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ABSTRACT

SOLUTIONS OF INITIAL AND BOUNDARY VALUE PROBLEMS
FOR INHOMOGENEOUS BURGERS EQUATIONS WITH
TIME-VARIABLE COEFFICIENTS

In this thesis, we have investigated initial-boundary value problems on semi-
infinite line for inhomogeneous Burgers equation with time-variable coefficients. We
have formulated the solutions for the cases with Dirichlet and Neumann boundary condi-
tions. We showed that the Dirichlet problem for the variable parametric Burgers equation
is solvable in terms of a linear ordinary differential equation and a linear second kind
singular Volterra integral equation. Then, for particular models with special initial and
Dirichlet boundary conditions we found a class of exact solutions. Next, we consid-
ered the Neumann problem and showed that it reduces to a second order linear ordinary
differential equation and the standard heat equation with initial and nonlinear boundary
conditions. Finally, we formulated the Cauchy problem for the variable parametric Burg-
ers equation on the non-characteristic line, and obtained its solution in terms of a linear
ODE and the series solution of the corresponding Cauchy problem for the heat equation.
We gave examples to illustrate how some well known solutions of the Burgers equation

can be recovered by solving a corresponding Cauchy problem.

v



OZET

KATSAYILARI ZAMANA BAGLI HOMOJEN OLMAYAN BURGERS
DENKLEMLERI ICIN BASLANGIC VE SINIR DEGER
PROBLEMLERININ COZUMLERI

Bu tezde zamana bagli degisken katsayili, homojen olmayan Burger denklemi
icin yar1 sonsuz aralikta baslangic-sinir deger problemlerini arastirdik. Dirichlet ve Neu-
mann sinir kosullar1 durumlarinda ¢éziimler icin formiilasyonlar elde ettik. Zamana baglh
degisken katsayili Burger denkleminin bir lineer adi diferansiyel denklem ve bir lineer
ikinci cesit tekil Volterra integral denklemi cinsinden ¢oziilebilir oldugunu gosterdik.
Ardindan, 6zel baglangic ve Dirichlet sinir deger kosullu 6zel modeller i¢in kesin ¢éziim
siniflar1 bulduk. Neumann problemini goz oniine aldik ve bu problemin ikinci mertebeden
lineer adi diferansiyel denklem ile baglangi¢ ve nonlineer sinir kosullarina sahip standart
1s1 denklemine indirgendigini gosterdik. Son olarak karakteristik olmayan dogru iizerinde
degisken katsayili Burger denklemi i¢in Cauchy problemini formiile ettik ve bu prob-
lemin ¢oziimiinii lineer adi diferansiyel denklem ile 1s1 denklemi i¢in Cauchy problem-
ine karsilik gelen seri ¢oziimii tiirlinden elde ettik. Burger denkleminin baz1 iyi bilinen
cOziimlerinin, ilgili Caucy problemini ¢ozerek nasil elde edilebilecegini gostermek igin

ornekler verdik.
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CHAPTER 1

INTRODUCTION

Burgers equation is a nonlinear model which appears in the study of many phys-
ical phenomena such as diffusion, acoustics, fluid dynamics, formation and development
of shocks. Basically, it describes the balance which occurs between the nonlinear con-
vection and the linear diffusion processes. Mathematically, Burgers equation is one of the
simplest nonlinear models, since by the Cole-Hopf transformation it can be directly lin-
earized to a heat equation. Then, solutions and many properties of Burgers equation can
be investigated using the corresponding linear model. Precisely, the initial value problem

for Burgers equation is defined as

(1.1)

Ve+ VV,=vV,,, —oco<np<oo, 7>0,
V(U, O) = F(n)a —00 <7 <0,

where the subscripts denote partial derivatives, V mostly represents a velocity field, 7 is
the time variable, 7 is the space variable, v > 0, and F () is a given initial data. Then, by

the Cole-Hopf transformation

©p(1,7)

Vo

(1.2)

this problem reduces to the Heat IVP. Indeed, letting V = @, in Burgers equation (1.1) and
then integrating with respect to n, we get the potential Burgers equation ®,+(1/2)((®,)?) =
v®,,. Then, using @ = —2vIn ¢ gives the heat equation ¢, = v¢,,, up to an additional term
a(t)p which can be neglected. The initial condition (IC) for Burgers equation is also eas-
ily transformed to IC for the Heat equation by solving V(1,0) = —2ve,(n,0)/¢(n,0) for
©(m,0). As a result, we have the IVP for the heat equation

Or = Ve —oco<n<oo, T>0,
¢m,0) = f(m), n>0,

(1.3)



where f(n) = exp(—zlv f " V(n',0)dn’). Using the Fourier transform @(s, 7) = f_ 0:0 @(n, T)e *1dn,

solution of heat problem (1.3) is obtained in the form

o, 7) = f Kn— £ 0f@)dé = K, 1) * f(), (1.4)

172

e vt
Vévnr
to initial condition f(17) = 6(n7), where 6(n) is the Dirac-delta distribution, briefly defined

by f_ O:o o(m— &) f(&)dE = f(n). Then, IVP for the Burgers equation has general solution

where K(n,7) =

is the Heat Kernel and it is the fundamental solution corresponding

f—O:o K,(n-¢, T)e‘% S vor 0 gg
[~ K -¢1)e s [ voroar gg

Vin,t) = -2v

Clearly, depending on the initial data F (), solution of the IVP for Burgers equation can
not be always obtained explicitly. However, knowing explicit solutions are always of con-
siderable interest. As known the IVP for Burgers equation (1.1) have many physically in-
teresting exact solutions in explicit form, such as traveling shock and multi-shock waves,
diffusive waves (triangular and N-waves) and rational type solutions, see [Whitham, Deb-
nath, Biiylikasik].

In this thesis, we consider initial-boundary value problems for the standard Burg-
ers equation and an inhomogeneous Burgers equation with variable coefficients on the
semi-infinite line. As we have seen, the initial condition for the Burgers equation can
easily be transformed to IC for the Heat equation. However, the same is not always true
for the boundary conditions. For example, the Dirichlet boundary condition at = 0
for the Burgers equation on the semi-infinite line 0 < 7 < oo transforms to the Robin
boundary condition at 7 = 0O for the heat equation on 0 < 17 < co. Similarly, the Neumann
boundary condition for the Burgers equation transforms to nonlinear boundary condition
for the heat equation. Therefore, to investigate the initial-boundary value problems for
the Burgers models, the thesis is organized as follows.

In Chapter 2 we review the well known solutions of IBVP’s for the standard Heat
equation on the semi-infinite line. First we consider the IBVP with Dirichlet boundary
condition and obtain solution by the Fourier Sine transform. We also demonstrate the use
of the reflection principle, by extending the initial condition as an odd function, when
boundary condition is homogeneous. Then, we consider the IBVP with Neumann bound-

ary condition and obtain its solution by the Fourier Cosine transform. The reflection



principle is used to the initial condition by extending it as an even function, when Neu-
mann boundary condition is homogeneous. To solve the IBVP with the Robin boundary
conditions, we use alternative approaches, such as assuming that the Dirichlet condition is
known, or assuming that the Neumann BC is known. In both cases, the problem reduces to
solving a linear integral equation of Volterra type with weakly singular kernel. After this,
we briefly discuss the IBVP on semi-infinite line for a heat equation with time-variable
coefficients.

In Chapter 3, we study the IBVP’s for standard Burgers equation on semi-infinite
line. First, we consider the IBVP with the Dirichlet BC and give two ways for solving it.
One way is by using the Cole-Hopf transform and the other way is by using generalized
Cole-Hopf transform [4]. Second, we consider the IBVP with the Neumann BC and
again we show two ways for finding the solution [? ]. At the end, we compare the
different approaches. Finally, we investigate the IBVP’s with special nonlinear boundary
conditions [1].

In Chapter 4, we study the IBVP’s for inhomogeneous Burgers equation with
variable coefficients on semi-infinite line. In the first section, we consider the IBVP with
Dirichlet boundary condition and obtain general solution leads to the corresponding stan-
dard models discussed in Chapter 2 and Chapter 3. Some exactly solvable models [3] are
discussed in details to obtain explicit results for the Dirichlet problem for inhomogeneous
BE with variable coefficients. In the second section, we investigate the IBVP with Neu-
mann boundary condition. The general solution is obtained by transforming the model
firstly to the IBVP with Neumann BC for the standard Burgers equation and secondly
to the IBVP with the nonlinear boundary condition for the standard Heat equation. At
the end, we show that solving IBVP’s for inhomogeneous Burgers equation with vari-
able coefficients corresponds to solving either Volterra type integral equation or nonlinear
integro-differential equation.

In Chapter 5, we review the solution of Cauchy problem for the Heat and Burgers
equation, [7], [8]. Then we show how some special solutions of Burgers equation can be
obtained as solutions of a Cauchy problem. Finally, we investigate the Cauchy problem

for the inhomogeneous Burgers equation with time-variable coefficients.



CHAPTER 2

THE HEAT PROBLEMS ON SEMI-INFINITE LINE

In this chapter, we review solution of the Heat equation on semi-infinite line with
initial condition at time 7 = 0 and the Dirichlet and Neumann boundary conditions at
n = 0. The similarity solutions of the Heat equation are discussed in the third section. In
the other two sections, we write solution of IBVP’s with the Robin boundary condition
and special boundary condition for the Heat equation. Then, we consider the Dirichlet
and Neumann problems for the variable parametric parabolic equation on semi-infinite
line and we obtain general solutions of the IBVP’s. Finally, we investigate the IBVP with
the Robin boundary condition for variable parametric parabolic equation on semi-infinite

line.

2.1. The Dirichlet Problem on Semi-infinite Line

The Heat equation on semi-infinite line with initial condition at time 7 = 0 and the

Dirichlet boundary condition at 7 = 0 is given as follows

go,zégo,m, O<np<oo, >0,
@(,0) = A(m), 0<n<oo, 2.1
¢0,7) = H(r), 7>0,

where A(n7) and H(7) are given functions of 7 and 7 respectively and one assumes ¢(1, 7) —
0 and ¢,(7,7) — 0 as p — oco. Also, we assume that A(n) has sufficient smoothness and
decays as n — oo, and H(7) is sufficiently smooth. To solve the IBVP (2.1), we use lin-
earity of the Heat equation. So that the problem (2.1) can be replaced by two problems
[5] as follows,



The first one is IBVP with homogeneous Dirichlet BC,

@r =20y, 0<p<oo, T>0,
0(n,0) = A@m), 0<n<oo, (2.2)
0, 7)=0, 7>0.

The second IBVP is with homogeneous initial condition and inhomogeneous Dirichlet

boundary condition,

@r =3¢y, 0<p<oo, T>0,
©(1@,0)=0, 0<n<oo, 2.3)
¢, 7)=H(tr), 7>0.

For solution of the IBVP (2.2), firstly we apply the Fourier sine transform, F[¢] =
7% fooo @ sin(ny)dn, and using ¢(n, 7) — 0 and ¢, (17, 7) — 0 as n — oo, we get

2 (™ 0p d .
Flgd = = f % Sin(ry)dn = gy, 7),
)y Ot or
2 Py .
Fylem] = p fo —677(’; sin(n7y)dn.

Applying integration by parts to the last integral i.e. ngf =dv= ‘;—‘; =v and sin(ny) =

u = ycos(ny)dn = du, we have

2(0¢ . . * 9
Filoml = ;(a—?sm(ny)lo -y L a—S;COS(ny)dn). 2.4)

=0

Then, again integrating by parts in the second integral in (2.4), i.e. ‘;—‘; =dv=¢=v and

cos(ny) = u = —ysin(ny)dn = du

2 (o)
Filom] = —;y(so(n,r)cosmy)l(‘;" +y f so(n,r)sin(ny)dn),
0
=0




thus we get
Filem] = —¢. (2.5)
For the Fourier sine transform of the initial condition we have
2 (™ ) . R
Fle(n,0)] = - A(n) sin(qy)dn = ¢(y,0) = A(y).
0

Then we obtain the ordinary differential equation with the initial condition as follows

% _ 125
A 2.6)
(v, 0) = A(y).

The solution to IVP (2.6) is given as

~ 2 2 © ¥
#01) = AT = = f A siney)d e~ 27
T\ Jo

Applying the inverse sine transform

oO17) = fo 50, ) sinym)dy, 2.8)
2 00 00 yz‘r
_ 2 f | f % A&) sin(yE)dE)| sin(py)dy, 2.9)
™ Jo 0
2 (oo} 00 yz
= —f A(f)[f e_ZTsin(fy)sin(ny)dy]df, (2.10)
™ Jo 0

and using relation sin(y¢) sin(rny) = [cos(n — &)y — cos(n + €)y]/2, we get

2

1 (o) lo'e] )72 OO ¥
o) = f A f e cos(n — E)ydy - f ¢ cos(y + E)ydy |.2.11)
T Jo 0 0

1 11




For the integral (I) in above, using relation cos(n — &)y = (€9 + 7 @) /2 and by

completing exponential functions to the squares, we obtain

n— 2
[= |=e " (2.12)
21

For the second integral (II) in (2.11), using relation cos( + &)y = (€'Y + ¢=1+6) /2 and

by completing exponential functions to the squares, we get

n+é 2
= |2 (2.13)
2t

Substituting (I) and (II) into (2.11), we obtain the solution of IBVP (2.2) in the following

form

1 (Y we  we
o0 = = fo (e T )A(g)dg. (2.14)

Note that, when the Dirichlet BC is homogeneous, H(t) = 0, as an alternative approach

we can use the reflection principle, by extending initial condition A(7) as an odd function,

A, n>0,
Ao(n) =4 —-A(-n), n<0, (2.15)
0, n=0.

Here, our aim is reduce problem (2.2) to the IVP on the whole line, for which the solution
is known. This is achieved by extending the initial data A(n) to the whole line, so that the
boundary condition (2.2) is automaticallly satisfied. It is the following IVP on the whole

line

(2.16)

%Z%%m —co<np<oo, 7>0,
o(1,0) = Ap(p), —o0 <n < oo.



Then, it satisfies the BC ¢(0,7) = 0, since if the initial condition is odd, the solution

¢(m, 1) is also odd w.r.t n. It’s well known that the problem (2.16) has solution

o) = f K(n - & DA, 2.17)

Substituting Ay(n7) from (2.15) into (2.17), we get

0 00
@(1,7) f K(n = &,1)Ao(&)dE - j(: K(n = & 1)Ao()dE,

(9]

0 00
f K(n - & DAE@)dE - fo K(n - & DA(-E)de,

o0

and by the change of variable ¢ — —¢ in the second integral, finally we have

o) = fo K(n - & DAE)dE - fo K(n + £ DA@)E.

By using definition of the Heat kernel, the solution of the IBVP (2.2) in explicit form is

o | =82 _ or)?
e 2r — @ 2t
e = || Jaede. (2.18)
0 V2rt

It coincides with the solution (2.14) obtained previously.

To solve IBVP (2.3)

‘PTZ%‘PW’ O<n<oo, 7>0,
¢(1m,0)=0, 0<ny<oo, (2.19)
¢0,7)=H(t), >0,



we again apply the Fourier sine transform to equation (2.19)

Fy(¢r)

0
f —— sin(ny)dn = —w(y 7),

Fopym) = = f afsm(ny)dn,
0

s

and integration by parts, i.e ;—2 =dv= 59‘7 =v and sin(ny) = u = ycos(ny)dn = du,

2(0p . . *H
Filom] = ;(8—9;81n(ny)lo -y fo a—(';COS(ny)dn)- (2.20)

=0

Then, integration by parts in the second integral (2.20), g—‘; =dv=¢=v and cos(ny) =
u = —ysin(ny)dn = du,

2 00
Filion] = ~25{ g 1 cose)ls +y [ . ) sincmyn).
=—H(®)

Thus we obtain

2
Filpml = —yH(T) -y (2.21)

By the Fourier sine transform of the initial condition

Fs(so(n’ O)) = (),b(y’ O) =0,

we obtain the following inhomogeneous IVP for the @,

3_90 Yo 1
w78 = @, 2.22)
®(»,0) =



The solution of IVP (2.22) is

By the inverse fourier sine transform

e, 1) = fo (&, 1) sin(én)dé, (2.23)
= f Ze” 2Tf H(T)eszT sin(né)dé, (2.24)
0
_ ! f H(T') f .fe_?(T_”sin(nf)df]dT’. (2.25)
T Jo 0

By using relation sin(pé) = (e™ — ¢7)/2 and completing the exponential functions to

the squares we obtain solution of IBVP (2.22) as follows

2

(m e 0 "o
= H . 2.2
eno)= [ ()t 2.26)

By superposition of (2.14) and (2.26), we have solution of IBVP (2.1) in the form

@-9> _ R 2

X eT T Im —e d n e ) o
o= [ ) A@de+ | () _ H@)dr
0 V2nt 0 T=T/\2n(t - 7)

Dirichlet heat kernel G(n,&,7) —K;: derivative of Heat Kernel

Equivalently, we can write it in closed form

o, ) = fo Gln, &, DA@dE - fo K,(n.7 - ¥)HE )T,

where we have used notation G(1,&,7) = K(n — &, 7) — K(n + &€, 7).

10



2.2. The Neumann Problem on Semi-infinite Line

The IBVP for the Heat equation with initial condition at time 7 = 0 and the Neu-

mann boundary condition at 7 = 0 is given by

@r =20y, 0<p<oo, T>0,
@(17,0) = A(m), 0 <7< eo, (2.27)
()07]((), T) = Q(T)7 T> 0’

where A(n7) and Q(7) are given functions. To solve IBVP (2.27), as we did in Sec.2.1, we
use linearity to replace the problem (2.27) by two problems [S] as follows,

The first one is IBVP with homogeneous Neumann BC,

%Z%tpnn, 0<np<oo, 7>0,
®(n,0) =A@, n>0, (2.28)
907](07 T) = 0’ T > O.

The second IBVP is inhomogeneous Neumann BC with homogeneous 1C

(p,z%go,m, O<n<oo, 7>0,
¢(n,0)=0, 0<n<oo, (2.29)
()077(07 T) = Q(T), T> ().

Applying Fourier cosine transform to the problem (2.28), i.e

2 0 0 .
Fip) = 2 f % costmydn = —-p(y,7),

)y Ot ot

2 [0 R
Felpy) = - fo a—#COS(ny)dF—yzw,

and to the initial condition

2 00
Flen,0) = - fo AGp) cos(ny)dn = $(3.0) = S (),

11



we obtain the following ordinary differential equation with initial condition

% _ 124
o = 727 (2.30)
?»,0) =S©).

The solution of IVP (2.30) is given by

Y 2

72 2 (™ ,
60.= 5005 = (= [ At costan)e

Then, applying the inverse Fourier cosine transform, i.e

o) = fo 3£, 7) cos(En)de, 231)
_ 2 f | f A cos(Ende]e™" costmdy, (232)
™ Jo 0
2 00 00 yz
_ 2 f A f & cos(én) costm)dy|de, (233)
T Jo 0

and using relation cos(y€) cosny = [cos(n — &)y + cos(n + €)y]/2, we get

2 2

e © o
o) = f A f 57 cos(y - E)ydy + f 5 cos(y + E)ydy | (2.34)
T Jo 0 0

1 11

For integral (I) in above, using relation cos(n — &)y = (/7 + ¢=1=%) /2 and completing

exponential functions to the squares, we obtain

- 2
[= |2, (2.35)
21

and for the second integral (II) in (2.34), using relation cos(n + &)y = (€'Y 4 = i1+y) /2

and completing exponential functions to the squares, we get

n+é 2
= |2 (2.36)
2t

12



Substituting (I) and (IT) into (2.34), we obtain solution of IBVP (2.28) in the form

S T) = — f ) (e-(”f)z+e-(”§f>2 )A(g)dg. (2.37)
T JO

V2t

Note that, the Neumann BC is homogeneous, that is ¢,(0,7) = 0, we can use
the reflection principle. We seek to reduce the IBVP (2.27) to an IVP on whole line by
extending the initial data A(n) as an even function, in such a way that boundary condition

is automatically satisfied. The even extension of A(7) is

A B Z O’
An) = (n) n
A(-n), n<0,

and we consider the following IVP

e =10, —co<np<oo, T>0,
{90 2%m g (2.38)

¢(,0) = A.(n), —o0<n<oo.
It’s well-known that problem (2.38) has solution
sn0) = [ K- easede

Substituting the expressions for A,(r7) and changing variable ¢ — —¢ in the second inte-

gral, we obtain

o, ) = fo K(n - & DA@E + fo K(n + & DAQ@dE,

By using definition of the Heat kernel, we have in explicit form

_a-9? _ao?

0 e 2t 4+ e 2t
)= de. 2.39
o1, 7) fo ( = Jaee (2.39)

13



To solve the IBVP (2.29), we use the Fourier cosine transform

2 (0 0
Fip) = = f 6—“”cos(ny)dn:6—¢<y,f),
T
F(op) = f COS(ny)dn, (2.40)
F(p(n,0)) = 90(y,0)— . (2.41)

Thus, we have the following IVP for the first order linear ODE in 7 variable

9% 4 >_
o+ 7= 2000, (2.42)
o(y,0) =

which is
1 2 T 2
(;b(y’ ‘1‘) = —Eg_'z"'f Q(T/)eTT dT/.
0

By inverse cosine transform

5 e
- f @(&, 7) cos(né)dé,

0

_%f L f 0" dr | costee,

__f o) f (e~ S r-ing 4 g5 et mcf)]

o(n,7)

Thus, we have solution of IVP (2.42) as

T
T e 2(r-1)

(,0(7], T) = - ; WQ(T )dT . (243)

By superposition of (2.39) and (2.43), finally we have solution of the IBVP (2.27) as

14



follows

-8° _are?

o0 e 2 +4e 2 “
o, 7) = f ( A)dé - f o()dr'
0 2T \/27T(T )
Neumann heat kernel N(n,&,7) K(n,t—1') : Heat Kernel

Equivalently, in closed form we have
o0 = [ Na.Enaede - [ Ko - )0
0 0
where N(1,¢,7) = K(n —&,7) + K(n + £, 7).

2.3. Similarity Solutions of Heat Equation

(2.44)

If ¢(n,7) is a solution of the Heat equation ¢, = (1/2)¢,, (x), then g (n,7) =

A~¢@(An, A%7) is also a rescaled solution of the Heat equation. We look for solutions

satisfying

©om, 1) = A Qp(An, 21), -—co< n<oo, >0, and c,1€R,

(2.45)

which are known as similarity solutions (or homogeneous solutions [10]). For A > 0 and

7> 0, let 1 = 1/ V27, we have

o= <[5z

For z = 7/ V27 define f(z) = go(\/iz? 1), then

1 —C
o, 1) = (\/_2_7) f@).

(2.46)

(2.47)
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Substituting (2.47) into Heat equation (x), then we obtain ODE f” + 2zf" — 2c¢f = 0. For

the special case ¢ = n, this equation becomes

7+ 2zf = 2nf =0,

-0 < 7 <00,

It’s easily showed that the following functions are solutions of (2.48).

Hh, (2)
Hh, (2)

HY ()

= f e_(z_y)zy"dy. — 00 <7< 00,

Using similarity variable z = n/ V27, we can write also

- n
Hh,|—| =
V21
n
Hif (- =
V21
n
Hy|—]| =
V21

and by changing variable 21y — &, we have

Hh,

Hh!

n

0o
f e
0
00
f e
—00

= ﬁ“d
-\l

o~ &

_a=V2y?

e vay?
e 27

27

_ = V2n)?

27

T

| %

y'dy,
y'dy,

n

y'dy,

gl @l @l
~ ~ ~

PN
f e @ y)yndy’ —00 < 7 < 00,
0

f €_(Z+y)2y"dy, —00 < 7 < 00,
0

—o00o <1 <o,
—00 <M< oo,

—00 <1 <09,

dg,

dg,

dé,

T>0,

7> 0,

7> 0,

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
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and we define

_ =9 §>

1

h,, (n, :—\/_Hh——f dé, 2.58
n (1,7) \/_( ) (—=) mf ¢ (2.58)

1 <n+f>2
h (1, :—\/_”Hh+—_f £'dé, 2.59
n (1, 7) \/_( ) (—=) \/7 & (2.59)

1 o _(17 5)2
H' (g, 7/2 :—\/_”H"—_f ¢&'dé, 2.60
n (11,7/2) \/_( V'H,(—=) \/ﬁ 3 (2.60)

where function (2.60) is Kampe de Feriet polynomials, defined by

[n/2]
@/2D"

Clearly, these functions are similarity solutions which satisfy (2.46). In function (2.59),

replacing & — —&, we get

_ =5~ f)

hy(n,7) = (=1)" f \/_

Then it’s easily seen that for even n,i.e n = 2p for p = 0,1,2,---, we have even KFP in

terms of i} and h,,,

HY,(n.7) = hy,(0.7) + hi,(n,7), p=0,1,2,

and for odd n, say n = 2p + 1, we have odd KFP

Hy, \.7) = hy(0.7) = 3,7, p=0,1,2,-

17



For fixed 7 > 0 and at n = 0, we have

n+l

0 e‘é 25T [””]
@@ﬂ=f e = {_ ,

h3,(0,7) + h3,(0,7) = f _ :
T T Pd¢
HY, ,(0,7) = hy,,,(0,7)=h},(0,7) =0

h,(0,7)

H5,(0,7)

For fixed n € (—o0, 00) and as 7 — 0,

h,(n,0) = 7",
hi(n,0) = 0,
H,(n,0) = 7.

Using the above solutions of the Heat equation, we can obtain solutions of the Dirichlet

and Neumann IBVP as in the following.

Example 2.1 We consider the following IBVP for the Heat equation with homogeneous
Dirichlet BC

go,z%go,m, 0<n<oo, 0<T7<oo0,
om0 =71", n=0,1,2,---, 0 <n < oo, (2.62)
00, 7)=0, 0<T1<oo,

which has solution

_a-9? _ao?

wmﬂzﬁme”‘”ZTk%. (2.63)

If n is odd, then solutions of problem (2.62) are odd Kampe de Feriet Polynomials, i.e

@2pu1 (1, 7) = h3p (0, 7) = B3, (0, 7) = Hb L (1,7).

18



However, if n is even, then solutions of Heat problem are no longer even KFP, since even
KFP does not satisfy the Dirichlet BC ¢(0,7) = 0. Then, solution in that case can be
written in terms of functions (2.58) and (2.59) as

020, 7) = hy,(m,7) = b3, (1, 7). (2.64)
Example 2.2 Now consider the IBVP with homogeneous Neumann BC

go,:%ga,m, O<np<oo, 0<7<o00,
en,0)=71n", n=0,1,2,---, 0<n < oo, (2.65)
©;(0,7) =0, 0<7<oo,

which has solution

-9 _ae?

o0, 1) = fo w(e_ e, (2.66)

If n is even, then solutions of problem (2.65) are even Kampe de Feriet Polynomials, i.e

©2p(1, ) = b3, (1, 7) + 3, (7, 7) = Hy, (1, 7).

However, if n is odd, then solutions of Heat problem are no longer odd KFP, since odd
KFP does not satisfy the Neumann BC ¢,(0,7) = 0. Then solution in that case can be
written in terms of functions (2.58) and (2.59), that’s

+

902p+1(77’ T) = hgp-{-] (77, T) + h2p+1(779 T)' (267)
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2.4. Heat Equation with Robin Boundary Condition on Semi-infinite

Line
Now, we consider the IBVP given by

‘)DT:%QOUT]’ O<77<OO, T>O,
¢(1,0) = A(np), 0<n<oo, (2.68)
a(T)p,(0,7) + B(T)¢(0,7) = g(r), T>0. (Robin BC)

where A(n), a(t), B(r), g(r) are given functions. To solve the IBVP (2.68), we apply

two approaches :

1) Dirichlet Approach : If 5(7) is not identically zero for T > 0, assume tempo-

rary we know ¢(0, 7) = H(7), then we have the following IBVP with Dirichlet BC

QOT:%QO?V?’ O<p<oo, >0,
¢(,0) =A@m), 0<n<oo, (2.69)
¢(0,7) = H(t), 7>0.

From previous section, we know the solution of IBVP (2.69) in the form

o _a-? 4> ?

w0 = [ (e ot 0 + f ( L)@, 270
. Nor= o\t ) Vo=

where in closed form

o, 7) = f G, &, T)o(E, 0)dé fo K,(n 7 — T)HE )T
0

But this solution contains unknown function H (7). To fix this function, we have to solve

20



the Robin BC. By taking derivative of (2.70) with respect to 1,

o0 = [ Goenpeods- [ Kyonr-v) Har,
0 0 |—
-2K. : from Heat eq.
0, (0,7) = f G,(0,¢&, 1)p(é, 0)d§+2f K. 0,7 —1)H(t')d7',
0 0

or explicitly

2

€\ e T OHT)
0,7)=2 = A(é)d —d7, 2.71
e0.0=2 [ ()@ | Nt @)

and substituting ¢, (0, 7) with ¢(0, 7) = H(7) into Robin BC (2.68), we obtain the follow-

ing integral equation [S] for the unknown function H(7),

<& e‘g T H(t) A
,B(T)H(T)+oz(r)(2 fo (?)v?mA(f)df+ fo \/ﬁm)—gm,

or equivalently we have,

H(t) = Fp(7) -

a(T)( i H(T) ,)’ 2.72)

d
BO\Jo \2rx(r = 7) ’

where

Fomy < 80 2a(r)(f°°(§) o5 A(g)dg)
U7 B Bo\Jy \t/ ot '

The function Fp(7) can be obtained directly, since we know A(n), g(7), a(r) and B(7).
Equation (2.72) is an inhomogeneous linear integral equation of Volterra type. In general,
the solution of integral equation (2.72) can be obtained numerically. If we can solve it
explicitly and find the unknown H(7), then the solution of Heat IBVP with Robin BC is
(2.70).

Thus, the problem of solving the Heat IBVP (2.68) with Robin BC is reduced to solving

integral equation (2.72) for the unknown function H(7).
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2) Neumann Approach : Now, we consider again the IBVP (2.68) with Robin
BC. If function a(r) is not identically zero for 7 > 0, assume temporary we know

¢,(0,7) = Q(7). Then we have the following IBVP with Neumann BC

QOT:%QOTPP 0<77<OO’ T>0’
o1,0) = D), 0< 77 <o, @.73)
907](05 T) = Q(T)’ T> O

From previous part, we know solution of the IBVP (2.73) in the form

- f) @+0)> 7>

+ e 2<T )
= 2.74
o0, 7) = f e (S f WQ( L

and contains the unknown function Q(7). To fix this function we need to solve the Robin

BC. From solution (2.74), we obtain ¢(0, 7) as follows

_ 0@

0,7)=2 2.75
#(0,7) f) ( 2n(t—1') &7
Substituting ¢(0, 7) and ¢, (0, 7) = Q(7) into Robin BC (2.68), we get
~( e T o)
2 —d " = s
oo +0(2 | =) ) =5
or equivalently
_ BO( (T 0@) ,
om =+ | ) (2.76)

where

2

P = S5 - 2B0( [ (L= o).
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The function Fy(7) can be obtained directly since A(¢), g(7), a(r) and B(7) are known, but
Q(7) is unknown function. Thus, equation (2.76) is an inhomogeneous integral equation
of Volterra type for the unknown function Q(7). If we can solve it explicitly, we will fix
¢,;(0,7) = Q(7), so that the solution of Heat IBVP (2.68) can be found. If B(7)/a(7) is
constant, then it’s known Abel’s integral equation. In the next section, we give solution

of Abel’s integral equation.

2.5. Abel’s Integral Equation and Solutions of Heat Problem with

Robin Boundary Condition

The integral equation

f@) = f - u(t')dt’, (2.77)
0

T—7

where f(7) is given and u(7) is unknown, is called a first-kind Abel’s integral equation.
This equation is a special Volterra type integral equation with weakly singular kernel
K(7,7') = 1/ VT — 7/, where K(1,7') » 0 as 7/ — T.

This equation can be solved by applying the Laplace transform and then by inverse

Laplace transform so that we have

PN U A9

rdt Jy Ne-v

dr'. (2.78)

Clearly, the formula (2.78) will be used for solving Abel’s integral equation (2.77). It’s
known that for some special functions f(7), the solution (2.78) can be obtained explicitly.
The followings are some examples.

For f(t) = T"*1/2, n is a positive integer, we have solutions for u(t) as follows

n=1, f(r)= %73/2 = u(t) =T,

n=2, f(n)=12r"? = ur)=1,

n=3, fO=27"7 = ur)="1,

(2.79)
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In general, n = 1,2,3,-- -,

2" (n+ 1) )

135---Q2n+1) = un =T (2.80)

fr) =
For f(7) = 1", n is a positive integer, we have solutions for u(7r) as follows

n=1, f@)=1irt, = u@) =177

n=2, f(r)=3n> = u(r)=1",

8
3 2

2.81
n=3, f(r)=2rr = ur)=7"7 (2.81)

In general, n =1,2,3,---,

_Tw+1/2)

f(r) = T Tl = u(r) =172 (2.82)

The weakly-singular Abel’s integral equations of the second kind are given by

O(r)=F(r)+ f: \/‘rﬁ——T’Q(T,)dT,’ 7€][0,T], (2.83)

where F(7) is known and Q(7) is unknown with constant 8. To solve this type of integral
equation, one can use again Laplace transform or method of successive approximations.
As we have seen in previous chapter, the Heat equation with Robin boundary condition
reduces to Volterra type integral equation. If this integral equation is of the form (2.83),
then we obtain explicit result for the solution of IBVP with Robin boundary condition for

the Heat equation.

* First type initial condition : The following IBVP

QOT:%%W 0<np<oo, 7>0,

o1,0) = (52208 + 2B ), 0<n <o, (2.84)

0(0,7) —¢,(0,7) =0, 7>0,

24



has solution

o, ) = fo N, £ 7)¢(&, 0)dé - fo K - )6,(0, 7)d,

which is solvable. Indeed,
For example if n=1: A(p) = V2m* + \/27’ 1, the following IBVP with Robin BC and
initial data A(n),

<p7:%<p,m, O<n<oo, 7>0,

0(1,0) = 27 + V{’fn*, 0<7n < oo, (2.85)
00,7) — ¢, (0,7) =0, 7>0,

reduces to solving integral equation

0o \/_ T Q(T’)
= 2 — = d7 2.
0() fo ( Tﬂ)[\/ ng + LT ]df . )
_ i 32 ’ Q(T) ’
o) = V2nr+ 37 —mcﬁ. (2.87)

By Laplace transform, we obtain solution Q(t) = V2xr with f(1) = 272, Thus, the
IBVP for the Heat equation with Robin BC is exactly solvable by special 1n1t1a1 condition
A(7n7). And we have solution for the problem (2.85) as follows

=9 a+e?

o, ) = fo e f T o, 289)

Vo =)
=&” (n+£)
C e +e \/ Te2<rr)
(,T):f ( )l + — ld 7'dt’,  (2.89)
S S e A ) e
I 1
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where

_ 2,22 TN =4 BN VAo n

I = e (7’ Ve +20°7) + V2 [P + 7+ ——Erf = (2.90)
_ 2 2 ap o [ + 307l n

= ze (202 + 2 Vr) = V2r [ + 3 ——Erf 7=l (2.91)

then ¢(n, 7)=I- II gives the exact solution to the IBVP (2.85) with Robin BC as follows

P
§+772+77T+T

¢(n,7) = V21 . (2.92)

For example if n=2 : A(p) = YZp* + Y25 the following IBVP with Robin BC and
initial data A(n),

QDTZ%QDW, O<np<oo, 7>0,

07,00 = Zpt 4 Y500 < < oo, (2.93)

¢(0,7) = ¢,(0,7) =0, 7>0,

we have the following integral equation for Q(7)

2

_ © e_% m 4 m 5] _ T Q(T,) ’
o0 = 2 [ ()| T e [ i eo
0 = Vanet+ 180 0F) 4 (2.95)

- —dr.
157 " Vo

By solving the above integral equation motivated by the first kind Abels integral equation,
we obtain Q(1) = V2rr? with f(1) = 1875/2. Thus the IBVP for the Heat equation with
Robin BC is exactly solvable by special initial condition A(77). And we have solution for

the problem (2.101) as follows

0-0> R 7

(T (e T te ™ @4 \/ﬂs _Te_m 3 1
o= [ ()| e e e [, 296)

I i
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where

1 2
I = (R VT+20R0P + 80+ Var(sy' + 307°r + 157)
1 5]
+ — (V27 + 10°t + 15T Erf | — ) (2.97)
15( n n 1 f»@_
- i -z 2 2 _\/_ 2 3 5
Il = 5 2e” % \T(* + ) + 87) — V2r(1537* + 10°T + 1)
1 R
+ — | V2r(15p?® + 107 + )Erf | — ) (2.98)
(v e vore e |

then ¢(n, 7)= I- II gives the exact solution to the IBVP (2.93) with Robin BC as follows

S 4

5
n—+n—+—1737'+27727'+17‘1'2+7'2

= V2
o(1, 7) «/715 T3

. (2.99)

* Second type initial condition : For the following IBVP

‘107:%‘70777]’ O<7]<OO, T>O,
(11,0) = (52 + 5 A £), 0 <1y < o, (2.100)

2T (n+1)

©0,7) —¢,(0,7) =0 7>0,

we also obtain explicit solution. Indeed,
For example if n=1: A(n) = \/gn + gnz, the following IBVP with Robin BC with initial
data A(n),

go,z%(p,m, O<n<oo, 7>0,
¢(,0) = \Fn+ 5%, 0<n<oo, (2.101)
‘10(07 T) - SOU(O, T) = Oa T> 07

reduces to the the following integral equation for Q(1)

2f0 (%)[\g‘f*zf]df fomdn (2.102)

o) =
s T0)
= —T — —dr’. 2.1
o) VT + 2‘(’ I) T T/)dT (2.103)
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By solving above integral equation motivated by the first kind Abels integral equation, we
obtain Q(t) = 7'/* with f(r) = Z7. Thus the IBVP for Heat equation with Robin BC is

exactly solvable by special initial condition A(77). And we have solution for the problem
(2.101) as follows

,7) f (e ”ﬁ? A(g) dé — f 7 Q( Ndt', (2.104)
en,1) = ( ™)dT’, .
0 V2nt V2r(t -7
o =8P _ e’
e 2r 4+ e 2t T /4
1) = ( )[\/j§+—fz]d§ (2.105)
A 0 2nT 2 2
I
e A NV )
— — (7 dr’,
il
1
where
T s n
et e T L]
2 2 V2r
1 2 Nr n
II = ——np\te ™ + ——@* + 1)Er c[—], (2.107)
A e

then ¢(7n, 7)= I- II gives the exact solution to the IBVP (2.101) with Robin BC as follows

i 2
T T KA e

2.6. Heat Equation with Special Boundary Condition on

Semi-infinite Line

Now, we consider the IBVP given by

(’pT:%(’pm], O<77<OO, T>O,
¢(1,0) = A(mp), 0<n<oo, (2.108)
¢-(0,7) + a(1)g,(0,7) + B(T)p(0,7) = g(7), 7>0,
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where A(n), a(t), B(1), g(7) are given functions. Assume temporary we know ¢(0,7) =
H(7). We know that the IBVP with Dirichlet BC has solution

2 2 2
o0 _ =9 _+8)

o(n,7) = (e il )¢(§,0)d§+ f ( q ) ¢ Rt (2.109)
0 o o ‘o= =)

But we see that the unknown function H(7) is in the solution. We can fix this function

from the Robin BC. By taking derivative of (2.109) with respect to 7,

£\ o T H@)
0,7)=2 = A&)d —d7, 2.110
#0(0.7) fo (T) \2rt (€)ds + 0 \2n(t-1)3 ! ( )

and substituting ¢,(0,7), ¢(0,7) = H(7) and ¢.(0,7) = H(7) into Robin BC (2.108), we

obtain the following integral equation for the unknown function H(7),

&
2

. b —i T H(t
H(7) + B(0)H(T) + a(T)(ZL (g) \e/Z—A(f)df + f(; \/%
T m(t -1

dT’) = g(7),

or equivalently we have,

T H(Tl)

H(t) = Fp(7) - a’(T)( dT’) — BOH(D), 2.111)

where

Fo() = §(0) - 2a(0) fo (¢) 32;_7

A@)de)

The function Fp(7) can be obtained directly, since we know A(n), g(7), a(r) and B(7).
The equation (2.111) is an inhomogeneous linear integral equation. Thus, the problem
of solving the Heat IBVP (2.108) with Robin BC is reduced to solving integral equation
(2.111) for the unknown function H(t).
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2.7. The Dirichlet Problem for Variable Parametric Parabolic

Equation on Semi-infinite Line

In this section, we consider IBVP for a linear parabolic equation with variable
coeflicients. We show that it can be transformed to IBVP for standard Heat equation dis-

cussed in previous section.

Proposition 2.1 The IBVP for variable parametric linear parabolic equation on semi-

infinite line given as

1 N2 (t
(D[:md)xx+’%x2q), x>0, to<t<T,

D(x, 1) = A(x), x>0, (2.112)
®0,1) = Bp(t), to<t<T,

where A(x) and Bp(t) are known functions of x and t respectively and u(t) > 0 and con-
tinuously differentible and w(t) are given smooth continuous functions of t, has solution

of the form

O(x, 1) = rf(—(f)) exp [ - ’%(rg)xz]w(n(x, 0, 7(1),

if r(¢) is strictly positive and solution of the ordinary differential equation with initial con-

ditions
i+ ED5 4 2(H)r = 0,
H) ® (2.113)
r(t) =rog#0, () =0,
with

_ o _ 2 "dé
n(x,1) = r(t)x, () =71, fto ,u—(f)rz( 2%
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and ¢(n, ) satisfies the IBVP for the standard Heat equation,

@r=3om 1n>0, 0<7t<7(T),

©(n,0) = O, 1), n>0,

0(0,7) = |20, 1(7)), 0<7<T(T).

where () = 7 & t = K(T).

Proof:

Using the ansatz, [2]

[40) p( )2

O(x, 1) =e 0(e8x, 7(1)),

(2.114)

we can show that, if the auxiliary functions p(¢), 7(¢) and g(¢) satisfy the nonlinear system

of ordinary differential equations

2

p+ % + (1) = 0, pltg) =0
eZg(t)
T T T =0
PO _ _
+ m = O, g(t()) =0

(2.115)

(2.116)

and @(n, 7) satisfies the standard HE (2.114), then ®(x,) = exp[£220 Jo(es0x, 7(1))

satisfies the variable parametric Heat equation (2.112). Noticing that equation (2.115) is

a nonlinear Riccati equation which can be linearized by using p(?)

= u()i(t)/r(t). Then

the system is easily solved and we obtain the following auxiliary functions in terms of

solution r(t) to the IVP (2.113) as follows

(1)
r(t)’

(1) = rg f M’ (tp) = 0

s = inf 7).

pt) = u(t)——=

(2.117)

(2.118)
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then, by back substitution these functions in the ansatz, we get ®(x, t) in the form

D(x.1) = /% exp [—“g:(rg) xz]go(r](x, 0. 1(0).

Using ansatz, the initial condition ®(x, ?) |,=,,= D(x, #p) is easily transformed to the initial

condition ¢(n,0) = ®d(n, 1) for standard HE. And Dirichlet BC for variable parametric
parabolic equation ®(0,7) = Bp(?) is transformed to Dirichlet BC for standard HE as

follows

r(#(7))

1o

¢0,7) = (0, #(7)),

where we use that u(f) > 0 and r*(r) > 0, so that 7(1) = r} f ' /&, 7(ty) = 0 is strictly
increasing and thus its inverse #(7) exists. Thus, IBVP (2.112) is transformed to the IBVP
(2.114). This shows that solution of variable parametric parabolic equation is explicitly
obtained in terms of solution of ¢(n, 7) to the standard HE (2.114) and solution r(z) of the
IVP for the linear ODE (2.113). m

Now, we give some basic examples to apply the above proposition.

Example 2.3 For the constant coefficient parabolic equation where u(t) = 1, w*(t) =
—wj, wy >0, we have
1 W 2
D, ==-0, + —x"D,
) 2"

where wy:constant and the related IVP as follows

'f—(x)()zr = 0,

r(ty) =ro #0 ¥(t) =0,

(2.119)

where it has solution r(t) = rycosh(wy). Now, for example taking initial condition
®(x,0) = 0 and BC ®(0,t) = co Vsech(wot) where cy:constant, we obtain the follow-

ing IBVP for constant coefficient variable parabolic equation,

2
w,
O, =10, + 2x*D, x>0, >0,

O(x,0)=0, x>0, (2.120)
D0, 1) = co Vsech(wyt), t>0,
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from Proposition-I, the corresponding functions as follows

n(x,t) = sech(wot)x,
7(t) = tanh(wyt)/wo,
g(#) = In(sech(wot)),

(2.121)

po(t) = wy tanh(wyt).

Then we have solution in following form

D(x, 1) = fsech(wotye 2 “M@DF on(x, 1), (1)),
where ¢(x,t) satisfies the IBVP for standard Heat equation,

¢ =10, >0, >0,
¢(n,00=0, >0, (2.122)

©0,7)=cyg, T>0, o : constant.

Applying Fourier sine and inverse Fourier sine transform, we get solution as follows

el 7) = cof 1 - ”f(\/iz—) )

Erfe(J5)

Thus, the corresponding solution of variable parametric parabolic equation is given by

D(x, 1) = co/ sech(a)ot)e_%‘“0 tanh(@onx’ pry. fc( \/wocosech(Zwot)x).
Example 2.4 The IBVP

2
O, =10, + LD, x>0, >0,

O(x,00=0, x>0, (2.123)
®(0,7) = % \sech(wo) t>0
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which is transformed to the following IBVP for the standard HE

$r = %907]77, n> 0, >0,
¢1n,0)=0, >0, (2.124)
e0,7)=1, 7>0.

We obtain the solution as follows

A ST B/ N -y~ 2.12
o 7) = (FF +7) rfc[ VQ_T] Ze (2.125)

And the corresponding solution for the parabolic problem is given by

O, 1) = sech(otie T (P 0 + T | ”(;T’(tt))] - %e VeOn(x.)

tanh(wo?)
wy

where 1(x,t) = sech(wot)x and T(t) =

2.8. The Neumann Problem for Varible Parametric Parabolic

Equation on Semi-infinite Line

In this section we consider that IBVP for variable parametric parabolic equation

with Neumann BC.

_ 1 O (@) 2
O, = 2#(t)d>m+ 5—x D, x>0, ty<t<T,

D(x, 1) = A(x), x>0, (2.126)
(I)x(()’ t) = BN(t), I <t< T,

where A(x) and By(¢) are given functions. Then IBVP (2.126) has solution of the form
ro(t) [ p(@)i (1) 2]
® _ 7 2.127
(x, 1) \/ 0 exp 2 e(n(x, 1), 7(1)), ( )
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where r(t) is the solution of IVP ¥+ %i+w2(t)r =0, r(ty) =ro#0, i(tn) =0, with

n(x,t) = %x, (1) = rg ft (: y(f;iri(f)’ and ¢(n, 7) satisfies the following IBVP for the HE,

¢r = %go,m, n>0, 0<7<7(T),

¢(,0) = O(n,1), n>0, (2.128)
3

0.1 = (2] 0,0,1(7)), 0 <7 <T(T).

Proof:

Using the ansatz
g0-p(x?

O(x,1)=e 2 @ Vx,1(1)),

we can show that initial condition ®(x, ?) |;,,= D(x, ) 1s easily transformed to the initial
condition ¢(n,0) = ®(n,1)). And Neumann BC for (2.126) is transformed to Neumann
BC for (2.128).

3
¢,(0.7) = exp [ - 5g(t<r>)]<bx<o, (7)),

where we use that u(t) > 0 and r(¢) > 0, so that 7(¢) = rg fl : ﬂ(;f;( ) is strictly increas-
ing and thus its inverse #(7) exists. Thus, IBVP (2.126) for the variable parametric Heat
equation is transformed to the IBVP (2.128) for the standard HE. Thus, solution of the
problem (2.126) is explicitly obtained in terms of solution of ¢(7, 7) to the standard HE

(2.128) and solution #(t) of the IVP for the linear ODE (2.113). m

2.9. Robin Boundary Condition for Variable Parametric Parabolic

Equation on Semi-infinite Line

In this section we consider that IBVP for variable parametric parabolic equation

with Robin BC.

1 DW(t
d)[:md)xx+‘%x2d), x>0, ty<t<T,

DO(x, 1p) = A(x), x>0, (2.129)
a(t)D.(0,1) + BP0, 1) = h(t), th<t<T,
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where A(x), a(t), B(t) and h(t) are given functions, a(¢) and B(f) are not zero simultane-
ously. Then the IBVP (2.129) is transformed to the following IBVP for standard Heat

equation by ansatz which we define in previous sections,

()DT=%90,7,7, O<n<oo, O0<t<7(T),
©(@,0) = @, 1), 0<n<oo, (2.130)
a(t(1)) (%)3%(0, 7) + B /5520, 7) = h(t(7)), 0<71<7(D),

where we use

¢(0,7)

@(0, #(1)), (2.131)

1
exp | - 38(1(7)

3
¢y(0,7) = exp —Eg(f(T)) (0, (7). (2.132)

We see that variable parametric parabolic problem with Robin BC is reduced to the Heat
problem with Robin BC easily. In previous section, we have shown how to find the solu-
tion of Heat problem with Robin BC. Thus, solution of the problem (2.129) is explicitly
obtained in terms of solution of ¢(n, 7) to HE (2.130) and solution r(¢) of the IVP for the
linear ODE as

O(x, 1) = \/;0(—? exp [ - l%(r:;)xz]w(n(x, 1), 7(1)).

36



CHAPTER 3

THE IBVP FOR BURGERS EQUATION ON
SEMI-INFINITE LINE

In this chapter, we consider Burgers equation with three types of boundary con-
ditions. Firstly, we obtain solution of the problem with Dirichlet boundary condition on
semi-infinite line. Then, we investigate the IBVP with Neumann boundary condition and
finally we consider the problem with special nonlinear boundary condition for Burgers

equation on semi-infinite line.

3.1. The IBVP with Dirichlet Boundary Condition

Consider the IBVP for Burgers equation on semi-infinite line

Ve+VV, =1V, 0<p<o, 7>0,
V(n,0) = f(n), 0<m<oo (3.1)
V(@0, 1) = B(1), >0 (Dirichlet condition),

where f(n7) and g(7) are given functions. We will use two ways for solving this IBVP.

oFirst Way -Direct Cole-Hopf :
Applying directly the Cole-Hopf transform V(n, 1) = —¢,(1, 7)/¢(n, T) to problem (3.1),

we obtain the corresponding IBVP for the Heat equation with Robin boundary condition,

SDT:%SDUU’ 0<p<oo, 7>0,
¢,0) = exp|- [" VG, 0’|, 0<ny<oo, (3.2)
(0, 7) + B(1)p(0,7) = 0, >0, (Robin BC),

where B(7) is not identically zero. The boundary condition is directly obtained using

V(0,7) = —¢,(0,7)/¢(0,7) = (7). From Chapter 2, we know how to solve Heat problem
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with Robin BC using two approaches.

(i) Dirichlet approach : Assume we know ¢(0, 7) = H(7), then solution for the
problem (3.2) is given by

_ (" - [ var 0y i , N
e, 1) = | G@,& 1)e b dé - | Ky, 7 —1HHT)d7, (3.3)
0 0
where H(7) is obtained by solving the integral equation

T H(Tl)

H(r) = —i[ f ) (ﬁ)ie—ﬁ("”‘”dﬂ’dg] L dT’]. (3.4)
BOLJo \t/\2nr B(7)

Then, solution of Burgers problem (3.1) becomes

00 3 ’ , T
5 Gy, & 09e” Vo om gg — [Tk, (.7 — T)H(T')dr
K G, &ne IV om ag - [Tk G, v — o) H(r)dr

Vin,t) = - , 3.5

where K(n, 7) is the Heat kernel, G(17,&,7) = K(n—&,7) — K(7 + &, 7) is the Dirichlet heat

kernel. Then explicitly the solution takes the form

. =&? _o” Ui L
oo (LE)e 2 —(ﬂ)e i f vy 0)ydy [ ) 2 2
T T d e ¢ H()dt
J(‘) ( 2nt ) é‘: f() \2n(r— ‘r)3 V2nr(r-1') ( ) y
VT = — ; (36)
e 2t —¢ 2t V(@ 0)dn' Z(T i) 4 4
g P dg v [ () H

If we find a solution of integral equation (3.4) for H(t), then we obtain solution (3.6) of

IBVP (3.1) for standard Burgers equation.

(ii) Neumann approach : Assume we know ¢, (0, 7) = Q(7), then the solution is

‘70(77’ T) = L N(’L 57 T)SD(§7 O)d'f - j()\ K(T], T T/)Qoﬂ(()’ TI)dT/’ (37)
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where Q(7) is determined by solving the following integral equation

2

0(1) = —Zﬁ(T)[ fo ) %e‘ﬁ V(”"O)d”'df] + ﬁ(r)[ OT %dr’ . (3.8)

Then, the corresponding solution of the IBVP (3.1) is of the form

I Ny, £, D)0, 0)dé — [T Ky(p, 7 = 7)Q(x)dT!

V(U’ T) = - 0o T ’
Jo NG €,0)e(&,0)dé = [ K, 7= )0 )dr’

(3.9)

where K(n, 7) is the Heat kernel, and N(n,&,7) = K(n—&,7) + K(n + &, 1) is the Neumann

heat kernel. Then explicitly the solution is given as follows

@-0* ?
oo (e T (1) i - [* var 0dn i
Jp ¢ = ) dé -~ [ (s en 2T
V1) = 0w i

¢ 2 e 3\ [TV Oy ge_ (T e 26D
Jo (e S Vo0 g fOWder

eSecond way - Generalized Cole-Hopf :
Now we briefly outline the way of solving the IBVP (3.1) by generalized Cole-Hopf

transform, which was used by [4]. The generalized Cole-Hopf transformation is given by

W(n.7) 9
V(1) = - 10— = -4
(C(r>+ N ‘Pm':)dn')

)+ [ ¥or, D1

or equivalently

¥(n.7) = —C()V(n.7) expl— [ V(7. 1)dn], (3.10)
with

C(0) =1,

C(t) = 1¥,(0, 7).
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Under the generalized Cole-Hopf, the IBVP (3.1) for BE transforms to Heat problem

‘I’T:%‘P,m, O<p<oo, >0,

W(n,0) = —V(xy,0)e [ Vo 0 <7< oo,
Y(0,7) = -C(m)V(0, 1), 7>0, (3.11)
and

C(r) = 1¥,(0,7).

where C(7) is unknown. Following the work of [4], assume temporary we know C(7).
Then we have IBVP with the Dirichlet BC for the Heat equation. The solution to this
Dirichlet Heat problem is given by

Y(n,1) = fo G, & 7)Y (E,0)dé - fo K,(n,t—1)¥(O,1")dr. (3.12)

From solution (3.12) we can obtain

¥, (n,7)

f"o G,(n,&, )Y, 0)dé + 2 fT K.(n,t—1)¥0,7t")dr,
0 0

¥,0,7) = j:o G,(0,&,7)V(&,0)dé + 2 f: K. (0,7 — 7)Y, 7)d7,

- zfm(ﬁ)_e_i w0+ [ 20T g
o om0 oo

By using ¥(0,7) = —C(r)V(0,7) and ¥(£,0) = ~V(y,0)eS V009 and the relation
¥,0,7) = 2C(t), we have the following integro-differential equation for the unknown

function of C(7) i.e.

2

. © £\ e v e L [T CEHWVO,T)
C(r)=- = V(,0 T dE — — —dT’.
® ‘fo (T) V2nr (€ 0 ¢ 2Jo \2n(r-1) ’

This integro-differential equation can be transformed to integral equation for C(7). Thus,
we see that solving the IBVP for the Burgers equation with Dirichlet BC (3.1) again

reduces to the problem of solving a linear integral equation where solution of the problem
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is given

Y(n, 1) _
C(r)+ [ WOy, vy

V(U’ T) = -

Comparison: The relation between both approaches can be easily established if
we let ¥(n7,7) = ¢,(n7, 7). Using directly the Cole-Hopf transform, we have seen that the
Dirichlet BC for Burgers equation transforms to Robin BC for the corresponding heat
problem. On the other hand, using the generalized Cole-Hopf the Dirichlet BC for the
Burgers problem was transformed again to Dirichlet BC for the heat equation. However,
at the end, both approaches lead to solving integral equations. Indeed, it is not difficult
to see that the heat IBVP’s (3.2) and (3.11) are related by ¥ = ¢,. Then, we have ¥, =
@y = 2¢r, which implies Cn=a /2)¥,(0,7) = ¢-(0, 7). Then, C(7) = cp(0, 7), where ¢
is constant and ¢,(0,7) = —C(7)V(0, 7) implies V(0, 7)p(0, 7) + ¢,(0, 7) = 0 which is the
Robin BC for (3.2).

3.2. The IBVP with Neumann Boundary Condition

Consider the IBVP

Vet VV, =1V, 0<np<oo, 7>0,
V(n,0) = f(n), 0<n<oo, (3.13)
V,(0,7) = h(7), 7> 0,

where f(n) and h(7) are given functions. Again we shall give two ways to solve the above

problem.
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e First way - Direct Cole-Hopf :
By Cole-Hopf, the IBVP (3.13) reduces to Heat problem with nonlinear BC

(,OT:%cp,m, O<n<oo, 7>0,
¢(1,0) = exp |- [ VOr, 0|, 0<n<e, (3.14)
¢2(0,7) = 2¢:(0, 1)(0, 7) = A(1)*(0,7) = 0, 7> 0.

To transform the Neumann BC in (3.13), we use

(N, 7)
Vin, 1) = - , 3.15
o = =0 (3.15)
O, T) (0, T)\?
V.(n, - , 3.16
W00 @1, 7) +(90(77,T)) (3.16)
(10777](0’ T) (pT](()’ T) 2 _ SOT QOT] 2
VMO0 = - +(¢(0’T)) =25 +(;) , (3.17)
(3.18)

which implies the nonlinear BC in (3.14). Here ¢(0, 7), ¢,(0, 7) and ¢,(0, ) are unknown
functions, but they are related with the nonlinear BC. To solve the Heat problem (3.14) by
Dirichlet Approach, assume temporary we know ¢(0, 7)=H(7). Then solution of (3.14) is
given by

=92 _ro)?

e e 2r —e 2T & , ,
o(n, 1) = f ( )e‘f Ve O’ g (3.19)
0 V2T

2

JNE== CA———
+ )dt .
0o \T=T/ \2n(t-1)

In fact, we need to solve Heat problem with the nonlinear boundary condition (3.14).

Thus we obtain ¢, (0, 7) from solution (3.19),

o (n+g:)e_ (r/;f)z (n—f)e—(’?f)z .
- T -\ T £ ’ 7

¢ .7) = f : — eIV gg f Ko (n, 7~ ) H(T)d7',

0 T 0

52
CIE\ e — [ Vor o T H(t) ,

)(0.7) = 2f (BN e o - | ——ar (3.20)

7 o \TN\\2nr 0 A2n(t—1)
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Substituting ¢,(0, 1), ¢(0,7) = H(7) and ¢.(0,7) = H(7) into nonlinear boundary condi-
tion (3.14), we obtain the following

T H(T/)

2
2E(T)H(T) + h(t)HA(T) (F(T) - dT') -0, 3.21)

where

00 e
F(r) = zf (§)€ Te de,
0 \T 2nT
d

—[H*(7)].

2H(T)H (1) e

Then we have

T 2
_H@O) ) 0, (3.22)

d

FH @+ @@~ (Feo - |
dr \2n(t = 1)3

which is a nonlinear integro-differential equation for the unknown function H(r). Thus,
solving Heat problem (3.14) is equivalent to solving the nonlinear integral equation (3.21).

Then the corresponding Burgers solution of the problem (3.13) is given by

o2 f 2 2
oo (”i)e’ —(’”f)e - [Fvar oy =y 2 o Temrs)
* dé + < € H(t)dt
V( ) ‘I(; ( 2nt ) g fO \2n(r— ‘r)3 V2n(r-7'y ( )
n,7)=
=62 _@+&)?
X o2t —¢ 2t V(T] O)dﬂ Z(T )
j(; ( \2rt ) f d-f + J(; -7/ \/271(7 7 H(T )dT

* Special Case: If we have homogeneous Neumann BC in (3.13) , that’s V,(0,7) =

h(t) = 0, then the BC of the corresponding Heat problem (3.14) becomes

©7(0,7) = 2¢:(0,7)(0,7) = 0. (3.23)
N——  ———

@*(0,0)r

Therefore, the solution of the Heat problem is given by (3.19), where H(7) is determined
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by solving the nonlinear integro-differential equation of the form

T H(T’) ,)2 _ 0’

d
SO - (Fo) - | ——L—4
(#) = (Feo) - | el

7 (3.24)

where F'(7) is known.

eSecond way - Generalized Cole-Hopf :

Ve+VV, =1V, 0<np<o, 7>0,
V(n,0) = f(m), 0<n<oo, (3.25)
V,(0,7) = h(r), 7>0.

By Generalized Cole-Hopf, the IBVP (3.25) transforms to the IBVP for the Heat equation
[6],1.e

‘PT:%‘I’,M, O<n<oo, 7>0,
¥(7.0) = V(.0 exp |~ [" V(. 0’|, 0<p <o,
¥2(0,7) - C(1)¥,(0,7) — C*(1)V,(0,7) =0, 7> 0,
with

cO) =1,

C(@) = $¥,(0,7),

(3.26)

or equivalently using the relation ¥, (0,7) = 2C (1), the boundary condition (3.26) be-
comes ¥2(0,7) — 2C(7)C(1) — C*(t)h(t) = 0. We now assume temporarily that C(7) is
known. Then we have following IBVP

‘I’T:%‘I’,m, O<p<oo, >0,
¥(7,0) = -V, 0)exp |- ["V(r, 0|, 0<n <, (3.27)
¥,(0,7) = 2C(1), 7> 0.
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Then the solution to the problem (3.27) with Neumann BC is given

Y(n,1) = f‘” N, &, 7)Y, 0)déE -2 fT K, -1)C(T)dr'. (3.28)
0 0

From solution (3.28) we can obtain ¥(0, 7) i.e

Y, 1) = f‘x’ N(0,&, 7)Y, 0)dé -2 fT KO, 7 - 7)C(T)dt, (3.29)
0 0

or explicitly

00 €_§ T C(T’)
YO0,7)=2 W, 0)dE -2 — = d7. 3.30
0n=2] Vo HEOME=2 | e (330

Substituting (3.30) and ¥, (0, 7) = 2C(7) into nonlinear BC of (3.26), we obtain

2

00 % T N 2
2aﬂaﬂ+d%m@y(g£ j%;wgm@—zo-iggégff):aesn
T -

Notice that, again the IBVP is reduced to solving the nonlinear integral equation (3.31)
which determines C(7) together with C(0) = 1. Thus explicitly, the solution to the prob-
lem (3.25) is given

Y(n,7)

Vin, 1) = - .
C(r)+ [ WOy, vy

Comparison: Using both, the direct Cole-Hopf transform and generalized Cole-
Hopf, we have seen that the Neumann BC for Burgers equation transform to nonlinear
BC for the corresponding Heat problem. At the end, both approaches lead to solving the

same nonlinear integral equation.
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3.3. Burgers Equation with Special Nonlinear Boundary Condition-I
We consider IBVP for Burgers equation with special nonlinear BC defined by

Vet VV, =3V, 0<np<o, 7>0,
V(n,0) = f(), 0<n<oco, (3.32)
V3(0,7) = V,(0,7) = g(1), 7>0,

which is linearized to the following IBVP

(107:%‘1077779 O<77<00, T>O,
o(n,0) = exp [— fn V(n’,())dn’] , 0<n<oo, (3.33)
g(De(0,7) — 2¢,(0,7) =0, 7>0.

Again we solve the problem (3.33) by two ways.

e First way - Direct Cole-Hopf :
By Cole-Hopf, the IBVP (3.32) reduces to the Heat problem with Dirichlet BC

QOT:%QOTVI’ O<77<OO, T>O,
¢.0) = exp |- [" V. 0)di’|.  0<n <o, (3.34)
¢(0,7) = exp [% fOT g(T’)dT’] , 7>0.

Note that V2(0,7) = V,/(0,7) = —(200)? — [-£200 4 (200 (0, 7)] = g(r) which implies
2¢. /¢ = g(7). Integrating the last equation w.r.t 7, we get BC (3.34). Then the solution of

this Dirichlet Heat problem is given by

¢, 7) = fo G, &, T)p(é,0)d¢ — fo K7 —)ed b sty
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And explicitly the corresponding solution for Burgers problem is the following

-6 (&) i P ,
®© (m=fe T —(nt+fe 7T - ff far)dn T| e 26-7) 2 e 20-7) NG
Iy« o Ye dé +2 | e2 o 80 gy

\2n(r-1')3 V2r(r-7'y
=92 o2 2

__n 7
fow(%)e—ff(n’)dn’df + foT nﬂeﬂg g(0di 11s
Vint

2n(t—1')3

V(n,7) =

eSecond way - Generalized Cole-Hopf :

By Generalized Cole-Hopf, the IBVP (3.32) transforms to the IBVP for the HE [1]

Y. =1¥,, 0<p<o, 7>0,

W(n,0) = —f()exp|- [ Var, 0|, 0<np<oo,
¥, (0,7) = —C(T)(V,](O, ) = V20, T)) = C(D)g(r), T>0. 535
with

C() = 1,

C(1) = 3¥,(0,7).

Notice that the relation C(r) = 1¥,(0,7) together with BC implies C(7) = ez [ et

which is the same as ¢(0, 7) found in the first way.

Comparison: By Cole-Hopf, we have seen that the Nonlinear BC for Burgers
equation transforms to Dirichlet BC for the corresponding heat problem. On the other
hand, using the generalized Cole-Hopf the nonlinear BC for the Burgers problem was

transformed to Neumann BC for the Heat equation.
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3.4. Burgers Equation with Special Nonlinear Boundary

Condition-I1

In this section, we consider IBVP for Burgers equation with other special nonlin-

ear BC on semi-infinite line defined by

Vo4 VV, =1V, 0<p<oo, 7>0,
V(n,0) = f(m, 0 <n < oo, (3.36)
V2(0,71) — a(t)V(0, 1) — V,(0,7)=0, 7>0,

where a(7) and f(7) are given functions. Then, problem (3.36) reduces to

QDT:%QDW O<np<oo, 7>0,
¢(,0) = exp|- [V, 0)dn’|, 0 <y <o, (3.37)
(1), (0,7) = 2¢.(0,7) =0, 7>0.

Assume temporary we know ¢(0,7) = H(t). Then we have Heat problem with Dirichlet

BC which has solution

o e’ ?

()0(77,7')=f00(€ roCe T )¢(g,0)d§+f7( 7 ) ¢ Bt (3.38)
o T o N e

We can obtain ¢, (0, 7) from above solution, that’s

2

©E\ e i H(t)
0,7)=2 Z)— ,0)d — d
0,(0,7) fo (T)%sv(f O

. (3.39)

Then substituting (3.39) and ¢, = H(t) into Robin BC in (3.37), we obtain

2

6 e TH@) ) Ly
2 = ,0)d. ——————d7'|-2H(7) =0,
ofe [, (Dgreomes || )20
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equivalently

b= [ (9

&
2t

V2t

1
(&, 0)dg + 5

T H(T/)

—d7

,).
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CHAPTER 4

THE IBVP FOR INHOMOGENEOUS BURGERS
EQUATION WITH TIME-VARIABLE
COEFFICIENTS ON SEMI-INFINITE LINE

In this chapter, firstly we investigate the Dirichlet problem for inhomogeneous
Burgers equation with time-variable coefficients on semi-infinite line. We show that solu-
tion of the Dirichlet problem for variable Burgers equation corresponds to either solution
of the problem with Dirichlet boundary condition for standard Burgers equation or so-
lution of the problem with Robin boundary condition for standard Heat equation. Some
exactly solvable different Burgers models [3] are investigated for Dirichlet problem. Fi-
nally, we consider the Neumann problem for variable Burgers equation on semi-infinite

line.

4.1. Dirichlet Problem for Inhomogeneous Burgers Equation with

Time-variable Coefficients on Semi-infinite Line

In this section, we consider the IBVP for inhomogeneous Burgers equation with

time-variable coeflicients given by

U,+%U+UUX:%UXX—w2(t)x, O<x<oo, fo<t<T,
U(x,tg) = F(x), 0<x< o0, “4.1)

UQ,t) =D(t), to<t<T,

where u(f) > 0 is continuously differentiable, w?(f) is a real-valued continuous function
on [ty, T). Assume D(t), F(x) are sufficiently smooth and F(x) is not increasing too fast

as x — o0,
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Proposition 4.1 If for ty <t < T the function r(t) is strictly positive (or strictly negative)
solution of the IVP for the second order linear ODE

“E ;r + WX () = 4.2)
rit))=ro =0 () =0, 4.3)
and
_ i) _po 4
n(x, t) = 0 x, () =r; ft; TOrE) 4.4)

then the IBVP (4.1) has solution in the following forms:
a)

_HD )

U,
0= o

V(n(x, 0, (1)), (4.5)

where V(n, T) satisfies the IBVP for the standard Burgers equation with Dirichlet BC

Ve+ VV, = v,

V(n,0) = uoU(n, 1p), 0<n<oo, (4.6)
V(0,7) = [u(@)r(t(1))/r) U0, 1(1)), 0<t<7(T),

O0<n<oo, O0<7<7(T),

andt =1(t) © t = (1), Uy = u(ty), ro = r(tp).

b)

uos ro  q((x, 1), 7(7)

U, :
(x, 1) = r0° O eme 0, 7(0)

4.7)

where ¢(n, T) satisfies the IBVP for the Heat equation with Robin BC

CPT:%%W O<n<oo, O<t<1(T),
©(,0) = exp o [ UGT to)d’ |, 0<n <o, (4.8)
[r()u(T) U0, 1(1))] (0, 7) + row,(0,7) =0, 0 <7 <(T).
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Proof:
a) If the functions p(r), 7(¢) and s(¢) satisfy the nonlinear system of ordinary differential

equations

2

p+ L+ uwr(®) =0, plto) = 0, 4.9)
u()
2
+— /% =0, () =0, (4.10)
s'+l% =0, s(tp) =1, 4.11)

and V(n, 1) satisfies the standard Burgers equation in (4.6), then

Ue.r) = p)x + s(HV(s()x, r(t))’ @.12)

()

satisfies the Burgers equation in (4.1), [3]. Notice that equation (4.9) is a nonlinear Riccati

equation and substitution p(t) = u()i(t)/r(t) gives

#(f) + % (1) + W (Or(t) = 0, (4.13)

then the system is easily solved as follows

pt) = u(r)%, (4.14)

L [ de
- _% 4.15
o “f,o HOPE) 15
s(t) = % (4.16)

where r(7) is the solution IVP (4.2) and substituting back above functions into (4.12) gives
solution in the form (4.5), [3]. Then, initial condition U(x, ty) = F(x) easily transforms
to the initial condition V(1,0) = woF(n) of for the standard BE. And Dirichlet boundary

condition for the inhomogeneous BE U(0, t) = D(¢) transforms to Dirichlet boundary
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condition for standard BE

V(0,7) = [u@(0)r(1(1))/ro] U0, 1(7)) = [u(e(0)r(e(1)) /0] D(1(7)), 0 <7 <7(T),

where we used that u(f) > 0 and r3(¢) > 0, so that 7(f) = r(z) ft ; Iﬁi@ is strictly increas-
ing continuous function on [#y, 7) and thus its inverse #(7) exists for 7 € [0, 7(T")). Thus,
IBVP (4.1) for inhomogeneous BE transforms to the IBVP (4.6) for the standard BE, and
solution U(x, t) of the variable BE is explicitly obtained in terms of solution of V(1, 1) to
the standard BE (4.6) and solution r(¢) of the IVP for the linear ODE (4.2).

Part (b) of the proposition follows directly from the Cole-Hopf transformation

V = —p,/¢. Again, initial condition V(,0) = uoU(n, 1) transform directly to initial

condition for HE
4
¢(n,0) = exp [—uo f Uy, to)dn’] :
However, by Cole-Hopf transformation V = —¢, /¢, the Dirichlet BC for BE
V(0,7) = [u(t(0)r(t(1))/ro] U (0, (7)),
transforms to Robin boundary condition for HE
[ @)U, 1(7)] (0, 7) + rog,(0,7) = 0.

Then the IBVP (4.1) for the BE transforms to the IBVP for the HE as (4.8). m

Therefore, we see that solving the IBVP for inhomogeneous Burgers equation with
Dirichlet BC is reduced to the problem of solving IBVP for Heat equation with Robin BC.

To solve this Heat problem one can use different approaches. We write two of them.
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o First Approach (Dirichlet):
Let U(0,7) = D(t) be not identically zero. Assume temporary we know ¢(0,7) = H(7).
Then from Chapter 3, we know that the Dirichlet IBVP

goT:%go,m, O<n<oo, O0<t<17(T),

¢.0) = exp [~ [ uUGr. t)d |, 0<n< e, (4.17)
¢0,7)=H(r), O0<7t<7(T),

has solution of the form

o e_(n;az e_(ngaz . - o7 i .
on,7) = ( )e‘ " moU )’ g 4 f ( i /) = H(t)dr'.
S———— T—T \/ﬁ
0 21T o0 0 n(r—1)
G(Tlsf,‘f) _Kn

From this solution we can obtain ¢,(0, 7) as follows

T

¢y(0,7) = f Gy (0,&, )¢~ [ Ui gz 4 o f Ko(0,7—7)HT)dr.  (4.18)
0 0

Substituting (4.18) and ¢(0, 7) = H(7) into Robin BC (4.8) we obtain

ro T H(T)
Hr = - dr’ 4.19
(1) r(t(t)u((r))U(0, t(T))( 0 NIrr—1) T) (4.19)

_ 2ry foo é_: e —ff,uoU(U'Jo)dU'd
FH@T)U (O, r(r»( 0 (r) N f)'

The equation (4.19) is an integral equation for the unknown function H(r). Thus, solving
Heat problem is equivalent to solving the integral equation. The corresponding standard

Burgers solution is given by in closed form

1 Gy, &, v)e S mverain gg 2 [T K, 7 = ) H(E )d7’
ﬁ;o G, & 1)e fgﬂoU(Tl’,to)dﬂ/dé: _ j(‘)T K,(n, 7 - )H(T)dt’

b

V(TI, T) ==
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or explicitly

(16 5 s 15 _ff s 7
00 e T e T V(’] O)dT] d ( e 20a-7) e T )H T’ dT,
j(; ( 2nT ) é‘: J(‘) \/277(7._.[./)3 \/2”(7._7./)5 ( )

2

@62 _@ro)? 1
A vy O)dry il ,
b == el dé + [ (T— )WH(T )t

Therefore, using the above proposition, we can obtain formal solution of the IBVP (4.1)

for inhomogeneous BE in terms of 7(¢) of the linear ODE (4.9) and ¢(7, 7)

r(t)
r(t)
0 fooo G,(n(x,1), &, 1(1)e” ff#UU(n,JO)dU’dé;
KO [ G, 1), €, ())e- I mUarwar gz _ form Py ——
™ Ko (16,0, 7(1) — T)H( )
(1) K, (n(x, 1), 7(t) — T)H(T)dv’ ,

Ux,t)

ro 2

HOMD (7Gx, 1), &, 7(10)e” Fuitrae dé =

or explicitly

i(t
v = S (4.20)
r(?)
n(x,n-€ *% n(x,N+é 7(17(;;,1)(;)5)2
foo ( (1) >)e —(F=")e o fg,uoU(Tl/JO)d’?,déf
0 V2r1(t)
ro
" (Or(®) @eEn-62 _@un+? 2ot
H o2 —¢ 20 ) f,UOU(U Jo)dn df f‘l’(?) n(x,1) ¢ 20— H(T/)dT/
0 V2r7(0) w0~ | \2rt—1)

()

(xA,) _ SLVE
(S _ e
0 \Vae-v? Vo)
7P

<<x)f>2 _ @en+e)?
/,t(t)r(l)f . U[E3) » Ul i(f) ) fﬂoU(ﬂ to)dy d-f 4 f'r(t) n(xt) \ ¢ 2@
0 \2r(r) (-7 | \2r(r(t)-1")

ro

2

H( Ndt’

where 7(¢) and 1(x, t) are defined before and the time interval on which the solution exists
depends on the properties of the auxiliary functions. Thus, if the integral equation (4.19)
for H(7) is solved, then we obtain the solution (4.20) for IBVP (4.1).
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e Second approach (Neumann):

Assume temporary we know ¢, (0, 7) = Q(7). Then we have the following IBVP

Qﬁr:%%m O<np<oo, O0<71<1(T),
¢(n,0) = exp [— fnyoU(n', to)dn’] , 0<n<oo, (4.21)
¢n(0,7) = Q0(7), O<7<7(T).

Solution to IBVP (4.21) is

¢, 7) = f ) NG, &, T)e I Ui gg f ) K@, 7 - 7)0()dr,
0 0

or explicitly

-9 +)?

_ X e 2% +e 2 fﬂoU('l to)dnd f Z(TT) dr’ 422
e = () - WQ(T) v (422)

Q"n( ,77)

From solution (4.22), we can obtain ¢(0, 7) as follows

£2

et o)
0,7)=2 - [ noU@' o)’ f _ 2 g
w0022 [ (%) N

Substituting ¢(0, 7) and ¢, (0, 7) into Robin BC (4.8), we have

2

ROV, [T o) f"" e\ vt
= dr =2 UGy o) )
o) "o ( Vo= e (%)e J

which is an integral equation of Volterra type for the unknown function Q(7). Again we
see that solving Heat problem is equivalent to solving integral equation. By Cole-Hopf,
the solution of the IBVP (4.41) for the standard BE

V(n,7) by Ny, 0 Va0 g | Ky, = )Q()dr’
n,7)=——"0 ’
b Né.ne JFvor o gg i K.t = )Q(")dr’
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or explicitly

@1+ f)z

77 £ n+é £
3 +Coe T\ - [Fvar 0y
b ( e )e J dg

Vin,7) =

=02 2 7

0 T e T g =T
[ (= P - 0
e 2a-7")
fr( . )WQ(T )’
2

oo [ -85 . (8 € U O -7
e T_+te T e 7). T T
I; (—) ~J verodn gg — T Q(T)dT

\2rt \2r(r—1")

And the solution of the IBVP (4.1) is obtained in terms of r(¢) of the linear ODE (4.9) and

¢(n, 7), which is given in closed and explicit form respectively as follows

Vo2 HO o BN e LR e [ 7= 00
' (t) ,U(t)r(l) fooo N(n, g, T)e~ ffﬁloU(ﬂ’Jo)dfl/dg _ fOT K(ﬂ, T - T’)Q(T’)dT’ ’

or explicitly

r(t)
Ulx,t) = 0 t)
r
()-8 (.n+6)?
(D)€ TS D s
f oo ((Frs)e  T0 —+(Tgr)e Z0 e‘ffﬂoU(n’,to)dﬂ'dér
o 0 27t (r)

unr@) o e,(n@;r)([—)f)z N (n(xt);r)f)2 ¢ P 2(x1)
T 2 1oU® to)dn’ _e 2607 ,
0 ( ) d¢ — o()dt’

V2D 0 VIAGO-T)
O nxn . ()Y 2 7
n(x,t e 2a)-7 ’ ’
ro J(;’ (T(t)—r’) = 2(T)dT
- ax.n-£) @en+6)? >
,U(Z)r(t) oo [, 7 217(1) ‘e 1 2;(1) o ffllOU(U'JO)dU'dé_‘ _ 7(1) ¢ M) 2(T(1> T) Q(T’)d‘r’
0 V2rr 0 VG-

where 7(¢) and n(x, t) are defined before and the time interval on which the solution exists

depends on the properties of the auxiliary functions.
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4.1.1. Exactly Solvable Models

In this section we shall give examples to show the application of the general results
given in Propositon-1. Also, we will investigate exact solutions of three different Burgers
models [3] on the semi-infinite line. Precisely, we consider the IBVP with Dirichlet BC
for the following Burgers equations :

(A) Forced Burgers equation with constant coefficients:
1 2
Ut+UUx:§Uxx+w0 x, O<x<oo, 0<t<oo, wy>0.
(B) Forced Burgers equation-Critical damping case:
1
U +yU+UU, = Ee_V’Uxx —wix, 0<x<oo, 0<t<oo, wj—(y*/4)=0.
(C) Forced Burgers equation -Over damping case:
1
U+yU+UU, = Ee_”Uxx—w(z)x, O<x<oo, 0<t<T, w}i-*/4)<0.

We choose these models since the corresponding ODE with the given IC’s [3] is exactly
solvable and its solution r(¢) is positive for ¢ > 0, so that 7(7) is positive and invertible as

required for application of the Proposition.

(A) Forced Burgers equation with constant coefficients

Consider the following IBVP for the forced Burgers equation with constant coef-

ficients defined by

U +UUy = 1Us + wo’x, 0<x<co, 0<t<o0,
U(x, 1) o= U(x,0), 0< x < oo, (4.23)
U,1) = D), 0<1t< oo,

with u(t) = 1, wy > 0. The corresponding ODE has solution r(¢) = ry cosh(wyt), which is
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positive for rp > 0 and 0 < ¢t < T, and n(x, 1) = sech(wot)x, 7(t) = tanh(wyt)/wy. Then,

solution of (4.23) is found in the form

U(x,t) = wgtanh(wpt)x + sech(wot)V (n(x, 1), (1)), (4.24)

where V(n, 1) satisfies the IBVP for the standard BE with the Dirichlet BC

Ve+VV, = V,m, 0O<np<oo, 0<71<1/w,

V(n,0) =U1,0), 0<n<oo, (4.25)
V(0,7) = (H2) (0, ¢(r). 0 <7< 1/w,

with #(1) = tanh_l(wo‘r)/a)o = 1/Quwo) [In[(1 + wo7)/(1 — weT)]I,
r(1(t)) = rocosh(tanh ™ (wo7)) = ro[1 + (weT)?)]/[1 — (woT)?)]. Also, solution of (4.23) is

of the form

9077(77()5, t)’ T(t))

U(x,1) = wy tanh(wyt)x — sech(wyt) (2.0, 70)

if ¢(n, 7) satisfies the IBVP for the Heat equation with the Robin BC

(pT:%SDT]na O<77<°°, 0<T<1/(,()0,
¢(,0) = exp|- [T UG 0)dyy |, 0 <7<, (4.26)
|1+ (@) | U, 12)p(0.7) + [1 = (wo7)?] ¢, (0.7) =0, 0 <7< 1/ewp.

From previous chapter we know that by Neumann approach the solution of this Heat

problem with Robin BC is of the form

2

o = +&)? P
2t 4+ e 2t £ T20-7)
o, 1) = f ( ) ~ v ot ge f o(t') dr’,
0 2NT \V2n(t =1 m
n T
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where Q(7) is found by solving the integral equation

2

2 T ’ 0 ‘% £, ,
1 + (woT) ] U . t(T))( o) dr’ — 2f ( ¢ )e—f UGy 0)dn df).
0

00 =T (wprr 0 V2r(t - 1) Vare

In general, this integral equation requires numerical methods and can be solved only ap-
proximately. The simplest case is when U(0, #(t)) = 0, so that the BC of the heat prob-
lem becomes of Neumann type. Another special case is when the BC is chosen to be
U(0,1(1)) = Do(1 — (wot)?)/(1 + (woT)?), where Dy is constant, so that above integral

equation becomes of the form

o)

O(t) = F(1r) + Dy . \/ﬁ T,

which is the well known second kind Abel’s integral equation for the unknown Q(7) and

known F(7), and can be solved by Laplace transform.

1) Problems with Homogeneous Boundary Condition U(0, ) = 0
Example 4.1 The IBVP with homogeneous Dirichlet BC
U,+UUx:%Uxx+w02x, O<x<oo, 0<t<oo,

Ux,00=1, 0<x<oo, (4.27)
U@©0,)=0, 0<t<oo,

reduces to IBVP for the Heat equation with homogeneous Neumann BC

gp,:%go,m, O<np<oo, 0<71<1/wy,
e(n,0)=¢e", 0<n<oo, (4.28)
0;(0,7) =0, 0<7<I1/w.
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Solution to this Heat problem is

oo e‘("?:-)z + e_(n;fﬂ
e, 1) = f ( )e—fdg,
0 2T
7/2[ Erf (T+77)+ s (T—n)]
= e'Erfc e "Erfc ,
2 Var Var

so that solution of the Burgers IBVP (4.27) becomes

U(x,t) = wotanh(wyt)x
2
D -0\ _ 2 - T0zen)”
e (Erfc( o ) V-
+ sechlwol)—— WD L ) TO-nnl)
eDErfe (M) + e Er fe ()
2
) M+pxn) _ 2 —W
¢ (Erfc( eon) R
—  sech(wgt) D Erfe (T(l)+77(x’t)) + e M DErfe (‘r(t)—fl(x,t)),
V2T VD

where n(x, t) = sech(wot)x, T(t) = tanh(wot)/wy.

Example 4.2

U,+UUx:%Uxx+w02x, O<x<oo, 0<t< o0,
U(x,0) = —Atanh(Ax), 0<x< oo, 4.29)
UG0,H)=0, 0<t<oo.

u() =1, wg > 0. The corresponding Heat problem is

<pT:%<,0,7,,, 0<n<oo, 0<71<l1/wy,
¢(n,0) = cosh(An), 0<n<oo, (4.30)
¢y(0,7) =0, 0<7<1/wo,
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which has solution

2 2 2
o D _ o _ =&

e +e e 2
(n,1) = cosh(A&)d. :f cosh(A&)dé = e2 7 cosh(An),
AU Y, < RN =S !

and solution of the Burgers problem is therefore
U(x, 1) = wy tanh(wot)x — Asech(wyt) tanh(Asech(wpt)x).
Example 4.3

U,+UUx=%Uxx+w02x, O<x<oo, 0<t<oo,
Ux,00=-%, m=0,1,2,---, 0<x<oo, 4.31)
UO0,1))=0, 0<t<co.

The solution of (4.31) is of the form

@y (n(x, 1), 7(1))

U(x,t) = wy tanh(wot)x — sech(wot) .70

where n(x, t) = xsech(wot), T7(t) = tanh(wyt)/wy and ¢(n, T) satisfies the IBVP for HE

‘PT:%‘PW’ 0<np<oo, 0<7<1/wy,
e®n,0)=n9", m=0,1,2,---, 0<np<oo, (4.32)
¢n(077) =0, O0<71< l/am.

Using the functions (2.58) and (2.59) which are defined in Chapter 2, the solution of IBVP
(4.32) can be found as follows:

If m is even, then solutions of problem (4.32) are even Kampe de Feriet Polynomials,

p 2p—2n

_ gt 0 PV N B
¢2p(,7) = Hy,(n,7) = (2p)! HZ:(; n!2p - 2n)!T ’
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and the corresponding inhomogeneous BE solution is given by

H’z‘p_1 (sech(wot)x, tanh(wot)/ a)o)

Usp(x,1) = wo tanh(wot)x — 2psech(wyt)

H’z‘p(sech(wot)x, tanh(wyt)/ wo)
* For example if m=2, then solution of problem (4.32) is
@21, 7) = Hy(,7) = 11° + 7,

and the corresponding inhomogeneous Burgers solution

sech*(wot)
wosech?(wot)x? + tanh(wyt)

Uy(x,t) = wp tanh(wpt)x — wyx)

However, if m is odd, then solutions of the Heat problem are no longer odd KFP,
since odd KFP does not satisfy the Neumann BC ¢,(0,7) = 0. Then solution in that case
can be written in terms of functions (2.58) and (2.59), that’s

o e_(n;-f)z o e_(n;‘,oz
_ T 22p+l T 2p+l
opr1(n,T) = f —¢ d§+f —=&7 d¢, (4.33)
o V2nr o V2nr
hE]H 1 (7],7') h;erl (I],T)

and the corresponding solution of the problem (4.31) is

hy,(n(x, D), 7)) = h3,(n(x, 1), (1))
2pe1 G, T®) + 13, (nCx, 1), 7(D)) |

Usp1(x,1) = wo tanh(wot)x — (2p + 1)sech(wyt) [h

where n(x, t) = sech(wot)x and 7(t) = tanh(wy?)wo.

* For example if m=3, then solution of problem (4.32) is

31,0 = B0, + 31, ) = |2 VTP + 200+ 0+ 3nT)Erf[\/L2_T],
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and the corresponding inhomogeneous Burgers solution

Us(x,t) = wgtanh(wot)x

3 (20 0705 + (70 + 1) Er 1222

—  sech(wyt)

’

L¢3 NFDOP (. 1) + 27(0) + (P (x, 1) + 30(x, 07(0) Erf |4 ]

\V21(1)

where n(x, t) = sech(wot)x and 7(t) = tanh(wot)/wy.

2 ) Problems with Nonhomogeneous Boundary Condition :

U(0,1(1)) = Do(1 = (wot)?)/(1 + (wo1)?). For simplicty, we take Dy = —1 .
Example 4.4 The IBVP with nonhomogeneous Dirichlet BC

U +UUy = 3Us + wo’x, 0<x<oo, 0<t<o0,
U(x,0) = —32262 () < x < oo, (4.34)

xB3+3x2°

UQ,t) = —sech(wpt), 0<t< oo,

reduces to IBVP for the Heat equation with special Robin BC

ga,z%go,m, O<n<oo, 0<7<l1/wy,

o(n,0) = V2 + Vf";f, 0<n< oo, (4.35)
©;(0,7) —(0,7) =0, 0<7<1/wy.

In Chapter 2, we obtained the solution to the problem (4.35) as

3
o.7) = Var |1

§+772+77T+T .

(4.36)
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And the corresponding solution to the problem (4.34)

sech(wpt) tanh(wgt)

sech’(wot)x* + 2sech*(wot)x + m

U(x,t) = wy tanh(wpt)x —

tanh(wo?) + tanh(wot) ~
wo wo

3 3
M + sech?(wot)x? + sech(wot)x

(B) Forced Burgers equation with constant damping and exponentially

decaying diffusion coefficient-Critical damping case:

We consider the IBVP for Burgers equation

U,+yU+UUx:%e‘7’Uxx—w§x, O<x<oo, 0<t<oo,
U(x,t) ;0= U(x,0), 0<x< o0, 4.37)
UQ,t) =D(), 0<t<oo,

with constant damping I'(r) = y > 0, u(r) = " and w} — (y*/4) = 0. The corresponding
IVP for the linear ODE is then

P+ yi+ wér =0, r0)=rp#0, #0)=0, (4.38)
which has solution
r(t) = roe”> (1 + %t) (4.39)

and thus n(x,7) = (¢"?x)/(1 + 1), ©(t) = t/(1 + yt/2). Therefore, the BE (4.37) has

solution of the form

v\? t e 2 e"?x t
Ul 1 =—(—) + % , , 4.40
(x.2) 2 (1+%tx) (1+%t L+2' 1+ 1t (440)

where V(n, 1) satisfies the IBVP for the standard BE with the Dirichlet BC

Ve+ VV, =1V, 0<np<oo, 0<T<2/y,
V(n,0) = U, 1), 0<n<oo, (4.41)
V(0.7) = e 77 (:2)| U(0.1(r)). 0<7<2/y.

2—yT
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with #(1) = 7/(1 = y1/2), r(t(r)) = roe 7 (1 + 23—;). The solution can be found also in

the form

—yt/2
Ulx,1) = - (Z)z( d x) — ( e ) ©y(n(x, 1), T(1))

2) \1+% 1+23t) on(x,1),7(1)°

where (7, 7) satisfies the IBVP for the Heat equation with the Robin BC

Qr = 3@m, 0<n <o, 0<T<2y,
@(1.0) = exp [~ [ UGy . 0)dn’ |, 0 <7 <o, (4.42)
"7 (U0, 1) | (0, 7) + £,0.7) =0, 0 <7 <2/y.

As we found in previous Chapter, solution of this Heat IBVP is formally

00 _a=&? @+?

n.7) (e x +e ) - [fua. 0 g _ f e e o) dr
0, 7) = ) dr
0 \V2nr \2n(r — 1 m

where Q(7) is found by solving the integral equation

2

Qe T 0@) , S eE o~ [ UG o
= U(o, ————dr' -2 n0dr g
0(r) = [(2 U (»]( el ¢

Clearly, when U(0, #(7)) = 0, the BC of the Heat problem becomes of Neumann type.
Another special case is when the BC is chosen to be U(0,#(7)) = Dy(2 — y1)/ (262:/7;’),

where D is constant, so that the above integral equation becomes of the form

0@ dr,

=F(®)+D
O(7) = F(7) + Do i

which is the well known inhomogeneous Abel’s integral equation for the unknown Q(7)

and known F(7), and can be solved by Laplace transform.

1) Problems with BC U(0,t)=0
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Example 4.5

U +yU+UU; = 37Uy —wix, 0<x<oo, 0<t<oo,
U(x,ty) = —Atanh(Ax), 0<x < oo, (4.43)
UO0,))=0, 0<t<oco.

with the corresponding IBVP for the HE

‘JDT:%SOUU’ O<7]<00,0<T<2/’)/,
@(n,0) = cosh(An), 0<n< oo, (4.44)
0, (0,7)=0, 0<7<2/y.

The solution of (4.44) is given by

_=9?

o(n,7) = f e \/22_ cosh(A£)de = e ™ cosh(An).
—00 T

And the corresponding solution of the problem (4.43) is

y 2 t e /2 evt’?
U0 =—(2 _A tanh A :
(x.2) (2) (1+sz) (1+gr R I

2

which is a shock-wave solution.

Example 4.6 The IBVP (4.43) with IC U(x,0) = 1 and BC U(0,t) = 0, then the IC for
the Heat equation is ¢(n,0) = e with BC ¢,(0,17) = 0, we have solution of the Heat

problem as

oo e_<n;,:>2 + e_<n§>2
e = || Jee.
0 V2nt
7/2 T+7 T—7
= e”Erfc[ +e"’Erfc[ ])
> e Var

67



And solution of the Burgers problem is

2
Ux,1) = —(%) (%Z;X)
e e '7<“>Erfc(f<f>2zgt>) Z e s
. e 2 ] D Ey fC(T(I)J;\/%t)) _ %;r e'l(x’f)e‘(q(x’?&;m)z |
|1+ yt/2| enten By fc(T(t);\/%z)) e NDEr fe (T(O_z\/% t))

Example 4.7 The IBVP (4.43) with IC U(x, to) = = is transformed to ¢(n,0) = n" and
BC U(0,1) = 0 is transformed to ¢,(0,7) = 0. Clearly, if m is even positive integer i.e

m = 2p, then solutions of the Heat problem are even Kampe de Feriet Polynomials i.e

2r-2k

(PZp(n’ T) - H2p(77’ T) (2p) Z m k

The corresponding solution for the inhomogeneous Burger problem is

e!/2 t
e /2 ] H2p 1(1+yt/2x’ 1+21

et/2 ! '
H2P (l+yt/2x’ 1+%t)

2
ot =2 )2

2

If mis odd, m = 2p + 1, then solution of the Heat problem are no longer odd Kampe de

Feriet polynomials.

2 ) Problem with Nonhomogeneous BC : U(0, t) = Dye”"’?/(1 + yt/2)
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Example 4.8 Taking Dy = —1, the IBVP with the nonhomogeneous Dirichlet BC

U +yU+UU; = 37U, —wix, 0 < x < 00, 0 <1< oo,
U(x,0) = =324 0 < x < oo,

X343x27

_ efyt/Z
UO.n=-£2 0<t<w,

reduces to IBVP for the Heat equation with the special Robin BC

goT:%go,m, O<np<oo, 0<T1<2y,
¢(1,0) = V2 + P, 0 < < oo,
0y(0,7) —¢0,7) =0, 0<7<2/y.

In Chapter 2, we obtained solution of the problem (4.46) as

)73
?+n2+nr+r

¢, 7) = V2

And the corresponding solution of the problem (4.45)

e ? ] 74(x, 1) + 2n(x, 1) + 7(F)

(Y () -
Ux.0) = (2) (1+%tx) 1 +yt/2

URES)) )
5=+ 2 1) + n(x, () + 7(1)

(4.45)

(4.46)

(4.47)

(4.48)
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(C) Forced Burgers equation with constant damping and exponentially

decaying diffusion coefficient-Over damping case:

We consider IBVP for Burgers equation

U, +yU+UU, = %e‘V’Uxx—w(z)x, O<x<oo, O0<t<oo,
U(x, t) |l:t0: U(-x, t()), O <X <00, (4.49)

UQ©,1) =D(t), 0<t<oo,

with constant damping I'(r) = y > 0, u(t) = ¢, and wg — (y*/4) < 0. The corresponding
IVP (4.38) for the ODE has solution

r(t) = r()%e-%’ sinh[Q'7 + B, (4.50)

where Q' = /lw(z) — (y?/4)|,and B = coth_l(%) [3]. Then, Burgers problem has solutions

of the form

Qe /2 )gon(n(x, 1), 7(1))

_ _Z ’ / —
U(x,t) = ( > + Q' coth[Q t+,3])x (wo sinh[Q't + B]) o(n(x, 1), 7(£))

where

Q"2 x Q Y )

, 7(t) = ——; | coth[Q't -
wosmhivr 1 0T e [comierr + - 56

n(x, 1) =
and ¢(n, 7) satisfies the IBVP for the Heat equation with the Robin BC

QDT:%QDrm’ O<n<oo, 0<7T<o00,
¢(,0) = exp|- [T UG, 0)df |, 0 <n< e, (4.51)
[r(t()uE(T)U, 1(7)] (0, 7) + ¢,(0,7) =0, 0 <7 < oo,
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As we found in previous Chapter, solution of this Heat IBVP is formally

o =82 (+)?

_ e x +4e 7 fU(TIO)dUd f e 2<rr> v
#o) 0 ( \2nt ) £~ \2n(t — 7 t/JQ((OT)) B
where Q(7) is found by solving the integral equation
0 = (@@ O. () [ —odar -2 [ 2 & o0 ).
’ 0o V2n(t—1) 0 A /_

4.2. The Neumann Problem for Inhomogeneous Burgers Equation

with Time-variable Coefficients on Semi-infinite Line

Proposition 4.2 The IBVP for the variable parametric BE

(1) _ 2
U, + ﬂ(t)U+UU 2u(t)U —w(x, O0<x<oo, tH<t<T,

U, 1) ley= U(x, 1), 0 < x < oo, (4.52)

U0,))=0(), toy<t<T,

where u(t) > 0 is continuously differentiable, w*(t), O(t) are real-valued continuous for

t > ty, has solution in the following forms:

a)

Vbet) = 2> (0@

V(n(x, ), (1)),

if fort > ty r(t) is a positive solution of the IVP for the following linear ODE

"E ;r + (1) = (4.53)
F(t) = ro £ 0, #(ty) = 0, (4.54)
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with functions n(x,t) = ” [)x (1) = ry f x 5)r2< 5 and V(n, 1) satisfies the IBVP for BE

Vet VV, =3V, 0<np<oo, 0<t<1(T),
V(n,0) = poU(, 10), 0<n<co, (4.55)
V,(0,7) = r[UL0, (o)u(t(n)r* (1)) = pt(@)it(T)rt(m)], 0 <7 <7(T).

b)

(t) ro  e(n(x, 1), 7(1))
0 mor® om0, @)

Ulx,t) =
where n, T and r defined in a) and ¢(n, T) satisfies the IBVP for the HE

@r =3¢ 0<p<oo, 0<7<7(T),
¢,0) = exp |- [ U (€. 10)dé|, 0<n< oo,
¢7(0,7) = 2¢.(0, (0, 7) — ¢*(0, T)[ra 2[U (0, ) (t(1)) — pt()H@)rt)]| =

Proof:
a) If the functions p(r), 7(¢) and s(¢) satisfy the nonlinear system of ordinary differential

equations

2

p+ % + (1) = 0, plto) = (4.56)
s2
t - ol 0, t(to) =0, (4.57)
p( ) 3
,u(t) =0, s(tp) =1, (4.58)

and V(n, 1) satisfies the standard BE (4.55), then

Uln.t) = p(Ox + sV (s(D)x, r(t)), 4.59)
()

satisfies the inhomogeneous BE (4.52). Notice that, equation (4.56) is a nonlinear Riccati

equation and substitution p(¢) = i(¢)/r(t) gives ¥ + ”Et;r + w*(t) = 0, then system is easily
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solved and we obtain p() = ,u(t)%, () = 1 fzo u(f)rZ(S)’ s(t) = (l) where r(¢) is the

solution of linear ODE and by substituting in (4.59) gives solution in the form

_HD
Ut = (0t s

V(n(x, 0, ().

Then, IC U(x,1t) |=,= U(x,1y) easily transforms to IC V(n,0) = uoU(#,1,). But the
Neumann BC for the inhomogeneous BE U, (0, 1) = O(¢) transforms to the Neumann BC
for the standard BE. Thus, solution of the inhomogeneous Burgers problem is explicitly
obtained in terms of solution of V (1, 7) (4.55) and solution r(¢) of the IVP for the linear
ODE (4.53).

Part b) of the proposition follows directly from the Cole-Hopf transformation
V = —¢,/¢. The Neumann BC for BE rj*[U (0, #(1))u(1)r*(t) — ,u(t)i’(t)r(t)] transforms to

nonlinear BC for HE by Cole-Hopf and using the relation V,, = % — = as follows

070, 7) = 20.(0, 1)¢(0, 7) = ¢*(0, )| 15> [U 0, tx)u(t)r (1) = u(Oi(D)r(n)] | =

and IC V(n,0) = uoU(n, ty) for the standard BE transforms to IC for the HE ¢(1,0) =
exp [— f " U (&, to)dg]. Then the IBVP (4.55) for the standard BE is reduced to the IBVP
(4.56) for the HE. m
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CHAPTER 5

THE CAUCHY PROBLEM

In this Chapter, firstly we review the closed form solution of Cauchy problem for
the Heat equation, [10]. Then, motivated by the works of [7] and [8], we consider Cauchy
problem for standard Burgers equation. And we will show that some special well-known
solutions of Burgers equation can be obtained as solution of Cauchy problem for Burgers

equation. Finally, we investigate the Cauchy problem for the variable Burgers equation.

5.1. The Cauchy Problem for Heat Equation
We consider Cauchy problem for the HE on the non-characteristic line n = 0

@r = 2@y, —0<np<co T3>0,
00,7) = F(r), 71>0, (5.1)
SOII(Oa T) = G(T)a T> 0’

where F(7) and G(7) are analytic functions. Assuming a power series solution of the

form,

(o)

e, 7) = " a (o',

n=0

one can easily determine the functions a,(7) in terms of F(r) and G(7) for all n =

0,1,2,---. Indeed, by substituting ¢ into Heat equation (5.1), we have

[ee]

1 , n+2)n+1) "
$Yr — 5907717 = HZ:(; (Cln(T) - %awz(ﬂ)ﬂ =0,
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which requires that

@ = 2 %@ ~0.1,2
G2l0) = i dmr 1y T

From this recursion relation, we see that

(n)
a, (1)
aZn(T) = 2” (()2,]’1)' 9 n:()’ 1723”' £l
(n)
a, (1)
a2n+l(T) n(2’/i+ l)" n_091525

Note that ag(t) = F(7) and a;(7) = G(7). Thus, solution of the problem (5.1) is obtained
in the form, [5]

[

.1 =y (F<">(T)'7—2nz" ¥ G“%)ﬂz") (52)
= L @n)! an+ 1) '

When F(7) and G(7) are analytic functions for 7 > 0, then solution (5.2) is unique on
—o00 < 17 < oo, and also it is analytic for 7 > 0 and fixed 7, and is entire in 7 for fixed T,
[10].

5.2. The Cauchy Problem for Burgers equation

In the works [9] and [7], the Cauchy problem for the Burgers equation was for-
mulated and its solution was obtained in terms of the series solution of the corresponding
Cauchy problem for the Heat equation, [10]. Then, these results were used by Rodin
to solve some concrete problems and show that some well-known solutions of Burgers
equation can be recovered as solutions of a Cauchy problem. The following Proposition

1 is a basic result and consequence of the Cole-Hopf transform, [9].

75



Proposition 5.1 If (1) and g(t) are analytic functions for T > 0, then the Cauchy prob-
lem for the Burgers equation defined by

VT+VV,]:%V7777, —co<np<oo, T>0,
V(©,7) = f(r), 7>0, (5.3)
VTI(O’ T) = g(T)’ T> 07

has a solution of the form

o 1 n2n+l 1 Tl2n
ano (F(n+ )(T)W2n+ + G(")(T)mZ")

V(n’ T) - 2n 2n+1
ZZO:O (Z”F(")(T) (gn)! + 2nG(n)(7-) —(gn+1)!)
where
F(r) = ezh@O-ren o5 (5.4)
G(r) = —f(r)e 2 h &= o, (5.5)
Proof:

It is enough to show that the Cauchy problem for Burgers equation (5.3) is reducible to

the Cauchy problem for heat equation

Qr =3¢y, —0<n<o, T>0,
¢0,7) =coF (1), T>0, (5.6)
¢y(0,7) = coG(7), T>0,

where F(7) and G(7) are as defined in (5.4) and ¢y = ¢(0,0%). Indeed, the Cauchy data

can be transformed using that

ey, 7)
¢(,7)°

D) (son(n, ) )2.

V s =
.0 ¢, \pm,7)

V,(n,7) = 5.7
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This implies

_ &0 _ o ed0,1) | (940, 7)?
S == ¢(0,7)’ 80 = 2<p(0, 7) +((p(0,‘l’) )
so that
_ 90D,
g(r) = 290(0,7) + f7(D).

Then, integrating (5.9) with respect to T we obtain

@(0,7) = coe 2 hEE=S @

and this immediately gives

@)(0.7) = —cof () h IO,

(5.8)

(5.9)

(5.10)

(5.11)

The rest of the proposition follows from the solution (5.2) of the Cauchy problem for the

heat equation. m

Given some special Cauchy data for the Burgers equation, we write the Cauchy

data for the corresponding heat equation as follows.

VO,7)=f(r) =0 = ¢(0,7) = constant,
Vh0,7)=¢g(r) =0 = ¢,(0,7)=0.

VO, 7)=f(1) =0 = ¢0,71)= et fOTg(‘r’)d-r”
V’I(O’ T) = g(T) 0 = gpn(()’ 7—) =0.

{ VO = f@#0 = @01 =t b/,

Vi0,7)=g(1)=0 = ¢,(0,7) = —f(T)g%fonz(T')dT’.

In particular, if the Burgers conditions are of the form

G(7) G*(1) )

OO="ra YOO Ee T Fe

(5.12)
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then the corresponding heat conditions become

¢(0,7) = F(1), ¢,(0,7) = G(7). (5.13)

Using the above results, Rodin [7] obtained solution of the problem related with moving
piston, and showed that the Fay’s solution and Benton’s solutions can be found also as
solutions of a Cauchy problem.

Here, we give different examples. We show how the shock-wave, triangular wave
and N-wave solutions of the Burgers equation can be obtained as solutions of a Cauchy

problem by the approach described in this section.

Example 5.1 : Shock-Wave Solution
We show that the well-known solution for Burgers can be obtained by solving the follow-

ing BVP for Burgers

V,,+VV,]:%V7717, —co<np<oo >0,
V(,7) = c— Atanh(-A(ct — ¢p)), A, ¢, co: constant, T >0, (5.14)
V,(0,7) = A2 tanh*(=A(cT — ¢p)) — A2 7> 0,

The corresponding BC’s F (1) and G(7) for Heat are found as follows

V(0,7) = c¢—Atanh(—A(ct —¢p)) = —@, (5.15)
F(7)
Gt _,F()
V,(0,7) = A’tanh*(—A(cT — ¢p)) — A® = eI (5.16)

Taking square of the first BC (5.15) and substituting into second one, we get

F/
c? — 2Ac tanh(—=A(ct — ¢p)) + A tanh?(=A(ct — ¢p)) — 2? = A%(tanh®*(=A(ct — ¢p)) - 1),
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where we have

F’ 2+ A2
= = < —— — Actanh(=A(er = o)),

a2 1 —Ac (cra)® Ac A)z‘r
F(r) = cosh(A(co — cT))e™ :E(e 0 5T 4 A0S )

The derivatives of F(t) are given as follows

o-Ac 2 (c+A) Ac (A2 (c=A)?
F'(1) = & (C+2A) o e20 “ 2A) ez,
(5.17)
_Ac, c C c— 2
F(7) = A% (C+;\)2" (e A2 + _eAZO —(C_’;)Zne( 7T

From condition V(0, 1), we have G(1) = —F(1)(c — Atanh(Acy — AcT)), then substituting

F(t) we get
2442 2442
G(t) = -—ccosh(A(cy — cr))eTT + A sinh(A(co — ¢T))e 2 7, (5.18)
—AC() AC() .
= (c+A)e T (c—A)e( S (5.19)

The derivatives of G(t) are given by

oAc 2 (e+A)? ¢ A2 (c—A)2
G'(1) =~ (c+ A) LT — S0 (e — A)e T
(5.20)
(}’l) ’AL‘O (C+A)2n+l (c+A)2 T e"ﬂ (C_A)2n+l (c—A)2 T
G"(7) = € 2 BT 2

Substituting F (1) and G(7) into closed form solution of Burgers (5.24), we obtain

(c+A)? (c=A)?
2 — 2
(C + A)e T—Aco-1(c+A) + (C A)e T+Aco—n(c—A)
Vin,7) = )

2
e(”A) T—Aco-1(c+A) +e G ;‘) T+Aco-1(c—A)

or equivalently the shock-wave solution is

V(n,7) = ¢ — Atanh(A(n — cT + ¢y)).
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Example 5.2 : Triangular Wave Solution

Here, we show that the well-known Triangular-Wave can be obtained as solution of a

Cauchy problem for standard Burgers,

V,+VV, =1V, -co<np<o 7>0,

V(0,7) = v%?(jj—;}), >0, (5.21)
A 2
v,00=2(52). >0

The corresponding BC’s F(t) and G(7) for Heat are found as follows

A+ F(r)?

_ 2 (1Y _ G@ AP
Vi(0,7) = (eA+1) = ¥~ 2Fm

V(0, — _2 (el _GO
0= 35 3 (5.22)

Taking square of first BC in (5.22) and substituting into second one

4 (eA . 1)2 _LF@ 2 (eA . 1)2

27t \eh + 1 F(7) ar et + 1
F’
- F((:)) = 0 => F(r)=c:constant,
2 et —1 2¢ (et =1
Go)=-FO)—|—| = —— .
© 2 V2t (eA + 1) \V2nt (eA + 1)

Since F(t) is constant, F"(t) =0 for n=1,2,3,---.

A1

G(r) = _5_57(@/*“)% and define — 5;7 (jﬁ;}) = K : constant, then the derivatives of G(T)

are in the following form

G(t) = K172,

G'(r) = K‘T]T‘yz,

G"(1) = KL 13770,
127 _ ﬂ -7/2 (523)

G" (1) = K—=-13517"7,

G"(1) = K- Gr a2
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Previously, we get general closed form solution of the standard Burgers i.e,

oo n 2n+1 n n 2n n
2in=0 (F( +1)(T)(gn+])!2 1+ G )(T)%z )
Vn,7) = - 1 . (5.24)
2 0( DO g2+ GO g n)

Substituting F (1) and G(7) into (5.24),

D" e _—n-1/2 7™
Kzn 0 2% gt Tt / m?

Vin, ) = - (5.25)
’ (=1 2n)! —n=1/2 n2n+l ’
c+ K305 T Serrnk
(G TS
\on 0 n! (E)n
T o
¢+ Zﬂ 0 n! ;)’1’2n+1

.o oo 2 .. i .
Using e 7 = 3.7, %(—%)” and substituting K = — 2;ﬁ(e,hr}) into (5.25), we obtain

L eA_l e_g
V2r e+t
V1) = = — (5.26)
¢ — =G Zonto - Gzt
\Vorr ~et+1 n=0 pn! \2r 2n+1

2n+ 1

We know Erf(x) = \f Do (1) Gorom- BY changing variable x = «F’ we have
2n+1 1
E 5.27
i ( 27) Z (\/_ pret Qnt Dt o

Then equation (5.26) is equivalent to the following

2
)e 2‘r

eA+1

V1) = B

(5.28)

2n+1

J— eAl PR —_—
b= () Z( )(2n+1)n'

erf()
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_ 2 (e
Varr | 25 + (GhErfe| 2= |)

eA+l A+l V2t

If we multiply and divide right hand side of (5.28) by (e* + 1)/2, then we obtain the

solution of (5.21) for Burgers equation as follows

Voo = v
T T Vo 1 ket - vEre )

Example 5.3 : N-Wave Solution

V,]+VV,,:%V7717, —co<p<oo 1>0,

V0,7 =0, 7>0, (5.29)
_ i
V,,(O,T)—T(H\/E), 7> 0.

The BC’s for the Heat are found as follows,

V(0,7)=0= -2

S F@)

V0,0 =Y g0 _oro -39
/AN T(1+ \/g) F2(1) F(r)*
Taking square of first BC and substituting into second one we have
F’ 1 a
LEF@ 1 Nr (5.31)

FO) 11+ {9

and integrating both sides of (5.31), we get

Fr) = (1 + \/g) =1+ Va2, (5.32)
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where the derivatives of F(t) as follows

F'(1) = a. 527732,

F'(1) = Na. PG, 533

Fo+D(g) = \/—( D QD) —(2n43)/2.

on+l n+lp)

Since G(t) = 0, we have closed form solution for the standard Burgers as follows

D™ @n)! P 5l (—n-3/2)
~ Va ¥, S5 “arit e 2 T
a bt e 1/2
1+ \/—+ \/aZn:l 2 2n()] (2}1)'2” (n /)
2
n
\/_\/;T n= 0(_1)" 2_7)";

o (=1 2
L+ T+ VEEL S G

V(n, )

or equivalently we obtain the N-wave solution

5.3. The Cauchy Problem for the Inhomogeneous Burgers Equation

with Time-variable Coefficients

Proposition 5.2 Let the Cauchy problem for inhomogeneous Burgers equation with vari-

able coefficients be given as

(D) —
Ut+ (I)U+UU 2—(0

UQO,t) = A@®), to<t<T, (5.34)
U,0,0))=B@), ty<t<T,

Uy — 0> ()x, —co<x<oo, ty<t<T,

where u(t) > 0, A(t) and B(t) are analytic functions for t € (ty,T). If for to < t < T the

function r(t) is strictly positive analytic solution of the IVP for the second order linear
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ODE

i ”E §r+w () = (5.35)
r(ty) =rg #0 i(ty) =0, (5.36)
and
_ r(to) ) TdE
n(x,t) = o x, (1) =r(t) . ﬂ—(g)ﬂ(g)’ (5.37)

then the problem (5.34) has solution of the form

rto) ZZO:O (F(n+l)(T(t))[77(x ) 2n+1 + G(n)(T(t)) (x> 2")

Ut = ,»(;) 2nt D) n)!
ey = O
CRNCTIS (20 P 1582 + 206G ey s
where
3 pu(t (@) (i) , 20 (7))
F(r) = exp( 2 fo - (B(t(r ) = A2t(r ))—r(t(T/)))dT ) (5.38)
Gr) = —MA(I(T))F(T). (5.39)
Proof:

If V(n, 7) satisfies the standard Burgers equation V; + V'V, = V then

mpe

_HD
Ut = (0t s

V(n(x, 1), 7()),

satisfies the Burgers equation of problem (5.34). Then the Cauchy problem (5.34) reduces

to the Cauchy problem for the standard Burgers equation

Ve+ VV, =1V, —co<p<oo, 0<7<7(T),
V(0,7) = HHERA(1(T), 0 <7 <7(T), (5.40)

(T (i
Vy(0,7) = B o)) - HU), 0 < 7 < (D).
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Using the results obtained in previous section, problem (5.40) reduces to the following

heat problem

@y =10, —co<np<oo, 0<t<7(T),
©(0,7) =coF (1), O0<7t<7(T), (5.41)
©4(0,7) = coG(7), 0<7t<7(D),

where F (1) and G(7) are given by (5.38), (5.39). m
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CHAPTER 6

CONCLUSION

In this thesis, we have investigated initial-boundary value problems (IBVP’s) on
semi-infinite line 0 < x < oo for inhomogeneous Burgers equations with time-variable
coeflicients (VBE). We have formulated the solutions for the cases with Dirichlet BC and
Neumann BC imposed at x = 0.

First, we showed that the Dirichlet problem for the VBE reduces to solving a
linear ODE and a second kind singular Volterra integral equation. Therefore, solutions
in general can be obtained using approximate and numerical techniques. However, for
particular VBE models with special initial and Dirichlet BCs we found some class of
exact solutions. Next, we worked on the Neumann problem for the VBE and we found
that it reduces to a second order linear ODE and an IBVP for the standard heat equation
with nonlinear boundary conditions.

Finally, we recalled the Cauchy problem for the heat equation on the non-characteristic
line, and derived its well-known solution as an infinite power series, whose coefficients
are obtained in terms of the Cauchy data [10]. This result was used in [9] to solve the
Cauchy problem for the standard Burgers equation. We gave examples to illustrate how
some well known solutions of the Burgers equation can be recovered by solving a corre-
sponding Cauchy problem. Then we formulated the Cauchy problem for the VBE, and
obtained its solution in terms of a linear ODE and the series solution of the corresponding
Cauchy problem for the heat equation.

In this work, we were able to derive mostly the general form of the solutions
for the given problems. Our research on exact solutions for the Burgers problems with
variable coeflicients is not complete and we plan to extend the list of the exactly solvable

models and study their properties in details.
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APPENDIX A

SOME BASIC PROPERTIES AND DEFINITIONS

eProperties of the fundamental solution K(7,7) :
1. K(n,7)>0 for 7>0.

2. For fixed 7 > 0, K and its derivatives tends to zero exponentially fast as |p| tends to

infinity.
3. For any fixed 6 > 0, lim,_.¢ K(1, 7) = 0 uniformly for all || > ¢.
4. Forall T > 0, f_ojo Kmn,t)dn = 1.

5. For 7 > 0, K is an analytic function of 77 and 7.

9K

6. lim,_ %

(n,t—t)=0fornp>0and 7 > 0.
7. lim,_.o fOT %—I;(n, t—71)dt =0 forn > 0.

8. lim, o [ % (n, 1 = 7)dt = 1 for 7 > 0.

eSome integrals for the special initial data A(n) = ":

2
e

A(&E)d. d.
L V2rt g = L V2rt d

fd¢ = T2,

[‘-)I
-
[

D=

52
f ) \/e_ZT
0 2nT
52

N
d¢e =
fo%“ i

[
ﬁ‘
)

-

N |

(][]

o

N W
~

2
e 2727 (L

V2rt - 2nT

.

dé =
fo%“
I
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eDirac Delta function
The Dirac delta can be loosely thought of as a function on the real line which is zero

everywhere except at x = x(, where it is infinite,

+oo X=X,
0(x — xo) =
0, X # Xo,

and which is also constrained to satisfy the identity

fwé(x—xo): 1,

with the convolution property

5(x) % f(x) = f 5 — x0)f(Odx = f(xo),

for any f : R — R continuous around x = xy. And as a special case

f 5(x = YO0y — Edy = (x - &).

eLeibnitz’s Rule
Suppose that F' = F(x,1) is defined on [a, b]x[a, ] such that, for each ¢t € [a,f], F(x,1)
is an integrable function of x and that for each x, (0F/0f)(x, t) exists and is continuous.
Suppose that for all 7 € [a, 5],
oF
| < g0,

for some nonnegative integrable function g. Then, G(¢) = fa b F(x, t)dx is differentible and

b
G'(t) = f %—f(x, Ndx,

for t € [a,B].
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eError Function

The error function is defined as

Erf(x) = % f St
0

The complementary error function, denoted erfc, is defined

Erfc(x) = 1-Erf(x)
2 f e
= — e dt.
Vr Jo
= ¢“Er fex(x)
The Taylor series of error function
( l)n 2n+1

Brf@="52 Z nQ2n+ 1)

The derivative of the error function follows immediately from its definition:

d 2
d_zErf(Z) = %e

eAnalytic Function
Let f be a real-valued function defined on an open set S in the xy-plane, and let (x, yo) €
S. Then f is analytic at point (x, yo) if f has continuous partial derivatives of all orders

w.r.t x and y, and the Taylor’s series of f about Py = (x¢, yo)
of of
S (x0,y0) + ah%(x — Xo) + 8_y|P0(y = Yo)

82

converges to f(x,y) for points (x, y) in some neighbourhood of (xq, yo).

0? 52 5
{[ f] (x = x0)° +23g|Po(x_x0)(y_y0)+#lPo(y—yo)2+---},

* fis analytic on S, if f is analytic at each point of S.
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Properties :

1) The sums, products and composiions of analytic functions are analytic.

2) The inverse of an analytic function whose derivative is nowhere zero is also analytic.
If a complex function is analytic on a region R, it is infinitely differentiable in R. A
complex function may fail to be analytic at one or more points through the presence of
singularities, or along lines or line segments through the presence of branch cuts. The
situation is quite different when one considers complex analytic functions and complex
derivatives. It can be proved that any complex function differentiable (in the complex
sense) in an open set is analytic. Consequently, in complex analysis, the term analytic
function is synonymous with holomorphic function. A complex function that is analytic

at all finite points of the complex plane is said to be entire.

eConvolution Properties

F0) # g() = f FOglt - T, (A1)

1. If £(r) = 6(¢), then 6(r) = g(£) = g(¢) and also g(r) * 5(t + y) = g(t + y).
2. fx(gxh)=(f*g)*h.

3. fx(g+h)=(f*g)+(f+h).

4. a(f * g) = (af) = g where a is scalar.

5. For the derivative case f'(r) = g(t) = f(¢) = g'(¢).

6. Fourier transform F(f = g) = F(f).F(g).

eFubini’s Theorem
Let f = f(x,y) denote an integral function on the rectangle D = {(x,y) :a < x < b, ¢ <

y < d}. If one of the following integrals exists, then the other two exists and

Lffdxdy=Id{ﬁbf(X,Y)dx}dy=Lb{ff(x,y)dy}dx,
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