6.5 was used for the analysis 

of 0.25-2 ppm, 1-8 ppm and 10-80 ppm calcium concentration ranges. Figure 6.32 

shows the absorption spectra of calcium-Arsenazo III complexes obtained by reacting 

60 µM Arsenazo III & 100 mM Imidazole-Cl pH 6.5 with 0.25-1.75 ppm containing 

standard solutions. 

Blank reagent exhibited maximum absorption at 545 nm. This peak shifted to 

555 nm when the calcium concentration in standard solution was increased to 1.75 ppm. 

Complex had a maximum absorption at 650 nm. This peak was visible only for higher 

calcium concentrations.  When the values of blank reagent were subtracted from the 

values of the calcium-dye complexes, two peaks were observed at around 600 nm and 

650-655 nm (Figure 6.33). 
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Figure 6.32. Spectra of calcium standard solutions (0.25-1.75 ppm)-60 μM AIII in 100 

mM imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent). 
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Figure 6.33. Spectra of calcium standard solutions (0.25-1.75 ppm)-60 μM AIII in 100 

mM imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent) obtained 
by subtracting blank values. 
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 Peaks with maximum absorptions could easily be observed in the spectra of 

calcium-Arsenazo III complexes when calcium concentrations in the standard solutions 

were in the range of 10-70 ppm. Figure 6.34 shows the absorption spectra of the 

complexes. Dye itself gave a maximum absorption at 545 nm. Complexes of calcium 

and Arsenazo III solutions exhibited two absorption peaks at 600 nm and 655 nm. 

Additionally spectra of the complexes were constructed by subtracting the values of 

blank solution from the values of calcium-Arsenazo III complexes and this is shown in 

Figure 6.35.  

 Figure 6.35 showed that the calcium-Arsenazo III complexes exhibited two 

absorption maxima when the blank values were subtracted from the absorbances of 

complexes. A peak with higher intensity can easily be observed at 600 nm. Another 

peak at 655 nm was also observed.  

 For the calcium range of 0.25-2 ppm, linear calibration range was obtained by 

using 60 μM AIII in 100 mM imidazole-Cl pH 6.5 dye solution. At 650 nm (Figure 

6.36), blank solution had an absorbence value of 0.079, whereas absorbances of the 

calcium-Arsenazo III complex varied between 0.093-0.215 for 0.25-2 ppm calcium 

standard solutions. Regression coefficient of linear calibration curve was found as 

0.9953.  

 When the calcium concentrations in the standard solutions were between 1 and 8 

ppm, non-linear relation between absorbance values and calcium concentrations of 

standard solutions were obtained (Figure 6.37). In fact calibration curve was linear up to 

4 ppm standard solution concentration; however solution starts to become saturated over 

4 ppm. 

 Saturation of 60 μM Arsenazo III in 100 mM imidazole-Cl pH 6.5 could be well 

observed when standard solutions were in 10-80 ppm calcium level. Solution was fully 

saturated when the standard solution with a concentration greater than 40 ppm was used 

(Figures 6.38). 

 Dye solution was also diluted with ultrapure water in 1:1 volumetric ratio for the 

analysis of calcium standard solutions. Diluted reagent was mixed with calcium 

standard solutions. Linear relation between the absorbances of calcium complexes and 

standard calcium concentration was obtained (Figure 6.39). Absorbance values found 

and regression coefficients for calibration curves were lower than those found by using 

60 μM Arsenazo III in imidazole buffer. 
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Figure 6.34. Spectra of calcium standard solutions (10-70 ppm)-60 μM AIII in 100 mM 

imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent). 
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Figure 6.35. Spectra of calcium standard solutions (10-70 ppm)-60 μM AIII in 100 mM 

imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent) obtained by 
subtracting blank values.  
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Figure 6.36. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure 6.37. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure 6.38. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure 6.39. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 

100 mM Imidazole-Cl buffer pH 6.5) (150 μL standard-150 μL dye 
reagent) at 650 nm a. without subtracting blank values, b. with subtracting 
blank values. 
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 Since almost a linear response was found using 60 μM Arsenazo III in imidazole 

buffer when calcium concentration in the standard solutions were between 1 and 8 ppm, 

½ diluted dye reagent was also tested for 1-8 ppm level. Figure 6.40 shows the relation 

between absorbance values measured at 650 nm and calcium concentrations in standard 

solutions. Solution starts to become saturated over 4 ppm standard calcium 

concentration.  
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Figure 6.40. Absorbance values of calcium standards (1-8 ppm) - ½(60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5) (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 

 

 

 Dissociation constant of calcium-Arsenazo III complex at the pH 6.5 was 

calculated by using absorbance data obtained at 650 nm using 60 µM Arsenazo III & 

100 mM Imidazole-Cl pH 6.5 reagent and 0.25-2, 1-8, 10-80 ppm calcium containing 

standard solutions.  Figure 6.41 shows α/(1-α) values plotted vs. [Ca]t-α[Ar]t calculated 

for 60 µM Arsenazo III & 100 mM Imidazole-Cl pH 6.5 reagent and 0.25-1 and 1-8 

ppm calcium containing standard solutions. For both calcium concentration ranges, 

α/(1-α) values were found to be linearly correlated to [Ca]t-α[Ar]t values. Dissociation 

constant calculated from the slopes were 55.1 and 37.5 μM for 0.25-2 and 1-8 ppm 

standard calcium concentrations, respectively. Negative logarithms of dissociation 

a 

b 
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constants were also calculated and found as 4.26 and 4.43 when calcium concentration 

range of standard solutions were 0.25-1 ppm and 1-8 ppm, respectively.  

 Apparent binding constant of Arsenazo III for calcium was reported as (4.12 ± 

0.77) x 104 M-1 at pH 6.5 (Chiu and Haynes, 1980). Apparent dissociation constant can 

be converted into apparent binding constant by the following equation: 

 

                           
app

D K
K 1

=                                                      (6.31) 

  

 Apparent binding constant reported by Chiu and Haynes (1980) was converted 

into apparent dissociation constant and found as 24.3 μM. The dissociation constant 

found by using apparent binding constant of Arsenazo III was lower than that found in 

this study.  

 Since absorbance of calcium-Arsenazo III complex is highly dependent on pH 

(Michaylova and Ilkova, 1971), buffer strength is important in Arsenazo III calcium 

assay. After mixing the dye reagent and calcium standard solutions, complex should 

have the same pH value. This can be achieved by adjusting the buffer strength. For the 

calcium analysis of the samples, sample pH is also important. When the low levels of 

calcium will be determined in highly acidic or alkaline solutions, care should be taken 

because of the pH dependence of absorbance of calcium-Arsenazo III complex. For 

these reasons, dye reagents containing 200 mM imidazole were then used for the 

calcium determination. 

 

60 µM Arsenazo III & 200 mM Imidazole-Cl  pH 6.5: 

 

 Sixty micromolar Arsenazo III in 200 mM imidazole-Cl buffer was used for all 

three ranges of calcium concentrations. First of all, spectra of the complexes were 

determined. Spectra of standard solutions with calcium concentration range of 0.25-1.75 

ppm are shown in Figure 6.42. According to Figure 6.42, dye itself showed an 

absorption peak at 540 nm, this peak shifts to 550 nm when calcium concentration in 

standard is 1.75 ppm. The peak of the complex begins to appear at around 650 nm.  

Spectra of standard solutions with calcium concentration range of 1-7 ppm also shown 

in Figure 6.43. 
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Figure 6.41. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: 60 μM Arsenazo III in 100 

mM imidazole-Cl pH 6.5  Calcium concentration of standard solutions: 
0.25-2 ppm and 1-8 ppm (Reagent to standard volume ratio of 150 μL/150 
μL). 

  

 

  

 

 

 



 122

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

Wavelength

A
bs

or
ba

nc
e 

(A
.U

.)

Blank
0.75 ppm
1 ppm
1.25 ppm
1.5 ppm
1.75 ppm

 
Figure 6.42. Spectra of calcium standard solutions (0.25-1.75 ppm)-60 μM AIII in 200 

mM imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent).  
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Figure 6.43. Spectra of calcium standard solutions (1-7 ppm)-60 μM AIII in 200 mM 

imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent).  
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 The nature of the spectra of calcium-Arsenazo III complexes obtained by mixing 

calcium standard solutions with Arsenazo III in 200 mM imidazole buffer can easily be 

observed when the calcium content of the standard solutions are increased to 1-7 ppm. 

Figure 6.43 shows the spectra of the complexes. 

 Figure 6.43 shows that the maximum absorption of the dye solution was 

observed at 540 nm. This wavelength shifts to 560 nm by increasing the concentrations 

of the standard solutions. Apparence of the peak of the calcium-Arsenazo III complex at 

650 nm could be observed clearly when calcium concentration in the standard solutions 

was over 3 ppm.   

 When the spectra of the calcium-Arsenazo III complexes were graphically 

illustrated by subtraction of absorbance values of blank from the values of the 

complexes, two peaks, one is around 600-605 and the other is at 655 nm were observed 

(Figure 6.44). 

 The effects of the use of standard solutions with high calcium concentrations on 

the light absorption spectra were determined by using 10-70 ppm calcium containing 

standard solutions. Figure 6.45 shows that the dye solution absorbs the light at 540 nm 

and the complex formation gives two peaks at 600 nm and 655 nm. Distinctive shift in 

the absorption maximum of the blank solution was clearly observed upon complexation 

with calcium. The band found at 540 nm shifts through 565 nm after calcium-Arsenazo 

III complex formation. When the spectra of the complexes were constructed by 

subtraction of absorbance values of blank solutions from the absorbances of the 

complexes (Figure 6.46), 605 nm and 655 nm were found to be two peaks that the 

maximum light absorption occurs. 

 The use of 60 μM Arsenazo III in 200 mM imidazole buffer pH 6.5 gave a linear 

calibration curve for 0.25-2 ppm calcium containing solutions when absorbances were 

measured at 650 nm (Figure 6.47). Average absorbance value for the blank solutions 

was found as 0.079. Absorbances changed between 0.084 and 0.132 for 0.25 and 2 ppm 

calcium concentrations, respectively. Calibration equation, y=0.0268x+0.0768, was 

obtained with a correlation coefficient of 0.9921. When ΔA values were used to 

construct a calibration curve, calibration equation of y=0.0252x was found. In this case 

correlation coeeficient was 0.9874. 
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Figure 6.44. Spectra of calcium standard solutions (1-7 ppm) - 60 μM AIII in 200 mM 

imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent) obtained by 
subtracting blank values. 
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Figure 6.45. Spectra of calcium standard solutions (10-70 ppm) - 60 μM AIII in 200 

mM imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent).  
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Figure 6.46. Spectra of calcium standard solutions (10-70 ppm) – 60 μM AIII in 200 

mM imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent) obtained 
by subtracting blank values. 
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Figure 6.47. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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 Suitability of the dye reagent, 60 μM Arsenazo III in 200 mM imidazole-Cl pH 

6.5, for the analysis of 1-8 ppm calcium containing solutions was also tested. Figure 

6.48 shows the relation between the absorbance values and calcium concentration of the 

standard solutions. At 650 nm, calibration curve with an equation of y=0.0305x+0.0783 

(R2=0.9983) was obtained (Figure 6.48). Average blank value was found as 0.081. 

Absorbances of the complexes were ranged between 0.105 and 0.318.   
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Figure 6.48. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 

  

 
 Saturation of the Arsenazo III dye with respect to calcium is obvious when the 

concentration of calcium in the standard solutions were between 10 and 80 ppm. At this 

concentration range, final total calcium concentrations were 5 to 40 ppm since the 

standard solutions and the dye reagent were mixed in 1:1 volumetric ratio. Absorbances 

of the complex formed became constant when the calcium concentration in the standard 

solution was 60 ppm (final calcium concentration of 30 ppm) (Figures 6.49).   
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Figure 6.49. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 

 
 

 Apparent dissociation constant of calcium-ArsenazoIII complex was also 

evaluated by absorbance data obtained when 150 μL the dye reagent (60 μM Arsenazo 

III in 200 mM imidazole-Cl buffer pH 6.5) was mixed with 150 μL of standard 

solutions. Plots of α/(1-α) vs. [Ca]t-α[Ar]t are shown in Figure 6.50.  Dissociation 

constants calculated from the slopes of the linear regression lines were found as 1.90 x 

10-4 and 1.01 x 10-4 M when 0.25-1 ppm and 1-8 ppm calcium containing standard 

solutions were mixed with the dye reagent, respectively. Negative logarithms of these 

dissociation constants were calculated as 3.72 and 3.99, respectively.   

When 150 μL of 60 μM Arsenazo III in 200 mM imidazole-Cl buffer pH 6.5 

was mixed with 150 μL calcium standard solution, dye reagent and standard solution 

became ½ diluted. In the reaction mixture total Arsenazo III concentration was 30 μM 

whereas total buffer strength was 100 mM. Apparent pKD values were found as 3.72 and 

3.99. However when the dye reagent was 60 μM Arsenazo III in 100 mM imidazole-Cl 

buffer pH 6.5 total buffer concentration was 50 mM. By comparing the pKD values 

obtained by both dye reagents, effects of buffer concentration on apparent pKD can be 

evaluated. Doubling of buffer concentration decreased pKD from 4.26 to 3.72. Bauer 

(1981) reported that increase of buffer concentration always decrease apparent pKD. In 

his study increase of buffer concentration from 50 to 100 mM resulted in decrease of 

pKD from 4.64 to 4.36 at pH 7.5.  
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Figure 6.50. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: 60 μM Arsenazo III in 200 

mM imidazole-Cl pH 6.5  Calcium concentration of standard solutions: 
0.25-2 ppm and 1-8 ppm (Reagent to standard volume ratio of 150 μL/150 
μL). 

 

 

200 μM Arsenazo III & 200 mM Imidazole-Cl pH 6.5: 

 

 Absorbance of the complex of calcium and Arsenazo III is strongly dependent 

on the pH. Large pH range of calcium containing solutions to be analyzed may change 

the final pH of the complex even the dye reagent is buffered. Since standard solutions 

and the dye reagent are mixed in 1:1 volumetric ratio, final buffer strength was adjusted 

to 100 mM by using the dye reagent having 200 mM imidazole buffer.  
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 The use of 60 µM Arsenazo III buffer resulted with the maximum absorbance of 

0.655 for 8 ppm calcium containing solution. For an attempt to increase the absorbance 

of the complex formed by reacting equal volumes of the dye and standard solution 

having 8 ppm calcium close to 1, two hundreds micromolar Arsenazo III solution in 200 

mM imidazole-Cl buffer with a pH 6.5 was prepared. This reagent was then used for the 

construction of calibration curves for 1-8 ppm and 10-80 ppm calcium standard 

solutions. At first absorption maxima was determined by scanning the absorbance 

values of the complex between 400 and 700 nm for both two concentration ranges of 

calcium standards.  Figure 6.51 shows the spectra of the complexes formed by mixing 

1-7 ppm calcium containing solutions and 200 μM AIII in 200 mM imidazole-Cl pH 

6.5.  Maximum absorption for the blank solution was observed at 545 nm. However, 

maximum absorption peak shifts through 560 nm with the increase in the calcium 

concentration. A second peak at 595 nm became apparent when the calcium 

concentration in the standard solution was 7 ppm. 

 When the spectra of the calcium-Arsenazo III complex were obtained by the 

subtraction of the blank value from those of calcium-Arsenazo III complexes (Figure 

6.52), standard solutions with calcium concentration up to 7 ppm showed a peak of 

maxima at 600 nm. For 7 ppm calcium containing standard solution, maximum peak 

was found to be shifted to 605 nm. Second peak for all the solutions was observed at 

650 nm for all standard solutions. 

This dye reagent was also used for 10-80 ppm calcium containing standard 

solutions. Figure 6.53 shows the spectra of the blank and complexes formed by mixing 

150 μL dye reagent and 150 μL standard solutions. Blank solution gave an absorption 

maximum at 550 nm. This peak shifts to 560-570 nm when calcium and dye complexes 

are formed. Two peaks of calcium and dye complexes were clearly visible when the 

calcium concentrations in the standard solutions were in the range of 10-80 ppm. For 10 

ppm standard solution, the maximum absorption peak was observed at 595. This peak 

shifted to 600 nm when calcium in the standard solutions was equal or higher than 10 

ppm. Second peak was observed at 655 nm for the all standard solution. 

 When spectra were constructed by subtracting the absorbance value of the blank 

from the absorbances of the complexes (Figure 6.54), 605 and 655 nm were two 

wavelengths at which maximum absorptions were observed. 
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Figure 6.51. Spectra of calcium standard solutions (1-7 ppm) - 200 μM AIII in 200 mM 

imidazole-Cl pH 6.5 (150 μL standard- 150 μL dye reagent).  
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Figure 6.52. Spectra of calcium standard solutions (1-7 ppm) - 200 μM AIII in 200 mM 

imidazole-Cl pH 6.5 (150 μL standard-150 μL dye reagent) obtained by 
subtracting blank values. 
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Figure 6.53. Spectra of calcium standard solutions (10-70 ppm) - 200 μM AIII in 200 

mM imidazole-Cl pH 6.5 (150 μL standard-150 μL dye reagent).  
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Figure 6.54. Spectra of calcium standard solutions (10-70 ppm) - 200 μM AIII in 200 

mM imidazole-Cl pH 6.5 (150 μL standard-150 μL dye reagent) obtained 
by subtracting blank values.  
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 The dye reagent, 200 μM AIII in 200 mM Imidazole-Cl buffer pH 6.5, was 

found suitable for the construction of calibration curve for the calcium standards 

solutions having 1-8 ppm calcium. Linear calibration curve with a correlation function 

of y=0.1144x+0.1872 (R2=0.9954) was obtained at 650 nm (Figure 6.55). Average 

absorbance of the blank solution was found as 0.175 ± 0.006. For a spectrophotometric 

analysis method, absorbance value should not increase 1 and absorbances should follow 

the Beer’s Law within the concentration range used in the analysis (Marczenko and 

Balcerzak, 2000). The lowest and the highest concentrations of standard solution used 

were 1 and 8 ppm, respectively. Average value for the complex obtained by reacting 1 

ppm calcium standard and the dye reagent was 0.283 ± 0.002. When 8 ppm calcium 

containing solution was used, absorbance of the complex was 1.071. These showed that 

200 μM AIII in 200 mM Imidazole-Cl buffer pH 6.5 is a useful reagent for the accurate 

and precise analysis of calcium when the concentrations of calcium in the sample were 

in the range 1 to 8 ppm. 
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Figure 6.55. Absorbance values of calcium standards (1-8 ppm) - 200 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
650 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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At 600 nm average absorbance value for the blank solution was 1.131 ± 0.024. 

For 1 and 8 ppm solutions, absorbances were 1.282 ± 0.011 and 2.253 ± 0.007, 

respectively. Since absorbance is defined as the logarithm of the ratio of power of the 

incident beam (Po) to the power of emergent beam (P) (Equation 6.32), absorbance 

values of 1 and 2 means 10 and 1 % of the power of the incident beam is transmitted by 

the sample, respectively. Because absorbance measurements are subjected to larger 

error at these conditions, absorbances measured at 600 nm should not be used. 

 

               ⎟
⎠
⎞

⎜
⎝
⎛=

P
P

A 0log                                                (6.32) 

 
 The suitability of the 200 μM Arsenazo in 200 mM imidazole buffer was also 

tested for 10 to 80 ppm calcium containing solutions. Figure 6.56 shows absorbances of 

the complex vs. calcium concentration in the standard solutions at 650 nm. Constant 

absorbances over 40 ppm standard calcium concentration showed that Arsenazo III 

becomes saturated with respect to calcium.  
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Figure 6.56. Absorbance values of calcium standards (10-80 ppm) - 200 μM AIII in 

200 mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye 
reagent) at 650 nm a. without subtracting blank values, b. with subtracting 
blank values. 
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 Dissociation constant of Arsenazo III were also calculated from the 

absorbance values obtained by mixing 200 μM AIII in 200 mM Imidazole-Cl buffer 

pH 6.5 dye reagent with standard solution sets of 1 to 8 ppm and 10 to 80 ppm. 

Values of α/(1-α) was found to be linearly correlated with [Ca]t-α[Ar]t (Figure 6.57). 

Dissociation constant was calculated from the slope as 49 μM. pKD value was then 

found as 4.31.  
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Figure 6.57. Plot of α/(1-α) vs. [Ca]t-α[Ar]t Dye reagent: 200 μM Arsenazo III in 200 

mM imidazole-Cl pH 6.5  Calcium concentration of standard solutions: 1-
8 ppm (Reagent to standard volume ratio of 150 μL/150 μL). 

 

500 μM AIII in 200 mM Imidazole-Cl buffer pH 6.5: 

 

 Upon the observation that 200 µM Arsenazo III became saturated when the 

standard calcium concentration was over 40 ppm, Arsenazo III concentration was raised 

to 500 µM. Therefore, 500 μM Arsenazo III in 200 mM imidazole-Cl pH 6.5 dye 

reagent was prepared and tested for the 10-80 ppm calcium containing solutions at 150 

μL standard/ 150 μL dye reagent ratio). Figure 6.58 showed that absorbances become 

constant when the calcium in the standard solutions was over 10 ppm when absorbances 

were measured at 650 nm.  
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Figure 6.58. Absorbance values of calcium standards (10-80 ppm) - 500 μM AIII in 

200 mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye 
reagent) at 650 nm a. without subtracting blank values, b. with subtracting 
blank values. 

 

 

Using absorbances of blank values and absorbances obtained in the saturation of 

all Arsenazo III dye at 650 nm, l∗ε values for free Arsenazo III and calcium-Arsenazo 

III complexes were calculated, respectively by Equations 6.17 and 6.19. Since 

microplate reader is used in the calcium analysis, pathlength was smaller than 1 cm but 

it was same in all analyses. Therefore l∗ε  values were calculated instead of ε . Table 

6.1 summarizes the l∗ε values for free Arsenazo III and calcium-Arsenazo III 

complexes. Molar absorptivity of free Arsenazo III was found to be greater at pH 5.4. 

The lowest molar absorptivity of the dye was found at pH 3.8 with an exception for 100 

μM Arsenazo III and 100 mM imidazole concentrations in the mixture. Increase of 

Arsenazo III concentration from 30 μM to 100 μM caused considerable reduction in 

molar absorptivity of free dye. Molar absorptivity of the calcium-Arsenazo III complex 

at pH 3.8 was found to be lowest. This explains the lower absorbance responses 

obtained when Arsenazo III formate buffer pH 3.8 reagents were used for calcium 

analysis. Molar absorptivities of calcium-dye complex were dependent buffer 

concentration. One fold reduction of buffer concentration at pH 6.5 resulted in 10 % 

increase in molar absorptivity of the complex. Buffer concentration was more effective 

on molar absorptivity of calcium-Arsenazo III complex than Arsenazo III concentration.  

 

a 
b 
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Although molar absorptivities of the complexes were found to be greater at pH 

5.4, total 100 μM Arsenazo III and 100 mM imidazole concentrations in the mixtures 

was suitable for reliable calcium analysis. This could be related to the lower molar 

absorptivity of the dye at 650 nm in this condition. Since Arsenazo III and calcium 

complexation is governed by equilibrium association constant, the presence of higher 

amounts of the dye results in the higher concentration of the complexes when calcium is 

in sufficient amount and if the saturation of the dye is not reached.  

 In order to find a reliable calcium analysis, three different pH values (pH 3.8, 

5.4 and 6.5) were tested for three different calcium concentration ranges (0.25-2 ppm, 1-

8 ppm and 10-80 ppm). Formate, acetate and imidazole-Cl buffers were used for pHs of 

3.8, 5.4 and 6.5, respectively. At each pH level, different Arsenazo III concentrations 

were tested for those three calcium ranges. At pH 6.5, two buffer strengths were used 

whereas for pH 3.8 and 5.4, only one buffer concentration at each pH was used. Non-

linear or linear responses between absorbance values and concentration of standard 

solutions were observed. Summary of the nature of the calibration curves obtained in 

this study is shown in Table 6.2. Linear calibration curves obtained are highlighted in 

Table 6.2. 

 

 
Table 6.1. Molar absorptivities of free arsenazo III and calcium-arsenazo III complexes 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

pH Total dye and buffer 
concentrations in the mixtures lAIII ∗

650ε  lCaAIII ∗
650ε  

30 μM AIII 
50 mM Imidazole 

2633 22167 

30 μM AIII 
100 mM Imidazole 

2600 20733 6.5 

100 μM AIII 
100 mM Imidazole 

1750 20080 

15 μM AIII 
25 mM acetate 

4133 24200 
5.4 

30 μM AIII 
50 mM acetate 

3233 21800 

3.8 
30 μM AIII 
110 mM formate 

2367 18366 
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 Regression coefficients of the calibration equations and correlation coefficients 

obtained at both 600 and 650 nm are shown in Table 6.3 for the cases where linear 

calibration curves are obtained.  Absorbance of the blank values, absorbances of the 

standard solutions with the lowest and the highest calcium concentrations for both 

wavelengths are also tabulated in Table 6.4. Among the all dyes tested, 60 μM Arsenazo 

III in 200 mM imidazole-Cl pH 6.5, 200 μM Arsenazo III in 200 mM imidazole-Cl pH 

6.5 and 60 μM Arsenazo III in 100 mM acetate buffer pH 5.4 gave considerably better 

results when the absorbance range for the lowest and the highest calcium concentration 

of standards and regression coefficients for the calibration curves are taken into 

consideration. 

 Sixty micromolar Arsenazo III in 100 mM acetate buffer pH 5.4 gave linear 

calibration curves for 0.25-2 ppm calcium concentration of standard solutions when the 

dye and standard solutions were mixed in 150 μL / 150 μL ratio. At 650 nm, calibration 

curve with an equation of y=0.091x+0.0998 (R2=0.995) was obtained (Table 6.3). 

Absorbance of the blank value was found as 0.097±0.002. The range of absorbances for 

0.25 ppm and 2 ppm calcium concentrations in standard solutions was found as 

0.121±0.002 and 0.280±0.004 (Table 6.4).  Only 60 μM Arsenazo III in 100 mM acetate 

buffer pH 5.4 was found useful for the analysis of 0.25-2 ppm calcium in the solutions. 

Although the narrow response range of absorbances was found, small standard 

deviations showed that this reagent could be useful for 0.25-2 ppm calcium range in the 

solutions.  

 Two reagents were found to be useful when the calcium concentration in the 

standard solutions were in the range of 1 to 8 ppm.  When 60 μM Arsenazo III in 200 

mM imidazole-Cl pH 6.5 was used, the calibration curve with a function of 

y=0.0305x+0.0783 (R2=0.9983) was obtained (Table 6.3). Absorbance of the blank was 

0.081±0.001 whereas absorbances for 1 ppm and 8 ppm solutions were 0.105±0.003 and 

0.318±0.006, respectively (Table 6.4). A calibration function of y=0.0358x+0.3728 with 

a regression coefficient of 0.995 was found at 600 nm (Table 6.3). Blank value found at 

600 nm was 0.379±0.002. Absorbance range was found as 0.397±0.019-0.655±0.014 

(Table 6.4). 

 In an attempt to find accurate and precise calcium analysis in the range of 1-8 

ppm resulted with a calibration function of y=0.1144x+0.1872 (R2=0.9954) when 

Arsenazo III concentration was raised to 200 μM (Table 6.3). Absorbance of the blank 

solution was found as 0.175±0.006. Absorbances for the standard solutions with the 
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lowest and the highest calcium concentrations were 0.283±0.002 and 1.071±0.003, 

respectively (Table 6.4). The large range of absorbances (0.283-1.071) with respect to 

calcium concentration of standard solutions makes this reagent superior for the calcium 

analysis. Additionally, 60 μM Arsenazo III in 100 mM acetate buffer pH 5.4 can be 

useful for the 0.25-2 ppm calcium containing solutions even the absorbance range is 

narrow.  
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Table 6.2. The nature of absorbance vs. concentration curves obtained in calcium analysis by Arsenazo III reagents 

             * denotes where ½ dilued dye reagent was used.

Arsenazo III Reagent 
No CArsemazo III 

(μM) Buffer Cbuffer (mM) pH 

Reagent 
Volume 

(µL) 

Concentration 
range of Ca2+ 

standards (ppm) 

Volume 
of 

standards 
(µL) 

650 nm 600 nm 

1 60 acetate 100 5.4 150 0.25-2 150 Linear Linear 
2 60 acetate 100 5.4 150 1-8 150 Non-linear Non-linear 
3 60 acetate 100 5.4 150 10-80 150 Non-linear Non-linear 
4* 60 acetate 100 5.4 150 0.25-2 150 Linear Linear 
5* 60 acetate 100 5.4 150 1-8 150 Non-linear Non-linear 
6* 60 acetate 100 5.4 150 10-80 150 Non-linear Non-linear 
7 120 acetate 100 5.4 150 1-8 150 Non-linear Non-linear 
8 60 formate 220 3.8 150 0.25-2 150 Linear Linear 
9 60 formate 220 3.8 150 1-8 150 Linear Linear 

10 60 formate 220 3.8 150 10-80 150 Non-linear Non-linear 
11* 60 formate 220 3.8 150 0.25-2 150 Non-linear Non-linear 
12 120 formate 220 3.8 150 10-80 150 Non-linear Non-linear 
13 60 imidazole 100 6.5 150 0.25-2 150 Linear Linear 
14 60 imidazole 100 6.5 150 1-8 150 Non-linear Non-linear 
15 60 imidazole 100 6.5 150 10-80 150 Non-linear Non-linear 
16* 60 imidazole 100 6.5 150 0.25-2 150 Linear Linear 
17* 60 imidazole 100 6.5 150 1-8 150 Non-linear Non-linear 
18 60 imidazole 200 6.5 150 0.25-2 150 Linear Linear 
19 60 imidazole 200 6.5 150 1-8 150 Linear Linear 
20 60 imidazole 200 6.5 150 10-80 150 Non-linear Non-linear 
21 200 imidazole 200 6.5 150 1-8 150 Linear Linear 
22 200 imidazole 200 6.5 150 10-80 150 Non-linear Non-linear 
23 500 imidazole 200 6.5 150 10-80 150 Non-linear Non-linear 

139 
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Table 6.3. Linear calibration responses obtained in Arsenazo III-calcium analysis 

    * denotes where ½ dilued dye reagent was used. 
 

 

 

 

650 nm 600 nm 
Arsenazo III Reagent 

Regression equation
y=mx+n 

Regression equation
y=mx+n No 

CArsenazo III Buffer CBuffer pH 

Reagent (μL) / 
Standard (μL) 

[Ca2+] 
range 
(ppm) 

m n 
R2 

m n 
R2 

1 60 acetate 100 5.4 150/150 0.25-2 0.0910 0.0998 0.9950 0.1093 0.3292 0.9935 

2* 60 acetate 100 5.4 150/150 0.25-2 0.0628 0.0684 0.9887 0.0739 0.1817 0.9924 

3 60 formate 220 3.8 150/150 0.25-2 0.0194 0.0722 0.9907 0.0209 0.2982 0.9629 

4 60 formate 220 3.8 150/150 1-8 0.0179 0.0771 0.9944 0.02 0.2982 0.9909 

5 60 imidazole 100 6.5 150/150 0.25-2 0.0691 0.0768 0.9953 0.0805 0.3637 0.9897 

6* 60 imidazole 100 6.5 150/150 0.25-2 0.0568 0.0616 0.9908 0.0604 0.2034 0.9646 

7 60 imidazole 200 6.5 150/150 0.25-2 0.0268 0.0768 0.9921 0.0315 0.3620 0.9767 

9 60 imidazole 200 6.5 150/150 1-8 0.0305 0.0783 0.9983 0.0358 0.3728 0.995 

10 200 imidazole 200 6.5 150/150 1-8 0.1144 0.1872 0.9954 0.1412 1.1592 0.9937 
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Table 6.4. Absorbance values of blank reagent and absorbance ranges of standards in Arsenazo III-calcium analysis 

        * denotes where ½ dilued dye reagent was used. 
 

 

650 nm 600 nm Arsenazo III Reagent 
No 

CArsenazo III Buffer CBuffer pH 

Reagent 
(μL) / 

Standard 
(μL) 

[Ca2+] 
Range 
(ppm) Absorbance of 

Blank 
Absorbance Range 

of Standards 

Absorbance 
of 

Blank 

Absorbance Range 
of Standards 

1 60 acetate 100 5.4 150/150 0.25-2 0.097 ± 0.002 0.121 ± 0.002 - 
0.280 ± 0.004 0.329 ±  0.001 0.354 ± 0.003 - 

0.547 ± 0.006 

2* 60 acetate 100 5.4 150/150 0.25-2 0.062 ± 0.000 0.082 ± 0.001 - 
0.190 ± 0.001 0.178 ± 0.003 0.198 ± 0.002 - 

0.327 ± 0.002 

3 60 formate 220 3.8 150/150 0.25-2 0.072 ± 0.002 0.077 ± 0.001 - 
0.112 ± 0.003 0.297 ± 0.002 0.303 ± 0.002 -

0.342 ± 0.003 

4 60 formate 220 3.8 150/150 1-8 0.071 ± 0.001 0.101 ± 0.002 – 
0.217 ± 0.002 0.299 ± 0.003 0.322 ± 0.008 -

0.458 ± 0.010 

5 60 imidazole 100 6.5 150/150 0.25-2 0.079 ± 0.001 0.093 ± 0.001 – 
0.215 ± 0.001 0.369 ± 0.005 0.381 ± 0.003 -

0.524 ± 0.002 

6* 60 imidazole 100 6.5 150/150 0.25-2 0.060 ± 0.001 0.073 ± 0.001 – 
0.173 ± 0.003 0.202 ± 0.003 0.212 ± 0.005 -

0.325 ± 0.0313 

7 60 imidazole 200 6.5 150/150 0.25-2 0.079 ± 0.003 0.084 ± 0.001 – 
0.132 ± 0.005 0.359 ± 0.008 0.375 ± 0.003 - 

0.427 ± 0.006 

9 60 imidazole 200 6.5 150/150 1-8 0.081 ± 0.001 0.105 ± 0.003 – 
0.318 ± 0.006 0.379 ± 0.002 0.397 ± 0.019 -

0.655 ±  0.014 

10 200 imidazole 200 6.5 150/150 1-8 0.175 ± 0.006 0.283 ± 0.002 – 
1.071 ± 0.003 1.131 ± 0.024 1.282 ± 0.011 - 

2.253 ± 0.007 
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6.1.2. Calcium Determination in Different Electrolyte Solutions by   
Microplate Based Arsenazo III-Calcium Analysis 

 

 The presence of substances other than the compound of interest may cause 

interferences during the analysis of the compound. In UV-Visible spectroscopic analysis 

where several indicator molecules were used, competition of the other substances with 

the analyte for dye binding, pH changes, reduction of the molar extinction coefficient of 

the dye-analyte complex may yield erroneous results.  

 Arsenazo III calcium analysis method used in this thesis is based on the 

complexation of Arsenazo III dye with calcium. This analysis is also prone to possible 

interferences. The presence of other divalent cations may cause interferences during the 

analysis of calcium. Michaylova and Ilkova (1971) found that magnesium forms a 

complex with Arsenazo III dye when the solution pH was basic. Reduction of pH to 5.5 

was used to avoid interferences coming from other divalent cations. The selection of pH 

5.5 made it possible to analyze low levels of calcium even magnesium and manganese 

were present in amounts 100 fold higher than calcium. Although they chose pH 5.5, 

Zn2+, Cd2+, Al2+ and Fe2+ were found to cause approximately 20 nm shift in the 

wavelength where maximum absorption of the dye was observed. The presence of Fe2+ 

in the system was resulted with the formation of a dark-brown colored precipitate. 

Arsenazo III was also reported to have an affinity for Sr2+ and Ba2+ which is smaller 

than that for Ca2+ and higher than that for Mg2+ (Bauer, 1981).   

 Not only the presence of divalent cations but other cations and anions cause 

interferences during the analysis of calcium. Both NaCl and KCl were found to reduce 

pKCa, negative logarithm of dissociation constant of Arsenazo III for calcium (Bauer, 

1981). The effect of KCl on the reduction of pKCa was not only due to the potassium 

binding to Arsenazo III but also mainly due the effect of KCl on the ionic strength of 

the solution (Bauer, 1981). Interferences from the presence of phosphate anions were 

demonstrated in a study on the determination of Mn2+ and Co2+ by Arsenazo III dye 

Zyryanov and Baykov, 2002). Addition of phosphate into the solutions of metal dye 

complexes reduced the absorbances of the complexes due to the metal phosphate 

complex formation. 

 In this study, it was shown that calcium in the range of 1 to 7 mg/L 

concentrations could be analyzed with dye reagent containing 200 µM Arsenazo III and 
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200 mM imidazole chloride buffer at pH 6.5. However, reductions of molar absorption 

coefficient of the Arsenazo III-calcium complex by the presence of background ions, 

binding affinities of cations to Arsenazo III and changes in the absorbances of the 

calcium-dye complex by varying ionic strength or by the formation of calcium and 

anion pairs let us to check interferences when calcium analysis is performed in the 

presence of background electrolytes. All calcium standard solutions were prepared in 

the presence of different electrolytes and Arsenazo III analysis was performed. Spectra 

of calcium standard solutions were measured to determine wavelengths of the maximum 

absorption. Correlations between the absorbances of solutions with increasing calcium 

concentrations were determined whether Beer’s law was obeyed or not. The list of 

electrolytes solutions in which calcium standard solutions were prepared is shown in 

Table 6.5. The number of replicates is also shown in Table 6.5.  

 

 

Table 6.5. Electrolyte solutions used to prepare calcium standards 

No Electrolyte Number of 
Replicates 

for Solution 
Preparation 

Number of 
Replicates for 
Absorbance 

Measurements for 
Each 

Concentration 
Level 

Total Replicates 
of Absorbance 
Measurements 

for Each 
Concentration 

Level 

1 Ultrapure water 4 5 20 
2 142 mM NaCl 2 5 10 
3 27 mM NaHCO3 2 5 10 
4 115 mM NaCl & 

 27 mM NaHOC3 
2 5 10 

5 1.5 mM MgCl2  2 5 10 
6 1 mM Na2HPO4 1 5 5 
7 1 mM H3PO4 1 5 5 
8 10 mM H3PO4 1 5 5 
9 0.5 mM Na2SO4 1 5 5 
10 5 mM KCl 1 5 5 
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Calcium standards in ultrapure water 

 

 Spectra of calcium-Arsenazo III complexes in ultapure water between 400 and 

700 nm is given in Figure 6.59. Blank solution exhibited a maximum absorption at 545 

nm. This absortion peak shifts to 560 nm when calcium concentration in the standard 

solutions is 7 ppm. It should be noted that total calcium concentration in the mixture is 

3.5 ppm since dye reagent and standard solutions were mixed in 1:1 volume ratios. 

When compared to blank solution, calcium-Arsenazo III complex showed a peak of 

maxima at approximately 650 nm.  

 Difference between spectra of calcium-Arsenazo complexes and spectrum of 

blank solution was shown in Figure 6.60. This figure shows that calcium-Arsenazo III 

complexes exhibit two maximum absorption peaks at 605 and 655 nm. In addition to 

these, absorbances between 460 and 545 nm decreases with increasing calcium 

concentration. 

 Four different wavelengths (650, 600, 655 and 500 nm) were therefore used 

measure absorbances of the calcium-Arsenazo III complexes. Both average absolute 

absorbances and absorbances obtained after subtraction of absorbances of blank 

solution from that of standard solutions were used to construct calibration curves. 

Absorbances of the complexes were found to be linearly correlated within the calcium 

concentration ranges when absorbances were measured at 650 nm (Figure 6.61). This 

shows that Beer’s law is obeyed within the calcium concentration range of 1-7 ppm. 

Correlation coefficients were over 0.99 in whether absorbances or absorbances of 

solutions from which average of blank absorbances were used. 

When absorbances were measured at 600 nm, absorbance of the blank solution 

was found as 1.150 (Figure 6.62). Calcium-Arsenazo III complexes showed higher 

absorbances. Absorbances of the solutions were again linearly correlated even 

absorbances were greater than unity. When ΔA values obtained by subtracting 

absorbance of the blank value from that of calcium standard solutions were used, ΔA 

values ranged between 0 and 1 (Figure 6.62). At 600 nm, absorbances and ΔA values 

were linearly correlated with correlation coefficients greater than 0.99. This suggests 

that absorbances and ΔA values obey Beer’s law with the concentration ranges at 600 

nm.  
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Figure 6.59. Spectra of calcium standards prepared in ultrapure water. 
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Figure 6.60. Spectra of calcium standards prepared in ultrapure water obtained by 

subtracting blank values. 
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Figure  6.61. Calibration curve obtained by measuring absorbances of calcium standards 

.prepared in ultrapure water at 650 nm. 

 
 

Absorbances of solutions were also recorded at 655 nm. Those were closer to 

the absorbances measured at 650 nm as expected. Both absorbances and ΔA values 

were found to be linearly correlated at 655 nm (Figure 6.63). 

 Observations of the reductions of the absorbances between 460 and 545 nm 

with increasing calcium concentrations in spectra obtained by subtracting average value 

of the blank solution from averages of the absorbances of calcium-Arsenazo III 

complexes let us to measure absorbances at 500 nm. Absorbances decreased with 

increasing calcium concentrations in the solutions (Figure 6.64). This decrease in 

absorbances was linearly correlated with calcium concentrations in standard solutions. 

When ΔA values were calculated negative absorbances were obtained (Figure 6.64). 

These negative absorbances were also linearly correlated with increasing calcium 

concentrations. In both cases, standard deviations were found much greater than 

obtained at other wavelengths. Additionally correlation coefficients were lower than 

those obtained at other wavelengths. 
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Figure 6.62. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in ultrapure water at 600 nm. 
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Figure 6.63. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in ultrapure water at 655 nm. 
 
 
Since absorbances obtained at 600 nm was greater than unity, absorbance values 

obtained at 655 nm were closer to those at 650 nm and lower correlation coefficients 

and greater standard deviations obtained at 500 nm, absorbance values of calcium-

Arsenazo III complexes obtained in the presence of background electrolytes at 600, 655 

and 500 nm were measured but results are not given in this thesis. Only calibrations 

obtained at 650 nm are reported.  

For the all calcium standards prepared in electrolytical solutions, absorption 

spectra of calcium-Arsenazo III complexes and calibration curves constructed by 

absorbances measured at 650 nm are shown in Appendix G. 

Absorption spectra of calcium-Arsenazo III complexes obtained in the presence 

of all electrolytes showed that dye itself exhibits absorption maximum at 545-550 nm. 

In all cases this peak shifted through 560 nm upon the formation of calcium-Arsenazo 

III complexes. Calcium-Arsenazo III complexes showed maximum absorption peak at 

650 nm. When the spectra were obtained by subtracting absorbances of the blank 

solution from absorbances of calcium standard solutions, two maximum peaks were 

observed at 605 and 650 nm. Between 460 and 545 nm, negative values were observed 

when ΔA was used to construct spectra of the complexes.  
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Figure 6.64. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in ultrapure water at 500 nm. 
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Intereferences of background ions in the calcium determination by Arsenazo III 

method were evaluated by statistical analysis. Absorbance values of the calcium 

standards prepared in ultrapure water at 650 nm were compared with the absorbances of 

the calcium standards in electrolytical solutions measured at 650 nm. Differences in 

mean values of the absorbances obtained for each calcium concentrations were 

deterimined by hyphothesis testing with two-sided t-test for unpaired data. When the 

population variances are unknown, two different t statistics are used depending on the 

validity of assumption of the equility of variances of two populations. Assumption of 

the equaility of population variance is therefore should first be validated. This can be 

preformed by comparing the ratios of the variance by two-sided F-test. 

A methodology for the comparison of the mean absorbance values in this study 

is as follows (Baskan, 1993; Montgomery, 1996; Montgomery, 2001). 

When samples are taken from two normally distributed populations and the 

variance of these populations are unknown, if the assumption of equaility of variances 

of the both population can be made, test statistics, null and two-sided alternate 

hypotheses calculated are shown below. 

 

If 2
2

2
1 σσ = ,  

 

Test statistics:            

21

21
0 11

nn
S

xxt

p +

−
= , 221 −+= nnv                   (6.33) 

 

            
2

)1()1(

21

2
22

2
112

−+
−+−

=
nn

SnSnS p                          (6.34) 

 

Null hypthesis:                       210 : μμ =H                                      (6.35) 

Alternate hypothesis                 211 : μμ ≠H                                      (6.36) 

Criteria for rejection  
of null hypothesis                        vtt ,2/0 α>                                       (6.37) 
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Null hypthesis:                            210 : μμ =H                                 (6.40) 

  Alternate hypothesis                       211 : μμ ≠H                                 (6.41) 

 

Criteria for rejection of  
null hypothesis                                  vtt ,2/0 α>                                  (6.42) 

 
 When the population variances are unknown and assumption of 2

2
2
1 σσ = can not 

be made, before using t statistics the validity of asumption 2
2

2
1 σσ = should be checked 

(Baskan, 1993). For this reason, validity of the assumption of 2
2

2
1 σσ = was checked by 

comparing the ratios of the variances by two sided F-test by assuming the populations 

normally distributed. 

 

Test statistics                   1,1: 22112
2

2
1

0 −=−== nvnv
S
SF             (6.43) 

 
Null hypothesis                                2

2
2

1: σσ =oH                           (6.44) 

Alternate hypothesis                         2
2

2
11 : σσ ≠H                           (6.45) 

 
Criteria for the rejection  
of null hypothesis               

21
,,2/0 vvFF α>  or 

21
,,2/10 vvFF α−<            (6.46) 

 
 

                2/,,2/1,, 1221
/1 αα vvvv FF =−                     (6.47) 



 152

In order to verify the validity of assumption of 2
2

2
1 σσ = , two-sided F-test was 

performed to determine whether population variances are equal or not. Variances of 

absorbances of calcium standards prepared in ultrapure water were selected as reference 

and variances of absorbances of calcium standards prepared in electrolytical solutions 

were compared with absorbances of calcium standards in ultrapure water. Rejection or 

acception of null hypothesis, 2
2

2
1: σσ =oH was decided by comparing calculated to 

values with t values found. Confidence level in the comparison of variances was 

assumed 95 % (α=0.05). F0 values calculated from Equation 6.43 and compared with F 

values read from table for percentage points points for F distribution table 

(Montgomery, 2001). When corresponding F value for v1 and v2 values can not be 

found in the table, F number for the closest degrees of fredom was selected. Table 6.6 

shows calculated F0 values and upper and lower confidence limits whereas Table 6.7 

shows the results of rejection or acception of the assumption of equality of the 

variances.  

When the null hypothesis is accepted, two-sided t-test methodology for 
2
2

2
1 σσ = is used (Equations 6.33-6.37). However, in the case of rejection of null 

hypthesis, two-sided t-test for 2
2

2
1 σσ ≠ is used (Equations 6.38-6.42).  Confidence level 

in both tests was assumed as 99 % (α=0.01). Since the null hypthesis in both 

methodologies is 210 : μμ =H , acception of the null hypthesis states that there is no 

interference coming from the presence of background electrolytes at 99 % confidence 

level. If the null hypthesis is rejected background electrolytes interferes in the Arsenazo 

III calcium analysis. 

If the assumption of 2
2

2
1 σσ = is validated, to values for the each calcium 

concentration was calculated by Equations 6.33 and 6.34. Results were compared with t 

values obtained from the table of percentage points for the t distribution (Montgomery, 

2001). Criteria shown in Equation 6.37 were used to reject or accept the null hypthesis 

of 210 : μμ =H . If the assumption of 2
2

2
1 σσ = can not be made ( 2

2
2
1 σσ ≠ ), Equations 

6.38 and 6.39 were used to calculate t0 values and degrees of freedom, respectively. 

Criterion for the acception or the rejection of the null hypthesis in this case is shown in 

Equation 6.42. Calculated t0 were compared with t values obtained from the table for 

percentage points for the t distribution (Montgomery, 2001).  
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In both methodologies, when t values for calculated degrees of freedom can not 

be found in the table t value for the closest degrees of freedom was selected.  

Calculated t0 values and t values for corresponding degrees of freedom and 

confidence limits are shown in Table 6.8 whereas results of the rejection and acception 

of null hypthesis ( 210 : μμ =H ) are summarized in Table 6.9. 

 

Calcium standards in 142 mM NaCl 

 

 pKca of Arsenazo III for calcium was found to be strongly dependent on pH, 

presence of other cations and the buffer type and concentration (Bauer, 1981). In this 

study, imidazole buffer at a fixed concentration was used. The use of the imidazole 

buffer made it possible to buffer the solutions strongly at pH 6.5. Therefore, only the 

presence of background ions in considerably higher concentrations when compared to 

calcium may cause interferences during calcium analysis. Bauer (1981) found that the 

presence of KCl and NaCl showed identical effets on pKca. At pH 8.0, increase of KCl 

concentration from 0 to 100 mM, reduced 0.75 pK units. However, at pH 7.0, reduction 

was only 0.35. The effects of KCl and NaCl on the reduction of pKCa were mainly due 

to the effects of these salts on the ionic strength. Competitive binding of potassium was 

also effective on the reduction of pKCa.  

 When calcium standard solutions prepared in 142 mM NaCl were mixed with 

Arsenazo III dye reagents, absorbances were linearly correlated with calcium 

concentrations (Figure G.3). Correlation coefficients were found as 0.9988 and 0.998 

for absorbances and ΔA values, respectively. If regression coefficient obtained by ΔA 

values (y=0.1044x) was compared to that found when calcium standard solutions 

prepared in ultrapure water (y=0.1131x), absorbance response with respect to calcium 

concentration was reduced in the presence of 142 mM NaCl.   

According to statistical analysis, the presence of 142 mM NaCl was found to 

interfere at all calcium concentration levels except 2 ppm calcium concentration.  
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Table 6.6. Calculated F0 values and confidence limits for rejection of null hypthesis in two-sided F-test for Arsenazo III-calcium analysis 

 

 

 
 

Conc. 
(ppm) 

142 mM 
NaCl 

F19 ,9, 0.025 

27 mM 
NaHCO3 

F19, 9, 0.025 

115 mM NaCl 
27 mM 

NaHCO3 

F19, 9, 0.025 

1.5 mM 
MgCl2 

F19, 9, 0.025 

1 mM 
Na2HPO4 
F19, 4, 0.025 

1 mM 
H3PO4 

F19, 4, 0.025 

10 mM 
H3PO4 

F19, 4, 0.025 

5 mM KCl 
F19, 4, 0.025 

0.5 mM 
Na2SO4 

F19, 4, 0.025 

0 0.971 0.434 2.679 0.243 4.799 0.436 0.619 1.745 12.798 

1 4.655 0.160 0.593 0.112 4.702 0.808 6.085 2.796 6.085 

2 10.397 0.774 0.784 0.538 1.365 3.684 3.366 11.485 2.219 

3 1.242 3.329 4.968 0.859 34.858 64.737 90.632 16.184 37.763 

4 5.638 2.875 3.084 5.537 12.122 2.116 5.825 34.502 2.894 

5 4.392 6.294 3.775 6.856 21.967 82.988 1.399 13.337 82.988 

6 11.896 10.949 2.721 16.954 21.079 174.658 7.641 10.450 7.501 

7 6.323 2.253 25.641 3.830 5.205 5.495 3.966 2.707 2.686 

Criteria for 
rejection 

0.347<F0<3.670 0.281<F0<8.560 
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Table 6.7. Results of F-test for the validation of the assumption of the equality of variances by two-sided F-test for Arsenazo III-calcium 
analysis 

 
        A: Acception of null hypothesis 
        R: Rejection of null hypothesis. 

Conc. 
(ppm) 

142 mM 
NaCl 

F19 ,9, 0.025 

27 mM 
NaHCO3 

F19, 9, 0.025 

115 mM NaCl 
27 mM NaHCO3 

F19, 9, 0.025 

1.5 mM 
MgCl2 

F19, 9, 0.025 

1 mM 
Na2HPO4 
F19, 4, 0.025 

1 mM 
H3PO4 

F19, 4, 0.025 

10 mM 
H3PO4 

F19, 4, 0.025 

5 mM KCl 
F19, 4, 0.025 

0.5 mM 
Na2SO4 

F19, 4, 0.025 

0 A A A R A A A A R 

1 R R A R A A A A A 

2 R A A A A A A R A 

3 A A R A R R R R R 

4 R A A R R A A R A 

5 R R R R R R A R R 

6 R R A R R R A R A 

7 R A R R A A A A A 
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Table 6.8. Calculated t0 values and t values for the rejection of null hypthesis in two-sided t-tests for Arsenazo III-calcium analysis

 142 mM NaCl 
27 mM 

NaHCO3 

115 mM NaCl 
27 mM 

NaHCO3 

1.5 mM 

MgCl2 

1 mM 
Na2HPO4 1 mM H3PO4 10 mM H3PO4 5 mM KCl 

0.5 mM 
Na2SO4 

Conc. 
(ppm) ot  t ot  t ot  t ot  t ot  t ot  t ot  t ot  t ot  t 

0 18.556 2.763 20.077 2.763 50.209 2.763 27.541 3.106 0.605 2.807 0.507 2.807 2.765 2.807 5.039 2.807 3.088 2.819 

1 8.315 2.763 13.127 3.169 32.884 2.763 11.154 3.169 5.388 2.807 0.945 2.807 10.527 2.807 3.266 2.807 4.002 2.807 

2 1.900 2.787 24.558 2.763 24.114 2.763 12.387 2.763 2.480 2.807 1.623 2.807 18.045 2.807 3.705 2.819 4.498 2.807 

3 5.110 2.763 20.476 2.763 21.428 2.763 6.504 2.763 10.005 2.819 7.285 2.831 33.483 2.831 0.535 2.807 4.612 2.819 

4 14.400 2.763 19.558 2.763 14.205 2.763 2.747 2.763 4.690 2.819 3.603 2.807 24.370 2.807 0.442 2.819 1.491 2.807 

5 10.009 2.763 17.882 2.771 9.171 2.763 3.219 2.771 0.707 2.807 6.183 2.831 14.486 2.807 0.160 2.819 0.822 2.831 

6 13.079 2.797 20.846 2.787 6.318 2.763 0.555 2.807 9.214 2.807 8.898 2.845 17.168 2.807 1.978 2.831 1.600 2.807 

7 16.727 2.771 13.568 2.763 8.714 2.819 0.819 2.763 3.639 2.807 6.880 2.807 21.134 2.807 0.418 2.807 0.743 2.807 
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Table 6.9. Results of t-tests for the validation of the equality of the means and interferences for Arsenazo III-calcium analysis 

       A: Acception of null hypthesis 
       R: Rejection of null hypothesis 
       I: Interferes 
    NI: Not interferes. 

 

Conc. 
(ppm) 

142 mM NaCl 
27 mM 

NaHCO3 

115 mM NaCl 
27 mM 

NaHCO3 

1.5 mM 
MgCl2 

1 mM 
Na2HPO4 

1 mM 
H3PO4 

10 mM 
H3PO4 

5 mM 
KCl 

0.5 mM 
Na2SO4 

0 R (I) R (I) R (I) R (I) A (NI) A (NI) A (NI) R (I) R (I) 

1 R (I) R (I) R (I) R (I) R (I) A (NI) R (I) R (I) R (I) 

2 A (NI) R (I) R (I) R (I) A (NI) A (NI) R (I) R (I) R (I) 

3 R (I) R (I) R (I) R (I) R (I) R (I) R (I) A (NI) R (I) 

4 R (I) R (I) R (I) A (NI) R (I) R (I) R (I) A (NI) A (NI) 

5 R (I) R (I) R (I) R (I) A (NI) R (I) R (I) A (NI) A (NI) 

6 R (I) R (I) R (I) A (NI) R (I) R (I) R (I) A (NI) A (NI) 

7 R (I) R (I) R (I) A (NI) R (I) R (I) R (I) A (NI) A (NI) 
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Calcium standards in 27 mM NaHCO3 

 

 In the presence of 27 mM NaHCO3, absorbances and concentrations yielded 

linear calibration responses with a regression function of y=0.1198x+0.1839 (Figure 

G.6). Correlation coefficient was 0.9984. Regression function was found as y=0.1196x 

when ΔA values were used. In this case correlation coefficient was also equal to 0.9984. 

Statistical analysis showed that 27 mM NaHCO3 causes interferences at all calcium 

concentration levels.  

 

Calcium standards in 115 mM NaCl & 27 mM NaHCO3 

 

 The effects of the presence of 115 mM NaCl together with 27 mM NaHCO3 in 

the standard solutions on the complexation of calcium with Arsenazo III dye are tested 

by checking linearity of the calibration curve. When calibration curves were constructed 

both by plotting absorbance and ΔA values with respect to calcium concentrations in the 

standard solutions linear calibration curves were obtained (Figure G.9). By using 

absorbances, regression function of y=0.1127x+0.1987 with a correlation coefficient of 

0.9989 was found. Regression function and correlation function were y=0.1122x and 

0.9989, respectively when ΔA values were used to construct calibration curves.  

Interferences due to the presence of 115 mM NaCl together with 27 mM 

NaHCO3 were also tested by t-statitistics. The presence of 115 mM NaCl together with 

27 mM NaHCO3 in the standard solutions interfered at all calcium concentration levels. 

 

Calcium standards in 1.5 mM MgCl2·6H2O 

 

Magnesium is the divalent cation which generally causes interferences in the 

calcium analysis with Arsenazo III (Lamkin and Williams, 1965, Michaylova and 

Ilkova, 1971). Masking agent, 8-hydroxyquinoline are used to avoid interferences of 

magnesium in calcium analyses (Morgan et al., 1993). Bauer (1981) found that pKca of 

Arsenazo III decreased when 0.1 mM magnesium was present at pH 8.0. However, the 

presence of magnesium up to 2 mM did not affect pKca of Arsenazo III for calcium at 

pH 7.0 (Bauer, 1981). It was possible to analyze low levels of calcium even 

concentration of magnesium was 100 fold higher than calcium when pH was 5.5 

(Michaylova and Ilkova, 1971). 
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 When magnesium was present in the standards solutions, linearity of correlation 

between absorbances and calcium concentrations was conserved (Figure G.12). When 

ΔA values were used correlation function of y=0.1072x with a correlation coefficient of 

0.998. Average absorbance of blank solution obtained when magnesium was present in 

the solutions was measured as 0.204. When this is compared to that found in ultrapure 

water (0.167), it seems that the presence of magnesium increases the absorbances. All 

absorbance values of the standard solutions except 7 ppm when magnesium was present 

were found to be higher than those of standard solutions prepared in ultrapure water. 

Absorbances of standards prepared in magnesium chloride and absorbances of standards 

prepared in ultrapure water become closer with increasing calcium concentrations. The 

effect of the presence of 1.5 mM MgCl2 in standard solutions was also tested by 

comparing the absorbances obtained in the presence of 1.5 mM MgCl2 with absorbances 

of calcium standards in ultrapure water by t-statistic. According to statistical analysis 

absorbances of blank solution, 1, 2, 3 and 5 ppm calcium standards were affected by the 

presence of magnesium chloride. However, interferences coming from the presence of 

magnesium chloride were insignificant at higher calcium levels. 

 

Calcium standards in 1 mM Na2HPO4 

 

 Zyryanov and Baykov (2002) showed that in the presence of phosphate in 

solutions, absorbances of the Mn2+-Arsenazo III and Co2+-Arsenazo III complexes were 

reduced due to the associations of metal ions with phosphate anion. Absorbance of 

Mn2+-Arsenazo III complex was severely reduced within the phosphate concentration 

range of 0-10 mM. Reduction of absorbance of Co2+-Arsenazo III complex was 

however slight when phosphate was present in the solution up to 40 mM. Therefore 

linearity of calibration response was determined when calcium standard solutions were 

prepared in the presence of 1 mm PO4
3-.  

 Calibration curves for calcium standards prepared in 1 mM Na2HPO4 are shown 

in Figure G.15. Calibration function obtained by plotting ΔA values against calcium 

concentrations in the standard solutions is y=0.1103x. Correlation coefficient was 

0.9964.  
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Calcium standards in 1 mM H3PO4 

 

  The effects of the presence of 1 mM PO4
3- on the absorbances of calcium-

Arsenazo III complexes were also tested by preparing calcium standards in 1 mM 

H3PO4. In the presence of 1 mM H3PO4, absorbances of calcium-Arsenazo III 

complexes did not deviate from linearity. Calibration equation (Figure G.18) was 

y=0.1092x. The results of statistical analysis showed that 1 mM H3PO4 did not interfere 

up to 2 ppm calcium concentration. However absorbances were significantly affected by 

the presence of 1mM H3PO4 when calcium concentration level was 3 ppm and over. 

 

Calcium standards in 10 mM H3PO4 

  

 Validity of calcium analysis by Arsenazo III reagent was also tested when 

standard solutions contained 10 mM H3PO4. Figure G.21 shows calibration curve 

obtained by reacting dye reagent and calcium standards containing 10 mM H3PO4. 

Calibration curve was linear also in this case. Correlation coefficient was higher than 

0.99 as well. Average absorbance of blank value was measured as 0.164. This was 

similar to absorbance value obtained when calcium standards were prepared in ultrapure 

water (0.168). This suggests that phosphate in solution do not affect absorption of the 

dye at 650 nm. It should be noted that the presence of 10 mM H3PO4 is equal to 5 mM 

H3PO4 in the dye and standard reaction mixtures. Absorbances of the complexes 

obtained when 5 mM H3PO4 was present showed reduction when compared to those of 

complexes in ultrapure water. Reduction was gretaer when calcium concentration was 

higher. This suggests that presence of 10 mM H3PO4 interferes in the calcium analysis. 

However, 10 mM H3PO4 in the calcium solutions equals to 950 mg/L PO4
3- which is 

almost 135 fold higher than 7 ppm calcium. When statistical analysis was used to 

determine the effect of 10 mM H3PO4 on the absorbances, the presence of 10 mM 

H3PO4 caused interference at all calcium concentration levels used.  

 

Calcium standards in 5 mM KCl 

 
 As previously stated, 100 mM KCl only cause a 0.35 unit reduction in pKca of 

Arsenazo III at pH 7.0 (Bauer, 1971). It can be expected that the presence of 5 mM KCl 

in the standard solution do not affect apparent pKCa of Arsenazo III.  
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By using ΔA values, regression equation found in the presence of 5 mM 

(y=0.1126) (Figure G.24) was similar to that found when standards were prepared in 

ultrapure water y=0.1131x). This shows that presence of 5 mM KCl do not effect 

absorbance responses with respect to calcium concentrations of standard solutions. 

However t-statistics showed that 5 mM KCl interferes at 1 and 2 ppm calcium 

concentration but interferences were inginificant at higher calcium concentration levels.  

 

Calcium standards in 0.5 mM Na2SO4 

 

When calcium standards were prepared in 0.5 mM Na2SO4 solution, linear 

regression function found was y=0.1138x with a correlation coefficient of 0.9986 when 

ΔA values were used (Figure G.27). This was very close to that obtained in ultrapure 

water. However 0.5 mM Na2SO4 was found to interfere at 1, 2 and 3 ppm calcium 

concentrations according to statistical analysis. Interference of 0.5 mM KCl was 

insignificant when calcium concentration in standard solution was higher than 3 ppm. 

Regression constants obtained from absorbance and ΔA values in the presence 

of different electrolytes at 650 nm are shown in Tables 6.10 and 6.11 respectively. 

When calcium concentration in any of these electrolytical solutions will be determined 

corresponding calibration equation obtained by ΔA values is used.  By using calibration 

curves constructed in the presence of several electrolytes, interferences due these 

matrices could be corrected in the calcium determination.  
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Table 6.10. Calibration equations for calcium standards prepared in different electrolytes constructed by absorbance values at 650 nm in 
Arsenazo III-calcium analysis 

y=mx+n 
Electrolyte 

m n R2 

Ultrapure Water 0.1155 0.1551 0.9986 

142 mM NaCl 0.1069 0.1690 0.9988 

27 mM NaHCO3 0.1198 0.1839 0.9984 
115 mM NaCl & 
27 mM NaHCO3 

0.1127 0.1987 0.9989 

1.5 mM MgCl2 0.1096 0.1916 0.9987 

1 mM Na2HPO4 0.1132 0.1530 0.9973 

1 mM H3PO4 0.1108 0.1596 0.9983 

10 mM H3PO4 0.1009 0.1489 0.9986 

5 mM KCl 0.1152 0.1588 0.9987 

0.5 mM Na2SO4 0.1154 0.1604 0.9989 
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Table 6.11. Calibration equations for calcium standards prepared in different electrolytes constructed at ΔA values at 650 nm in Arsenazo III-
calcium analysis 

 

y = mx Electrolyte 
 m R2 

Ultrapure Water 0.1131 0.9980 

142 mM NaCl 0.1044 0.9980 

27 mM NaHCO3 0.1196 0.9984 

115 mM NaCl & 
27 mM NaHCO3 0.1122 0.9989 

1.5 mM MgCl2 0.1072 0.9980 

1 mM Na2HPO4 0.1103 0.9964 

1 mM H3PO4 0.1092 0.9980 

10 mM H3PO4 0.0978 0.9973 

5 mM KCl 0.1126 0.9980 

0.5 mM Na2SO4 0.1138 0.9986 
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6.1.3. Microplate Based Malachite Green Phosphate Assay 

 
 Spectrophotometric measurements in the malachite green assay for the 

phosphate determinations have been performed at different wavelengths: 610 nm (Van 

Veldhoven and Mannaerts, 1987; Cogan et al., 1999), 625 nm (Linge and Oldham, 

2001), 640 nm (Szydłowska-Czerniak and Szyłk, 2003), 600 nm (Jeanotte et al., 2004), 

650 nm (Attin et al., 2005a; Attin et al., 2005b). By Linge and Oldham (2001), broad 

peak between 600 nm and 635 nm and smaller peak at 435 nm were observed in 

spectrum scanning. Most of the wavelengths used in all above stated studies fell 

between 600 nm and 635 nm. However, only Attin et al. (2005a, 2005b) used 650 nm. 

This was probably due the use of HCl instead of H2SO4 in the assay.  

 When different electrolytical solutions were used as dissolution medium in the 

hydroxyapatite dissolution testing, any component in the dissolution medium should not 

interfere during phosphate analysis. Hydroxyapatite is the most stable calcium 

phosphate phase over physiological pH, thus its solubility is very low in such solutions. 

Generally, dilutions are needed to reduce the amount of interfering substances below the 

limit that they do not interfere. However, these dilutions make calcium and phosphate 

concentration to fall under the detection limit. A method which makes the analysis of 

the compound of interest possible when the high amounts of electrolytes present in the 

solution will be superior for the dissolution testing of hydroxyapatite. For this reason, 

possible interferences which may result from the presence of electrolyte in the solution 

were tested by preparing phosphate standards in various electrolyte solutions. All 

phosphate standards were prepared in electrolyte solutions instead of testing one or two 

standard concentrations prepared in the electrolyte solutions. Absorption spectra of 

saolutions were scanned for all different electrolytes used to prepare phosphate 

standards in order to determine any alterations in light absorption spectra. Calibration 

curves obtained by this way will be used to determine phosphate concentration when the 

electrolytes are present as a matrix in the solutions.    

 When phosphate standards were prepared in ultrapure water or in electrolytical 

solutions, absorption spectra of the blank reagent showed two absorption peaks. One 

was at around 440-445 nm whereas the other was a wide peak between wavelengths of 

600 and 640 nm with closer absorbance. This explains why different wavelengths 

between 610 and 650 were used in the literature. Spectra of the standard solutions with 
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respect to blank reagent were constructed by subtracting the absorbances of the blank 

solution from the absorbances of the standard solutions. Standard solutions again had a 

wide absorption peak between 600 and 645 nm. Absorption spectra for phosphate 

standards prepared in different electrolytical solutions are given in Appendix H. 

Absorbances measured at 650, 640, 630, 620 and 610 nm were used to construct 

calibration curves for all matrix matched solutions. Additionally ΔA values obtained by 

subtracting absorbances of blank values from absorbances of standard solutions were 

also used to construct calibrations curves. All calibration curves for phosphate analysis 

are given in Appendix H.  

 Regression coeeficients of the all calibration equations and their correlation 

coefficients obtained by using absorbances values are shown in Table 6.12. Table 6.13 

shows calibration equations by using ΔA values obtained by subtracting absorbance of 

blank solution from absorbances of standard solutions.   

 It is obvious that 0.25-2 pmm level of phosphate in the solution can be analyzed 

by using malachite green based method by measuring the absorbance at either at 650, 

640, 630, 620 or 610 nm. Linear calibration curves for phosphate solutions prepared in 

different electrolyte solutions show that it is possible to determine the phosphate 

concentrations in these solutions when they individually exist in the dissolution medium 

as background electrolytes.   

Intereferences of background ions in the phosphate determination by malachite 

green method was also evaluated by statistical analysis methods stated previously in 

Section 6.1.2 Absorbance values of the phosphate standards prepared in ultrapure water 

measured at 650 nm were compared with the absorbances of the phosphate standards in 

electrolytical solutions measured at 650 nm. Assumption of the equaility of population 

variances was tested by two-sided F-test. According to the results of F-statistics, two 

different two-sided t-tests (for unpaired data) were used to determine whether 

background electrolytes cause interferences or not at each phosphate concentration. 

Table 6.14 shows calculated F0 values and upper and lower confidence limits whereas 

Table 6.15 shows the results of rejection or acception of the assumption of equality of 

the variances.  
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Table 6.12. Calibration equations obtained by using absorbances in malachite green phosphate assay 

λ (nm) y=mx+n Ultrapure 
Water 142 mM NaCl 5 mM KCl 2.5 mM CaCl2 1.5 mM MgCl2 

m 0.4348 0.4279 0.4549 0.4476 0.4392 

n 0.0390 0.0244 0.0344 0.0323 0.0298 
 
 

650 
R2 0.9971 0.9934 0.9965 0.996 0.9946 

m 0.4547 0.4496 0.4793 0.4699 0.4611 

n 0.0536 0.0378 0.0496 0.04699 0.0442 
 
 

640 
R2 0.9966 0.9935 0.9965 0.9959 0.9947 

m 0.4553 0.4506 0.4818 0.4706 0.4615 

n 0.0701 0.0529 0.0670 0.0642 0.0610 
 
 

630 
R2 0.9968 0.9935 0.9966 0.9960 0.9948 

m 0.4489 0.4438 0.4769 0.4641 0.4556 

n 0.0803 0.0620 0.0775 0.0747 0.0704 
 
 

620 
R2 0.9968 0.9935 0.9965 0.9961 0.9947 

m 0.4483 0.4425 0.4775 0.4645 0.4555 

n 0.0766 0.0586 0.0734 0.0709 0.0660 
 
 

610 
R2 0.9969 0.9935 0.9966 0.9960 0.9946 

(Cont. on next page) 
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Table 6.12. (cont.) 

λ (nm) y=mx+n 27 mM NaHCO3 
115 mM NaCl / 

27 mM NaHCO3 

0.5 mM 
Na2SO4 

SBFA SBFB 

m 0.4300 0.4238 0.4453 0.4299 0.4135 

n 0.0172 0.0184 0.0353 0.0138 0.0147 650 

R2 0.9896 0.9904 0.9966 0.9876 0.9892 

m 0.4557 0.4492 0.4697 0.4527 0.4391 

n 0.0317 0.0320 0.0501 0.0290 0.0265 640 

R2 0.9898 0.9909 0.9965 0.9884 0.9891 

m 0.4579 0.4515 0.4717 0.4548 0.4425 

n 0.0501 0.0488 0.0675 0.0444 0.0411 630 

R2 0.9897 0.9909 0.9964 0.9885 0.9889 

m 0.4533 0.4462 0.4665 0.4494 0.4376 

n 0.0606 0.0585 0.0779 0.05444 0.0499 620 

R2 0.9897 0.9910 0.9965 0.9889 0.9887 

m 0.4543 0.4470 0.4696 0.4504 0.4388 

n 0.0566 0.0548 0.0716 0.0501 0.0458 610 

R2 0.9896 0.9910 0.9960 0.9889 0.9886 167 
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Table 6.13. Calibration equations obtained by using ΔA values in malachite green phosphate assay 

 

 

λ (nm) y=mx Ultrapure 
Water 142 mM NaCl 5 mM KCl 2.5 mM CaCl2 1.5 mM MgCl2 

m 0.4127 0.3960 0.4293 0.4213 0.4102  
 

650 R2 0.9934 0.9855 0.9920 0.9910 0.9884 

m 0.4302 0.4162 0.4522 0.4423 0.4304  
 

640 R2 0.9925 0.9857 0.9919 0.9910 0.9884 

m 0.4313 0.4172 0.4547 0.4429 0.4306  
 

630 R2 0.9928 0.9857 0.9921 0.9911 0.9884 

m 0.4252 0.4107 0.4500 0.4373 0.4247  
 

620 R2 0.9928 0.9856 0.9920 0.9913 0.9881 

m 0.4246 0.4094 0.4508 0.4374 0.4245  
 

610 R2 0.9929 0.9855 0.9921 0.9912 0.9880 

(Cont. on next page) 
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Table 6.13. (cont.) 

  

 
 

 

 

λ (nm) y=mx+n 27 mM NaHCO3 
115 mM NaCl / 

27 mM NaHCO3 

0.5 mM 
Na2SO4 

SBFA SBFB 

m 0.3900 0.3859 0.4209 0.3878 0.3746 
650 

R2 0.9773 0.9791 0.9923 0.9741 0.9767 

m 0.4136 0.4099 0.4439 0.4097 0.3981 
640 

R2 0.9777 0.9800 0.9922 0.9757 0.9768 

m 0.4155 0.4120 0.4456 0.4114 0.4008 
630 

R2 0.9776 0.9801 0.9921 0.9757 0.9763 

m 0.4111 0.4073 0.4407 0.4070 0.3961 
620 

R2 0.9774 0.9802 0.9921 0.9763 0.9760 

m 0.4119 0.4079 0.4417 0.4078 0.3969 
610 

R2 0.9773 0.9802 0.9910 0.9762 0.9757 
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Calculated t0 values and t values for corresponding degrees of freedom and 

confidence limits are shown in Table 6.16 whereas results of the rejection and acception 

of null hypthesis ( 210 : μμ =H ) are summarized in Table 6.17. According to the results 

of the hypthesis testing used for the determination of interferences caused by 

background electrolytes, all electrolytical solutions do not have significant effects on 

the absorbance value of the blank solution. The presence of 142 mM NaCl was found to 

interfere at all phosphate concentration levels except 1.25 mg/L. However t0 value 

calculated at 1.25 mg/L phosphate level was closer to t values estimated by degrees of 

freedom and confidence interval. Although 2
2

2
1 σσ = assumption is validated, sodium 

chloride is found to interfere if 2
1σ is not assumed equal to 2

2σ .  

Twenty seven millimolar NaHCO3, solution containing 115 mM NaCl and 27 

mM NaHCO3, and SBFB solution interferes whereas 0.5 mM Na2SO4 do not interfere at 

the all phosphate concentration levels. Two point five millimolar calcium chloride 

solution causes interference for the analysis of the lowest phosphate concentraion (0.25 

mg/L). At all the other levels, the presence of calcium chloride does not cause 

interferences.  

It was found that 1.5 mM MgCl2 solution do not interfere at 0.5, 1.5 and 1.75 

mg/L phosphate concentrations but interferes at all the other phosphate concentrations. 

Magnesium chloride possibly interferes at the low phosphate concentration level but 

when phosphate concentration is increased to 1.5 mg/L and over, interference of 

magnesium chloride becomes insignificant.  

Five millimolar potassium chloride solution was found not to interfere at 0.5 and 

1.25 mg/L phosphate level and to interfere at other levels. It is not reasonable that 5 mM 

KCl do not interfere at 0.5 and 1.25 mg/L phosphate levels while it is interfering at all 

other phosphate levels. It is therefore concluded that five millimolar potassium chloride 

interferes in phosphate analysis within selected confidence level (99 %).   

SBFA solution interferes at all phosphate levels except 1.75 mg/L. This shows 

that when phosphate level increases the interference of potassium chloride becomes 

insignificant. 
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Table 6.14. Calculated F0 values and confidence limits for rejection of null hypthesis in two-sided F-test for malachite green phosphate assay 

 

 

Conc. 
(ppm) 

142 mM NaCl 
F19 ,19, 0.025 

27 mM 
NaHCO3 
F19, 14, 0.025 

115 mM NaCl 
27 mM NaHCO3 

F19, 14, 0.025 

5 mM 
KCl 

F19, 14, 0.025 

2.5 mM 
CaCl2 

F19, 14, 0.025 

1.5 mM 
MgCl2 

F19, 14, 0.025 

0.5 mM 
Na2SO4 

F19, 14, 0.025 

SBFA 
F19, 9, 0.025 

SBFB 
F19, 4, 0.025 

0 9.277 3.702 8.150 14.559 7.690 2.928 18.250 2.167 14.519 

0.25 0.863 2.248 1.649 2.679 1.557 0.477 2.081 2.437 4.770 

0.5 3.327 1.406 4.097 3.384 3.474 0.568 1.649 2.960 4.086 

0.75 1.543 0.751 1.105 6.863 5.901 0.849 3.827 1.894 3.340 

1 0.800 1.135 0.984 4.480 3.407 0.618 2.916 3.214 10.291 

1.25 1.444 1.171 1.219 8.255 10.263 1.547 7.667 2.762 4.901 

1.5 1.854 0.723 2.215 3.201 4.666 2.224 13.320 4.473 7.669 

1.75 0.977 1.083 0.663 2.478 4.523 1.283 9.423 2.371 3.118 

Criteria 

for 

rejection 

0.407<F0<2.51 0.339<F0<2.84 0.347<F0<3.67 0.281<F0<8.56 
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Table 6.15. Results of F-test for the validation of the assumption of the equality of variances by two-sided F-test for malachite green  
                     phosphate assay 

       A: Acception of null hypothesis 
         R: Rejection of null hypothesis. 

Conc. 
(ppm) 142 mM NaCl 27 mM 

NaHCO3 

115 mM 
NaCl 

27 mM 
NaHCO3 

5 mM 
KCl 

2.5 mM 
CaCl2 

1.5 mM 
MgCl2 

0.5 mM 
Na2SO4 

SBFA SBFB 

0 R R R R R R R A R 

0.25 A A A A A A A A A 

0.5 R A R R R A A A A 

0.75 A A A R R A R A A 

1 A A A R R A R A R 

1.25 A A A R R A R A A 

1.5 A A A R R A R R A 

1.75 A A A A R A R A A 

172 
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Table 6.16. Calculated t0 values and t values for the rejection of null hypthesis in two-sided t-tests for malachite green phosphate assay 

 

 142 mM NaCl 
27 mM 

NaHCO3 

115 mM NaCl 

27 mM 

NaHCO3 

5 mM KCl 
2.5 mM 

CaCl2 

1.5 mM 

MgCl2 

0.5 mM 

Na2SO4 
SBFA SBFB 

Conc. 
(ppm) ot  t ot  t ot  t ot  t ot  t ot  t ot  t ot  t ot  t 

0 1.882 2.807 0.605 2.750 0.626 2.787 0.072 2.819 1.066 2.787 0.410 2.704 0.710 2.819 0.074 2.763 2.670 2.807 

0.25 3.973 2.704 20.866 2.704 19.084 2.704 3.090 2.704 3.719 2.704 6.119 2.704 0.743 2.704 18.637 2.763 13.806 2.807 

0.5 5.734 2.756 14.726 2.704 6.893 2.756 0.264 2.750 1.001 2.750 2.068 2.704 1.590 2.704 12.222 2.763 7.714 2.807 

0.75 3.618 2.704 14.026 2.704 15.814 2.704 2.861 2.779 0.172 2.771 4.679 2.704 0.573 2.750 13.560 2.763 8.992 2.807 

1 2.919 2.704 12.805 2.704 13.439 2.704 3.302 2.756 2.586 2.750 4.101 2.704 1.350 2.704 13.950 2.763 8.164 2.831 

1.25 2.651 2.704 10.010 2.704 11.689 2.704 1.981 2.787 0.688 2.797 2.928 2.704 1.532 2.787 9.736 2.763 9.949 2.807 

1.5 2.782 2.704 6.696 2.704 10.481 2.704 3.043 2.75 1.700 2.763 1.322 2.704 2.163 2.807 5.045 2.763 7.863 2.807 

1.75 2.713 2.704 5.345 2.704 8.887 2.704 13.351 2.704 2.720 2.763 1.298 2.704 1.956 2.797 1.877 2.763 7.193 2.807 
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Table 6.17. Results of t-tests for the validation of the equality of the means and interferences for malachite green phosphate assay 

     A: Acception of null hypothesis 
     R: Rejection of null hypothesis 
     I: Interferes 
  NI: Not interferes. 

Conc. 
(ppm) 

142 mM NaCl 
27 mM 

NaHCO3 

115 mM 
NaCl 

27 mM 
NaHCO3 

5 mM 
KCl 

2.5 mM 
CaCl2 

1.5 mM 
MgCl2 

0.5 mM 
Na2SO4 

SBFA SBFB 

0 A  (NI) A (NI) A (NI) A (NI) A (NI) A (NI) A (NI)  A (NI) A (NI) 

0.25 
R (I) 

 
R (I) R (I) R (I) R (I) R (I) A (NI) R (I) R (I) 

0.5 R (I) R (I) R (I) A (NI) A (NI) A (NI) A (NI) R (I) R (I) 

0.75 R (I) R (I) R (I) R (I) A (NI) R (I) A (NI) R (I) R (I) 

1 R (I) R (I) R (I) R (I) A (NI) R (I) A (NI) R (I) R (I) 

1.25 A (NI) R (I) R (I) A (NI) A (NI) R (I) A (NI) R (I) R (I) 

1.5 R (I) R (I) R (I) R (I) A (NI) A (NI) A (NI) R (I) R (I) 

1.75 R (I) R (I) R (I) R (I) A (NI) A (NI) A (NI) A (NI) R (I) 

174 
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6.2. Characterization of Powders 

 
 Crystalline structures, specific surface areas, thermal behaviors, particle size 

and morphologies, calcium and phosphate molar ratios of hydroxyapatite powder 

synthesized in this study and commercial hydroxyapatite powder were characterized. 

 

6.2.1. XRD Analysis of Powders 

 
 X-ray diffraction profiles of DHA and HA samples are shown in Figure 

6.65. The presence of sharp diffraction peaks and splitting of major hydroxyapatite 

diffraction peak at 31 °C showed that commercial powder were highly crystalline. In 

contrast, DHA sample showed wide diffraction peaks indicative of nanocrystalline 

structure of the powder.  
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Figure 6.65. XRD profiles of DHA and HA powders. 
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6.2.2. Thermogravimetric Analyses 

 
 Thermogravimetric analysis and differential thermal analysis were used to 

determine water contents and thermal behavior of the hydroxyapatite samples. 

Thermogravimetric analysis results of the commercial hydroxyapatite sample (HA) are 

shown in Figure 6.66. HA sample showed continuous weigth loss up to 300 °C. Weight 

loss still continued between 300 and 500 °C but with a different rate.  After 500° C, 

weight stays almost constant. Between 500 and 825 °C, only 0.2 wt. % reduction is 

observed. In total, up to 825 °C sample lost 5.67 % of its weight. 

Similar to thermal behavior of HA powder, major fraction of weight loss from 

DHA powder was observed until 300 °C (Figure 6.67). Weight loss continued up to 950 

°C. Weigth loss observed between 300 and 950 °C was found to be approximately 2.5 

%. Total weight loss was calculated as 10.58 wt. % when sample was heated to 950 °C. 
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Figure 6.66. TG analysis profile of the sample HA. 
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Figure 6.67. TG profile of the sample DHA. 
 

 

6.2.3. BET Surface Area  

 
 Surface area and pore size measurements of hydroxyapatite powder were 

performed by nitrogen adsorption and desorption studies. Volumes of nitrogen adsorbed 

or desorbed plotted against relative pressures are shown in Figure 6.68. 

 As it can be seen from the graph, nitrogen adsorption and desorption behavior of 

hydroxyapatite almost exhibited Type II gas physisorption behavior according to 

IUPAC 1985 classification (Rouquerol et al., 1999). BET adsorption model was 

therefore used to calculate surface area. BET surface area of hydroxyapatite was found 

as 74.59 m2/g. Nitrogen adsorption and desorption profiles of DHA powder is shown in 

Figure 6.69. This sample also exhibitied Type II physisorption behavior (Rouquerol et 

al., 1999). BET surface area was calculated to be 172.73 m2/g.  
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Figure 6.68. Adsorption and desorption of N2 on HA powder. 
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Figure 6.69. Adsorption and desorption of N2 on DHA powder. 
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6.2.4. Scanning Electron Microscopy 

 
 Scanning electron microscopy was used to analyze morphology and particle size 

of commercial hydroxyapatite (HA) and hydroxyapatite powder synthesized in this 

study (DHA). SEM micrographs of commercial hydroxyapatite powder are shown in 

Figure 6.70. Sample was composed of rod-like particles. Major fraction of the particles 

was almost 200 nm in length and 30 nm in width. Smaller particles were also present in 

the sample. 

 

 

 

 
Figure 6.70. SEM micrographs of HA powder. 
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 Particles of DHA sample were smaller than those of HA sample (Figure 6.71). 

They were as small as 10-20 nm in sizes. It should be noted that particles were mainly 

agglomerated. Because of small particle sizes, SEM analysis was performed at its limits 

of resolution. In order to reveal exact particle morphology, transmission electron 

microscopy (TEM) analysis should be used. However, small particle sizes of DHA 

obtained from SEM analysis was in accord with XRD results. XRD profile of DHA 

powder showed broad peaks indicative of either amorphous or nanocrystalline structure. 

Line broadening in XRD analysis was possibly the result of nanocrystals of the powder. 

 
 

 

 
Figure 6.71. SEM micrographs of DHA powder. 
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6.2.5. FTIR Analysis 

 
Fourier transform infrared radiation analysis was used to characterize the 

structures of hydroxyapatite powders. FTIR spectrum of the nano-sized hydroxyapatite 

powder prepared in this study is shown in Figure 6.72. 
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Figure 6.72. FTIR spectrum of DHA powder. 

 

 
Hydroxyapatite synthesized in this study (DHA) showed characteristic peaks 

due to the presence of PO4
3- ion (962 cm-1 for  v1, 473 cm-1 for v2, 1033 and 1087 cm-1 

for v3 and 563 and 603 cm-1 for v4) (Gibson and Bonfield, 2002; Padilla et al., 2008). 

The peaks observed at ca. 962 cm-1 and 473 cm-1 were due to v1-non degenerate P-O 

symmetric stretching mode and doubly degenerate v2 O-P-O bending mode, respectively 

(Liou et al., 2004). Peaks at ca. 1033 and 1087 cm-1 were attributed to triply degenerate 

v3 antisymmetric P-O stretching mode whereas the peaks at approximately 563 and 603 

cm-1 were the result of triply degenerate v4 O-P-O bending mode (Liou et al., 2004). 

Broad band observed at ca. 3432 cm-1 were assigned to the presence of absorbed water 

(Ye et al., 2009). Peaks observed nearly at 3571 and 632 cm-1 are reported to be the OH 
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stretching and liberation bands, respectively which are characteristic for hydroxyapatite 

(Ye et al., 2009). In our sample, these peaks observed at wavelengths of ca. 3568 cm-1 

and 634 cm-1. The band at 634 cm-1 was a shoulder instead of a peak. 

 FTIR analysis not only gives information on the presence of carbonate 

substitution but also provides the nature of carbonate substitution in hydroxyapatite 

lattice. Carbonate substitution in hydroxyapatite occurs in two sites, PO4
3- (B-type) and 

OH- sites (A type) (Gibson and Bonfield, 2002). Simultaneous substitution of phosphate 

and hydroxyl groups with carbonate yields AB-type carbonate substituted 

hydroxyapatite (Gibson and Bonfield, 2002). Substitution of carbonate into the lattice as 

well as the type of substitution has been determined by the presence and the positions of 

the carbonate bands in the FTIR spectra (Gibson and Bonfield, 2002; Padilla et al., 

2008; Li et al., 2008; Lafon et al., 2008). Peaks found at 1450, 1410 and 873 cm-1 are 

assigned to the peaks resulting from the B-type carbonate substitution (Landi et al., 

2004). Peaks at 1450, 1430 and 870 cm-1 were also reported for B-type carbonate 

substitution (Landi et al., 2003). On the other hand A-type substitution results in the 

generation of peaks at 1540, 1450 and 880 cm-1 (Landi et al., 2003). It should be noted 

that the peak observed at 1450 cm-1 is reported for both A- and B-type carbonate 

substitution. Additionally peak found at 866 cm-1 was assigned to the labile or absorbed 

carbonate (Padilla et al., 2008; Lafon et al., 2008).  

DHA sample showed peaks around 1420 and 1457 cm-1 which indicate the 

presence of B-type substitution. Additionally FTIR spectrum of the sample DHA 

showed noises between wavelengths of 1515 and 1578 cm-1. One of the A-type 

carbonate peaks which is observed at 1540 cm-1 lies within this region. However, our 

sample did not show any peaks at 1540 cm-1. Ratio of the intensities of the peaks 

observed at 880 and 873 cm-1 can be used to determine the ratio of A-type to B-type 

substitution (Gibson and Bonefield, 2002). Our sample had a single peak at 874 cm-1 

which can be assigned to B-type substitution. The presence of any peak at 880 cm-1 was 

not observed in the sample DHA. However wavelength of 880 cm-1 is present within the 

tail of the peak observed at 874 cm-1. There might be an overlap of these two peaks only 

if the absorbance at 880 cm-1 was very low when compared to that found at 874 cm-1. 

According to the carbonate bands observed, our sample was found to be B-type 

carbonate substituted apatite. This finding coincides with Ca/P ratio of the sample. 

Calcium to phosphate molar ratio of the sample was found to be the value greater than 

stoichiometric ratio of 1.67. This is possible only if carbonate substitutes the phosphate 
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groups in the sample. In FTIR spectrum of the sample DHA, double peaks were also 

observed at 2343 and 2359 cm-1. Bayraktar and Tas (2001) reported two peaks observed 

at 2368-2361 cm-1 as a combination of v2 and v3 CO3
2- bands. In the light of their study, 

peaks observed at 2343 and 2359 cm-1 in the FTIR spectrum of DHA were assigned to 

the presence of carbonate in the sample.  The peak present at 420 cm-1 could not be 

assigned to any functional group. One study however assigns the peak at 470-420 cm-1 

to the presence of PO4
3- ion (Pramanik et al., 2005).  

Although the presence of the peak at 873 cm-1 is attributed to the carbonate 

present in the sample, there are studies in which the peak observed at around 868, 874 

or 875 cm-1 was used as an indication of the presence of HPO4
2- in hydroxyapatite 

(Furuzono et al., 2000; Zhang et al., 2002; Kuriakose et al., 2004; Siddharthan et al., 

2004; Hutchens et al., 2006). The band observed at ca. 874 cm-1 is not only evidence for 

the presence of HPO4
2- ion. The peaks observed at 1421, 1458 cm-1 (Zhang et al., 2002), 

1094 cm-1 (Siddharthan et al., 2004), 530 cm-1 (Furuzono et al., 2000), and 1130 cm-1 

(Lin et al., 2001). Vibration peaks for HPO4
2- were also reported at 2900 cm-1 (v1), 988 

cm-1 (v2), 872 cm-1 (v3), 524 cm-1 (v4), 1212 cm-1 (v5) and 1054 cm-1 (v6) by Prabakaran 

and Rajeswari (2006). None of these peaks except those at 874 cm-1, 1420 cm-1 and 

1457 cm-1 were detected in FTIR spectra of the sample DHA. The presence of the peaks 

observed at 874 cm-1, 1420 cm-1 and 1457 cm-1 are used for the indication of B-type 

carbonate substitution of carbonate into hydroxyapatite structure.   

 Two more peaks were also observed for the sample DHA at 668 and 1385 cm-1. 

The peak found at 668 cm-1 was assigned to OH group (Nayak et al., 2010). van der 

Houwen et al. (2003) relates the bands observed in the range of 1300-1500 cm-1 to the 

presence of carbonate and/or hydrogen phosphate ion. They also report that the peak 

observed at 1385 cm-1 may be due to the presence of sodium or chloride ions in the 

sample. Similarly, Lafon et al. (2003) assigns the peak at 1384 cm-1 to the presence of 

nitrates coming from precursors used in the synthesis of the powders. The peak found at 

1385 cm-1 in FTIR profile of the sample DHA had a very low intensity suggesting that 

nitrate in the sample, if any, was in insignificant amount. 

FTIR spectrum of commercial hydroxyapatite powder (HA) is shown in Figure 

6.73.  Peaks generated due to the presence of phosphate ion were observed at 473, 565, 

602, 963 and 1065 cm-1. The peak observed at 1065 cm-1 was in fact a wide broad band 

observed between 1018 and 1122 cm-1 which includes two bands (ca. 1033 and 1087 

cm-1) assigned to triply degenerate v3 antisymmetric P-O stretching mode (Liou et al., 
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2004). Like the sample DHA, HA also exhibited a peak at 419 cm-1 and this peak was 

also attributed to the presence of PO4
3- ion (Pramanik et al., 2005). The broad band 

observed at 3446 cm-1 was assigned to the adsorbed water on the sample HA whereas 

bands observed at 3568 and 631 cm-1 were attributed to the structural hydroxyl groups 

found in the sample.  
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Figure 6.73 FTIR spectra of HA powder. 

 

 
Carbonate bands in the spectrum of HA were observed at 878, 1418, 1456 and 

2347 cm-1. Peaks observed at 1418 and 1456 cm-1 together with Ca/P ratio of the HA 

sample which was greater than stoichiometric ratio of 1.67 suggested that this powder is 

possibly B-type carbonated apatite. Two shoulders at ca. 2384 and 2306 cm-1 were also 

observed for this sample. These peaks were also assigned to a combination of v2 and v3 

CO3
2- bands (Bayraktar and Tas, 2001). 

However, the small peak observed at 878 cm-1 was between 880 and 870 cm-1 

which are generally used to discriminate between A- and B-type carbonate 

substitutions, respectively (Gibson and Bonefield, 2002). 
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A and B apatites are generally expressed as following formulas (Lafon et al., 

2008).  

 

A type:  Ca10(PO4)6(OH)2-2y(CO3)y             0 ≤ y ≤ 1 

B type:  Ca10-x(PO4)6-x(CO3)x(OH)2-x          0 ≤ x ≤ 1 

 

Here it should be stated that B-type carbonated apatite formula is given in a way 

that no other ion substitute calcium vacancies generated upon carbonate substitution 

into the lattice. When carbonate substitution is A-type where carbonate substitutes into 

hydroxyl groups Ca/P molar ratio does not deviate from the stoichimoetric value (1.67).  

Since B-type carbonate substitution is the substitution of PO4
3- ion with carbonate, Ca/P 

ratio becomes (10-x)/(6-x) where x ranges between 0 and 1. Ca/P molar ratio therefore 

ranges between 1.67 and 1.8.   

In FTIR spectrum of the sample HA, series of peaks with low intensities 

appearing as noises were also observed in the ranges of 1418-1578 cm-1 and 1627-1973 

cm-1. These peaks might be related to the presence of carbonate in the sample or to the 

absorbed carbondioxide on the sample. Another interesting feature was the occurrence 

of the weak peak at 3649 cm-1 with a very low intensity. This peak was assigned to 

stretching vibrations OH groups of Ca(OH)2 by Ślósarczyk et al. (2005). In their study 

this sample was treated at 1250 °C and contained calcium oxide.  

Additionally it was not possible to assign the peaks observed at 1339, 1647, 

1993, 2851, 2920 and 2970 cm-1 to the presence of any other groups. Summary of the 

FTIR peaks and their assignments according to the above stated literature are shown in 

Table 6.18. 
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Table 6.18. FTIR peaks of hydroxyapatite powders and their assignments 

Hydroxyapatite IR Peak Assignments and Wavenumbers (cm-1) 
DHA HA 

420 PO4
3- 

473 PO4
3- v2 

563 PO4
3- v4 

603 PO4
3- v4 

634 OH- 
668  
874 CO3

2- (B type) or HPO4
2- 

962 PO4
3-  

1033 PO4
3-  

1087 PO4
3- 

1385 (nitrates or CO3
2- or HPO4

-) 
1420 CO3

2- B type  
1457 CO3

2- B type 
1534-1576 
1636 
1992 
2343 CO3

2- 
2359 CO3

2-  
3432 OH-  
3568 OH-  
 

419 PO4
3- 

473 PO4
3- 

565 PO4
3- 

602 PO4
3- 

631 OH- 
 
878 CO3

2- (B type) or HPO4
2- 

963 PO4
3- 

1065 (1018-1122 wide peak) PO4
3- 

1339 
1418 CO3

2- B type 
1456 CO3

2- B type 
1647 
1993 
2384 CO3

2- 
2306 CO3

2- 
2347 CO3

2- 

2851 
2920 
2976 
3446 H2O 
3568 OH- 
3649 OH- 
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6.2.6. Calcium/ Phosphate Molar Ratios 

 
 Calcium phosphate molar ratios of the powders were calculated after dissolving 

powders in hydrochloric acid and diluting to analysis ranges with ultrapure water. 

Calcium and phosphate concentrations were determined by Arsenazo III calcium 

analysis and malachite green phosphate assay. Along with the hydroxyapatite powders, 

commercial CaHPO4 powder was used as reference. 

 Ca/P ratios of hydroxyapatite powders were found as 1.70 and 1.78 for HA and 

DHA powders respectively. Ca/P ratio of CaHPO4 was found as 1.01 which was exactly 

equal to the theoretical value of calcium to phosphorous molar ratio of CaHPO4. 

 

6.3. Dissolution Tests of Cold Isostatically Pressed Hydroxyapatite 
Pellets 

 

Preliminary dissolution experiments performed by equilibrating uniaxially pressed 

hydroxyapatite pellets showed that monitoring of low level calcium concentrations in 

dissolution media is somewhat problematic. We were able to analyze calcium 

concentrations during equilibrations in ultrapure water by ICP-MS. However, for the 

determination of low levels of calcium in solutions containing 142 mM NaCl by ICP-

MS was avoided due to the possibilities of interferences since carrier gas was argon and 

argon chloride formation in the presence of higher concentrations of chloride. It is well 

known that solutions with high solid contents are subject to spectroscopic and non-

spectroscopic interferences and orifice clogging (Chen and Jiang, 2002). Ar+ causes 

interferences for 40Ca+ in ICP-MS analysis (Chen and Jiang, 2002). ICP-AES was 

therefore used for analysis of calcium in 142 mM NaCl. However, dilution of sodium in 

the solutions is required to reduce sodium content to 20 ppm in the solutions. After 200 

times diluting the solutions in which sodium content was reduced to 15 ppm, calcium 

concentrations fell below the detection limit. After 50 times diluting the samples we 

were unable to detect calcium in the solutions. 

Due to the problems associated with the calcium determination in 142 mM NaCl 

solution, hydroxyapatite pellets were immersed in 142 mM NaCl for 2 days. Calcium 

contents of the pellets before and after dissolutions were determined by ICP-AES 

analysis. Only 2 % hydroxyapatite was dissolved in this solution. Since the 
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hydroxyapatite is stable in physiological and alkaline pH values, difference in calcium 

contents of the powders before and after dissolution will be low. 

 In order to determine dissolution behavior of hydroxyapatite in solutions which 

contain ions found in the blood plasma, a method which makes it possible to determine 

ppm levels of calcium in the presence of high concentrations of other ions was needed. 

After the modification of Arsenazo III method for 1 to 8 ppm calcium containing 

solutions and testing the interference of several ions on the calcium analysis, calcium 

concentrations in dissolution media were analyzed by Arsenazo III-calcium analysis. 

 Malachite green phosphate suitable for ppm levels of phosphate determination 

were also tested for the interferences of background ions in the phosphate 

determination. Phosphate contents of the dissolution media are then determined by 

malachite green phosphate assay. 

 In order to test the dissolution of hydroxyapatite powders, hydroxyapatite discs 

were produced by cold isostatic press. Table 6.19 shows properties of hydroxyapatite 

discs after cold isostatic pressing.  Pellets were found to be 51±2 % dense after isostatic 

pressing. Percent densification of DHA pellet upon isostatic pressing was calculated as 

53±1 % (Table 6.20). 

Two different hydroxyapatite powders, commercial hydroxyapatite (HA) and 

nano-sized hydroxyapatite synthesized in this study (DHA) were used in dissolution 

tests. Isostatically pressed HA and DHA pellets were immersed in different electrolytes. 

Advantage of the use of isostatically pressed discs is that they keep their integrities 

upon equilibration in dissolution media. All pellets prepared from commercial powder 

were kept intact during equlibration for 1 month. However, nano-sized hydroxyapatite 

powder was disintegrated into smaller parts but not into powdered form. 

Dissolution of commercial hydroxyapatite pellet were tested in carbon dioxide 

free ultrapure water, 142 mM NaCl, 27 mM NaHCO3, 115 mM NaCl & 27mM 

NaHCO3 and 1.5 mM MgCl2 solutions. Discs were also tested in ultrapure water and 

142 mM NaCl solutions in which dissolved carbon dioxide were not removed. 

Dissolution of nano-sized hydroxyapatite powder which was synthesized in this thesis 

was tested in ultrapure water, 142 mM NaCl, 27 mM NaHCO3 solutions.  

Throughout the dissolution, pH, conductivity, calcium and phosphate 

concentrations of dissolution media were measured. 
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Table 6.19. Properties of HA pellets obtained by cold isostatic pressing 

No Weight (g) D (mm) h (mm) Volume (cm3) Density (g/cm3)
Densification 

(%) 
Porosity (%) 

1 0.2173 9.08 1.82 0.12 1.84 58 42 
2 0.2381 9.08 2.40 0.16 1.53 48 52 
3 0.2244 9.07 2.09 0.14 1.66 53 47 
4 0.2284 9.09 2.16 0.14 1.63 52 48 
5 0.2388 9.06 2.30 0.15 1.61 51 49 
6 0.2148 9.15 2.05 0.13 1.59 50 50 
7 0.2269 9.13 2.11 0.14 1.64 52 48 
8 0.2343 9.02 2.21 0.14 1.66 53 47 
9 0.2199 9.11 2.11 0.14 1.60 51 49 
10 0.2331 9.10 2.19 0.14 1.64 52 48 
11 0.2407 8.98 2.30 0.15 1.65 52 48 
12 0.2203 9.16 2.15 0.14 1.55 49 51 
13 0.2360 9.07 2.24 0.14 1.63 52 48 
14 0.2234 9.11 2.11 0.14 1.62 51 49 
15 0.2378 9.04 2.24 0.14 1.65 52 48 
16 0.2207 9.10 2.18 0.14 1.56 49 51 
17 0.2279 9.13 2.19 0.14 1.59 50 50 
18 0.2278 9.13 2.21 0.14 1.57 50 50 

(Cont. on next page) 
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Table 6.19. (cont.) 

 
 
 
 

No Weight (g) D (mm) h (mm) Volume (cm3) Density (g/cm3)
Densification 

(%) 
Porosity (%) 

19 0.2313 9.08 2.25 0.15 1.59 50 50 
20 0.2271 9.13 2.22 0.15 1.56 49 51 
21 0.2366 9.01 2.29 0.15 1.62 51 49 
22 0.2394 9.07 2.30 0.15 1.61 51 49 
23 0.2270 9.04 2.16 0.14 1.64 52 48 
24 0.2352 9.07 2.28 0.15 1.60 51 49 
25 0.2357 9.08 2.25 0.15 1.62 51 49 
26 0.2247 9.12 2.26 0.15 1.52 48 52 
27 0.2421 9.05 2.30 0.15 1.64 52 48 
28 0.2349 9.02 2.29 0.15 1.61 51 49 
29 0.2390 9.02 2.31 0.15 1.62 51 49 
30 0.2339 9.05 2.24 0.14 1.62 51 49 

Average 0.2306 9.08 2.21 0.14 1.62 51 49 
Std.Dev. 0.0075 0.04 0.11 0.01 0.06 2 2 
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Table 6.20. Properties of DHA pellets obtained by cold isostatic pressing 

No Weight (g) D (mm) h (mm) Volume (cm3) Density (g/cm3)
 Densification 

(%) Porosity (%) 
1 0.2397 8.55 2.50 0.1435 1.67 53 47 
2 0.2398 8.49 2.45 0.1387 1.73 55 45 
3 0.2456 8.70 2.52 0.1498 1.64 52 48 
4 0.2416 8.61 2.50 0.1456 1.66 53 47 
5 0.2392 8.63 2.49 0.1457 1.64 53 48 
6 0.2432 8.52 2.48 0.1414 1.72 54 46 
7 0.2430 8.59 2.51 0.1455 1.67 53 47 
8 0.2444 8.58 2.44 0.1411 1.73 55 45 
9 0.2396 8.60 2.51 0.1458 1.64 52 48 
10 0.2441 8.65 2.44 0.1434 1.70 54 46 
11 0.2364 8.68 2.38 0.1408 1.68 53 47 
12 0.2402 8.55 2.46 0.1412 1.70 54 46 
13 0.2421 8.62 2.54 0.1482 1.63 52 48 
14 0.2363 8.63 2.46 0.1439 1.64 52 48 
15 0.2461 8.63 2.51 0.1468 1.68 53 47 
16 0.2401 8.63 2.46 0.1439 1.67 53 47 
17 0.2418 8.51 2.48 0.1411 1.71 54 46 
18 0.2394 8.63 2.47 0.1445 1.66 52 48 

(Cont. on next page) 
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Table 6.20. (cont.) 

No Weight (g) D (mm) h (mm) Volume (cm3) Density (g/cm3)
 Densification 

(%) Porosity (%) 
19 0.2397 8.68 2.48 0.1468 1.63 52 48 
20 0.2399 8.54 2.54 0.1455 1.65 52 48 
21 0.2434 8.59 2.57 0.1489 1.63 52 48 
22 0.2386 8.55 2.47 0.1418 1.68 53 47 
23 0.2405 8.56 2.55 0.1467 1.64 52 48 
24 0.2398 8.55 2.48 0.1424 1.68 53 47 
25 0.2430 8.70 2.46 0.1462 1.66 53 47 
26 0.2401 8.62 2.49 0.1453 1.65 52 48 
27 0.2400 8.57 2.40 0.1384 1.73 55 45 
28 0.2403 8.58 2.43 0.1405 1.71 54 46 
29 0.2398 8.64 2.46 0.1442 1.66 53 47 
30 0.2423 8.53 2.52 0.1440 1.68 53 47 
31 0.2409 8.53 2.50 0.1429 1.69 53 47 
32 0.2462 8.51 2.55 0.1450 1.70 54 46 
33 0.2386 8.55 2.48 0.1424 1.68 53 47 
34 0.2429 8.51 2.50 0.1422 1.71 54 46 

Average 0.2411 8.59 2.48 0.1439 1.6757 53 47 
Std.Dev. 0.0024 0.0577 0.0417 0.0027 0.0306 1 1 192 
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Conductivity and pH changes during dissolution: 

 

 Changes in pH values of the dissolution media together with calcium and 

phosphate release were monitored in order to predict their dissolution behavior of 

hydroxyapatite pellets. Due to the problem of stabilization of pH during measurements, 

pH values of the dissolution media were measured at 25 °C after the removal of 

hydroxyapatite pellets from the dissolution media. Figure 6.74 shows variation of pH 

with time during immersion of hydroxyapatite pellets in ultrapure water and 142 mM 

NaCl which were not exposed to dissolved carbon dioxide removal together with 27 

mM NaHCO3 solution. Because of the difficulties associated with pH measurement of 

ultrapure water, initial pH values could not be measured.  However at the end of 3 hours 

equilibration pH was found to be 6.37. During incubation pH reaches to 7.27 and stays 

constant thereafter. Initial pH value of 142 mM NaCl was 6.09 however after 24 hour it 

reaches to 7.08. pH was measured as 7.27 after 336 hours incubation. Initial pH of the 

bicarbonate solution was 8.72. Slight decrease was observed after 1 hour equilibration. 

At the end of 336 hours pH was measured as 8.63.  
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Figure 6.74. Time dependent pH changes during dissolution of HA pellets in ultrapure 

water, 142 mM NaCl and 27 mM NaHCO3. 
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 When hydroxyapatite pellets were immersed in CO2 free ultrapure water, pH 

reached to 7.01 at the end of 720 hours (Figure 6.75). During equilibration in CO2 free 

142 mM NaCl, pH increases from 5.86 to 7.25. Similar behavior was also observed for 

DHA pellets immersed in CO2 free ultrapure water and CO2 free 142 mM NaCl. pH 

values was 7.31 and 7.27 for 142 mM NaCl and ultrapure water, respectively after 720 

hours. During the dissolution of DHA in 27 mM NaHCO3, initial pH increased slightly 

during hours of incubation then stayed almost constant (Figure 6.76). 

 Since conductivites of the solutions is directly related to total dissolved solids in 

dissolution media, conductivity measurements may be useful for the determination of 

dissolution behaviors of the powders. However, conductivities measured during 

dissolution were only useful for the monitoring dissolution in ultrapure water.  

According to the conductivity measurements, solution ionic strength reaches maximum 

after 96 hours during incubation of HA pellets in ultrapure water (Figure 6.77). 

However it was not possible to determine conductivity changes in 142 mM NaCl and 27 

mM NaHCO3 since these solutions already had considerably higher amounts of 

background ions (Figure 6.78). 
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Figure  6.75. Time dependent pH changes during dissolution of HA and DHA pellets in 

CO2 free ultrapure water, CO2 free 142 mM NaCl and 27 mM NaHCO3. 
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Figure 6.76. Time dependent pH changes during dissolution of DHA pellets in 27 mM 

NaHCO3 and HA pellets in 115 mM NaCl and 27 mM NaHCO3 containing 
solution. 
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Figure 6.77. Conductivities of the solutions during HA dissolution in ultrapure water. 
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Figure 6.78. Conductivities of the solutions during HA dissolution in 142 mM NaCl and 

27 mM NaHCO3. 
 

 

When dissolution of HA and DHA pellets were immersed in CO2 free ultrapure 

water, conductivities showed that HA and DHA reaches equilibrium after 192 and 96 

hours, respectively (Figure 6.79). Conductivities of the CO2 free 142 mM NaCl during 

DHA and HA dissolution and conductivities of 27 mM NaHCO3 during DHA 

dissolution stayed constant (Figure 6.80). 
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Figure 6.79. Conductivities of the solutions during HA and DHA dissolution in CO2 

free ultrapure water.  
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Figure 6.80. Conductivities of solutions during dissolution of HA and DHA pellets in 

CO2 free 142 mM NaCl and 27 mM NaHCO3 solutions.  
 
 
 
 Conductivity values of equilibration solutions during HA dissolution in CO2 free 

1.5 mM MgCl2 showed that it is possible to monitor dissolution of HA although 1.5 mM 

MgCl2 solution itself had a conductivity of 324 μS/cm (Figure 6.81). Equilibrium was 

reached fater 48 hours during dissolution of HA in 1.5 mM MgCl2. 

 

Dissolution in ultrapure water: 

  

 Calcium release from hydroxyapatite pellets immersed in ultrapure water in 

which dissolved carbon dioxide was not removed is shown in Figure 6.82. Calcium 

release was rapid in 8 hours dissolution. The highest concentration obtained after 48 

hours dissolution was possibly due to the contamination of the sample taken. This point 

was therefore excluded in discussions. Calcium concentration in ultrapure water reaches 

saturation almost at 5.73 mg/L. 
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Figure 6.81. Conductivities of solutions during dissolution of HA in CO2 free 1.5 mM 

MgCl2. 
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Figure 6.82. Calcium release profile upon dissolution of HA pellets in ultrapure water in 

which dissolved carbon dioxide was not removed. 
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Hydroxyapatite pellets immersed in carbon dioxide free ultrapure water 

exhibited similar dissolution trend obtained in ultrapure water whose dissolved carbon 

dioxide was not removed (Figure 6.83). Dissolution was faster until the end of 48 hours. 

Maximum calcium concentration was found at the end of 96 h as 6.35 mg/L. Calcium 

concentration was decreased gradually after 96 hours. At the end of 30 days, calcium 

concentration was found as 5.35 mg/L. 

When nano-sized hydroxyapatite powder was equilibrated in CO2 free ultrapure 

water, similar to HA in ultrapure water, calcium release rate was higher at the initial 

stages of dissolution (Figure 6.84). Highest calcium concentration, 6.08 mg/L, in the 

solutions was found after 192 hours. However, calcium concentration found after 96 

hour incubation was 5.90 mg/L, almost similar to that found after 192 hours. This shows 

that calcium in the solution reaches equilibrium after 96 hours. 
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Figure 6.83. Calcium release profile upon dissolution of HA pellets in carbon dioxide 

free ultrapure water.  
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Figure 6.84. Calcium release profile upon dissolution of DHA pellets in carbon dioxide 

free ultrapure water.  
 

 

 When phosphate concentrations of the dissolution media were monitored during 

the dissolution of HA in ultrapure water whose dissolved carbon dioxide had not 

removed, maximum phosphate concentration was obtained at the end of 48 hours 

incubation (Figure 6.85). It was found as 5.34 mg/L. After 48 hours, reduction in 

phosphate concentration was observed. At the end of 14 days, phosphate concentration 

was reduced to 3.12 mg/L. If CO2 free ultrapure water was used, maximum phosphate 

concentration was found at the end of 96 hours (Figure 6.86). Maximum phosphate 

concentration found in CO2 free ultrapure water (3.90 mg/L) was lower than that found 

in ultrapure water which did not expose to degassing to remove carbon dioxide.  

Reduction of phosphate concentration was observed in further dissolution in CO2 free 

ultrapure water. Phosphate concentrations after 360 hours and 720 hours were 3.07 and 

2.17 mg/L, respectively.   

Like HA dissolution in ultrapure water, DHA dissolution in CO2 free ultrapure 

water showed the highest phosphate concentration after 96 hours equilibration (Figure 

6.87). However, maximum phosphate concentration obtained was found as 2.27 mg/L 

during DHA dissolution. This was lower than that obtained in HA dissolution in CO2 

free ultrapure water. Upon further dissolution in ultrapure water, phosphate 

concentrations in dissolution media were reduced. At the end of 1 month phosphate 

concentration was measured as 0.74 mg/L. 
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Figure 6.85. Phosphate concentrations in solutions upon dissolution of HA pellets in 

ultrapure water in which dissolved carbon dioxide was not removed. 
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Figure 6.86. Phosphate concentrations in solutions upon dissolution of HA pellets in 

CO2 free ultrapure water.  
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Figure 6.87. Phosphate concentrations in solutions upon dissolution of DHA pellets in 

CO2 free ultrapure water.  
 
 
 During dissolution of HA and DHA powders, maximum concentrations obtained 

were taken as equilibrium concentrations since reductions in concentrations is either be 

linked to precipitation of new phases or adsorption of ions on the surfaces of powders. 

 When HA dissolution in both ultrapure water and CO2 free ultrapure water was 

compared, equilibrium calcium concentrations were 5.83 and 6.35 mg/L for ultrapure 

water and CO2 free ultrapure water, respectively. During DHA dissolution in CO2 free 

ultrapure water equilibrium calcium concentration was found as 5.90 mg/L. These 

values were almost closer to each other. According to equilibrium calcium 

concentrations, HA dissolution in ultrapure water and CO2 free ultrapure water and HA 

dissolution and DHA dissolution in CO2 free ultrapure water were similar.  

 In contrast to equilibrium calcium concentrations, phosphate release from 

powders was different.  Equilibrium phosphate concentration in HA dissolution in 

ultrapure water was attained after 48 hours and found to be 5.34 mg/L. This was 

reduced to 4.37 mg/L after 96 hours. In both HA and DHA dissolution in CO2 free 

ultrapure water, equilibrium was attained after 96 hours and equilibrium phosphate 

concentrations were 3.90 mg/L and 2.27 mg/L, respectively.  Equilibrium phosphate 

concentration was the lowest in DHA dissolution.  
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Dissolution in 142 mM NaCl 

 

 Calcium release kinetics from HA pellets in 142 mM NaCl solution which was 

not subjected to CO2 removal procedure showed that equilibrium was reached after 96 

hours (Figure 6.88). Equilibrium calcium concentration was 10.52 mg/L. Calcium 

concentration in solutions were almost kept constant after 96 hours. When HA pellets 

were immersed in CO2 free 142 mM NaCl solution, equilibrium was again attained after 

96 hours (Figure 6.89). Equilibrium calcium concentration found as 10.82 mg/L was 

almost the same found in 142 mM NaCl in which dissolved carbon dioxide was not 

removed.  However, by further dissolution in CO2 free media, calcium concentration 

was slightly reduced to 9.48 mg/L at the end of 1 month incubation period.  

In contrast to HA equilibrated in 142 mM NaCl solutions, DHA pellets 

incubated in CO2 free 142 mM NaCl released more calcium into the solutions. 

Equilibrium was obtained after 15 days but values found after 96, 192 hours and 15 

days were closer to each other (Figure 6.90). Equilibrium calcium concentration was 

found as 14.32 mg/L in this case. This shows that DHA release more calcium in 142 

mM NaCl solution when compared to HA. Contrary to HA equilibrated in CO2 free 142 

mM NaCl solution, calcium concentration almost stayed constant until the end of 

equilibration. 
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Figure 6.88. Calcium release from HA pellets in 142 mM NaCl in which dissolved 

carbon dioxide was not removed. 
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Phosphate release from HA pellets immersed in 142 mM NaCl in which 

dissolved carbon dioxide was not removed showed that phosphate release was faster 

until 24 hours. Release rate was reduced thereafter and highest phosphate concentration 

in solutions was found as 8.52 mg/L at the end of 96 hours incubation period. It seems 

that equilibrium was reached after 96 hours (Figure 6.91). However, phosphate 

concentration found at 48 hours (8.35 mg/L) was almost closer to 8.52 mg/L which was 

obtained at the end of 96 hours. When dissolved carbon dioxide was removed from the 

solution before incubation, equilibrium is attained after 48 hours (6.92). The equilibrium 

phosphate concentration was found to be 8.08 mg/L in this case. Phosphate was released 

rapidly in 24 hours, the release rate was reduced. After 48 hours, phosphate 

concentration started to decrease. At the end of 1 month, phosphate concentration was 

found as 5.49 mg/L. 

Phosphate release from DHA pellets in CO2 free 142 mM NaCl solution was 

different than HA immersed in CO2 free 142 mM NaCl. Release was faster in 8 hours 

dissolution (Figure 6.93). It slows down thereafter and phosphate concentration reaches 

the maximum at the end of 24 hours (3.21 mg/L). However after 24 hour incubation, 

phosphate concentration begins to decrease. By the end of 96 hours, concentration 

almost stays constant. Phosphate concentration at the end of 360 hours was measured to 

be 2.38 mg/L. After 360 hours, slight increase was observed and concentration was 

increased to 2.89 mg/L. 
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Figure 6.89. Calcium release from HA pellets in CO2 free 142 mM NaCl. 
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Figure 6.90. Calcium release from DHA pellets in CO2 free 142 mM NaCl. 
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Figure 6.91. Phosphate release from HA pellets in 142 mM NaCl in which dissolved 

carbon dioxide was not removed. 
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Figure 6.92. Phosphate release from HA pellets in CO2 free 142 mM NaCl. 
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Figure 6.93. Phosphate release from DHA pellets in CO2 free 142 mM NaCl. 
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Dissolution in 27 mM NaHCO3 

 

When HA pellets were immersed in 27 mM NaHCO3, calcium concentrations 

were lower than 1 ppm (Figure 6.94). Calcium release from HA in bicarbonate solution 

was very low in comparison with pellets immersed in both ultrapure water and 142 mM 

NaCl solutions.  

 Lower calcium concentrations found in 27 mM NaHCO3 solutions are in good 

agreement with the fact lower solubility of hydroxyapatite in alkaline pH values. 

Although lower calcium release, gradual reduction in calcium concentrations after 24 

hour was observed. At the end of 336 hours, calcium concentration was found to be 0.23 

mg/L.    

 Calcium release profile from DHA pellets in bicarbonate solution was almost 

similar to HA. Calcium concentrations in the solutions were lower than 1 ppm also in 

this case (Figure 6.95). However maximum calcium concentration was found after 48 

hours. Highest calcium concentration was found to be 0.53 mg/L almost equal to that 

found when HA pellets were immersed in bicarbonate solution (0.57 mg/L). After 48 

hours, calcium concentration stared to decrease. This decrease was continued until 360 

hours and stayed constant after 360 hours.  

 The use of equilibrium calcium concentration as a measure of the solubility of 

hydroxyapatite results in misinterpretations. When phosphate release from 

hydroxyapatite pellets immersed in 27 mM NaHCO3 was determined (Figure 6.96), 

phosphate concentration in solutions showed continuous increase. Even at the end of 

336 hours, solutions did not reach equilibrium. At the end of 336 hours, phosphate 

concentration was found to be 32.45 mg/L. Phosphate release from DHA pellets in 

bicarbonate solution showed similar trend like HA pellets (Figure 6.97). At the end of 

360 hours phosphate concentration was found to be 42.03 mg/L whereas it was found 

50.65 mg/L after 720 hours. 

 Lower calcium concentrations and reduction of calcium after a certain time in 

bicarbonate solution which have alkaline pH is reasonable because calcium carbonate 

precipitation is highly probable in calcium and carbonate containing solutions at high 

pH values. Calcium adsorption may occur on negative charged surface. High phosphate 

release when calcium release was low in fact suggests ion exchange between phosphate 

ions of hydroxyapatite and carbonate in the solution.    
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Figure 6.94. Calcium release from HA pellets in 27 mM NaHCO3. 
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Figure 6.95. Calcium release from DHA pellets in 27 mM NaHCO3. 
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Figure 6.96. Phosphate release from HA pellets in 27 mM NaHCO3. 
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Figure 6.97. Phosphate release from DHA pellets in 27 mM NaHCO3. 

 
 
 



 210

Dissolution in 115 mM NaCl and 27 mM NaHCO3 

  

 Dissolution of HA in 115 mM NaCl and 27 mM NaHCO3 containing solution 

exhibited similar behavior observed in 27 mM NaHCO3 (Figure 6.98). Calcium 

concentrations in the solutions were very low when compared to dissolution in ultrapure 

water and 142 mM NaCl. Maximum concentration in the solutions was measured as 

1.10 mg/L at the end of 24 hours. Decrease in calcium in the solutions was observed 

thereafter. It suggests that either calcium carbonate precipitation or calcium adsorption 

onto the surface hydroxyapatite occurs in 115 mM NaCl and 27 mM NaHCO3 

containing solution. 

 In contrast to calcium release, phosphate release was higher and phosphate 

concentration in the solution did not reach equilibrium in 115 mM NaCl and 27 mM 

NaHCO3 containing electrolyte (Figure 6.99) although phosphate concentration at the 

end of 720 hours was 29.83 mg/L. This showed that ion exchange between phosphate 

groups of hydroxyapatite and carbonate in the solution were also observed 115 mM 

NaCl and 27 mM NaHCO3 solution. The highest phosphate concentration in 115 mM 

NaCl and 27 mM NaHCO3 containing solution was obtained after 720 hours. However 

this value was lower than phosphate concentration in 27 mM NaHCO3 measured after 

336 hours. This suggests that the presence of sodium chloride slows down the phosphate 

carbonate exchange kinetics. 
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Figure 6.98. Calcium release from HA pellets in 115 mM NaCl and 27 mM NaHCO3 

containing solution. 
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Figure 6.99. Phosphate release from HA pellets in 115 mM NaCl and 27 mM NaHCO3 

containing solution. 
 
 

Dissolution in 1.5 mM MgCl2·6H2O 

 
 Magnesium is a well known inhibitor of hydroxyapatite crystallization. When 

only magnesium was present in physiological concentrations in unbuffered solutions, 

HA pellets released calcium into solutions continuously and equilibrium was not 

reached even after 720 hours (Figure 6.100).  Calcium concentration found at the end of 

720 hours was 14.65 mg/L. 

 Although calcium concentration in the solutions increased with an increase in 

time, phosphate release was different than that calcium release (Figure 6.101). 

Phosphate concentration in the solutions reached its maximum value at the end of 96 

hours. Phosphate concentration at this point was found to be 4.05 mg/L. After this point, 

decrease in the phosphate concentrations was observed. Phosphate concentration at the 

end of 720 hours was found to be 2.24 mg/L. Higher calcium levels in the solutions 

suggested that ion exchange between calcium and magnesium occurs during 

equilibration in magnesium containing solution. However reduction in phosphate 

concentration after 96 hours suggested that phosphate adsorption on hydroxyapatite may 

likely to occur. 
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Figure 6.100. Calcium release from HA pellets in CO2 free 1.5 mM MgCl2. 
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Figure 6.101. Phosphate release from HA pellets in CO2 free 1.5 mM MgCl2. 
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CHAPTER 7 

 

CONCLUSION  

 
 The aim of this study was to determine the dissolution behavior of 

hydroxyapatite in different electrolytical solutions.  Hydroxyapatite is the most stable 

calcium phosphate compound in solutions with neutral and alkaline pH values because 

its solubility at or above physiological pH is very low. Monitoring the calcium and 

phosphate release from the hydroxyapatite is important in order to understand time 

dependent changes in the solutions upon dissolution of hydroxyapatite. However, the 

low solubility of the hydroxyapatite makes it difficult to analyse calcium and phosphate 

concentrations in the solutions since they are in ppm level. In preliminary experiments, 

ICP analysis was chosen for the determination of calcium in dissolution media. The 

presence of 142 mM Na in the dissolution media required the dilutions to reduce sodium 

to acceptable levels. This caused calcium to fall below the detection limit. Presence of 

counter ion (Cl) made the use of ICP-MS impossible due to the possible interferences 

arising from high chloride concentration in the system.  

A method suitable for the low level calcium determination especially in the 

presence of high concentrations of background matrix components is therefore needed. 

Arsenazo III dye based calcium assay was chosen for the calcium analysis in this study. 

This method has been widely used in serum and plasma calcium determinations. In 

these determinations, samples are diluted with dye reagents in 1:100 sample to dye 

volumetric ratios. Since the calcium concentration in plasma equals to 100 mg/L, 

dilution reduces the calcium concentration to 1 mg/L level. By this method, 100 mg/L 

calcium in the solutions can be analyzed. Since dilution is performed, concentration of 

other ions found in plasma reduces 100 folds. For these reason it was essential to 

modify Arsenazo III calcium analysis methods for 0.25-2 ppm and 1-8 ppm solution 

calcium levels.   

Among all Arsenazo III and buffer concentrations and pH values tested 200 µM 

Arsenazo III in 200 mM imidazole-Cl buffer pH 6.5 reagent was found suitable for the 

determination of 1 to 8 mg/L calcium in the solutions. By using this reagent the effects 

of the presence of 142 mM NaCl, 27 mM NaHCO3, 115 mM NaCl and 27 mM 
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NaHCO3, 1.5 mM MgCl2, 1 mM Na2HPO4, 1 and 10 mM H3PO4, 5 mM KCl and 0.5 

mM Na2SO4 on the calcium determination were then evaluated.  

 Determination of phosphate released from hydroxyapatite was performed by 

using malachite green phosphate assay. It was possible to analyze phosphate in 

solutions when phosphate concentration was in the range of 0.25-1.75 ppm. Phosphate 

standard solutions in this concentration range was prepared in different electrolyte 

solutions (142 mM NaCl, 115 mM NaCl and 27 mM NaHCO3 containing solution, 27 

mM NaHCO3, 2.5 mM CaCl2, 1.5 mM MgCl2, 0.5 mM Na2SO4, 5 mM KCl, SBFA and 

SBFB solutions). The interferences due the presence of higher amounts of background 

electrolytes on phosphate determination were evaluated.   

 Dissolution of hydroxyapatite pellets produced from powder synthesized in this 

study and commercial hydroxyapatite powder were determined by measuring calcium 

and phosphate concentrations in the solutions.  Calibration curves obtained in the 

presence of background ions were used to correct interferences due the background 

matrices. Dissolution behaviors of powders in ultrapure water and 142 mM NaCl were 

different with respect to calcium and phosphate concentrations indicating the presence 

of more than one mechanism in the system. Adsorption of ions onto the surfaces, 

precipitation of several phases or ion exchanges may simultaneously occur during 

dissolution in different electrolytical solutions. During equilibration of powders in 

bicarbonate containing solutions, calcium concentrations lower than 1 mg/L and high 

phosphate concentrations indicated that ion exchange between solution bicarbonate ions 

and hydroxyapatite phosphate ions. Equilibration of commercial hydroxyapatite powder 

in 1.5 mM MgCl2 showed continous calcium release. Since magnesium is a well-known 

crystallization inhibitor, precipitation of calcium phosphates was possibly avoided. 

However, low phosphate levels and higher calcium concentration showed that 

phosphate ions adsorb on the surface of hydroxyapatite and solution magnesium ions 

exchanges with calcium ions in hydroxyapatite. 

 Because great efforts were spent for the modification of calcium analysis 

method and for testing the interferences due to the presence of higher amounts of 

electrolytes, dissolution testing was restricted to major electrolye solutions. Further 

studies can be the dissolution testing of the powders in 2.5 mM CaCl2, 1.5 mM, 0.5 mM 

Na2SO4, 5 mM KCl, SBFA and SBFB solutions and in acidic solutions. Different 

simulated body fluids can also be used to determine the dissolution behavior of 

hydroxyapatite powders. Solutions containing higher amounts of phosphate and calcium 
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can be selected to determine the effects of undersaturation on the dissolution testing of 

the powders. Additionally, the effects of proteins found in blood and of the proteins 

involved in bone metabolism on the dissolution of hydroxyapatite can be determined by 

the addition of such proteins in dissolution media. Along with batch dissolution tests, 

surface potential measurements and potentiometric titrations can provide useful data for 

understanding the mechanisms responsible for bone turnover in normal and disease 

states. Such data will also be useful for the synthesis of calcium phosphate phases by 

wet chemical methods. 
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APPENDIX A 

 

CALCIUM REMOVAL FROM ARSENAZO III DYE 

SOLUTIONS 

 
 Throughout this study two 1 mM Arsenazo III stock solutions were used. Each 

solution was subjected to calcium removal before use. They are referred as solution 1 

and solution 2. Calcium removal from Arsenazo III stock solutions is as follows: 

 Arsenazo III dye solution was prepared by weighing 0.7762 g Arsenazo III and 

dissolving in ultrapure water by stirring on a magnetic stirrer in a 1 liter polypropylene 

bottle. The volume of the solution was adjusted to 1 liter and mixed thoroughly. Dye 

solution was then filtered through Filtrak filter paper grade 288 into a new 1 liter 

capacity polypropylene bottle. 

 Calcium initially present in Arsenazo III dye was purified as suggested by Vogel 

et al. (1983) with some modifications. Approximately 15 g Dowex® 50Wx4-100 was 

equilibrated in nearly 40 mL ultrapure water for 3 days. A polypropylene column 

(Di≈16 mm, DO≈ 20 mm and L≈200 mm) was used to purify Arsenazo III solution. 

Glass wool was placed at the bottom of the column. Ion exchange resin was then packed 

into the column by the help of ultrapure water. Glass wool was also placed above the 

resin. Height of the resin packed into the column was approximately 10.4 cm. A 

peristaltic pump (Perista Pump SJ1211, BioInstrument ATTO) with a piping was 

connected to the entrance of the column. A pipe was also connected to the exit of the 

column and a clamp was attached to the exiting pipe to stop the flow. Prior the feeding 

of Arsenazo III dye into the column, 1 liter of 0.1 M HCl was used to regenerate the ion 

exchange resin. Initial and exit flow rate of the solutions was determined by measuring 

the time necessary to pump 10 mL of the solutions. Initial and exit volumetric flow rates 

were therefore found as 0.26 mL/s and 0.25 mL/s, respectively during the purification 

of solution 1. When solution 2 was purified, initial and exit volumetric flow rates were 

0.18 mL/s and 0.16 mL/s, respectively. 

 After passing the HCl solution through the column, column was washed with 

500 mL ultrapure water. Ultrapure water was removed from the column by passing air 

through the column. At this step, special care was taken to avoid the resin to get dry.   
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 The ion exchange system used in the removal of calcium from the Arsenazo III 

dye solution is shown in Figure A.1. 

 After regeneration and washing of the resin, Arsenazo III dye solution was fed 

into the column and purified dye was collected at the bottom of the column into a 1 liter 

polypropylene bottle. At five minutes intervals, flow of the solution was stopped and 

samples for pH measurement were taken into 15 mL plastic centrifuge tubes by starting 

the flow of the solution again. After taking the samples for pH measurements, flow of 

the solution was started to collect the purified dye solution. At the end of purification of 

the dye solution, pH values of the samples were measured by pH meter (Metrohm 744). 

Samples for the pH measurements were added into the purified dye solutions. Finally, 

pH value of the purified reagent was also measured. Purified solution was transferred 

into a 1 liter polypropylene volumetric flask by polypropylene beaker and volume was 

adjusted into 1 liter by ultrapure water. After mixing well, solution was transferred into 

1 liter polypropylene bottle. In order to avoid the contamination to the whole purified 

solution, aliquot from the purified reagent was taken into 100 mL polypropylene bottle 

and used as working solution. Solutions was protected from the light by wrapping 

aluminum foil around the bottle and kept at 4 °C.  
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Figure A.1. Cation exchange column chromatography system used to purify Arsenazo 

..III dye a. front view, b. side view. 
  

 

 

  

 

a 

b 
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     APPENDIX B 

 

DETERMINATION OF ARSENAZO III 

CONCENTRATION IN PURIFIED SOLUTIONS 

 
 Concentration of Arsenazo III in the purified solution was determined according 

to Minganti et al. (1983). Concentration of the Arsenazo III in the purified reagent was 

determined from the molar extinction coefficient by recording the absorbencies of the 

dye solutions prepared in concentrated sulfuric acid at 675 nm. For this reason, five 

different solutions of Arsenazo III dye were prepared in concentrated sulfuric acid in 

triplicate except for the solutions one (six parallels) (Table B.1). 

 Five hundred, 250 and 125 µL of Arsenazo III dye were transferred into 25 mL 

glass capacity glass volumetric flasks. Concentrated sulfuric acid was then added into 

the flasks. Solutions were left to cool down to room temperature. Finally, volumes of 

the solutions were adjusted to 25 mL by concentrated sulfuric acid and all the solutions 

were mixed well.  

 Additionally, 500, 250, 125 µL of purified Arsenazo III solution were added into 

25 mL capacity glass volumetric flasks. 250 µL and 125 µL of ultrapure water were 

added into 250 µL and 125 µL Arsenazo III containing flasks, respectively. 

Concentrated sulfuric acid was then added in the flasks and solutions were left to cool 

down to room temperature. Volumes were then brought to 25 mL by the addition of 

concentrated sulfuric acids. After volume adjustments, solutions were mixed well. 

 

 

Table B.1 Solutions prepared for the determination of Arsenazo III concentration 
                 in solution 1 

No 
Volume of 

Arsenazo III 
(µL) 

Volume of 
Ultrapure Water

(µL) 

Final Volume 
Adjusted by 
concentrated 

sulfuric acid (mL) 

Replicate 

1 500 - 25 6 
2 250 - 25 3 
3 125 - 25 3 
5 250 250 25 3 
6 125 375 25 3 
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 Absorbances of the solutions at 675 nm were measured in a UV-Visible 

spectrophotometer (Perkin Elmer, Precisely, Lambda 25) vs. ultrapure water by using 

quartz cuvettes having 1 cm pathlength at 25 °C. First of all, instrument was autozeroed 

by ultrapure water both in reference and sample cells by using quartz cuvettes. One 

cuvette containing ultrapure water was then blanked against the other cuvette containing 

ultrapure water. Absorbencies of the samples (three samples from each 25 mL solution) 

were recorded against ultrapure water. Specifications of the absorbance analysis of 

Arsenazo III in sulfuric acid solutions are given as follows. 

  

 Specifications of absorbance measurements: 

  Wavelength (λ): 675 nm 

  Slit: 1 nm 

  Respone: 2s 

  Peltier: 25 °C 

  Cuvettes: Quartz cuvettes with 1 cm pathlength 

 

 Additionally, spectra of the representative solutions were measured against 

ultrapure water in UV-Visible spectrophotometer (Perkin Elmer, Precisely, Lambda 25) 

quartz cuvettes having 1 cm pathlength at 25 °C. Instrument was autozeroed by 

ultrapure water both in reference and sample cells. Ultrapure water in reference cell was 

then blanked by ultrapure water in sample cell. Spectra of the solutions were recorded 

vs. ultrapure water.  

 

 Specifications of the spectrum scanning: 

  Start Wavelength (λ): 700 nm 

  End Wavelength (λ): 400 nm 

  Data Interval: 5 nm 

  Slit: 1 nm 

  Scan Speed: 240 nm/min 

  Peltier: 25 °C 
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 When solution 2 was purified, determination of Arsenazo III concentration in 

was performed by transferring 500 microliters of Arsenazo III into 25 mL glass 

volumetric flasks (6 replicates). Concentrated sulfuric acid was then added into the 

flasks and solutions were were left to cool down to room temperature. After the 

solutions were cooled, volumes were adjusted to 25 mL by concentrated sulfuric acid. 

Solutions were mixed thoroughly.  

 Absorbances of the solutions were measured in Multiskan® Spectrum 

microplate and cuvette reader (Thermo Electron Corp., Finland) in 1 cm quartz cells at 

25 °C. Instruments was zeroed first by two empty quartz cuvettes and then by ultrapure 

water both in reference and sample quartz cuvetes. Absorbances of three samples from 

each replicate were recorded against ultrapure water at 675 nm.    
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     APPENDIX C 

 

PREPARATION OF ARSENAZO III REAGENTS TO BE 

USED IN CALCIUM ANALYSIS 

 
 Different buffers, different pH values, various Arsenazo III concentrations were 

tested for the construction of linear calibration curves for three different ranges of 

calcium concentrations (0.25-2 ppm, 1-8 ppm and 10-80 ppm calcium). Three different 

buffers, imidazole-Cl, acetate and formate buffers were used in the calcium analysis by 

Arsenazo III method. 

 

Arsenazo III in Acetate Buffer  

 
 Two different solutions Arsenazo III solutions; one having 60 µM and the other 

containing 120 µM Arsenazo III, in 100 mM acetate buffer were prepared.  

 

60 µM Arsenazo III & 100 mM Acetate Buffer pH 5.4: 

 

 Forty two point three milliliters 0.2 M sodium acetate was added into a 100 mL 

polypropylene bottle. To this solution, 5 mL 0.2 M acetic acid solution was added. 

Seven point five milliliters from purified Arsenazo III solution was transferred into the 

solution and 25 mL ultrapure water then added.  Solution was mixed and kept at 25 °C 

without shaking in a shaking incubator. After keeping the solution at 25 °C, it was 

mixed by stirring on a magnetic stirrer and pH of the solution was recorded by stopping 

the stirring.  2.7 mL 0.2 M acetic acid was then added into the solution to adjust pH to 

5.4. Solution was then transferred into a 100 mL polypropylene volumetric flask. 

Residue left on the pH meter probe and in the bottle was taken by ultrapure water and 

combined with the solution. Volume of the solution was brought to 100 mL by ultrapure 

water. Solution mixed well and transferred into 100 mL polypropylene bottle. Solution 

was again kept at 25 °C and final pH of the solution was recorded as 5.4. Bottles were 

wrapped with aluminum foil in order to protect solution from the light during the 

preparation as well as storing for further uses. Solution was stored at 4 °C until use.  
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120 µM Arsenazo III & 100 mM Acetate Buffer pH 5.4: 

 

 For the preparation 120 µM Arsenazo III in 100 mM acetate buffer, 49.1 mL 0.2 

M sodium acetate was transferred into 100 mL capacity polypropylene bottle. To this 

solution, 0.9 mL 0.M acetic acid solution was added. Solution was mixed gently. 

Fifteen milliliters of purified Arsenazo III solution was transferred into the solution. 

Solution was kept at 25 °C without shaking in a thermoshake incubator. Solution was 

stirred on a magnetic stirrer. pH of the solution was measured while the stirring was 

stopped. Solution was transferred into 100 mL polypropylene bottle. Residue left on the 

pH meter probe and in the bottle was taken with ultrapure water and combined with the 

solution. Volume of the solution was then adjusted to 100 mL with ultrapure water and 

solution was mixed well. After that, solution was transferred into 100 mL 

polypropylene bottle. Final pH of the solution was measured and found as 5.4. Solution 

was kept at 4 °C when not in use. During the preparation of the reagent and storage at 4 

°C, protection from the light was done by wrapping an aluminum foil around the 

bottles. 

 

Arsenazo III in Formate Buffer 

 
 Solutions with two different Arsenazo concentrations (60 and 120 µM) were 

prepared in formate buffer.  

 

60 µM Arsenazo III & Formate Buffer pH 3.8: 

 

 Seventy milliliters ultrapure water was transferred into a 100 mL polypropylene 

bottle. 0.84 mL of formic acid was then added and solution mixed gently. Seven point 

five milliliters of purified Arsenazo III solution was transferred into the bottle. Solution 

was incubated at 25 °C without shaking in a shaking incubator. It was then stirred on a 

magnetic stirrer. Solution was titrated with 1 M KOH to pH 3.8. Solution pH was 

monitored during the titration. However when the pH would be recorded, stirring was 

stopped. Total amount of 1 M KOH used to adjust pH 3.8 was approximately 12.8 mL.  

pH of the solution at the end of the titration was recorded as 3.80. Solution was then 

transferred into 100 mL polypropylene volumetric flask. Residue left on the pH probe 
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and in the bottle was removed with ultrapure water and combined with the solution. 

Volume of the solution was adjusted to 100 mL by ultrapure water and mixed well. 

Solution was then transferred into 100 mL polypropylene bottle and kept at 25 °C. Final 

pH of the solution was measured as 3.8. Solution was stored at 4 °C until its use. During 

the preparation bottles were protected from the light by wrapping aluminum foil. 

  

120 µM Arsenazo III & Formate Buffer pH 3.8: 

 

 A hundred twenty µM Arsenazo III in formate buffer was prepared by similar 

way like in the preparation of 60 µM Arsenazo III in formate buffer. Sixty milliliters 

ultrapure water was added into a 100 mL polypropylene bottle and 0.84 mL formic acid 

was then transferred into the bottle. After gentle mixing the solution, 15 mL purified 

Arsenazo III solution was added to the solution. Solution was incubated at 25 °C for a 

while. Solution was then titrated with 1 M KOH to the pH of 3.80. During titration, 

solution pH was monitored; however stirring was stopped when the pH value was 

recorded. Approximately 16 mL 1 M KOH was used for the titration of the solution. pH 

of the solution at the end of titration was recorded as 3.80. The solution was then 

transferred into 100 mL capacity polypropylene bottle. Residue from the solution left on 

pH probe and in the bottle was removed by ultrapure water and added to the solution. 

Finally, volume of the solution was adjusted to 100 mL by ultrapure water and solution 

was mixed well. After transferring the solution into 100 mL polypropylene bottle, 

solution was again kept at 25 °C for a while.  Final pH of the solution was measured and 

recorded as 3.8. Solution was stored at 4 °C until its use. During the preparation and 

storage of the solution, aluminum foil wrapped around the bottles was used to protect 

solution from the light. 
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Arsenazo III in Imidazole-Cl Buffer 

 
 Four different Arsenazo III solutions in imidazole buffer were prepared and 

tested for the calcium analysis.  

 

60 µM Arsenazo III & 100 mM Imidazole-Cl  pH 6.5: 

 
 0.6875 gram imidazole was dissolved in approximately 60 mL ultrapure water 

and transferred into 100 mL polypropylene bottle. 7.5 mL purified Arsenazo III solution 

was added into the bottle. Solution was incubated at 25 °C statically in a thermoshake 

incubator. Solution was then titrated with 1 M HCl solution to the pH of 6.5. During the 

addition of 1M HCl, solution was stirred on the magnetic stirrer. When the solution’s 

pH values would be recorded, stirring was stopped. Approximately 7.9 mL 0.1 M HCl 

was used to adjust the solution pH to 6.5. Solution was transferred into 100 mL 

polypropylene volumetric flask. Dye left on the pH probe and in the bottle was washed 

with ultrapure water and combined with the solution. Volume of the solution was 

adjusted to 100 mL by the addition of ultrapure water. Solution in volumetric flask was 

mixed well and transferred into 100 mL polypropylene bottle. Final pH of the solution 

was measured as 6.5. This solution was stored at 4 °C. Bottles during the preparation 

and storage were wrapped by aluminum foil in order to avoid light induced changes in 

the reagent.        

 
60 µM Arsenazo III & 200 mM Imidazole-Cl  pH 6.5: 

 

 1.3764 gram imidazole was weighed and dissolved in approximately 70 mL 

ultrapure water. Solution was transferred into 100 mL capacity polypropylene bottle and 

7.5 mL purified Arsenazo III solution was then added into this solution. After mixing 

the solution by stirring on a magnetic stirrer, it was incubated at 25 °C. Solution pH was 

then adjusted by 1 M HCl solution to pH 6.5. While adjustment of pH solution was 

stirred on the magnetic stirrer, but when the pH values would be recorded stirring was 

stopped. Approximately 16 mL 1 M HCl was used to adjust the pH value to pH 6.5. 

Solution was transferred into 100 mL polypropylene volumetric flask. Residue left on 

the pH probe and bottle was washed with ultrapure water and added into the solution. 
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Volume of the solution was brought to 100 mL by ultrapure water. After mixing the 

solution, it was transferred into 100 mL capacity polypropylene bottle. Solution was 

incubated at 25 °C for a while. Final pH of the solution was measured as 6.5. Solution 

was kept at 4 °C until its use. During the preparation and storage, bottles were wrapped 

with aluminum foil. 

 
200 µM Arsenazo III & 200 mM Imidazole-Cl  pH 6.5: 

 
 Imidazole, 1.3744 g, was dissolved in 50 mL ultrapure water and transferred into 

100 mL polypropylene bottle. Twenty five milliliters of purified Arsenazo III solution 

was then added into the solution. This solution was then statically incubated at 25 ° C in 

the thermoshake incubator. pH of solution was then adjusted to 6.5 by titrating the 

solution with 1 M HCl. While addition of 1 M HCl into the solution, solution was 

stirred on a magnetic stirrer but stirring was stopped during the pH measurements. 

Titration of the solution was completed when the pH was measured as 6.5. 

Approximately 15.8 mL 1 M HCl was spent for the titration of the solution to the 

desired pH value. After the adjustment of pH, solution was transferred into 100 mL 

polypropylene volumetric flask. Residual dye removed from the pH probe and bottle 

was taken by ultrapure water and combined with the solution. Volume was adjusted to 

100 mL by ultrapure water. After thorough mixing of the solution in volumetric flask, it 

was transferred into a 100 mL polypropylene bottle. Final pH of the solution was 

checked and found as 6.5. Like all solutions prepared, this solution was also kept at 4 °C 

in a refrigerator for further uses. Solutions were protected from the light induced 

changes by wrapping aluminum foil around the bottles.   
 
500 µM Arsenazo III & 200 mM Imidazole-Cl  pH 6.5: 

 

  For the preapartion of 500 µM Arsenazo III in imidazole buffer, 1.3747 grams of 

imidazole was weighed. Since the volume of purified Arsenazo III solution to be added 

was high, imidazole was directly dissolved in 62.5 mL purified Arsenazo III solution. 

Solution was transferred into 100 mL capacity polypropylene bottle. Ten milliliters of 

ultrapure water was added into the solution.  This solution was then statically incubated 

at 28 ° C in the thermoshake incubator until pH adjustment. Titration of the solution 
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was performed while solution was stirred on a magnetic stirrer. One molar HCl was 

used for the titration of the solution pH to 6.5. During the pH measurements, stirring 

was stopped. Titration was performed until the solution pH was measured as 6.5. 

Fifteen point four milliliters of 1 M HCl was spent for the pH adjustment. After the 

titration, the solution was transferred into 100 mL polypropylene volumetric flask. Dye 

left on the pH probe was removed with ultrapure water. This ultrapure water was then 

used to recover dye left in the bottle and it was added into the solution. Solution volume 

was finally adjusted to 100 mL by ultrapure water. Solution was mixed well and 

transferred into a 100 mL polypropylene bottle. Final pH of the solution was measured 

and found as 6.5.   
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APPENDIX D 

 

RESULTS OF CALCIUM REMOVAL FROM  

ARSENAZO III SOLUTIONS 

 
 Commercial Arsenazo III dye may initially have large amounts of calcium 

(Vogel et al. 1983). For this reason, the first attempt was to purify calcium initially 

present in the dye. This was performed using the method suggested by Vogel et al. 

(1983). Calcium was removed from Arsenazo III by passing the dye through a cation 

exchange resin in H+ form. Throughout this study, two 1 mM Arsenazo III solutions 

were used.  These are referred as solution 1 and solution 2. Each solution was subjected 

to calcium removal by cation exchange before use. In order to follow the efficiency of 

the purification process, pH values of the samples taken at definite intervals were 

measured. Figure D.1 shows the pH values of the samples taken in 5 minute intervals.     

 

 

 

 
Figure D.1. pH values of the samples taken during the purification of Arsenazo III dye. 
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 Space velocities during purification of solution 1 and solution 2 were 45 and 

28.8 BV/h, respectively. 

 In the purification of solution 1, pH of the feed prior to purification was 

measured as 2.68. pH of the sample taken from the column at 5 min was found as 2.56. 

pH values of all the other samples were found as 2.56 or 2.57. Similarly for the solution 

2, initial pH of the dye solution was measured as 2.81. pH of the sample taken after 5 

min during the calcium removal was 2.68. pH values of the all samples were found to 

be constant during the purification.  These show that pH of the purified solutions stayed 

constant throughout the purification process. Equality of pH values of all the samples to 

pH of the sample taken at 5 min means that cation exchanger kept its capacity for the 

removal of cations throughout the purification of the dye. Besides pH values of the 

dyes, pH value of the whole solutions (samples were also combined into the solution) 

were measured and found as 2.55 and 2.67 for purified solution 1 and solution 2, 

respectively. When solution 1 was purified, total H+ concentration exchanged was found 

to be 0.66 mM from pH measurements. This equals to 0.66 milliequivalents of H+.  

Calcium exchanged was therefore equal to 0.66 milliequivalents. Calculated calcium 

concentration was therefore found as 13.2 mg/L. When solution 2 was purified 0.59 

mM hydrogen was exchanged. This equals to 0.59 equivalents of calcium. Calcium in 

the dye solutions before cation exchange was found to be 11.8 mg/L. Total exchange 

capacity of the Dowex 50Wx4 was reported to be 1.1 meq/mL. Since approximately 10 

mL resin was used for each dye solution, capacity of the column can be found as 11 

meq Ca. This corresponds to 220 mg calcium. Since one liter dye solution was purified 

in the column at the each purification process, total calcium retained on the column was 

lower than 15 mg during the purification of dye. 
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APPENDIX E 

 

ARSENAZO III CONCENTRATION IN PURIFIED 

SOLUTIONS 

 
 It is essential to know Arsenazo III concentration in the reagent used in calcium 

determinations for the accurate and precise calcium analysis. During the preparation of 

Arsenazo III solution, filtration caused a loss of some amount of dye solution. 

Additionally some amount of dye was also left in the column at the end of the calcium 

removal by ion exchange chromatography. After chromatography, volume of the 

solution was brought to 1 liter by ultrapure water. All these reasons necessitated the 

determination of Arsenazo III concentration in the purified solution. 

  In this study, Nemodruk’s method (in Minganti et al., 1983) for the 

determination of Arsenazo III concentration was followed. This method was stated as 

the most convenient and widely used one (Minganti et al., 1983). It is based on the 

spectrophotometric analysis of the absorbance of the Arsenazo III solution prepared in 

concentrated H2SO4. According to Nemodruk (in Minganti et al. 1983), extinction 

coefficient of Arsenazo III in concentrated sulfuric acid only changes with the changes 

in acid concentration and it is constant when the acid concentration is over 78 % (w/v).  

 Molar extinction coefficient of Arsenazo III prepared in concentrated sulfuric 

acid was reported as 52,800 M-1cm-1 by Nemodruk (Minganti et al. 1983, Zyryanov and 

Baykov, 2002). By using absorbance values read in 1 cm path length cuvettes and 

reported extinction coefficient, Arsenazo III concentration in the purified dye was 

calculated. Calculated concentration values of the Arsenazo III in the solutions prepared 

in concentrated sulfuric acid and calculated Arsenazo III concentrations of purified dye 

were shown in Table E.1.  

 Only the concentration calculated from the absorbance of the solution prepared 

by taking 500 μl from solution1 and diluting to 25 ml with H2SO4 was used as the 

concentration of solution 1. It was found as 800.57 ± 8.71 and taken as 800 μM for 

simplicity. For solution 2, Arsenazo concentration was found to be 797.19 ± 5.17 µM. 

For the simplicity, it was taken approximately as 797 µM for the preparation of 

Arsenazo III dye reagents. 
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Table E.1 Solutions used to determine Arsenazo III concentration in the purified solutions, their absorbance values and calculated concentrations 

Solution 

No 

Volume of 
Arsenazo 

III 
(µL) 

Volume of 
Ultrapure 

Water 
(µL) 

Final Volume 
Adjusted by 
concentrated 
sulfuric acid 

(mL) 

Absorbance 
 

Molar 
Extinction 
Coefficient 

Concentration 
of Arsenazo III 

in 25 mL 
(µM) 

Concentration 
of Arsenazo 

III in the 
Purified 

Reagent (µM) 

Number 
of 

Replicate 
Solutions 

Number of 
Replicates 
of Samples 
Measured 

1 500 - 25 0.8454 ± 
0.0092 52,800 16.01 ± 0.17 800.57 ± 8.71 6 18 

2 250 - 25 0.4269 ± 
0.0038 52,800 8.09 ± 0.07 808.52 ± 7.20 3 9 

3 125 - 25 0.2149 ± 
0.0038 52,800 4.07 ± 0.07 814.02 ± 14.39 3 9 

4 250 250 25 0.4311 ± 
0.0026 52,800 8.16 ± 0.05 816.48 ± 4.92 3 9 

 
 
 
 

1 

 

5 125 375 25 0.2138 ± 
0.0042 52,800 4.05 ± 0.08 809.85 ± 15.91 3 9 

2 
 6 500 - 25 0.842 ± 

0.005 52,800 15.94 ± 0.10 797.19 ± 5.17 6 18 
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APPENDIX F 

 

ABSORBANCE VALUES OF MEASURED AT 600 nm  

IN THE OPTIMIZATION OF MICROPLATE BASED 

ARSENAZO III-CALCIUM ANALYSIS 
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Figure F.1. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 600 nm 
a. without subtracting blank values, b. with subtracting blank values. 

 
 

a 

b
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Figure F.2. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 100 mM 

acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 600 nm a. 
without subtracting blank values, b. with subtracting blank values. 

 
 

 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 20 40 60 80 100

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
.U

.)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

ΔA

A
ΔA

 
Figure F.3. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 600 
nm a. without subtracting blank values, b. with subtracting blank values. 

 
 

a 

b 

a 
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Figure F.4. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM  AIII in 

100 mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting  blank values, b. with subtracting blank 
values. 
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Figure F.5. Absorbance values of calcium standards (1-8 ppm) - ½(60 μM AIII in 100 

mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 600 
nm a. without subtracting blank values, b. with subtracting blank values. 

a 

b 

a 
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Figure F.6. Absorbance values of calcium standards (10-80 ppm) - ½(60 μM AIII in 

100 mM acetate buffer pH 5.4) (150 μL standard-150 μL dye reagent) at 600 
nm a. without subtracting blank values, b. with subtracting blank values. 
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Figure F.7. Absorbance values of calcium standards (1-8 ppm) - 120 μM AIII in 100 

mM acetate buffer pH 5.4 (150 μL standard-150 μL dye reagent) at 600 
nm a. without subtracting blank values, b. with subtracting blank values. 
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Figure F.8. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 

formate buffer pH 3.8  (150 μL standard-150 μL dye reagent) at 600 nm a. 
without subtracting  blank values, b. with subtracting blank values. 
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Figure F.9. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in formate 

buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 600 nm a. without 
subtracting blank values, b. with subtracting blank values. 
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Figure F.10. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 600 nm a. 
without subtracting blank values, b. with subtracting blank values. 
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Figure F.11. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 

formate buffer pH 3.8)  (150 μL standard-150 μL dye reagent) at 600 nm 
a. without subtracting  blank values, b. with subtracting blank values. 
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Figure F.12. Absorbance values of calcium standards (10-80 ppm) - 120 μM AIII in 

formate buffer pH 3.8 (150 μL standard-150 μL dye reagent) at 600 nm a. 
without subtracting  blank values, b. with subtracting blank values. 

 

 

 

y = 0.0771x
R2 = 0.9872

y = 0.0805x + 0.3637
R2 = 0.9897

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
. U

.)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

ΔA

A
ΔA

 
Figure F.13. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.14. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.15. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 100 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 

a 

b 

a 

b 



 253

y = 0.0617x
R2 = 0.964

y = 0.0604x + 0.2034
R2 = 0.9646

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0 0.5 1 1.5 2 2.5

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
.U

.)

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

ΔA

A
ΔA

 
Figure F.16. Absorbance values of calcium standards (0.25-2 ppm) - ½(60 μM AIII in 

100 mM Imidazole-Cl buffer pH 6.5) (150 μL standard-150 μL dye 
reagent) at 600 nm a. without subtracting blank values, b. with subtracting 
blank values. 
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Figure F.17. Absorbance values of calcium standards (1-8 ppm) - ½(60 μM AIII in 100 
mM Imidazole-Cl buffer pH 6.5) (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.18. Absorbance values of calcium standards (0.25-2 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.19. Absorbance values of calcium standards (1-8 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.20. Absorbance values of calcium standards (10-80 ppm) - 60 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 
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Figure F.21. Absorbance values of calcium standards (1-8 ppm) –  200 μM AIII in 200 

mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye reagent) at 
600 nm a. without subtracting blank values, b. with subtracting blank 
values. 

a 

b 

a 
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Figure F.22. Absorbance values of calcium standards (10-80 ppm) – 200 μM AIII in 

200 mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye 
reagent) at 600 nm a. without subtracting blank values, b. with subtracting 
blank values. 
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Figure F.23. Absorbance values of calcium standards (10-80 ppm) – 500 μM AIII in 

200 mM Imidazole-Cl buffer pH 6.5 (150 μL standard-150 μL dye 
reagent) at 600 nm a. without subtracting blank values, b. with subtracting 
blank values. 
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APPENDIX G 

 

CALCIUM DETERMINATION IN DIFFERENT 

ELECTROLYTE SOLUTIONS BY MICROPLATE BASED 

ARSENAZO III-CALCIUM ANALYSIS 
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Figure G.1. Spectra of calcium standards prepared in 142 mM NaCl. 
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Figure G.2. Spectra of calcium standards prepared in 142 mM NaCl obtained by 

subtracting blank values. 



 258

y = 0.1044x
R2 = 0.998

y = 0.1069x + 0.169
R2 = 0.9988

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 1 2 3 4 5 6 7 8

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
.U

.)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

ΔA

A
ΔA

 
Figure G.3.Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 142 mM NaCl at 650 nm. 
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Figure G.4. Spectra of calcium standards prepared in 27 mM NaHCO3. 
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Figure G.5. Spectra of calcium standards prepared in 27 mM NaHCO3 obtained by 

subtracting blank values. 
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Figure G.6. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 27 mM NaHCO3 at 650 nm. 
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Figure G.7. Spectra of calcium standards prepared in 115 mM NaCl & 27 mM 

NaHCO3. 
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Figure G.8. Spectra of calcium standards prepared in 115 mM NaCl & 27 mM  

NaHCO3 obtained by subtracting blank values. 
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Figure G.9. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 115 mM NaCl & 27 mM NaHCO3 at 650 nm. 
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Figure G.10. Spectra of calcium standards prepared in 1.5 mM MgCl2·6H2O. 
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Figure G.11. Spectra of calcium standards prepared in 1.5 mM MgCl2·6H2O obtained 

by subtracting blank values. 
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Figure G.12. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 1.5 mM MgCl2·6H2O at 650 nm. 
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Figure G.13. Spectra of calcium standards prepared in 1 mM Na2HPO4. 
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Figure G.14. Spectra of calcium standards prepared in 1 mM Na2HPO4 obtained by 

subtracting blank values. 
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Figure G.15. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 1 mM Na2HPO4 at 650 nm. 
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Figure G.16. Spectra of calcium standards prepared in 1 mM H3PO4. 
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Figure G.17. Spectra of calcium standards prepared in 1 mM H3PO4 obtained by 

subtracting blank values. 
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Figure G.18. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 1 mM H3PO4 at 650 nm. 
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Figure G.19. Spectra of calcium standards prepared in 10 mM H3PO4. 

 

 

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

400 425 450 475 500 525 550 575 600 625 650 675 700
Wavelength (nm)

ΔA

Blank
3 ppm Ca
4 ppm Ca
5 ppm Ca
6 ppm Ca
7 ppm Ca

 
Figure G.20. Spectra of calcium standards prepared in 10 mM H3PO4 obtained by 

subtracting blank values. 
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Figure G.21. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 10 mM H3PO4 at 650 nm. 
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Figure G.22. Spectra of calcium standards prepared in 5 mM KCl. 
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Figure G.23. Spectra of calcium standards prepared in 5 mM KCl obtained by 

subtracting blank values. 
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Figure G.24. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 5 mM KCl at 650 nm. 
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Figure G.25. Spectra of calcium standards prepared in 0.5 mM Na2SO4. 
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Figure G.26. Spectra of calcium standards prepared in 0.5 mM Na2SO4 obtained by 

subtracting blank values. 
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Figure G.27. Calibration curve obtained by measuring absorbances of calcium standards 

prepared in 0.5 mM Na2SO4 at 650 nm. 
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APPENDIX H 

 

SPECTRA AND CALIBRATION CURVES FOR 

MALACHITE GREEN PHOSPHATE ASSAY 
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Figure H.1. Absorption spectra of phosphate standard solutions prepared in ultrapure 

water. 
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Figure H.2. Absorption spectra of phosphate standard solutions prepared in ultrapure 

water obtained by subtracting blank values. 
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Figure H.3. Absorption spectra of phosphate standard solutions prepared in 142 mM 

NaCl. 
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Figure H.4. Absorption spectra of phosphate standard solutions prepared in 142 mM 

NaCl obtained by subtracting blank values. 
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Figure H.5. Absorption spectra of phosphate standard solutions prepared in 5 mM KCl. 
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Figure H.6. Absorption spectra of phosphate standard solutions prepared in 5 mM KCl 

obtained by subtracting blank values. 
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Figure H.7. Absorption spectra of the phosphate standards prepared in 2.5 mM CaCl2. 
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Figure H.8. Absorption spectra of the phosphate standards prepared in 2.5 mM CaCl2 

obtained by subtracting blank values.  



 275

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700

Wavelength (nm)

A
bs

or
ba

nc
e 

(A
.U

.)

Blank
0.75 ppm
1 ppm
1.25 ppm
1.5 ppm
1.75 ppm

 
Figure H.9. Absorption spectra of the phosphate standards prepared in 1.5 mM MgCl2. 
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Figure H.10. Absorption spectra of the phosphate standards prepared in 1.5 mM MgCl2 

obtained by subtracting blank values.  
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Figure H.11. Absorption spectra of the phosphate standards prepared in 0.5 mM 

Na2SO4.  
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Figure H.12. Absorption spectra of the phosphate standards prepared in 0.5 mM 

Na2SO4 obtained by subtracting blank values.  
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Figure H.13. Absorption spectra of the phosphate standards prepared in 27 mM 

NaHCO3. 
 

 

 

-0.150

-0.050

0.050

0.150

0.250

0.350

0.450

0.550

0.650

0.750

0.850

400 430 460 490 520 550 580 610 640 670 700
Wavelength (nm)

ΔA

Blank
0.75 ppm
1 ppm
1.25 ppm
1.5 ppm
1.75 ppm

  
Figure H.14. Absorption spectra of the phosphate standards prepared in 27 mM 

NaHCO3 obtained by subtracting blank values.  
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Figure H.15. Absorption spectra of the phosphate standards prepared in 115 mM NaCl  

and 27 mM NaHCO3 containing solution.  
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Figure H.16. Absorption spectra of the phosphate standards prepared in 115 mM NaCl 

and 27 mM NaHCO3 containing solution obtained by subtracting blank 
values. 
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Figure H.17. Calibration curves for the phosphate standards prepared in ultrapure water 

at 650 nm. 
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Figure H.18. Calibration curves for the phosphate standards prepared in ultrapure water 

at 640 nm. 
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Figure H.19. Calibration curves for the phosphate standards prepared in ultrapure water 

at 630 nm. 
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Figure H.20. Calibration curves for the phosphate standards prepared in ultrapure water 

at 620 nm. 
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Figure H.21. Calibration curves for the phosphate standards prepared in ultrapure water 

at 610 nm. 
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Figure H.22. Calibration curves for the phosphate standards prepared in 142 mM NaCl  

at 650 nm. 
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Figure H.23. Calibration curve for the phosphate standards prepared in 142 mM NaCl 

at 640 nm. 
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Figure H.24. Calibration curve for the phosphate standards prepared in 142 mM NaCl 

at 630 nm. 
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Figure H.25. Calibration curve for the phosphate standards prepared in 142 mM NaCl 

at 620 nm. 
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Figure H.26. Calibration curve for the phosphate standards prepared in 142 mM NaCl 

at 610 nm. 
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Figure H.27. Calibration curve for the phosphate standards prepared in 5 mM KCl at 

650 nm. 
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Figure H.28. Calibration curve for the phosphate standards prepared in 5 mM KCl at 

640 nm. 
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Figure H.29. Calibration curve for the phosphate standards prepared in 5 mM KCl at 

630 nm. 
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Figure H.30. Calibration curve for the phosphate standards prepared in 5 mM KCl at 

620 nm. 
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Figure H.31. Calibration curve for the phosphate standards prepared in 5 mM KCl at 

610 nm. 
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Figure H.32. Calibration curve for the phosphate standards prepared in 2.5 mM CaCl2 

at 650 nm. 
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Figure H.33. Calibration curve for the phosphate standards prepared in 2.5 mM CaCl2 

at 640 nm. 
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Figure H.34. Calibration curve for the phosphate standards prepared in 2.5 mM CaCl2 

at 630 nm. 
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Figure H.35. Calibration curve for the phosphate standards prepared in 2.5 mM CaCl2 

at 620 nm. 
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Figure H.36. Calibration curve for the phosphate standards prepared in 2.5 mM CaCl2 

at 610 nm. 
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Figure H.37. Calibration curve for the phosphate standards prepared in 1.5 mM MgCl2 

at 650 nm. 
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Figure H.38. Calibration curve for the phosphate standards prepared in 1.5 mM MgCl2 

at 640 nm. 
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Figure H.39. Calibration curve for the phosphate standards prepared in 1.5 mM MgCl2 

at 630 nm. 
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Figure H.40. Calibration curve for the phosphate standards prepared in 1.5 mM MgCl2 

at 620 nm. 
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Figure H.41. Calibration curve for the phosphate standards prepared in 1.5 mM MgCl2 

at 610 nm. 
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Figure H.42. Calibration curves for the phosphate standards prepared in 0.5 mM 

Na2SO4 at 650 nm. 
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Figure H.43. Calibration curves for the phosphate standards prepared in 0.5 mM 

Na2SO4 at 640 nm. 
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Figure H.44. Calibration curves for the phosphate standards prepared in 0.5 mM 

Na2SO4 at 630 nm. 
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Figure H.45. Calibration curves for the phosphate standards prepared in 0.5 mM 

Na2SO4 at 620 nm. 
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Figure H.46. Calibration curves for the phosphate standards prepared in 0.5 mM 

Na2SO4 at 610 nm. 
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Figure H.47. Calibration curves for the phosphate standards prepared in 27 mM 

NaHCO3 at 650 nm. 
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Figure H.48. Calibration curves for the phosphate standards prepared in 27 mM 

NaHCO3 at 640 nm. 



 295

y = 0.4155x
R2 = 0.9776

y = 0.4579x + 0.0501
R2 = 0.9897

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Conc. (ppm)

A
bs

or
ba

nc
e 

(A
.U

.)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

ΔA

A
ΔA

 
Figure H.49. Calibration curves for the phosphate standards prepared in 27 mM 

NaHCO3 at 630 nm. 
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Figure H.50. Calibration curves for the phosphate standards prepared in 27 mM  

NaHCO3 at 620 nm. 
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Figure H.51. Calibration curves for the phosphate standards prepared in 27 mM 

NaHCO3 at 610 nm. 
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Figure H.52. Calibration curve for the phosphate standards prepared in 115 mM NaCl 

and 27 mM NaHCO3 containing solution at 650 nm. 
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Figure H.53. Calibration curves for the phosphate standards prepared in 115 mM NaCl 

and 27 mM NaHCO3 containing solution at 640 nm. 
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Figure H.54. Calibration curves for the phosphate standards prepared in 115 mM NaCl 

and 27 mM NaHCO3 containing solution at 630 nm. 
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Figure H.55. Calibration curves for the phosphate standards prepared in 115 mM NaCl  

and 27 mM NaHCO3 containing solution at 620 nm. 
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Figure H.56. Calibration curves for the phosphate standards prepared in 115 mM NaCl 

and 27 mM NaHCO3 containing solution at 610 nm. 
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Figure H.57. Calibration curve for the phosphate standards prepared in SBFA solution 

at 650 nm. 
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Figure H.58. Calibration curves for the phosphate standards prepared in SBFA solution 

at 640 nm. 
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Figure H.59. Calibration curves for the phosphate standards prepared in SBFA solution 

at 630 nm. 
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Figure H.60. Calibration curves for the phosphate standards prepared in SBFA solution 

at 620 nm. 
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Figure H.61. Calibration curves for the phosphate standards prepared in SBFA solution 

at 610 nm. 
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Figure H.62. Calibration curve for the phosphate standards prepared in SBFB solution 

at 650 nm. 
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Figure H.63. Calibration curves for the phosphate standards prepared in SBFB solution 

at 640 nm. 
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Figure H.64. Calibration curves for the phosphate standards prepared in SBFB solution 

.at 630 nm. 
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Figure H.65. Calibration curves for the phosphate standards prepared in SBFB solution 

.at 620 nm. 
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Figure H.66. Calibration curves for the phosphate standards prepared in SBFB solution 

.at 610 nm. 
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