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ABSTRACT

SOLUTIONS OF INITIAL AND BOUNDARY VALUE PROBLEMS
FOR INHOMOGENEOUS BURGERS EQUATIONS WITH

TIME-VARIABLE COEFFICIENTS

In this thesis, we have investigated initial-boundary value problems on semi-

infinite line for inhomogeneous Burgers equation with time-variable coefficients. We

have formulated the solutions for the cases with Dirichlet and Neumann boundary condi-

tions. We showed that the Dirichlet problem for the variable parametric Burgers equation

is solvable in terms of a linear ordinary differential equation and a linear second kind

singular Volterra integral equation. Then, for particular models with special initial and

Dirichlet boundary conditions we found a class of exact solutions. Next, we consid-

ered the Neumann problem and showed that it reduces to a second order linear ordinary

differential equation and the standard heat equation with initial and nonlinear boundary

conditions. Finally, we formulated the Cauchy problem for the variable parametric Burg-

ers equation on the non-characteristic line, and obtained its solution in terms of a linear

ODE and the series solution of the corresponding Cauchy problem for the heat equation.

We gave examples to illustrate how some well known solutions of the Burgers equation

can be recovered by solving a corresponding Cauchy problem.
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ÖZET

KATSAYILARI ZAMANA BAĞLI HOMOJEN OLMAYAN BURGERS
DENKLEMLERİ İÇİN BAŞLANGIÇ VE SINIR DEĞER

PROBLEMLERİNİN ÇÖZÜMLERİ

Bu tezde zamana bağlı değişken katsayılı, homojen olmayan Burger denklemi

için yarı sonsuz aralıkta başlangıç-sınır değer problemlerini araştırdık. Dirichlet ve Neu-

mann sınır koşulları durumlarında çözümler için formülasyonlar elde ettik. Zamana bağlı

değişken katsayılı Burger denkleminin bir lineer adi diferansiyel denklem ve bir lineer

ikinci çeşit tekil Volterra integral denklemi cinsinden çözülebilir olduğunu gösterdik.

Ardından, özel başlangıç ve Dirichlet sınır değer koşullu özel modeller için kesin çözüm

sınıfları bulduk. Neumann problemini göz önüne aldık ve bu problemin ikinci mertebeden

lineer adi diferansiyel denklem ile başlangıç ve nonlineer sınır koşullarına sahip standart

ısı denklemine indirgendiğini gösterdik. Son olarak karakteristik olmayan doğru üzerinde

değişken katsayılı Burger denklemi için Cauchy problemini formüle ettik ve bu prob-

lemin çözümünü lineer adi diferansiyel denklem ile ısı denklemi için Cauchy problem-

ine karşılık gelen seri çözümü türünden elde ettik. Burger denkleminin bazı iyi bilinen

çözümlerinin, ilgili Caucy problemini çözerek nasıl elde edilebileceğini göstermek için

örnekler verdik.
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CHAPTER 1

INTRODUCTION

Burgers equation is a nonlinear model which appears in the study of many phys-

ical phenomena such as diffusion, acoustics, fluid dynamics, formation and development

of shocks. Basically, it describes the balance which occurs between the nonlinear con-

vection and the linear diffusion processes. Mathematically, Burgers equation is one of the

simplest nonlinear models, since by the Cole-Hopf transformation it can be directly lin-

earized to a heat equation. Then, solutions and many properties of Burgers equation can

be investigated using the corresponding linear model. Precisely, the initial value problem

for Burgers equation is defined as

 Vτ + VVη = νVηη, −∞ < η < ∞, τ > 0,

V(η, 0) = F(η), −∞ < η < ∞,
(1.1)

where the subscripts denote partial derivatives, V mostly represents a velocity field, τ is

the time variable, η is the space variable, ν > 0, and F(η) is a given initial data. Then, by

the Cole-Hopf transformation

V(η, τ) = −2ν
ϕη(η, τ)
ϕ(η, τ)

, (1.2)

this problem reduces to the Heat IVP. Indeed, letting V = Φη in Burgers equation (1.1) and

then integrating with respect to η,we get the potential Burgers equation Φτ+(1/2)((Φη)2) =

νΦηη. Then, using Φ = −2ν lnϕ gives the heat equation ϕτ = νϕηη, up to an additional term

a(τ)ϕ which can be neglected. The initial condition (IC) for Burgers equation is also eas-

ily transformed to IC for the Heat equation by solving V(η, 0) = −2νϕη(η, 0)/ϕ(η, 0) for

ϕ(η, 0). As a result, we have the IVP for the heat equation

 ϕτ = νϕηη −∞ < η < ∞, τ > 0,

ϕ(η, 0) = f (η), η > 0,
(1.3)
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where f (η) = exp(− 1
2ν

∫ η
V(η′, 0)dη′). Using the Fourier transform ϕ̃(s, τ) =

∫ ∞
−∞
ϕ(η, τ)e−isηdη,

solution of heat problem (1.3) is obtained in the form

ϕ(η, τ) =

∫ ∞

−∞

K(η − ξ, τ) f (ξ)dξ = K(η, τ) ∗ f (η), (1.4)

where K(η, τ) = e−
η2
4ντ

√
4νπτ

is the Heat Kernel and it is the fundamental solution corresponding

to initial condition f (η) = δ(η), where δ(η) is the Dirac-delta distribution, briefly defined

by
∫ ∞
−∞
δ(η − ξ) f (ξ)dξ = f (η). Then, IVP for the Burgers equation has general solution

V(η, τ) = −2ν

∫ ∞
−∞

Kη(η − ξ, τ)e−
1
2ν

∫ ξ
V(η′,0)dη′dξ∫ ∞

−∞
K(η − ξ, τ)e−

1
2ν

∫ ξ
V(η′,0)dη′dξ

.

Clearly, depending on the initial data F(η), solution of the IVP for Burgers equation can

not be always obtained explicitly. However, knowing explicit solutions are always of con-

siderable interest. As known the IVP for Burgers equation (1.1) have many physically in-

teresting exact solutions in explicit form, such as traveling shock and multi-shock waves,

diffusive waves (triangular and N-waves) and rational type solutions, see [Whitham, Deb-

nath, Büyükaşık].

In this thesis, we consider initial-boundary value problems for the standard Burg-

ers equation and an inhomogeneous Burgers equation with variable coefficients on the

semi-infinite line. As we have seen, the initial condition for the Burgers equation can

easily be transformed to IC for the Heat equation. However, the same is not always true

for the boundary conditions. For example, the Dirichlet boundary condition at η = 0

for the Burgers equation on the semi-infinite line 0 < η < ∞ transforms to the Robin

boundary condition at η = 0 for the heat equation on 0 < η < ∞. Similarly, the Neumann

boundary condition for the Burgers equation transforms to nonlinear boundary condition

for the heat equation. Therefore, to investigate the initial-boundary value problems for

the Burgers models, the thesis is organized as follows.

In Chapter 2 we review the well known solutions of IBVP’s for the standard Heat

equation on the semi-infinite line. First we consider the IBVP with Dirichlet boundary

condition and obtain solution by the Fourier Sine transform. We also demonstrate the use

of the reflection principle, by extending the initial condition as an odd function, when

boundary condition is homogeneous. Then, we consider the IBVP with Neumann bound-

ary condition and obtain its solution by the Fourier Cosine transform. The reflection
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principle is used to the initial condition by extending it as an even function, when Neu-

mann boundary condition is homogeneous. To solve the IBVP with the Robin boundary

conditions, we use alternative approaches, such as assuming that the Dirichlet condition is

known, or assuming that the Neumann BC is known. In both cases, the problem reduces to

solving a linear integral equation of Volterra type with weakly singular kernel. After this,

we briefly discuss the IBVP on semi-infinite line for a heat equation with time-variable

coefficients.

In Chapter 3, we study the IBVP’s for standard Burgers equation on semi-infinite

line. First, we consider the IBVP with the Dirichlet BC and give two ways for solving it.

One way is by using the Cole-Hopf transform and the other way is by using generalized

Cole-Hopf transform [4]. Second, we consider the IBVP with the Neumann BC and

again we show two ways for finding the solution [? ]. At the end, we compare the

different approaches. Finally, we investigate the IBVP’s with special nonlinear boundary

conditions [1].

In Chapter 4, we study the IBVP’s for inhomogeneous Burgers equation with

variable coefficients on semi-infinite line. In the first section, we consider the IBVP with

Dirichlet boundary condition and obtain general solution leads to the corresponding stan-

dard models discussed in Chapter 2 and Chapter 3. Some exactly solvable models [3] are

discussed in details to obtain explicit results for the Dirichlet problem for inhomogeneous

BE with variable coefficients. In the second section, we investigate the IBVP with Neu-

mann boundary condition. The general solution is obtained by transforming the model

firstly to the IBVP with Neumann BC for the standard Burgers equation and secondly

to the IBVP with the nonlinear boundary condition for the standard Heat equation. At

the end, we show that solving IBVP’s for inhomogeneous Burgers equation with vari-

able coefficients corresponds to solving either Volterra type integral equation or nonlinear

integro-differential equation.

In Chapter 5, we review the solution of Cauchy problem for the Heat and Burgers

equation, [7], [8]. Then we show how some special solutions of Burgers equation can be

obtained as solutions of a Cauchy problem. Finally, we investigate the Cauchy problem

for the inhomogeneous Burgers equation with time-variable coefficients.
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CHAPTER 2

THE HEAT PROBLEMS ON SEMI-INFINITE LINE

In this chapter, we review solution of the Heat equation on semi-infinite line with

initial condition at time τ = 0 and the Dirichlet and Neumann boundary conditions at

η = 0. The similarity solutions of the Heat equation are discussed in the third section. In

the other two sections, we write solution of IBVP’s with the Robin boundary condition

and special boundary condition for the Heat equation. Then, we consider the Dirichlet

and Neumann problems for the variable parametric parabolic equation on semi-infinite

line and we obtain general solutions of the IBVP’s. Finally, we investigate the IBVP with

the Robin boundary condition for variable parametric parabolic equation on semi-infinite

line.

2.1. The Dirichlet Problem on Semi-infinite Line

The Heat equation on semi-infinite line with initial condition at time τ = 0 and the

Dirichlet boundary condition at η = 0 is given as follows


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕ(0, τ) = H(τ), τ > 0,

(2.1)

where A(η) and H(τ) are given functions of η and τ respectively and one assumes ϕ(η, τ)→

0 and ϕη(η, τ) → 0 as η → ∞. Also, we assume that A(η) has sufficient smoothness and

decays as η → ∞, and H(τ) is sufficiently smooth. To solve the IBVP (2.1), we use lin-

earity of the Heat equation. So that the problem (2.1) can be replaced by two problems

[5] as follows,
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The first one is IBVP with homogeneous Dirichlet BC,


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕ(0, τ) = 0, τ > 0.

(2.2)

The second IBVP is with homogeneous initial condition and inhomogeneous Dirichlet

boundary condition,


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = 0, 0 < η < ∞,

ϕ(0, τ) = H(τ), τ > 0.

(2.3)

For solution of the IBVP (2.2), firstly we apply the Fourier sine transform, Fs[ϕ] =

2
π

∫ ∞
0
ϕ sin(ηy)dη, and using ϕ(η, τ)→ 0 and ϕη(η, τ)→ 0 as η→ ∞, we get

Fs[ϕτ] =
2
π

∫ ∞

0

∂ϕ

∂τ
sin(ηy)dη =

∂

∂τ
ϕ̂(y, τ),

Fs[ϕηη] =
2
π

∫ ∞

0

∂2ϕ

∂η2 sin(ηy)dη.

Applying integration by parts to the last integral i.e. ∂2ϕ

∂η2 = dv ⇒ ∂ϕ

∂η
= v and sin(ηy) =

u⇒ y cos(ηy)dη = du, we have

Fs[ϕηη] =
2
π

(
∂ϕ

∂η
sin(ηy)|∞0︸         ︷︷         ︸

=0

−y
∫ ∞

0

∂ϕ

∂η
cos(ηy)dη

)
. (2.4)

Then, again integrating by parts in the second integral in (2.4), i.e. ∂ϕ

∂η
= dv⇒ ϕ = v and

cos(ηy) = u⇒ −y sin(ηy)dη = du

Fs[ϕηη] = −
2
π

y
(
ϕ(η, τ) cos(ηy)|∞0︸              ︷︷              ︸

=0

+y
∫ ∞

0
ϕ(η, τ) sin(ηy)dη

)
,

5



thus we get

Fs[ϕηη] = −y2ϕ̂. (2.5)

For the Fourier sine transform of the initial condition we have

Fs[ϕ(η, 0)] =
2
π

∫ ∞

0
A(η) sin(ηy)dη = ϕ̂(y, 0) = Â(y).

Then we obtain the ordinary differential equation with the initial condition as follows


∂ϕ̂

∂τ
= −1

2y2ϕ̂,

ϕ̂(y, 0) = Â(y).
(2.6)

The solution to IVP (2.6) is given as

ϕ̂(y, τ) = Â(y)e−
y2
2 τ =

2
π

( ∫ ∞

0
A(η) sin(ηy)dη

)
e−

y2
2 τ. (2.7)

Applying the inverse sine transform

ϕ(η, τ) =

∫ ∞

0
ϕ̂(y, τ) sin(yη)dy, (2.8)

=
2
π

∫ ∞

0

[ ∫ ∞

0
e−

y2τ
2 A(ξ) sin(yξ)dξ)

]
sin(ηy)dy, (2.9)

=
2
π

∫ ∞

0
A(ξ)

[ ∫ ∞

0
e−

y2
2 τ sin(ξy) sin(ηy)dy

]
dξ, (2.10)

and using relation sin(yξ) sin(ηy) = [cos(η − ξ)y − cos(η + ξ)y]/2, we get

ϕ(η, τ) =
1
π

∫ ∞

0
A(ξ)

[ ∫ ∞

0
e−

y2
2 τ cos(η − ξ)ydy︸                        ︷︷                        ︸

I

−

∫ ∞

0
e−

y2
2 τ cos(η + ξ)ydy︸                        ︷︷                        ︸

II

]
.(2.11)
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For the integral (I) in above, using relation cos(η − ξ)y = (ei(η−ξ)y + e−i(η−ξ)y)/2 and by

completing exponential functions to the squares, we obtain

I =

√
π

2τ
e−

(η−ξ)2
2τ . (2.12)

For the second integral (II) in (2.11), using relation cos(η+ ξ)y = (ei(η+ξ)y + e−i(η+ξ)y)/2 and

by completing exponential functions to the squares, we get

II =

√
π

2τ
e−

(η+ξ)2
2τ . (2.13)

Substituting (I) and (II) into (2.11), we obtain the solution of IBVP (2.2) in the following

form

ϕ(η, τ) =
1
√

2πτ

∫ ∞

0

(
e−

(η−ξ)2
2τ − e−

(η+ξ)2
2τ

)
A(ξ)dξ. (2.14)

Note that, when the Dirichlet BC is homogeneous, H(τ) = 0, as an alternative approach

we can use the reflection principle, by extending initial condition A(η) as an odd function,

A0(η) =


A(η), η > 0,

−A(−η), η < 0,

0, η = 0.

(2.15)

Here, our aim is reduce problem (2.2) to the IVP on the whole line, for which the solution

is known. This is achieved by extending the initial data A(η) to the whole line, so that the

boundary condition (2.2) is automaticallly satisfied. It is the following IVP on the whole

line

 ϕτ = 1
2ϕηη, −∞ < η < ∞, τ > 0,

ϕ(η, 0) = A0(η), −∞ < η < ∞.
(2.16)

7



Then, it satisfies the BC ϕ(0, τ) = 0, since if the initial condition is odd, the solution

ϕ(η, τ) is also odd w.r.t η. It’s well known that the problem (2.16) has solution

ϕ(η, τ) =

∫ ∞

−∞

K(η − ξ, τ)A0(ξ)dξ. (2.17)

Substituting A0(η) from (2.15) into (2.17), we get

ϕ(η, τ) =

∫ 0

−∞

K(η − ξ, τ)A0(ξ)dξ −
∫ ∞

0
K(η − ξ, τ)A0(ξ)dξ,

=

∫ 0

−∞

K(η − ξ, τ)A(ξ)dξ −
∫ ∞

0
K(η − ξ, τ)A(−ξ)dξ,

and by the change of variable ξ → −ξ in the second integral, finally we have

ϕ(η, τ) =

∫ ∞

0
K(η − ξ, τ)A(ξ)dξ −

∫ ∞

0
K(η + ξ, τ)A(ξ)dξ.

By using definition of the Heat kernel, the solution of the IBVP (2.2) in explicit form is

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
A(ξ)dξ. (2.18)

It coincides with the solution (2.14) obtained previously.

To solve IBVP (2.3)


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = 0, 0 < η < ∞,

ϕ(0, τ) = H(τ), τ > 0,

(2.19)

8



we again apply the Fourier sine transform to equation (2.19)

Fs(ϕτ) =
2
π

∫ ∞

0

∂ϕ

∂τ
sin(ηy)dη =

∂

∂τ
ϕ̂(y, τ),

Fs(ϕηη) =
2
π

∫ ∞

0

∂2ϕ

∂η2 sin(ηy)dη,

and integration by parts, i.e ∂2ϕ

∂η2 = dv⇒ ∂ϕ

∂η
= v and sin(ηy) = u⇒ y cos(ηy)dη = du,

Fs[ϕηη] =
2
π

(
∂ϕ

∂η
sin(ηy)|∞0︸         ︷︷         ︸

=0

−y
∫ ∞

0

∂ϕ

∂η
cos(ηy)dη

)
. (2.20)

Then, integration by parts in the second integral (2.20), ∂ϕ

∂η
= dv⇒ ϕ = v and cos(ηy) =

u⇒ −y sin(ηy)dη = du,

Fs[ϕηη] = −
2
π

y
(
ϕ(η, τ) cos(ηy)|∞0︸              ︷︷              ︸

=−H(τ)

+y
∫ ∞

0
ϕ(η, τ) sin(ηy)dη

)
.

Thus we obtain

Fs[ϕηη] =
2
π

yH(τ) − y2ϕ̂. (2.21)

By the Fourier sine transform of the initial condition

Fs(ϕ(η, 0)) = ϕ̂(y, 0) = 0,

we obtain the following inhomogeneous IVP for the ϕ̂,


∂ϕ̂

∂τ
+

y2

2 ϕ̂ = 1
π
yH(τ),

ϕ̂(y, 0) = 0.
(2.22)
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The solution of IVP (2.22) is

ϕ̂(y, τ) =
y
π
e−

y2
2 τ

∫ τ

0
H(τ′)e

y2
2 τ
′

dτ′.

By the inverse fourier sine transform

ϕ(η, τ) =

∫ ∞

0
ϕ̂(ξ, τ) sin(ξη)dξ, (2.23)

=

∫ ∞

0

[
ξ

π
e−

ξ2
2 τ

∫ τ

0
H(τ′)e

ξ2
2 τ
′

dτ′
]

sin(ηξ)dξ, (2.24)

=
1
π

∫ τ

0
H(τ′)

[ ∫ ∞

0
ξe−

ξ2
2 (τ−τ′) sin(ηξ)dξ

]
dτ′. (2.25)

By using relation sin(ηξ) = (eiηξ − e−iηξ)/2 and completing the exponential functions to

the squares we obtain solution of IBVP (2.22) as follows

ϕ(η, τ) =

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)

H(τ′)dτ′. (2.26)

By superposition of (2.14) and (2.26), we have solution of IBVP (2.1) in the form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
︸                ︷︷                ︸

Dirichlet heat kernel G(η,ξ,τ)

A(ξ)dξ +

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)︸                    ︷︷                    ︸

−Kη: derivative o f Heat Kernel

H(τ′)dτ′.

Equivalently, we can write it in closed form

ϕ(η, τ) =

∫ ∞

0
G(η, ξ, τ)A(ξ)dξ −

∫ τ

0
Kη(η, τ − τ′)H(τ′)dτ′,

where we have used notation G(η, ξ, τ) = K(η − ξ, τ) − K(η + ξ, τ).
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2.2. The Neumann Problem on Semi-infinite Line

The IBVP for the Heat equation with initial condition at time τ = 0 and the Neu-

mann boundary condition at η = 0 is given by


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕη(0, τ) = Q(τ), τ > 0,

(2.27)

where A(η) and Q(τ) are given functions. To solve IBVP (2.27), as we did in Sec.2.1, we

use linearity to replace the problem (2.27) by two problems [5] as follows,

The first one is IBVP with homogeneous Neumann BC,


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), η > 0,

ϕη(0, τ) = 0, τ > 0.

(2.28)

The second IBVP is inhomogeneous Neumann BC with homogeneous IC


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = 0, 0 < η < ∞,

ϕη(0, τ) = Q(τ), τ > 0.

(2.29)

Applying Fourier cosine transform to the problem (2.28), i.e

Fc(ϕτ) =
2
π

∫ ∞

0

∂ϕ

∂τ
cos(ηy)dη =

∂

∂τ
ϕ̂(y, τ),

Fc(ϕηη) =
2
π

∫ ∞

0

∂2ϕ

∂η2 cos(ηy)dη = −y2ϕ̂,

and to the initial condition

Fc(ϕ(η, 0)) =
2
π

∫ ∞

0
A(η) cos(ηy)dη = ϕ̂(y, 0) = S (y),

11



we obtain the following ordinary differential equation with initial condition


∂ϕ̂

∂τ
= −1

2y2ϕ̂,

ϕ̂(y, 0) = S (y).
(2.30)

The solution of IVP (2.30) is given by

ϕ̂(y, τ) = S (y)e−
y2
2 τ =

(2
π

∫ ∞

0
A(η) cos(ηy)dη

)
e−

y2
2 τ.

Then, applying the inverse Fourier cosine transform, i.e

ϕ(η, τ) =

∫ ∞

0
ϕ̂(ξ, τ) cos(ξη)dξ, (2.31)

=
2
π

∫ ∞

0

[ ∫ ∞

0
A(ξ) cos(ξy)dξ

]
e−

y2
2 τ cos(ηy)dy, (2.32)

=
2
π

∫ ∞

0
A(ξ)

[ ∫ ∞

0
e−

y2
2 τ cos(ξy) cos(ηy)dy

]
dξ, (2.33)

and using relation cos(yξ) cos ηy = [cos(η − ξ)y + cos(η + ξ)y]/2, we get

ϕ(η, τ) =
1
π

∫ ∞

0
A(ξ)

[ ∫ ∞

0
e−

y2
2 τ cos(η − ξ)ydy︸                        ︷︷                        ︸

I

+

∫ ∞

0
e−

y2
2 τ cos(η + ξ)ydy︸                        ︷︷                        ︸

II

]
.(2.34)

For integral (I) in above, using relation cos(η− ξ)y = (ei(η−ξ)y + e−i(η−ξ)y)/2 and completing

exponential functions to the squares, we obtain

I =

√
π

2τ
e−

(η−ξ)2
2τ , (2.35)

and for the second integral (II) in (2.34), using relation cos(η+ ξ)y = (ei(η+ξ)y + e−i(η+ξ)y)/2

and completing exponential functions to the squares, we get

II =

√
π

2τ
e−

(η+ξ)2
2τ . (2.36)
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Substituting (I) and (II) into (2.34), we obtain solution of IBVP (2.28) in the form

ϕ(η, τ) =
1
√

2πτ

∫ ∞

0

(
e−

(η−ξ)2
2τ + e−

(η+ξ)2
2τ

)
A(ξ)dξ. (2.37)

Note that, the Neumann BC is homogeneous, that is ϕη(0, τ) = 0, we can use

the reflection principle. We seek to reduce the IBVP (2.27) to an IVP on whole line by

extending the initial data A(η) as an even function, in such a way that boundary condition

is automatically satisfied. The even extension of A(η) is

Ae(η) =

 A(η), η ≥ 0,

A(−η), η ≤ 0,

and we consider the following IVP

 ϕτ = 1
2ϕηη, −∞ < η < ∞, τ > 0,

ϕ(η, 0) = Ae(η), −∞ < η < ∞.
(2.38)

It’s well-known that problem (2.38) has solution

ϕ(η, τ) =

∫ ∞

−∞

K(η − ξ, τ)Ae(ξ)dξ.

Substituting the expressions for Ae(η) and changing variable ξ → −ξ in the second inte-

gral, we obtain

ϕ(η, τ) =

∫ ∞

0
K(η − ξ, τ)A(ξ)dξ +

∫ ∞

0
K(η + ξ, τ)A(ξ)dξ,

By using definition of the Heat kernel, we have in explicit form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
A(ξ)dξ. (2.39)
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To solve the IBVP (2.29), we use the Fourier cosine transform

Fc(ϕτ) =
2
π

∫ ∞

0

∂ϕ

∂τ
cos(ηy)dη =

∂

∂τ
ϕ̂(y, τ),

Fc(ϕηη) =
2
π

∫ ∞

0

∂2ϕ

∂η2 cos(ηy)dη, (2.40)

Fc(ϕ(η, 0)) = ϕ̂(y, 0) = 0. (2.41)

Thus, we have the following IVP for the first order linear ODE in τ variable


∂ϕ̂

∂τ
+

y2

2 ϕ̂ = −1
2 Q(τ),

ϕ̂(y, 0) = 0,
(2.42)

which is

ϕ̂(y, τ) = −
1
2

e−
y2
2 τ

∫ τ

0
Q(τ′)e

y2
2 τ
′

dτ′.

By inverse cosine transform

ϕ(η, τ) =
2
π

∫ ∞

0
ϕ̂(ξ, τ) cos(ηξ)dξ,

= −
2
π

∫ ∞

0

[1
2

e−
ξ2
2 τ

∫ τ

0
Q(τ′)e

ξ2
2 τ
′

dτ′
]

cos(ηξ)dξ,

= −
1

2π

∫ τ

0
Q(τ)

[ ∫ ∞

0
(e−

ξ2
2 (τ−τ′)+iηξ + e−

ξ2
2 (τ−τ′)−iηξ)

]
.

Thus, we have solution of IVP (2.42) as

ϕ(η, τ) = −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)dτ′. (2.43)

By superposition of (2.39) and (2.43), finally we have solution of the IBVP (2.27) as
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follows

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
︸                ︷︷                ︸

Neumann heat kernel N(η,ξ,τ)

A(ξ)dξ −
∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)︸         ︷︷         ︸

K(η,τ−τ′) : Heat Kernel

Q(τ′)dτ′. (2.44)

Equivalently, in closed form we have

ϕ(η, τ) =

∫ ∞

0
N(η, ξ, τ)A(ξ)dξ −

∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′,

where N(η, ξ, τ) = K(η − ξ, τ) + K(η + ξ, τ).

2.3. Similarity Solutions of Heat Equation

If ϕ(η, τ) is a solution of the Heat equation ϕτ = (1/2)ϕηη (∗), then ϕλ(η, τ) =

λ−cϕ(λη, λ2τ) is also a rescaled solution of the Heat equation. We look for solutions

satisfying

ϕ(η, τ) = λ−cϕ(λη, λ2τ), −∞ < η < ∞, τ > 0, and c, λ ∈ R, (2.45)

which are known as similarity solutions (or homogeneous solutions [10]). For λ > 0 and

τ > 0, let λ = 1/
√

2τ, we have

ϕ(η, τ) =

(
1
√

2τ

)−c

ϕ

(
η
√

2τ
,

1
2

)
. (2.46)

For z = η/
√

2τ define f (z) = ϕ( η
√

2τ
, 1

2 ), then

ϕ(η, τ) =

(
1
√

2τ

)−c

f (z). (2.47)
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Substituting (2.47) into Heat equation (∗), then we obtain ODE f ′′ + 2z f ′ − 2c f = 0. For

the special case c = n, this equation becomes

f ′′ + 2z f ′ − 2n f = 0, −∞ < z < ∞. (2.48)

It’s easily showed that the following functions are solutions of (2.48).

Hh−n (z) =

∫ ∞

0
e−(z−y)2

yndy, −∞ < z < ∞, (2.49)

Hh+
n (z) =

∫ ∞

0
e−(z+y)2

yndy, −∞ < z < ∞, (2.50)

Hk
n(z) =

∫ ∞

−∞

e−(z−y)2
yndy. −∞ < z < ∞. (2.51)

Using similarity variable z = η/
√

2τ, we can write also

Hh−n

(
η
√

2τ

)
=

∫ ∞

0
e−

(η−
√

2τy)2
2τ yndy, −∞ < η < ∞, τ > 0, (2.52)

Hh+
n

(
η
√

2τ

)
=

∫ ∞

0
e−

(η+
√

2τy)2
2τ yndy, −∞ < η < ∞, τ > 0, (2.53)

Hk
n

(
η
√

2τ

)
=

∫ ∞

−∞

e−
(η−
√

2τy)2
2τ yndy, −∞ < η < ∞, τ > 0, (2.54)

and by changing variable
√

2τy→ ξ, we have

Hh−n

(
η
√

2τ

)
=

∫ ∞

0

e−
(η−ξ)2

2τ

√
2τ

(
ξ
√

2τ

)n

dξ, (2.55)

Hh+
n

(
η
√

2τ

)
=

∫ ∞

0

e−
(η+ξ)2

2τ

√
2τ

(
ξ
√

2τ

)n

dξ, (2.56)

Hk
n

(
η
√

2τ

)
=

∫ ∞

−∞

e−
(η−ξ)2

2τ

√
2τ

(
ξ
√

2τ

)n

dξ, (2.57)
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and we define

h−n (η, τ) =
1
√
π

(
√

2τ)nHh−n (
η
√

2τ
) =

∫ ∞

0

e−
(η−ξ)2

2τ

√
2πτ

ξndξ, (2.58)

h+
n (η, τ) =

1
√
π

(
√

2τ)nHh+
n (

η
√

2τ
) =

∫ ∞

0

e−
(η+ξ)2

2τ

√
2πτ

ξndξ, (2.59)

Hk
n (η, τ/2) =

1
√
π

(
√

2τ)nHk
n(

η
√

2τ
) =

∫ ∞

−∞

e−
(η−ξ)2

2τ

√
2πτ

ξndξ, (2.60)

where function (2.60) is Kampe de Feriet polynomials, defined by

Hk
n (η, τ/2) = n!

[n/2]∑
m=0

(τ/2)m

m!(n − 2m)!
ηn−2m. (2.61)

Clearly, these functions are similarity solutions which satisfy (2.46). In function (2.59),

replacing ξ → −ξ, we get

h+
n (η, τ) = (−1)n

∫ 0

−∞

e−
(η−ξ)2

2τ

√
2πτ

ξndξ.

Then it’s easily seen that for even n, i.e n = 2p for p = 0, 1, 2, · · · , we have even KFP in

terms of h+
n and h−n ,

Hk
2p(η, τ) = h−2p(η, τ) + h+

2p(η, τ), p = 0, 1, 2, · · · ,

and for odd n, say n = 2p + 1, we have odd KFP

Hk
2p+1(η, τ) = h−2p+1(η, τ) − h+

2p+1(η, τ), p = 0, 1, 2, · · · .
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For fixed τ > 0 and at η = 0, we have

h−n (0, τ) = h+
n (0, τ) =

∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξndξ =
2

n−1
2 τ

n+1
2 Γ[n+1

2 ]
√

2πτ
,

Hk
2p(0, τ) = h−2p(0, τ) + h+

2p(0, τ) = 2
∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξ2pdξ,

Hk
2p+1(0, τ) = h−2p+1(0, τ) − h+

2p+1(0, τ) = 0.

For fixed η ∈ (−∞,∞) and as τ→ 0,

h−n (η, 0) = ηn,

h+
n (η, 0) = 0,

Hk
n(η, 0) = ηn.

Using the above solutions of the Heat equation, we can obtain solutions of the Dirichlet

and Neumann IBVP as in the following.

Example 2.1 We consider the following IBVP for the Heat equation with homogeneous

Dirichlet BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < ∞,

ϕ(η, 0) = ηn, n = 0, 1, 2, · · · , 0 < η < ∞,

ϕ(0, τ) = 0, 0 < τ < ∞,

(2.62)

which has solution

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
ξndξ. (2.63)

If n is odd, then solutions of problem (2.62) are odd Kampe de Feriet Polynomials, i.e

ϕ2p+1(η, τ) = h−2p+1(η, τ) − h+
2p+1(η, τ) = Hk

2p+1(η, τ).
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However, if n is even, then solutions of Heat problem are no longer even KFP, since even

KFP does not satisfy the Dirichlet BC ϕ(0, τ) = 0. Then, solution in that case can be

written in terms of functions (2.58) and (2.59) as

ϕ2p(η, τ) = h−2p(η, τ) − h+
2p(η, τ). (2.64)

Example 2.2 Now consider the IBVP with homogeneous Neumann BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < ∞,

ϕ(η, 0) = ηn, n = 0, 1, 2, · · · , 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < ∞,

(2.65)

which has solution

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
ξndξ. (2.66)

If n is even, then solutions of problem (2.65) are even Kampe de Feriet Polynomials, i.e

ϕ2p(η, τ) = h−2p(η, τ) + h+
2p(η, τ) = Hk

2p(η, τ).

However, if n is odd, then solutions of Heat problem are no longer odd KFP, since odd

KFP does not satisfy the Neumann BC ϕη(0, τ) = 0. Then solution in that case can be

written in terms of functions (2.58) and (2.59), that’s

ϕ2p+1(η, τ) = h−2p+1(η, τ) + h+
2p+1(η, τ). (2.67)
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2.4. Heat Equation with Robin Boundary Condition on Semi-infinite

Line

Now, we consider the IBVP given by


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

α(τ)ϕη(0, τ) + β(τ)ϕ(0, τ) = g(τ), τ > 0. (Robin BC)

(2.68)

where A(η), α(τ), β(τ), g(τ) are given functions. To solve the IBVP (2.68), we apply

two approaches :

1) Dirichlet Approach : If β(τ) is not identically zero for τ > 0, assume tempo-

rary we know ϕ(0, τ) = H(τ), then we have the following IBVP with Dirichlet BC


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕ(0, τ) = H(τ), τ > 0.

(2.69)

From previous section, we know the solution of IBVP (2.69) in the form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
ϕ(ξ, 0)dξ +

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)

H(τ′)dτ′, (2.70)

where in closed form

ϕ(η, τ) =

∫ ∞

0
G(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
Kη(η, τ − τ′)H(τ′)dτ′.

But this solution contains unknown function H(τ). To fix this function, we have to solve
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the Robin BC. By taking derivative of (2.70) with respect to η,

ϕη(η, τ) =

∫ ∞

0
Gη(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
Kηη(η, τ − τ′)︸          ︷︷          ︸

−2Kτ′ : f rom Heat eq.

H(τ′)dτ′,

ϕη(0, τ) =

∫ ∞

0
Gη(0, ξ, τ)ϕ(ξ, 0)dξ + 2

∫ τ

0
Kτ′(0, τ − τ′)H(τ′)dτ′,

or explicitly

ϕη(0, τ) = 2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′, (2.71)

and substituting ϕη(0, τ) with ϕ(0, τ) = H(τ) into Robin BC (2.68), we obtain the follow-

ing integral equation [5] for the unknown function H(τ),

β(τ)H(τ) + α(τ)
(
2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)

= g(τ),

or equivalently we have,

H(τ) = FD(τ) −
α(τ)
β(τ)

( ∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)
, (2.72)

where

FD(τ) =
g(τ)
β(τ)

−
2α(τ)
β(τ)

( ∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ
)
.

The function FD(τ) can be obtained directly, since we know A(η), g(τ), α(τ) and β(τ).

Equation (2.72) is an inhomogeneous linear integral equation of Volterra type. In general,

the solution of integral equation (2.72) can be obtained numerically. If we can solve it

explicitly and find the unknown H(τ), then the solution of Heat IBVP with Robin BC is

(2.70).

Thus, the problem of solving the Heat IBVP (2.68) with Robin BC is reduced to solving

integral equation (2.72) for the unknown function H(τ).
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2) Neumann Approach : Now, we consider again the IBVP (2.68) with Robin

BC. If function α(τ) is not identically zero for τ > 0, assume temporary we know

ϕη(0, τ) = Q(τ). Then we have the following IBVP with Neumann BC


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕη(0, τ) = Q(τ), τ > 0.

(2.73)

From previous part, we know solution of the IBVP (2.73) in the form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
A(ξ)dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)︸︷︷︸
ϕη(0,τ′)

dτ′, (2.74)

and contains the unknown function Q(τ). To fix this function we need to solve the Robin

BC. From solution (2.74), we obtain ϕ(0, τ) as follows

ϕ(0, τ) = 2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
A(ξ)dξ −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′. (2.75)

Substituting ϕ(0, τ) and ϕη(0, τ) = Q(τ) into Robin BC (2.68), we get

α(τ)Q(τ) + β(τ)
(
2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
A(ξ)dξ −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′

)
= g(τ),

or equivalently

Q(τ) = FN(τ) +
β(τ)
α(τ)

( ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′

)
, (2.76)

where

FN(τ) =
g(τ)
α(τ)

− 2
β(τ)
α(τ)

( ∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
A(ξ)dξ

)
.
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The function FN(τ) can be obtained directly since A(ξ), g(τ), α(τ) and β(τ) are known, but

Q(τ) is unknown function. Thus, equation (2.76) is an inhomogeneous integral equation

of Volterra type for the unknown function Q(τ). If we can solve it explicitly, we will fix

ϕη(0, τ) = Q(τ), so that the solution of Heat IBVP (2.68) can be found. If β(τ)/α(τ) is

constant, then it’s known Abel’s integral equation. In the next section, we give solution

of Abel’s integral equation.

2.5. Abel’s Integral Equation and Solutions of Heat Problem with

Robin Boundary Condition

The integral equation

f (τ) =

∫ τ

0

1
√
τ − τ′

u(τ′)dτ′, (2.77)

where f (τ) is given and u(τ) is unknown, is called a first-kind Abel’s integral equation.

This equation is a special Volterra type integral equation with weakly singular kernel

K(τ, τ′) = 1/
√
τ − τ′, where K(τ, τ′)→ ∞ as τ′ → τ.

This equation can be solved by applying the Laplace transform and then by inverse

Laplace transform so that we have

u(τ) =
1
π

d
dτ

∫ τ

0

f (τ′)
√
τ − τ′

dτ′. (2.78)

Clearly, the formula (2.78) will be used for solving Abel’s integral equation (2.77). It’s

known that for some special functions f (τ), the solution (2.78) can be obtained explicitly.

The followings are some examples.

For f (τ) = τn+1/2, n is a positive integer, we have solutions for u(τ) as follows

n = 1, f (τ) = 4
3τ

3/2 ⇒ u(τ) = τ,

n = 2, f (τ) = 16
15τ

5/2 ⇒ u(τ) = τ2,

n = 3, f (τ) = 32
35τ

7/2 ⇒ u(τ) = τ3,
...

(2.79)
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In general, n = 1, 2, 3, · · · ,

f (τ) =
2n+1Γ(n + 1)

1.3.5 · · · (2n + 1)
τn+1/2 ⇒ u(τ) = τn. (2.80)

For f (τ) = τn, n is a positive integer, we have solutions for u(τ) as follows

n = 1, f (τ) = 1
2πτ, ⇒ u(τ) = τ1/2,

n = 2, f (τ) = 3
8πτ

2 ⇒ u(τ) = τ3/2,

n = 3, f (τ) = 5
16πτ

3 ⇒ u(τ) = τ5/2,
...

(2.81)

In general, n = 1, 2, 3, · · · ,

f (τ) =
Γ(n + 1/2)

Γ(n + 1
√
πτn ⇒ u(τ) = τn−1/2. (2.82)

The weakly-singular Abel’s integral equations of the second kind are given by

Q(τ) = F(τ) +

∫ τ

0

β
√
τ − τ′

Q(τ′)dτ′, τ ∈ [0,T ], (2.83)

where F(τ) is known and Q(τ) is unknown with constant β. To solve this type of integral

equation, one can use again Laplace transform or method of successive approximations.

As we have seen in previous chapter, the Heat equation with Robin boundary condition

reduces to Volterra type integral equation. If this integral equation is of the form (2.83),

then we obtain explicit result for the solution of IBVP with Robin boundary condition for

the Heat equation.

? First type initial condition : The following IBVP


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) =

( √
2π

2nΓ[n+ 1
2 ]
ξ2n +

√
2π

1.3.5···(2n+1)ξ
2n+1

)
, 0 < η < ∞,

ϕ(0, τ) − ϕη(0, τ) = 0, τ > 0,

(2.84)
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has solution

ϕ(η, τ) =

∫ ∞

0
N(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
K(η, τ − τ′)ϕη(0, τ′)dτ′,

which is solvable. Indeed,

For example if n=1 : A(η) =
√

2πη2 +
√

2π
3 η3, the following IBVP with Robin BC and

initial data A(η),


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) =
√

2πη2 +
√

2π
3 η3, 0 < η < ∞,

ϕ(0, τ) − ϕη(0, τ) = 0, τ > 0,

(2.85)

reduces to solving integral equation

Q(τ) = 2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

) √2πξ2 +

√
2π
3

ξ3

 dξ −
∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′, (2.86)

Q(τ) =
√

2πτ +
4
3
τ3/2 −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′. (2.87)

By Laplace transform, we obtain solution Q(τ) =
√

2πτ with f (τ) = 4
3τ

3/2. Thus, the

IBVP for the Heat equation with Robin BC is exactly solvable by special initial condition

A(η). And we have solution for the problem (2.85) as follows

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
A(ξ)dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)dτ′, (2.88)

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

) √2πξ2 +

√
2π
3

ξ3

 dξ︸                                                     ︷︷                                                     ︸
I

−

∫ τ

0

e−
η2

2(τ−τ′)

√
τ − τ′

τ′dτ′︸                ︷︷                ︸
II

, (2.89)
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where

I =
2
3

e−
η2
2τ

(
η2√τ + 2τ3/2

)
+
√

2π
(
η2 + τ +

[η3 + 3ητ]
3

Er f
[
η
√

2τ

])
, (2.90)

II =
2
3

e−
η2
2τ

(
2τ3/2 + η2√τ

)
−
√

2π
(
ητ +

η3

3
−

[η3 + 3ητ]
3

Er f
[
η
√

2τ

])
, (2.91)

then ϕ(η, τ)= I- II gives the exact solution to the IBVP (2.85) with Robin BC as follows

ϕ(η, τ) =
√

2π
[
η3

3
+ η2 + ητ + τ

]
. (2.92)

For example if n=2 : A(η) =
√

2π
3 η4 +

√
2π

15 η
5, the following IBVP with Robin BC and

initial data A(η),


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) =
√

2π
3 η4 +

√
2π

15 η
5, 0 < η < ∞,

ϕ(0, τ) − ϕη(0, τ) = 0, τ > 0,

(2.93)

we have the following integral equation for Q(τ)

Q(τ) = 2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)  √2π
3

ξ4 +

√
2π

15
ξ5

 dξ −
∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′, (2.94)

Q(τ) =
√

2πτ2 +
16
15
τ5/2 −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′. (2.95)

By solving the above integral equation motivated by the first kind Abels integral equation,

we obtain Q(τ) =
√

2πτ2 with f (τ) = 16
15τ

5/2. Thus the IBVP for the Heat equation with

Robin BC is exactly solvable by special initial condition A(η). And we have solution for

the problem (2.101) as follows

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)  √2π
3

ξ4 +

√
2π

15
ξ5

 dξ︸                                                      ︷︷                                                      ︸
I

−

∫ τ

0

e−
η2

2(τ−τ′)

√
τ − τ′

(τ′)2dτ′︸                    ︷︷                    ︸
II

, (2.96)
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where

I =
1

15

(
e−

η2
2τ (2η2√τ + 2τ3/2)(η2 + 8τ) +

√
2π(5η4 + 30η2τ + 15τ2)

)
+

1
15

(
√

2π(η5 + 10η3τ + 15ητ2)Er f
[
η
√

2τ

])
, (2.97)

II =
1

15

(
2e−

η2
2τ
√
τ(η2 + τ)(η2 + 8τ) −

√
2π(15ητ2 + 10η3τ + η5)

)
+

1
15

(
√

2π(15ητ2 + 10η3τ + η5)Er f
[
η
√

2τ

])
, (2.98)

then ϕ(η, τ)= I- II gives the exact solution to the IBVP (2.93) with Robin BC as follows

ϕ(η, τ) =
√

2π
[
η5

15
+
η4

3
+

5
3
η3τ + 2η2τ + ητ2 + τ2

]
. (2.99)

? Second type initial condition : For the following IBVP


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) =
( √

2π
2nΓ(n)ξ

2n−1 + π
2nΓ(n+1)ξ

2n
)
, 0 < η < ∞,

ϕ(0, τ) − ϕη(0, τ) = 0 τ > 0,

(2.100)

we also obtain explicit solution. Indeed,

For example if n=1 : A(η) =
√

π
2η+ π

2η
2, the following IBVP with Robin BC with initial

data A(η),


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) =
√

π
2η + π

2η
2, 0 < η < ∞,

ϕ(0, τ) − ϕη(0, τ) = 0, τ > 0,

(2.101)

reduces to the the following integral equation for Q(τ)

Q(τ) = 2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

) [√
π

2
ξ +

π

2
ξ2

]
dξ −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′, (2.102)

Q(τ) =
√
τ +

π

2
τ −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′. (2.103)
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By solving above integral equation motivated by the first kind Abels integral equation, we

obtain Q(τ) = τ1/2 with f (τ) = π
2τ. Thus the IBVP for Heat equation with Robin BC is

exactly solvable by special initial condition A(η). And we have solution for the problem

(2.101) as follows

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
A(ξ)dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)dτ′, (2.104)

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

) [√
π

2
ξ +

π

2
ξ2

]
dξ︸                                               ︷︷                                               ︸

I

(2.105)

−

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

(τ′)1/2dτ′︸                            ︷︷                            ︸
II

,

where

I =
√
τe−

η2
2τ +

π

2
(τ + η2) +

√
π

2
ηEr f

[
η
√

2τ

]
, (2.106)

II = −
1
2
η
√
τe−

η2
2τ +

√
π

2
√

2
(η2 + τ)Er f c

[
η
√

2τ

]
, (2.107)

then ϕ(η, τ)= I- II gives the exact solution to the IBVP (2.101) with Robin BC as follows

ϕ(η, τ) =
√
τe−

η2
2τ

(
1 +

η

2

)
+
π

2

(
τ + η2

)
+

√
π

2

(
ηEr f

[
η
√

2τ

]
−

(η2 + τ)
2

Er f c
[
η
√

2τ

])
.

2.6. Heat Equation with Special Boundary Condition on

Semi-infinite Line

Now, we consider the IBVP given by


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = A(η), 0 < η < ∞,

ϕτ(0, τ) + α(τ)ϕη(0, τ) + β(τ)ϕ(0, τ) = g(τ), τ > 0,

(2.108)
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where A(η), α(τ), β(τ), g(τ) are given functions. Assume temporary we know ϕ(0, τ) =

H(τ). We know that the IBVP with Dirichlet BC has solution

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
ϕ(ξ, 0)dξ +

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)

H(τ′)dτ′. (2.109)

But we see that the unknown function H(τ) is in the solution. We can fix this function

from the Robin BC. By taking derivative of (2.109) with respect to η,

ϕη(0, τ) = 2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′, (2.110)

and substituting ϕη(0, τ), ϕ(0, τ) = H(τ) and ϕτ(0, τ) = Ḣ(τ) into Robin BC (2.108), we

obtain the following integral equation for the unknown function H(τ),

Ḣ(τ) + β(τ)H(τ) + α(τ)
(
2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)

= g(τ),

or equivalently we have,

Ḣ(τ) = FD(τ) − α(τ)
( ∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)
− β(τ)H(τ), (2.111)

where

FD(τ) = g(τ) − 2α(τ)
( ∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

A(ξ)dξ
)
.

The function FD(τ) can be obtained directly, since we know A(η), g(τ), α(τ) and β(τ).

The equation (2.111) is an inhomogeneous linear integral equation. Thus, the problem

of solving the Heat IBVP (2.108) with Robin BC is reduced to solving integral equation

(2.111) for the unknown function H(τ).
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2.7. The Dirichlet Problem for Variable Parametric Parabolic

Equation on Semi-infinite Line

In this section, we consider IBVP for a linear parabolic equation with variable

coefficients. We show that it can be transformed to IBVP for standard Heat equation dis-

cussed in previous section.

Proposition 2.1 The IBVP for variable parametric linear parabolic equation on semi-

infinite line given as


Φt = 1

2µ(t)Φxx +
µ(t)ω2(t)

2 x2Φ, x > 0, t0 < t < T,

Φ(x, t0) = A(x), x > 0,

Φ(0, t) = BD(t), t0 < t < T,

(2.112)

where A(x) and BD(t) are known functions of x and t respectively and µ(t) > 0 and con-

tinuously differentible and ω(t) are given smooth continuous functions of t, has solution

of the form

Φ(x, t) =

√
r0(t)
r(t)

exp
[
−
µ(t)ṙ(t)
2r(t)

x2
]
ϕ(η(x, t), τ(t)),

if r(t) is strictly positive and solution of the ordinary differential equation with initial con-

ditions

r̈ +
µ̇(t)
µ(t) ṙ + ω2(t)r = 0,

r(t0) = r0 , 0, ṙ(t0) = 0,
(2.113)

with

η(x, t) =
r0

r(t)
x, τ(t) = r2

0

∫ t

t0

dξ
µ(ξ)r2(ξ)

,
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and ϕ(η, τ) satisfies the IBVP for the standard Heat equation,


ϕτ = 1

2ϕηη, η > 0, 0 < τ < τ(T ),

ϕ(η, 0) = Φ(η, t0), η > 0,

ϕ(0, τ) =

√
r(t(τ))

r0
Φ(0, t(τ)), 0 < τ < τ(T ).

(2.114)

where τ(t) = τ⇔ t = t(τ).

Proof:

Using the ansatz, [2]

Φ(x, t) = e
g(t)−ρ(t)x2

2 ϕ(eg(t)x, τ(t)),

we can show that, if the auxiliary functions ρ(t), τ(t) and g(t) satisfy the nonlinear system

of ordinary differential equations

ρ̇ +
ρ2

µ(t)
+ µ(t)ω2(t) = 0, ρ(t0) = 0,

τ̇ −
e2g(t)

µ(t)
= 0, τ(t0) = 0, (2.115)

ġ +
ρ(t)
µ(t)

= 0, g(t0) = 0, (2.116)

and ϕ(η, τ) satisfies the standard HE (2.114), then Φ(x, t) = exp[ g(t)−ρ(t)x2

2 ]ϕ(eg(t)x, τ(t))

satisfies the variable parametric Heat equation (2.112). Noticing that equation (2.115) is

a nonlinear Riccati equation which can be linearized by using ρ(t) = µ(t)ṙ(t)/r(t). Then

the system is easily solved and we obtain the following auxiliary functions in terms of

solution r(t) to the IVP (2.113) as follows

ρ(t) = µ(t)
ṙ(t)
r(t)

,

τ(t) = r2
0

∫ t dξ
µ(ξ)r2(ξ)

, τ(t0) = 0, (2.117)

g(t) = ln
( r0

r(t)

)
, (2.118)
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then, by back substitution these functions in the ansatz, we get Φ(x, t) in the form

Φ(x, t) =

√
r0

r(t)
exp

[
−
µ(t)ṙ(t)
2r(t)

x2
]
ϕ(η(x, t), τ(t)).

Using ansatz, the initial condition Φ(x, t) |t=t0= Φ(x, t0) is easily transformed to the initial

condition ϕ(η, 0) = Φ(η, t0) for standard HE. And Dirichlet BC for variable parametric

parabolic equation Φ(0, t) = BD(t) is transformed to Dirichlet BC for standard HE as

follows

ϕ(0, τ) =

√
r(t(τ))

r0
Φ(0, t(τ)),

where we use that µ(t) > 0 and r2(t) > 0, so that τ(t) = r2
0

∫ t dξ
µ(ξ)r2(ξ) , τ(t0) = 0 is strictly

increasing and thus its inverse t(τ) exists. Thus, IBVP (2.112) is transformed to the IBVP

(2.114). This shows that solution of variable parametric parabolic equation is explicitly

obtained in terms of solution of ϕ(η, τ) to the standard HE (2.114) and solution r(t) of the

IVP for the linear ODE (2.113). �

Now, we give some basic examples to apply the above proposition.

Example 2.3 For the constant coefficient parabolic equation where µ(t) = 1, ω2(t) =

−ω2
0, ω0 > 0, we have

Φt =
1
2

Φxx +
ω2

0

2
x2Φ,

where ω0:constant and the related IVP as follows

r̈ − ω0
2r = 0,

r(t0) = r0 , 0 ṙ(t0) = 0,
(2.119)

where it has solution r(t) = r0 cosh(ω0). Now, for example taking initial condition

Φ(x, 0) = 0 and BC Φ(0, t) = c0
√

sech(ω0t) where c0:constant, we obtain the follow-

ing IBVP for constant coefficient variable parabolic equation,


Φt = 1

2Φxx +
ω2

0
2 x2Φ, x > 0, t > 0,

Φ(x, 0) = 0, x > 0,

Φ(0, t) = c0
√

sech(ω0t), t > 0,

(2.120)
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from Proposition-I, the corresponding functions as follows

η(x, t) = sech(ω0t)x,

τ(t) = tanh(ω0t)/ω0,

g(t) = ln(sech(ω0t)),

ρ(t) = ω0 tanh(ω0t).

(2.121)

Then we have solution in following form

Φ(x, t) =
√

sech(ω0t)e−
1
2ω0 tanh (ω0t)x2

ϕ(η(x, t), τ(t)),

where ϕ(x, t) satisfies the IBVP for standard Heat equation,


ϕτ = 1

2ϕηη, η > 0, τ > 0,

ϕ(η, 0) = 0, η > 0,

ϕ(0, τ) = c0, τ > 0, c0 : constant.

(2.122)

Applying Fourier sine and inverse Fourier sine transform, we get solution as follows

ϕ(η, τ) = c0

(
1 − er f (

η
√

2τ
)︸           ︷︷           ︸

Er f c( η
√

2τ
)

)
.

Thus, the corresponding solution of variable parametric parabolic equation is given by

Φ(x, t) = c0

√
sech(ω0t)e−

1
2ω0 tanh(ω0t)x2

Er f c
( √

ω0cosech(2ω0t)x
)
.

Example 2.4 The IBVP


Φt = 1

2Φxx +
ω2

0
2 x2Φ, x > 0, t > 0,

Φ(x, 0) = 0, x > 0,

Φ(0, t) =
tanh(ω0t)

ω0

√
sech(ω0t) t > 0

(2.123)
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which is transformed to the following IBVP for the standard HE


ϕτ = 1

2ϕηη, η > 0, τ > 0,

ϕ(η, 0) = 0, η > 0,

ϕ(0, τ) = τ, τ > 0.

(2.124)

We obtain the solution as follows

ϕ(η, τ) = (η2 + τ)Er f c
[
η
√

2τ

]
−

√
2
π

e−
η2
2τ
√
τη. (2.125)

And the corresponding solution for the parabolic problem is given by

Φ(x, t) =
√

sech(ω0t)e−
ω0 tanh(ω0t)

2 x2
(
[η2(x, t) + τ(t)]Er f c

[
η(x, t)
√

2τ(t)

]
−

√
2
π

e−
η2(x,t)
2τ(t)

√
τ(t)η(x, t)

)
,

where η(x, t) = sech(ω0t)x and τ(t) =
tanh(ω0t)

ω0
.

2.8. The Neumann Problem for Varible Parametric Parabolic

Equation on Semi-infinite Line

In this section we consider that IBVP for variable parametric parabolic equation

with Neumann BC.


Φt = 1

2µ(t)Φxx +
µ(t)ω2(t)

2 x2Φ, x > 0, t0 < t < T,

Φ(x, t0) = A(x), x > 0,

Φx(0, t) = BN(t), t0 < t < T,

(2.126)

where A(x) and BN(t) are given functions. Then IBVP (2.126) has solution of the form

Φ(x, t) =

√
r0(t)
r(t)

exp
[
−
µ(t)ṙ(t)
2r(t)

x2
]
ϕ(η(x, t), τ(t)), (2.127)
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where r(t) is the solution of IVP r̈ +
µ̇(t)
µ(t) ṙ +ω2(t)r = 0, r(t0) = r0 , 0, ṙ(t0) = 0, with

η(x, t) =
r(t0)
r(t) x, τ(t) = r2

0

∫ t

t0
dξ

µ(ξ)r2(ξ) , and ϕ(η, τ) satisfies the following IBVP for the HE,


ϕτ = 1

2ϕηη, η > 0, 0 < τ < τ(T ),

ϕ(η, 0) = Φ(η, t0), η > 0,

ϕη(0, τ) =

√(
r(t(τ))

r0

)3

Φx(0, t(τ)), 0 < τ < τ(T ).

(2.128)

Proof:

Using the ansatz

Φ(x, t) = e
g(t)−ρ(t)x2

2 ϕ(eg(t)x, τ(t)),

we can show that initial condition Φ(x, t) |t=t0= Φ(x, t0) is easily transformed to the initial

condition ϕ(η, 0) = Φ(η, t0). And Neumann BC for (2.126) is transformed to Neumann

BC for (2.128).

ϕη(0, τ) = exp
[
−

3
2

g(t(τ))
]
Φx(0, t(τ)),

where we use that µ(t) > 0 and r(t) > 0, so that τ(t) = r2
0

∫ t

t0
dξ

µ(ξ)r2(ξ) is strictly increas-

ing and thus its inverse t(τ) exists. Thus, IBVP (2.126) for the variable parametric Heat

equation is transformed to the IBVP (2.128) for the standard HE. Thus, solution of the

problem (2.126) is explicitly obtained in terms of solution of ϕ(η, τ) to the standard HE

(2.128) and solution r(t) of the IVP for the linear ODE (2.113). �

2.9. Robin Boundary Condition for Variable Parametric Parabolic

Equation on Semi-infinite Line

In this section we consider that IBVP for variable parametric parabolic equation

with Robin BC.


Φt = 1

2µ(t)Φxx +
µ(t)ω2(t)

2 x2Φ, x > 0, t0 < t < T,

Φ(x, t0) = A(x), x > 0,

α(t)Φx(0, t) + β(t)Φ(0, t) = h(t), t0 < t < T,

(2.129)
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where A(x), α(t), β(t) and h(t) are given functions, α(t) and β(t) are not zero simultane-

ously. Then the IBVP (2.129) is transformed to the following IBVP for standard Heat

equation by ansatz which we define in previous sections,


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = Φ(η, t0), 0 < η < ∞,

α(t(τ))
√(

r0
r(t)

)3
ϕη(0, τ) + β(t(τ))

√
r0

r(t)ϕ(0, τ) = h(t(τ)), 0 < τ < τ(T ),

(2.130)

where we use

ϕ(0, τ) = exp
[
−

1
2

g(t(τ))
]
Φ(0, t(τ)), (2.131)

ϕη(0, τ) = exp
[
−

3
2

g(t(τ))
]
Φx(0, t(τ)). (2.132)

We see that variable parametric parabolic problem with Robin BC is reduced to the Heat

problem with Robin BC easily. In previous section, we have shown how to find the solu-

tion of Heat problem with Robin BC. Thus, solution of the problem (2.129) is explicitly

obtained in terms of solution of ϕ(η, τ) to HE (2.130) and solution r(t) of the IVP for the

linear ODE as

Φ(x, t) =

√
r0(t)
r(t)

exp
[
−
µ(t)ṙ(t)
2r(t)

x2
]
ϕ(η(x, t), τ(t)).
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CHAPTER 3

THE IBVP FOR BURGERS EQUATION ON

SEMI-INFINITE LINE

In this chapter, we consider Burgers equation with three types of boundary con-

ditions. Firstly, we obtain solution of the problem with Dirichlet boundary condition on

semi-infinite line. Then, we investigate the IBVP with Neumann boundary condition and

finally we consider the problem with special nonlinear boundary condition for Burgers

equation on semi-infinite line.

3.1. The IBVP with Dirichlet Boundary Condition

Consider the IBVP for Burgers equation on semi-infinite line


Vτ + VVη = 1

2Vηη, 0 < η < ∞, τ > 0,

V(η, 0) = f (η), 0 < η < ∞

V(0, τ) = β(τ), τ > 0 (Dirichlet condition),

(3.1)

where f (η) and g(τ) are given functions. We will use two ways for solving this IBVP.

•First Way -Direct Cole-Hopf :

Applying directly the Cole-Hopf transform V(η, τ) = −ϕη(η, τ)/ϕ(η, τ) to problem (3.1),

we obtain the corresponding IBVP for the Heat equation with Robin boundary condition,


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

ϕη(0, τ) + β(τ)ϕ(0, τ) = 0, τ > 0, (Robin BC),

(3.2)

where B(τ) is not identically zero. The boundary condition is directly obtained using

V(0, τ) ≡ −ϕη(0, τ)/ϕ(0, τ) = β(τ). From Chapter 2, we know how to solve Heat problem
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with Robin BC using two approaches.

(i) Dirichlet approach : Assume we know ϕ(0, τ) = H(τ), then solution for the

problem (3.2) is given by

ϕ(η, τ) =

∫ ∞

0
G(η, ξ, τ)e−

∫ ξ
0 V(η′,0)dη′dξ −

∫ τ

0
Kη(η, τ − τ′)H(τ′)dτ′, (3.3)

where H(τ) is obtained by solving the integral equation

H(τ) = −
2
β(τ)

[ ∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

e−
∫ ξ

V(η′,0)dη′dξ
]

+
1
β(τ)

[ ∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
]
. (3.4)

Then, solution of Burgers problem (3.1) becomes

V(η, τ) = −

∫ ∞
0

Gη(η, ξ, τ)e−
∫ ξ

V(η′,0)dη′dξ −
∫ τ

0
Kηη(η, τ − τ′)H(τ′)dτ′∫ ∞

0
G(η, ξ, τ)e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0
Kη(η, τ − τ′)H(τ′)dτ′

, (3.5)

where K(η, τ) is the Heat kernel, G(η, ξ, τ) = K(η− ξ, τ)−K(η+ ξ, τ) is the Dirichlet heat

kernel. Then explicitly the solution takes the form

V(η, τ) =

∫ ∞
0

( ( η−ξτ )e−
(η−ξ)2

2τ −( η+ξτ )e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0

[
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)3

− η2 e
−

η2
2(τ−τ′)

√
2π(τ−τ′)5

]
H(τ′)dτ′

∫ ∞
0

( e−
(η−ξ)2

2τ −e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ +

∫ τ

0
( η

τ−τ′
) e

−
η2

2(τ−τ′)
√

2π(τ−τ′)
H(τ′)dτ′

(3.6)

If we find a solution of integral equation (3.4) for H(τ), then we obtain solution (3.6) of

IBVP (3.1) for standard Burgers equation.

(ii) Neumann approach : Assume we know ϕη(0, τ) = Q(τ), then the solution is

ϕ(η, τ) =

∫ ∞

0
N(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
K(η, τ − τ′)ϕη(0, τ′)dτ′, (3.7)
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where Q(τ) is determined by solving the following integral equation

Q(τ) = −2β(τ)
[ ∫ ∞

0

e−
ξ2
2τ

√
2πτ

e−
∫ ξ

V(η′,0)dη′dξ
]

+ β(τ)
[ ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′

]
. (3.8)

Then, the corresponding solution of the IBVP (3.1) is of the form

V(η, τ) = −

∫ ∞
0

Nη(η, ξ, τ)ϕ(ξ, 0)dξ −
∫ τ

0
Kη(η, τ − τ′)Q(τ′)dτ′∫ ∞

0
N(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′

, (3.9)

where K(η, τ) is the Heat kernel, and N(η, ξ, τ) = K(η− ξ, τ) + K(η+ ξ, τ) is the Neumann

heat kernel. Then explicitly the solution is given as follows

V(η, τ) =

∫ ∞
0

( ( η−ξτ )e−
(η−ξ)2

2τ +( η+ξτ )e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0
( η

τ−τ′
) e

−
η2

2(τ−τ′)
√

2π(τ−τ′)
Q(τ′)dτ′∫ ∞

0
( e−

(η−ξ)2
2τ +e−

(η+ξ)2
2τ

√
2πτ

)e−
∫ ξ

V(η′,0)dη′dξ −
∫ τ

0
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)

Q(τ′)dτ′
.

•Second way - Generalized Cole-Hopf :

Now we briefly outline the way of solving the IBVP (3.1) by generalized Cole-Hopf

transform, which was used by [4]. The generalized Cole-Hopf transformation is given by

V(η, τ) = −
Ψ(η,τ)(

C(τ)+
∫ η

0 Ψ(η′,τ)dη′
) = − ∂

∂η

[
ln[C(τ) +

∫ η

0
Ψ(η′, τ)dη′]

]
,

or equivalently

Ψ(η, τ) = −C(τ)V(η, τ) exp[−
∫ η

0
V(η′, τ)dη′],

with

C(0) = 1,

Ċ(τ) = 1
2Ψη(0, τ).

(3.10)

39



Under the generalized Cole-Hopf, the IBVP (3.1) for BE transforms to Heat problem



Ψτ = 1
2Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = −V(η, 0)e−
∫ η

V(η′,0)dη′ , 0 < η < ∞,

Ψ(0, τ) = −C(τ)V(0, τ), τ > 0,

and

Ċ(τ) = 1
2Ψη(0, τ).

(3.11)

where C(τ) is unknown. Following the work of [4], assume temporary we know C(τ).

Then we have IBVP with the Dirichlet BC for the Heat equation. The solution to this

Dirichlet Heat problem is given by

Ψ(η, τ) =

∫ ∞

0
G(η, ξ, τ)Ψ(ξ, 0)dξ −

∫ τ

0
Kη(η, τ − τ′)Ψ(0, τ′)dτ′. (3.12)

From solution (3.12) we can obtain

Ψη(η, τ) =

∫ ∞

0
Gη(η, ξ, τ)Ψ(ξ, 0)dξ + 2

∫ τ

0
Kτ′(η, τ − τ′)Ψ(0, τ′)dτ′,

Ψη(0, τ) =

∫ ∞

0
Gη(0, ξ, τ)Ψ(ξ, 0)dξ + 2

∫ τ

0
Kτ′(0, τ − τ′)Ψ(0, τ′)dτ′,

= 2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

Ψ(ξ, 0) +

∫ τ

0

Ψ(0, τ′)√
2π(τ − τ′)3

dτ′.

By using Ψ(0, τ) = −C(τ)V(0, τ) and Ψ(ξ, 0) = −V(η, 0)e−
∫ ξ

V(η′,0)dη′ and the relation

Ψη(0, τ) = 2Ċ(τ), we have the following integro-differential equation for the unknown

function of C(τ) i.e.

Ċ(τ) = −

∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

V(ξ, 0)e−
∫ ξ

V(η′,0)dη′dξ −
1
2

∫ τ

0

C(τ′)V(0, τ′)√
2π(τ − τ′)3

dτ′.

This integro-differential equation can be transformed to integral equation for C(τ). Thus,

we see that solving the IBVP for the Burgers equation with Dirichlet BC (3.1) again

reduces to the problem of solving a linear integral equation where solution of the problem
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is given

V(η, τ) = −
Ψ(η, τ)

C(τ) +
∫ η

0
Ψ(η′, τ)dη′

.

Comparison: The relation between both approaches can be easily established if

we let Ψ(η, τ) = ϕη(η, τ). Using directly the Cole-Hopf transform, we have seen that the

Dirichlet BC for Burgers equation transforms to Robin BC for the corresponding heat

problem. On the other hand, using the generalized Cole-Hopf the Dirichlet BC for the

Burgers problem was transformed again to Dirichlet BC for the heat equation. However,

at the end, both approaches lead to solving integral equations. Indeed, it is not difficult

to see that the heat IBVP’s (3.2) and (3.11) are related by Ψ = ϕη. Then, we have Ψη =

ϕηη = 2ϕτ, which implies Ċ(τ) = (1/2)Ψη(0, τ) = ϕτ(0, τ). Then, C(τ) = cϕ(0, τ), where c

is constant and ϕη(0, τ) = −C(τ)V(0, τ) implies V(0, τ)ϕ(0, τ) + ϕη(0, τ) = 0 which is the

Robin BC for (3.2).

3.2. The IBVP with Neumann Boundary Condition

Consider the IBVP


Vτ + VVη = 1

2Vηη, 0 < η < ∞, τ > 0,

V(η, 0) = f (η), 0 < η < ∞,

Vη(0, τ) = h(τ), τ > 0,

(3.13)

where f (η) and h(τ) are given functions. Again we shall give two ways to solve the above

problem.
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• First way - Direct Cole-Hopf :

By Cole-Hopf, the IBVP (3.13) reduces to Heat problem with nonlinear BC


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

ϕ2
η(0, τ) − 2ϕτ(0, τ)ϕ(0, τ) − h(τ)ϕ2(0, τ) = 0, τ > 0.

(3.14)

To transform the Neumann BC in (3.13), we use

V(η, τ) = −
ϕη(η, τ)
ϕ(η, τ)

, (3.15)

Vη(η, τ) = −
ϕηη(η, τ)
ϕ(η, τ)

+

(ϕη(η, τ)
ϕ(η, τ)

)2

, (3.16)

Vη(0, τ) = −
ϕηη(0, τ)
ϕ(0, τ)

+

(ϕη(0, τ)
ϕ(0, τ)

)2

= −2
ϕτ
ϕ

+

(ϕη
ϕ

)2

, (3.17)

(3.18)

which implies the nonlinear BC in (3.14). Here ϕ(0, τ), ϕη(0, τ) and ϕτ(0, τ) are unknown

functions, but they are related with the nonlinear BC. To solve the Heat problem (3.14) by

Dirichlet Approach, assume temporary we know ϕ(0, τ)=H(τ). Then solution of (3.14) is

given by

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
e−

∫ ξ
V(η′,0)dη′dξ (3.19)

+

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)

H(τ′)dτ′.

In fact, we need to solve Heat problem with the nonlinear boundary condition (3.14).

Thus we obtain ϕη(0, τ) from solution (3.19),

ϕη(η, τ) =

∫ ∞

0

( η+ξ
τ

)e−
(η+ξ)2

2τ − ( η−ξ
τ

)e−
(η−ξ)2

2τ

√
2πτ

e−
∫ ξ

V(η′,0)dη′dξ − 2
∫ τ

0
Kτ′(η, τ − τ′)H(τ′)dτ′,

ϕη(0, τ) = 2
∫ ∞

0

(
ξ

τ

)( e−
ξ2
2τ

√
2πτ

)
e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′. (3.20)
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Substituting ϕη(0, τ), ϕ(0, τ) = H(τ) and ϕτ(0, τ) = Ḣ(τ) into nonlinear boundary condi-

tion (3.14), we obtain the following

2Ḣ(τ)H(τ) + h(τ)H2(τ) −
(
F(τ) −

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)2

= 0, (3.21)

where

F(τ) = 2
∫ ∞

0

(
ξ

τ

)e−
ξ2
2τ e−

∫ ξ
V(η′,0)dη′

√
2πτ

dξ,

2Ḣ(τ)H(τ) =
d
dτ

[H2(τ)].

Then we have

d
dτ

[H2(τ)] + h(τ)H2(τ) −
(
F(τ) −

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)2

= 0, (3.22)

which is a nonlinear integro-differential equation for the unknown function H(τ). Thus,

solving Heat problem (3.14) is equivalent to solving the nonlinear integral equation (3.21).

Then the corresponding Burgers solution of the problem (3.13) is given by

V(η, τ) =

∫ ∞
0

( ( η−ξτ )e−
(η−ξ)2

2τ −( η+ξτ )e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ +

∫ τ

0

[
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)3

− η2 e
−

η2
2(τ−τ′)

√
2π(τ−τ′)5

]
H(τ′)dτ′

∫ ∞
0

( e−
(η−ξ)2

2τ −e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ +

∫ τ

0
( η

τ−τ′
) e

−
η2

2(τ−τ′)
√

2π(τ−τ′)
H(τ′)dτ′

.

? Special Case: If we have homogeneous Neumann BC in (3.13) , that’s Vη(0, τ) =

h(τ) = 0, then the BC of the corresponding Heat problem (3.14) becomes

ϕ2
η(0, τ) − 2ϕτ(0, τ)ϕ(0, τ)︸             ︷︷             ︸

(ϕ2(0,τ))τ

= 0. (3.23)

Therefore, the solution of the Heat problem is given by (3.19), where H(τ) is determined
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by solving the nonlinear integro-differential equation of the form

d
dt

[H2(τ)] −
(
F(τ) −

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)2

= 0, (3.24)

where F(τ) is known.

•Second way - Generalized Cole-Hopf :


Vτ + VVη = 1

2Vηη, 0 < η < ∞, τ > 0,

V(η, 0) = f (η), 0 < η < ∞,

Vη(0, τ) = h(τ), τ > 0.

(3.25)

By Generalized Cole-Hopf, the IBVP (3.25) transforms to the IBVP for the Heat equation

[6], i.e



Ψτ = 1
2Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = −V(η, 0) exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

Ψ2(0, τ) −C(τ)Ψη(0, τ) −C2(τ)Vη(0, τ) = 0, τ > 0,

with

C(0) = 1,

Ċ(τ) = 1
2Ψη(0, τ),

(3.26)

or equivalently using the relation Ψη(0, τ) = 2Ċ(τ), the boundary condition (3.26) be-

comes Ψ2(0, τ) − 2Ċ(τ)C(τ) − C2(τ)h(τ) = 0. We now assume temporarily that C(τ) is

known. Then we have following IBVP


Ψτ = 1

2Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = −V(η, 0) exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

Ψη(0, τ) = 2Ċ(τ), τ > 0.

(3.27)
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Then the solution to the problem (3.27) with Neumann BC is given

Ψ(η, τ) =

∫ ∞

0
N(η, ξ, τ)Ψ(ξ, 0)dξ − 2

∫ τ

0
K(η, τ − τ′)Ċ(τ′)dτ′. (3.28)

From solution (3.28) we can obtain Ψ(0, τ) i.e

Ψ(0, τ) =

∫ ∞

0
N(0, ξ, τ)Ψ(ξ, 0)dξ − 2

∫ τ

0
K(0, τ − τ′)Ċ(τ′)dτ′, (3.29)

or explicitly

Ψ(0, τ) = 2
∫ ∞

0

e−
ξ2
2τ

√
2πτ

Ψ(ξ, 0)dξ − 2
∫ τ

0

Ċ(τ′)
√

2π(τ − τ′)
dτ′. (3.30)

Substituting (3.30) and Ψη(0, τ) = 2Ċ(τ) into nonlinear BC of (3.26), we obtain

2C(τ)Ċ(τ) + C2(τ)h(τ) −
(
2
∫ ∞

0

e
ξ2
2τ

√
2πτ

Ψ(ξ, 0)dξ − 2
∫ τ

0

Ċ(τ′)
√

2π(τ − τ′)
dτ′

)2

= 0. (3.31)

Notice that, again the IBVP is reduced to solving the nonlinear integral equation (3.31)

which determines C(τ) together with C(0) = 1. Thus explicitly, the solution to the prob-

lem (3.25) is given

V(η, τ) = −
Ψ(η, τ)

C(τ) +
∫ η

0
Ψ(η′, τ)dη′

.

Comparison: Using both, the direct Cole-Hopf transform and generalized Cole-

Hopf, we have seen that the Neumann BC for Burgers equation transform to nonlinear

BC for the corresponding Heat problem. At the end, both approaches lead to solving the

same nonlinear integral equation.
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3.3. Burgers Equation with Special Nonlinear Boundary Condition-I

We consider IBVP for Burgers equation with special nonlinear BC defined by


Vτ + VVη = 1

2Vηη, 0 < η < ∞, τ > 0,

V(η, 0) = f (η), 0 < η < ∞,

V2(0, τ) − Vη(0, τ) = g(τ), τ > 0,

(3.32)

which is linearized to the following IBVP


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

g(τ)ϕ(0, τ) − 2ϕτ(0, τ) = 0, τ > 0.

(3.33)

Again we solve the problem (3.33) by two ways.

• First way - Direct Cole-Hopf :

By Cole-Hopf, the IBVP (3.32) reduces to the Heat problem with Dirichlet BC


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

ϕ(0, τ) = exp
[

1
2

∫ τ

0
g(τ′)dτ′

]
, τ > 0.

(3.34)

Note that V2(0, τ)−Vη(0, τ) = −(ϕη(0,τ)
ϕ(0,τ) )2 − [−ϕηη(0,τ)

ϕ(0,τ) + (ϕη(0,τ)
ϕ

(0, τ))2] = g(τ) which implies

2ϕτ/ϕ = g(τ). Integrating the last equation w.r.t τ, we get BC (3.34). Then the solution of

this Dirichlet Heat problem is given by

ϕ(η, τ) =

∫ ∞

0
G(η, ξ, τ)ϕ(ξ, 0)dξ −

∫ τ

0
Kη(η, τ − τ′)e

1
2

∫ τ′
0 g(t)dtdτ′.
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And explicitly the corresponding solution for Burgers problem is the following

V(η, τ) =

∫ ∞
0

( (η−ξ)e−
(η−ξ)2

2τ −(η+ξ)e−
(η+ξ)2

2τ
√

2πτ3
)e−

∫ ξ
f (η′)dη′dξ + 2

∫ τ

0

[
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)3

− η2 e
−

η2
2(τ−τ′)

√
2π(τ−τ′)5

]
e

1
2

∫ τ′
0 g(t)dtdτ′

∫ ∞
0

( e−
(η−ξ)2

2τ −e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
f (η′)dη′dξ +

∫ τ

0
η e

−
η2

2(τ−τ′)
√

2π(τ−τ′)3
e

1
2

∫ τ′
0 g(t)dtdτ′

.

•Second way - Generalized Cole-Hopf :

By Generalized Cole-Hopf, the IBVP (3.32) transforms to the IBVP for the HE [1]



Ψτ = 1
2Ψηη, 0 < η < ∞, τ > 0,

Ψ(η, 0) = − f (η) exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

Ψη(0, τ) = −C(τ)
(
Vη(0, τ) − V2(0, τ)

)
≡ C(τ)g(τ), τ > 0.

with

C(0) = 1,

Ċ(τ) = 1
2Ψη(0, τ).

(3.35)

Notice that the relation Ċ(τ) = 1
2Ψη(0, τ) together with BC implies C(τ) = e

1
2

∫ τ
g(τ′)dτ′ ,

which is the same as ϕ(0, τ) found in the first way.

Comparison: By Cole-Hopf, we have seen that the Nonlinear BC for Burgers

equation transforms to Dirichlet BC for the corresponding heat problem. On the other

hand, using the generalized Cole-Hopf the nonlinear BC for the Burgers problem was

transformed to Neumann BC for the Heat equation.
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3.4. Burgers Equation with Special Nonlinear Boundary

Condition-II

In this section, we consider IBVP for Burgers equation with other special nonlin-

ear BC on semi-infinite line defined by


Vτ + VVη = 1

2Vηη, 0 < η < ∞, τ > 0,

V(η, 0) = f (η), 0 < η < ∞,

V2(0, τ) − α(τ)V(0, τ) − Vη(0, τ) = 0, τ > 0,

(3.36)

where α(τ) and f (τ) are given functions. Then, problem (3.36) reduces to


ϕτ = 1

2ϕηη, 0 < η < ∞, τ > 0,

ϕ(η, 0) = exp
[
−

∫ η
V(η′, 0)dη′

]
, 0 < η < ∞,

α(τ)ϕη(0, τ) − 2ϕτ(0, τ) = 0, τ > 0.

(3.37)

Assume temporary we know ϕ(0, τ) = H(τ). Then we have Heat problem with Dirichlet

BC which has solution

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
ϕ(ξ, 0)dξ +

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)

H(τ′)dτ′. (3.38)

We can obtain ϕη(0, τ) from above solution, that’s

ϕη(0, τ) = 2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

ϕ(ξ, 0)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′. (3.39)

Then substituting (3.39) and ϕτ = Ḣ(τ) into Robin BC in (3.37), we obtain

α(τ)
(
2
∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

ϕ(ξ, 0)dξ +

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)
− 2Ḣ(τ) = 0,
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equivalently

Ḣ(τ) = α(τ)
( ∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

ϕ(ξ, 0)dξ +
1
2

∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)
.
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CHAPTER 4

THE IBVP FOR INHOMOGENEOUS BURGERS

EQUATION WITH TIME-VARIABLE

COEFFICIENTS ON SEMI-INFINITE LINE

In this chapter, firstly we investigate the Dirichlet problem for inhomogeneous

Burgers equation with time-variable coefficients on semi-infinite line. We show that solu-

tion of the Dirichlet problem for variable Burgers equation corresponds to either solution

of the problem with Dirichlet boundary condition for standard Burgers equation or so-

lution of the problem with Robin boundary condition for standard Heat equation. Some

exactly solvable different Burgers models [3] are investigated for Dirichlet problem. Fi-

nally, we consider the Neumann problem for variable Burgers equation on semi-infinite

line.

4.1. Dirichlet Problem for Inhomogeneous Burgers Equation with

Time-variable Coefficients on Semi-infinite Line

In this section, we consider the IBVP for inhomogeneous Burgers equation with

time-variable coefficients given by


Ut +

µ̇(t)
µ(t)U + UUx = 1

2µ(t)Uxx − ω
2(t)x, 0 < x < ∞, t0 < t < T,

U(x, t0) = F(x), 0 < x < ∞,

U(0, t) = D(t), t0 < t < T,

(4.1)

where µ(t) > 0 is continuously differentiable, ω2(t) is a real-valued continuous function

on [t0,T ). Assume D(t), F(x) are sufficiently smooth and F(x) is not increasing too fast

as x→ ∞.
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Proposition 4.1 If for t0 ≤ t < T the function r(t) is strictly positive (or strictly negative)

solution of the IVP for the second order linear ODE

r̈ +
µ̇(t)
µ(t)

ṙ + ω2(t)r = 0, (4.2)

r(t0) = r0 , 0 ṙ(t0) = 0, (4.3)

and

η(x, t) =
r(t0)
r(t)

x, τ(t) = r2
0

∫ t

t0

dξ
µ(ξ)r2(ξ)

, (4.4)

then the IBVP (4.1) has solution in the following forms:

a)

U(x, t) =
ṙ(t)
r(t)

x +
r(t0)
µ(t)r(t)

V(η(x, t), τ(t)), (4.5)

where V(η, τ) satisfies the IBVP for the standard Burgers equation with Dirichlet BC


Vτ + VVη = 1

2Vηη, 0 < η < ∞, 0 < τ < τ(T ),

V(η, 0) = µ0U(η, t0), 0 < η < ∞,

V(0, τ) =
[
µ(t(τ))r(t(τ))/r0

]
U(0, t(τ)), 0 < τ < τ(T ),

(4.6)

and τ = τ(t)⇔ t = t(τ), µ0 = µ(t0), r0 = r(t0).

b)

U(x, t) =
ṙ(t)
r(t)

x −
r0

µ(t)r(t)
ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

, (4.7)

where ϕ(η, τ) satisfies the IBVP for the Heat equation with Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
[
−µ0

∫ η
U(η′, t0)dη′

]
, 0 < η < ∞,[

r(t(τ))µ(t(τ))U(0, t(τ))
]
ϕ(0, τ) + r0ϕη(0, τ) = 0, 0 < τ < τ(T ).

(4.8)
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Proof:

a) If the functions ρ(t), τ(t) and s(t) satisfy the nonlinear system of ordinary differential

equations

ρ̇ +
ρ2

µ(t)
+ µ(t)ω2(t) = 0, ρ(t0) = 0, (4.9)

τ̇ −
s2

µ(t)
= 0, τ(t0) = 0, (4.10)

ṡ +
ρ(t)
µ(t)s

= 0, s(t0) = 1, (4.11)

and V(η, τ) satisfies the standard Burgers equation in (4.6), then

U(x, t) =
ρ(t)x + s(t)V

(
s(t)x, τ(t)

)
µ(t)

, (4.12)

satisfies the Burgers equation in (4.1), [3]. Notice that equation (4.9) is a nonlinear Riccati

equation and substitution ρ(t) = µ(t)ṙ(t)/r(t) gives

r̈(t) +
µ̇(t)
µ(t)

ṙ(t) + ω2(t)r(t) = 0, (4.13)

then the system is easily solved as follows

ρ(t) = µ(t)
ṙ(t)
r(t)

, (4.14)

τ(t) = r2
0

∫ t

t0

dξ
µ(ξ)r2(ξ)

, (4.15)

s(t) =
r0

r(t)
, (4.16)

where r(t) is the solution IVP (4.2) and substituting back above functions into (4.12) gives

solution in the form (4.5), [3]. Then, initial condition U(x, t0) = F(x) easily transforms

to the initial condition V(η, 0) = µ0F(η) of for the standard BE. And Dirichlet boundary

condition for the inhomogeneous BE U(0, t) = D(t) transforms to Dirichlet boundary
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condition for standard BE

V(0, τ) = [µ(t(τ))r(t(τ))/r0]U(0, t(τ)) = [µ(t(τ))r(t(τ))/r0]D(t(τ)), 0 < τ < τ(T ),

where we used that µ(t) > 0 and r2(t) > 0, so that τ(t) = r2
0

∫ t

t0
dξ

µ(ξ)r2(ξ) is strictly increas-

ing continuous function on [t0,T ) and thus its inverse t(τ) exists for τ ∈ [0, τ(T )). Thus,

IBVP (4.1) for inhomogeneous BE transforms to the IBVP (4.6) for the standard BE, and

solution U(x, t) of the variable BE is explicitly obtained in terms of solution of V(η, τ) to

the standard BE (4.6) and solution r(t) of the IVP for the linear ODE (4.2).

Part (b) of the proposition follows directly from the Cole-Hopf transformation

V = −ϕη/ϕ. Again, initial condition V(η, 0) = µ0U(η, t0) transform directly to initial

condition for HE

ϕ(η, 0) = exp
[
−µ0

∫ η

U(η′, t0)dη′
]
.

However, by Cole-Hopf transformation V = −ϕη/ϕ, the Dirichlet BC for BE

V(0, τ) =
[
µ(t(τ))r(t(τ))/r0

]
U(0, t(τ)),

transforms to Robin boundary condition for HE

[
r(t(τ))µ(t(τ))U(0, t(τ))

]
ϕ(0, τ) + r0ϕη(0, τ) = 0.

Then the IBVP (4.1) for the BE transforms to the IBVP for the HE as (4.8). �

Therefore, we see that solving the IBVP for inhomogeneous Burgers equation with

Dirichlet BC is reduced to the problem of solving IBVP for Heat equation with Robin BC.

To solve this Heat problem one can use different approaches. We write two of them.
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• First Approach (Dirichlet):

Let U(0, t) = D(t) be not identically zero. Assume temporary we know ϕ(0, τ) = H(τ).

Then from Chapter 3, we know that the Dirichlet IBVP


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
[
−

∫ η
µ0U(η′, t0)dη′

]
, 0 < η < ∞,

ϕ(0, τ) = H(τ), 0 < τ < τ(T ),

(4.17)

has solution of the form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ − e−
(η+ξ)2

2τ

√
2πτ

)
︸                ︷︷                ︸

G(η,ξ,τ)

e−
∫ ξ

µ0U(η′,t0)dη′︸           ︷︷           ︸
ϕ(ξ,0)

dξ +

∫ τ

0

(
η

τ − τ′

) e−
η2

2(τ−τ′)

√
2π(τ − τ′)︸                    ︷︷                    ︸

−Kη

H(τ′)dτ′.

From this solution we can obtain ϕη(0, τ) as follows

ϕη(0, τ) =

∫ ∞

0
Gη(0, ξ, τ)e−

∫ ξ
µ0U(η′,t0)dη′dξ + 2

∫ τ

0
Kτ′(0, τ − τ′)H(τ′)dτ′. (4.18)

Substituting (4.18) and ϕ(0, τ) = H(τ) into Robin BC (4.8) we obtain

H(τ) = −
r0

r(t(τ))µ(t(τ))U(0, t(τ))

( ∫ τ

0

H(τ′)√
2π(τ − τ′)3

dτ′
)

(4.19)

−
2r0

r(t(τ))µ(t(τ))U(0, t(τ))

( ∫ ∞

0

(
ξ

τ

) e−
ξ2
2τ

√
2πτ

e−
∫ ξ

µ0U(η′,t0)dη′dξ
)
.

The equation (4.19) is an integral equation for the unknown function H(τ). Thus, solving

Heat problem is equivalent to solving the integral equation. The corresponding standard

Burgers solution is given by in closed form

V(η, τ) = −

∫ ∞
0

Gη(η, ξ, τ)e−
∫ ξ

µ0U(η′,t0)dη′dξ + 2
∫ τ

0
Kτ′(η, τ − τ′)H(τ′)dτ′∫ ∞

0
G(η, ξ, τ)e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ

0
Kη(η, τ − τ′)H(τ′)dτ′

,
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or explicitly

V(η, τ) =

∫ ∞
0

( ( η−ξτ )e−
(η−ξ)2

2τ −( η+ξτ )e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0

(
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)3

−
η2e
−

η2
2(τ−τ′)

√
2π(τ−τ′)5

)
H(τ′)dτ′

∫ ∞
0

( e−
(η−ξ)2

2τ −e−
(η+ξ)2

2τ
√

2πτ
)e−

∫ ξ
V(η′,0)dη′dξ +

∫ τ

0

(
η

τ−τ′

)
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)

H(τ′)dτ′
.

Therefore, using the above proposition, we can obtain formal solution of the IBVP (4.1)

for inhomogeneous BE in terms of r(t) of the linear ODE (4.9) and ϕ(η, τ)

U(x, t) =
ṙ(t)
r(t)

x

−
r0

µ(t)r(t)

∫ ∞
0

Gη(η(x, t), ξ, τ(t))e−
∫ ξ

µ0U(η′,t0)dη′dξ∫ ∞
0

G(η(x, t), ξ, τ(t))e−
∫ ξ

µ0U(η′,t0)dη′dξ −
∫ τ(t)

0
Kη(η(x, t), τ(t) − τ′)H(τ′)dτ′

−
r0

µ(t)r(t)

2
∫ τ(t)

0
Kτ′(η(x, t), τ(t) − τ′)H(τ′)dτ′∫ ∞

0
G(η(x, t), ξ, τ(t))e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ(t)

0
Kη(η(x, t), τ(t) − τ′)H(τ′)dτ′

,

or explicitly

U(x, t) =
ṙ(t)
r(t)

(4.20)

+
r0

µ(t)r(t)

∫ ∞
0

 ( η(x,t)−ξ
τ(t) )e

−
(η(x,t)−ξ)2

2τ(t) −( η(x,t)+ξ
τ )e

−
(η(x,t)+ξ)2

2τ(t)
√

2πτ(t)

 e−
∫ ξ

µ0U(η′,t0)dη′dξ

∫ ∞
0

( e
−

(η(x,t)−ξ)2
2τ(t) −e

−
(η(x,t)+ξ)2

2τ(t)
√

2πτ(t)
)e−

∫ ξ
µ0U(η′,t0)dη′dξ +

∫ τ(t)

0

(
η(x,t)
τ(t)−τ′

)
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)

H(τ′)dτ′

−
r0

µ(t)r(t)

∫ τ(t)

0

(
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)3

−
η2(x,t)e

−
η2(x,t)

2(τ(t)−τ′)
√

2π(τ(t)−τ′)5

)
H(τ′)dτ′

∫ ∞
0

( e
−

(η(x,t)−ξ)2
2τ(t) −e

−
(η(x,t)+ξ)2

2τ(t)
√

2πτ(t)
)e−

∫ ξ
µ0U(η′,t0)dη′dξ +

∫ τ(t)

0

(
η(x,t)
τ(t)−τ′

)
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)

H(τ′)dτ′
,

where τ(t) and η(x, t) are defined before and the time interval on which the solution exists

depends on the properties of the auxiliary functions. Thus, if the integral equation (4.19)

for H(τ) is solved, then we obtain the solution (4.20) for IBVP (4.1).
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• Second approach (Neumann):

Assume temporary we know ϕη(0, τ) = Q(τ). Then we have the following IBVP


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
[
−

∫ η
µ0U(η′, t0)dη′

]
, 0 < η < ∞,

ϕη(0, τ) = Q(τ), 0 < τ < τ(T ).

(4.21)

Solution to IBVP (4.21) is

ϕ(η, τ) =

∫ ∞

0
N(η, ξ, τ)e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′,

or explicitly

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)︸︷︷︸
ϕη(0,τ′)

dτ′. (4.22)

From solution (4.22), we can obtain ϕ(0, τ) as follows

ϕ(0, τ) = 2
∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′.

Substituting ϕ(0, τ) and ϕη(0, τ) into Robin BC (4.8), we have

Q(τ) =
r(t(τ))µ(t(τ))U(0, t(τ))

r0

( ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′ − 2

∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ

)
,

which is an integral equation of Volterra type for the unknown function Q(τ). Again we

see that solving Heat problem is equivalent to solving integral equation. By Cole-Hopf,

the solution of the IBVP (4.41) for the standard BE

V(η, τ) = −

∫ ∞
0

Nη(η, ξ, τ)e−
∫ ξ

V(η′,0)dη′dξ −
∫ τ

0
Kη(η, τ − τ′)Q(τ′)dτ′∫ ∞

0
N(η, ξ, τ)e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′

,
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or explicitly

V(η, τ) =

∫ ∞
0

(
( η−ξτ )e−

(η−ξ)2
2τ +( η+ξτ )e−

(η+ξ)2
2τ

√
2πτ

)
e−

∫ ξ
V(η′,0)dη′dξ

∫ ∞
0

(
e−

(η−ξ)2
2τ +e−

(η+ξ)2
2τ

√
2πτ

)
e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)

Q(τ′)dτ′

−

∫ τ

0

(
η

τ−τ′

)
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)

Q(τ′)dτ′

∫ ∞
0

(
e−

(η−ξ)2
2τ +e−

(η+ξ)2
2τ

√
2πτ

)
e−

∫ ξ
V(η′,0)dη′dξ −

∫ τ

0
e
−

η2
2(τ−τ′)

√
2π(τ−τ′)

Q(τ′)dτ′
.

And the solution of the IBVP (4.1) is obtained in terms of r(t) of the linear ODE (4.9) and

ϕ(η, τ), which is given in closed and explicit form respectively as follows

U(x, t) =
ṙ(t)
r(t)

x −
r0

µ(t)r(t)

∫ ∞
0

Nη(η, ξ, τ)e−
∫ ξ

µ0U(η′,t0)dη′dξ −
∫ τ

0
Kη(η, τ − τ′)Q(τ′)dτ′∫ ∞

0
N(η, ξ, τ)e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ

0
K(η, τ − τ′)Q(τ′)dτ′

,

or explicitly

U(x, t) =
ṙ(t)
r(t)

x

−
r0

µ(t)r(t)

∫ ∞
0

(
( η(x,t)−ξ

τ(t) )e
−

(η(x,t)−ξ)2
2τ(t) +( η(x,t)+ξ

τ(t) )e
−

(η(x,t)+ξ)2
2τ(t)

√
2πτ(t)

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ

∫ ∞
0

(
e
−

(η(x,t)−ξ)2
2τ(t) +e

−
(η(x,t)+ξ)2

2τ(t)
√

2πτ(t)

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ(t)

0
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)

Q(τ′)dτ′

−
r0

µ(t)r(t)

∫ τ(t)

0

(
η(x,t)
τ(t)−τ′

)
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)

Q(τ′)dτ′

∫ ∞
0

(
e
−

(η(x,t)−ξ)2
2τ(t) +e

−
(η(x,t)+ξ)2

2τ(t)
√

2πτ(t)

)
e−

∫ ξ
µ0U(η′,t0)dη′dξ −

∫ τ(t)

0
e
−

η2(x,t)
2(τ(t)−τ′)

√
2π(τ(t)−τ′)

Q(τ′)dτ′
,

where τ(t) and η(x, t) are defined before and the time interval on which the solution exists

depends on the properties of the auxiliary functions.

57



4.1.1. Exactly Solvable Models

In this section we shall give examples to show the application of the general results

given in Propositon-I. Also, we will investigate exact solutions of three different Burgers

models [3] on the semi-infinite line. Precisely, we consider the IBVP with Dirichlet BC

for the following Burgers equations :

(A) Forced Burgers equation with constant coefficients:

Ut + UUx =
1
2

Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞, ω0 > 0.

(B) Forced Burgers equation-Critical damping case:

Ut + γU + UUx =
1
2

e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < ∞, ω2

0 − (γ2/4) = 0.

(C) Forced Burgers equation -Over damping case:

Ut + γU + UUx =
1
2

e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < T, ω2

0 − (γ2/4) < 0.

We choose these models since the corresponding ODE with the given IC’s [3] is exactly

solvable and its solution r(t) is positive for t ≥ 0, so that τ(t) is positive and invertible as

required for application of the Proposition.

(A) Forced Burgers equation with constant coefficients

Consider the following IBVP for the forced Burgers equation with constant coef-

ficients defined by


Ut + UUx = 1

2Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞,

U(x, t) |t=0= U(x, 0), 0 < x < ∞,

U(0, t) = D(t), 0 < t < ∞,

(4.23)

with µ(t) = 1, ω0 > 0. The corresponding ODE has solution r(t) = r0 cosh(ω0t), which is
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positive for r0 > 0 and 0 ≤ t < T, and η(x, t) = sech(ω0t)x, τ(t) = tanh(ω0t)/ω0. Then,

solution of (4.23) is found in the form

U(x, t) = ω0 tanh(ω0t)x + sech(ω0t)V (η(x, t), τ(t)) , (4.24)

where V(η, τ) satisfies the IBVP for the standard BE with the Dirichlet BC


Vτ + VVη = 1

2Vηη, 0 < η < ∞, 0 < τ < 1/ω0,

V(η, 0) = U(η, 0), 0 < η < ∞,

V(0, τ) =
(

1+(ω0τ)2

1−(ω0τ)2

)
U(0, t(τ)), 0 < τ < 1/ω0,

(4.25)

with t(τ) = tanh−1(ω0τ)/ω0 = 1/(2ω0) [ln[(1 + ω0τ)/(1 − ω0τ)]],

r(t(τ)) = r0 cosh(tanh−1(ω0τ)) = r0[1 + (ω0τ)2)]/[1 − (ω0τ)2)]. Also, solution of (4.23) is

of the form

U(x, t) = ω0 tanh(ω0t)x − sech(ω0t)
ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

,

if ϕ(η, τ) satisfies the IBVP for the Heat equation with the Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 1/ω0,

ϕ(η, 0) = exp
[
−

∫ η
U(η′, 0)dη′

]
, 0 < η < ∞,[

1 + (ω0τ)2
]

U(0, t(τ))ϕ(0, τ) +
[
1 − (ω0τ)2

]
ϕη(0, τ) = 0, 0 < τ < 1/ω0.

(4.26)

From previous chapter we know that by Neumann approach the solution of this Heat

problem with Robin BC is of the form

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−

∫ ξ
U(η′,0)dη′dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)︸︷︷︸
ϕη(0,τ′)

dτ′,
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where Q(τ) is found by solving the integral equation

Q(τ) =

[
1 + (ω0τ)2

1 − (ω0τ)2

]
U(0, t(τ))

( ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′ − 2

∫ ∞

0

( e−
ξ2
2τ

√
2πτ

)
e−

∫ ξ
U(η′,0)dη′dξ

)
.

In general, this integral equation requires numerical methods and can be solved only ap-

proximately. The simplest case is when U(0, t(τ)) = 0, so that the BC of the heat prob-

lem becomes of Neumann type. Another special case is when the BC is chosen to be

U(0, t(τ)) = D0(1 − (ω0τ)2)/(1 + (ω0τ)2), where D0 is constant, so that above integral

equation becomes of the form

Q(τ) = F(τ) + D0

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′,

which is the well known second kind Abel’s integral equation for the unknown Q(τ) and

known F(τ), and can be solved by Laplace transform.

1 ) Problems with Homogeneous Boundary Condition U(0, t) = 0

Example 4.1 The IBVP with homogeneous Dirichlet BC


Ut + UUx = 1

2Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞,

U(x, 0) = 1, 0 < x < ∞,

U(0, t) = 0, 0 < t < ∞,

(4.27)

reduces to IBVP for the Heat equation with homogeneous Neumann BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 1/ω0,

ϕ(η, 0) = e−η, 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < 1/ω0.

(4.28)
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Solution to this Heat problem is

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−ξdξ,

=
eτ/2

2

[
eηEr f c

(
τ + η
√

2τ

)
+ e−ηEr f c

(
τ − η
√

2τ

) ]
,

so that solution of the Burgers IBVP (4.27) becomes

U(x, t) = ω0 tanh(ω0t)x

+ sech(ω0t)
e−η(x,t)

(
Er f c

(
τ(t)−η(x,t)
√

2τ(t)

)
− 2
√
π
e−

(τ(t)−η(x,t))2
2τ(t)

)
eη(x,t)Er f c

(
τ(t)+η(x,t)
√

2τ(t)

)
+ e−η(x,t)Er f c

(
τ(t)−η(x,t)
√

2τ(t)

)
− sech(ω0t)

eη(x,t)
(
Er f c

(
τ(t)+η(x,t)
√

2τ(t)

)
− 2
√
π
e−

(η(x,t)+τ(t))2
2τ(t)

)
eη(x,t)Er f c

(
τ(t)+η(x,t)
√

2τ(t)

)
+ e−η(x,t)Er f c

(
τ(t)−η(x,t)
√

2τ(t)

) ,
where η(x, t) = sech(ω0t)x, τ(t) = tanh(ω0t)/ω0.

Example 4.2


Ut + UUx = 1

2Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞,

U(x, 0) = −A tanh(Ax), 0 < x < ∞,

U(0, t) = 0, 0 < t < ∞.

(4.29)

µ(t) = 1, ω0 > 0. The corresponding Heat problem is


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 1/ω0,

ϕ(η, 0) = cosh(Aη), 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < 1/ω0,

(4.30)
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which has solution

ϕ(η, τ) =

∫ ∞

0

e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

cosh(Aξ)dξ =

∫ ∞

−∞

e−
(η−ξ)2

2τ

√
2πτ

cosh(Aξ)dξ = e
A2
2 τ cosh(Aη),

and solution of the Burgers problem is therefore

U(x, t) = ω0 tanh(ω0t)x − Asech(ω0t) tanh(Asech(ω0t)x).

Example 4.3


Ut + UUx = 1

2Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞,

U(x, 0) = −m
x , m = 0, 1, 2, · · · , 0 < x < ∞,

U(0, t) = 0, 0 < t < ∞.

(4.31)

The solution of (4.31) is of the form

U(x, t) = ω0 tanh(ω0t)x − sech(ω0t)
ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

,

where η(x, t) = xsech(ω0t), τ(t) = tanh(ω0t)/ω0 and ϕ(η, τ) satisfies the IBVP for HE


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 1/ω0,

ϕ(η, 0) = ηm, m = 0, 1, 2, · · · , 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < 1/ω0.

(4.32)

Using the functions (2.58) and (2.59) which are defined in Chapter 2, the solution of IBVP

(4.32) can be found as follows:

If m is even, then solutions of problem (4.32) are even Kampe de Feriet Polynomials,

ϕ2p(η, τ) = Hk
2p(η, τ) = (2p)!

p∑
n=0

η2p−2n

n!(2p − 2n)!
τn,
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and the corresponding inhomogeneous BE solution is given by

U2p(x, t) = ω0 tanh(ω0t)x − 2psech(ω0t)
Hk

2p−1

(
sech(ω0t)x, tanh(ω0t)/ω0

)
Hk

2p

(
sech(ω0t)x, tanh(ω0t)/ω0

) .

? For example if m=2, then solution of problem (4.32) is

ϕ2(η, τ) = Hk
2(η, τ) = η2 + τ,

and the corresponding inhomogeneous Burgers solution

U2(x, t) = ω0 tanh(ω0t)x − (2ω0x)
sech2(ω0t)

ω0sech2(ω0t)x2 + tanh(ω0t)
.

However, if m is odd, then solutions of the Heat problem are no longer odd KFP,

since odd KFP does not satisfy the Neumann BC ϕη(0, τ) = 0. Then solution in that case

can be written in terms of functions (2.58) and (2.59), that’s

ϕ2p+1(η, τ) =

∫ ∞

0

e−
(η−ξ)2

2τ

√
2πτ

ξ2p+1dξ︸                  ︷︷                  ︸
h−2p+1(η,τ)

+

∫ ∞

0

e−
(η+ξ)2

2τ

√
2πτ

ξ2p+1dξ︸                  ︷︷                  ︸
h+

2p+1(η,τ)

, (4.33)

and the corresponding solution of the problem (4.31) is

U2p+1(x, t) = ω0 tanh(ω0t)x − (2p + 1)sech(ω0t)

 h−2p
(
η(x, t), τ(t)

)
− h+

2p
(
η(x, t), τ(t)

)
h−2p+1

(
η(x, t), τ(t)

)
+ h+

2p+1
(
η(x, t), τ(t)

) ,
where η(x, t) = sech(ω0t)x and τ(t) = tanh(ω0t)ω0.

? For example if m=3, then solution of problem (4.32) is

ϕ3(η, τ) = h−3 (η, τ) + h+
3 (η, τ) =

√
2
π

e−
η2
2τ
√
τ(η2 + 2τ) + (η3 + 3ητ)Er f [

η
√

2τ
],
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and the corresponding inhomogeneous Burgers solution

U3(x, t) = ω0 tanh(ω0t)x

− sech(ω0t)
3
(√

2
π
η(x, t)τ(t)e−

η2(x,t)
2τ(t) + (η2(x, t) + τ(t))Er f [ η(x,t)

√
2τ(t)

]
)

√
2
π
e−

η2(x,t)
2τ(t)
√
τ(t)(η2(x, t) + 2τ(t)) +

(
η3(x, t) + 3η(x, t)τ(t)

)
Er f

[
η(x,t)
√

2τ(t)

] ,

where η(x, t) = sech(ω0t)x and τ(t) = tanh(ω0t)/ω0.

2 ) Problems with Nonhomogeneous Boundary Condition :

U(0, t(τ)) = D0(1 − (ω0τ)2)/(1 + (ω0τ)2). For simplicty, we take D0 = −1 .

Example 4.4 The IBVP with nonhomogeneous Dirichlet BC


Ut + UUx = 1

2Uxx + ω0
2x, 0 < x < ∞, 0 < t < ∞,

U(x, 0) = −3x2+6x
x3+3x2 , 0 < x < ∞,

U(0, t) = −sech(ω0t), 0 < t < ∞,

(4.34)

reduces to IBVP for the Heat equation with special Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 1/ω0,

ϕ(η, 0) =
√

2πη2 +
√

2π
3 η3, 0 < η < ∞,

ϕη(0, τ) − ϕ(0, τ) = 0, 0 < τ < 1/ω0.

(4.35)

In Chapter 2, we obtained the solution to the problem (4.35) as

ϕ(η, τ) =
√

2π
[
η3

3
+ η2 + ητ + τ

]
. (4.36)
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And the corresponding solution to the problem (4.34)

U(x, t) = ω0 tanh(ω0t)x −
sech3(ω0t)x2 + 2sech2(ω0t)x +

sech(ω0t) tanh(ω0t)
ω0

sech3(ω0t)x3

3 + sech2(ω0t)x2 + sech(ω0t)x tanh(ω0t)
ω0

+
tanh(ω0t)

ω0

.

(B) Forced Burgers equation with constant damping and exponentially

decaying diffusion coefficient-Critical damping case:

We consider the IBVP for Burgers equation


Ut + γU + UUx = 1

2e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < ∞,

U(x, t) |t=0= U(x, 0), 0 < x < ∞,

U(0, t) = D(t), 0 < t < ∞,

(4.37)

with constant damping Γ(t) = γ > 0, µ(t) = eγt and ω2
0 − (γ2/4) = 0. The corresponding

IVP for the linear ODE is then

r̈ + γṙ + ω2
0r = 0, r(0) = r0 , 0, ṙ(0) = 0, (4.38)

which has solution

r(t) = r0e−
γt
2

(
1 +

γ

2
t
)
, (4.39)

and thus η(x, t) = (eγt/2x)/(1 +
γ

2 t), τ(t) = t/(1 + γt/2). Therefore, the BE (4.37) has

solution of the form

U(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)

+

(
e−γt/2

1 +
γ

2 t

)
V

(
eγt/2x
1 +

γ

2 t
,

t
1 +

γ

2 t

)
, (4.40)

where V(η, τ) satisfies the IBVP for the standard BE with the Dirichlet BC


Vτ + VVη = 1

2Vηη, 0 < η < ∞, 0 < τ < 2/γ,

V(η, 0) = U(η, t0), 0 < η < ∞,

V(0, τ) =
[
e−

γτ
2−γτ ( 2

2−γτ )
]

U(0, t(τ)), 0 < τ < 2/γ,

(4.41)

65



with t(τ) = τ/(1 − γτ/2), r(t(τ)) = r0e−
γτ

2−γτ (1 +
γτ

2−γτ ). The solution can be found also in

the form

U(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)
−

(
e−γt/2

1 +
γ

2 t

)
ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

,

where ϕ(η, τ) satisfies the IBVP for the Heat equation with the Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 2/γ,

ϕ(η, 0) = exp
[
−

∫ η

0
µ0U(η′, 0)dη′

]
, 0 < η < ∞,[

e+
γτ

2−γτ ( 2
2−γτ )U(0, t(τ))

]
ϕ(0, τ) + ϕη(0, τ) = 0, 0 < τ < 2/γ.

(4.42)

As we found in previous Chapter, solution of this Heat IBVP is formally

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−

∫ ξ
U(η′,0)dη′dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)︸︷︷︸
ϕη(0,τ′)

dτ′,

where Q(τ) is found by solving the integral equation

Q(τ) =

 2e
γτ

2−γτ

(2 − γτ)
U(0, t(τ))

 ( ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′ − 2

∫ ∞

0

e−
ξ2
2τ

√
2πτ

e−
∫ ξ

U(η′,0)dη′dξ
)
.

Clearly, when U(0, t(τ)) = 0, the BC of the Heat problem becomes of Neumann type.

Another special case is when the BC is chosen to be U(0, t(τ)) = D0(2 − γτ)/(2e
γτ

2−γτ ),

where D0 is constant, so that the above integral equation becomes of the form

Q(τ) = F(τ) + D0

∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′,

which is the well known inhomogeneous Abel’s integral equation for the unknown Q(τ)

and known F(τ), and can be solved by Laplace transform.

1 ) Problems with BC U(0,t)=0
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Example 4.5


Ut + γU + UUx = 1

2e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < ∞,

U(x, t0) = −A tanh(Ax), 0 < x < ∞,

U(0, t) = 0, 0 < t < ∞.

(4.43)

with the corresponding IBVP for the HE


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 2/γ,

ϕ(η, 0) = cosh(Aη), 0 < η < ∞,

ϕη(0, τ) = 0, 0 < τ < 2/γ.

(4.44)

The solution of (4.44) is given by

ϕ(η, τ) =

∫ ∞

−∞

e−
(η−ξ)2

2τ

√
2πτ

cosh(Aξ)dξ = e
A2
2 τ cosh(Aη).

And the corresponding solution of the problem (4.43) is

U(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)
− A

(
e−γt/2

1 +
γ

2 t

)
tanh

(
A

eγt/2

1 + γt/2
x
)
,

which is a shock-wave solution.

Example 4.6 The IBVP (4.43) with IC U(x, 0) = 1 and BC U(0, t) = 0, then the IC for

the Heat equation is ϕ(η, 0) = e−η with BC ϕη(0, η) = 0, we have solution of the Heat

problem as

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−ξdξ,

=
eτ/2

2

(
eηEr f c

[
τ + η
√

2τ

]
+ e−ηEr f c

[
τ − η
√

2τ

] )
.
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And solution of the Burgers problem is

U(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)

−

[
e−γt/2

1 + γt/2

] e−η(x,t)Er f c
( τ(t)−η(x,t)
√

2τ(t)

)
− 2
√
π
e−η(x,t)e−

(τ(t)−η(x,t))2
2τ(t)

eη(x,t)Er f c
(
τ(t)+η(x,t)
√

2τ(t)

)
+ e−η(x,t)Er f c

(
τ(t)−η(x,t)
√

2τ(t)

)
+

[
e−γt/2

1 + γt/2

] eη(x,t)Er f c
(
τ(t)+η(x,t)
√

2τ(t)

)
− 2
√
π
eη(x,t)e−

(η(x,t)+τ(t))2
2τ(t)

eη(x,t)Er f c
(
τ(t)+η(x,t)
√

2τ(t)

)
+ e−η(x,t)Er f c

(
τ(t)−η(x,t)
√

2τ(t)

) .

Example 4.7 The IBVP (4.43) with IC U(x, t0) = −m
x is transformed to ϕ(η, 0) = ηm and

BC U(0, t) = 0 is transformed to ϕη(0, τ) = 0. Clearly, if m is even positive integer i.e

m = 2p, then solutions of the Heat problem are even Kampe de Feriet Polynomials i.e

ϕ2p(η, τ) = H2p(η, τ) = (2p)!
p∑

k=0

η2p−2k

k!(2p − 2k)!
τk.

The corresponding solution for the inhomogeneous Burger problem is

U2p(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)
− 2p

[
e−γt/2

1 + γt/2

] H2p−1

(
eγt/2

1+γt/2 x, t
1+

γ
2 t

)
H2p

(
eγt/2

1+γt/2 x, t
1+

γ
2 t

) .

If m is odd, m = 2p + 1, then solution of the Heat problem are no longer odd Kampe de

Feriet polynomials.

2 ) Problem with Nonhomogeneous BC : U(0, t) = D0eγt/2/(1 + γt/2)
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Example 4.8 Taking D0 = −1, the IBVP with the nonhomogeneous Dirichlet BC


Ut + γU + UUx = 1

2e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < ∞,

U(x, 0) = −3x2+6x
x3+3x2 , 0 < x < ∞,

U(0, t) = − e−γt/2

1+γt/2 , 0 < t < ∞,

(4.45)

reduces to IBVP for the Heat equation with the special Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < 2/γ,

ϕ(η, 0) =
√

2πη2 +
√

2π
3 η3, 0 < η < ∞,

ϕη(0, τ) − ϕ(0, τ) = 0, 0 < τ < 2/γ.

(4.46)

In Chapter 2, we obtained solution of the problem (4.46) as

ϕ(η, τ) =
√

2π
[
η3

3
+ η2 + ητ + τ

]
. (4.47)

And the corresponding solution of the problem (4.45)

U(x, t) = −

(
γ

2

)2
(

t
1 +

γ

2 t
x
)
−

[
e−γt/2

1 + γt/2

]
η2(x, t) + 2η(x, t) + τ(t)

η3(x,t)
3 + η2(x, t) + η(x, t)τ(t) + τ(t)

. (4.48)
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(C) Forced Burgers equation with constant damping and exponentially

decaying diffusion coefficient-Over damping case:

We consider IBVP for Burgers equation


Ut + γU + UUx = 1

2e−γtUxx − ω
2
0x, 0 < x < ∞, 0 < t < ∞,

U(x, t) |t=t0= U(x, t0), 0 < x < ∞,

U(0, t) = D(t), 0 < t < ∞,

(4.49)

with constant damping Γ(t) = γ > 0, µ(t) = eγt, and ω2
0 − (γ2/4) < 0. The corresponding

IVP (4.38) for the ODE has solution

r(t) = r0
ω0

Ω′
e−

γt
2 sinh[Ω′t + β], (4.50)

where Ω′ =

√
|ω2

0 − (γ2/4)|, and β = coth−1( γ

2Ω′
) [3]. Then, Burgers problem has solutions

of the form

U(x, t) =

(
−
γ

2
+ Ω′ coth[Ω′t + β]

)
x −

(
Ω′e−γt/2

ω0 sinh[Ω′t + β]

)ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

,

where

η(x, t) =
Ω′eγt/2x

ω0 sinh[Ω′t + β]
, τ(t) = −

Ω′

ω2
0

(
coth[Ω′t + β] −

γ

2Ω′

)
,

and ϕ(η, τ) satisfies the IBVP for the Heat equation with the Robin BC


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < ∞,

ϕ(η, 0) = exp
[
−

∫ η
U(η′, 0)dη′

]
, 0 < η < ∞,[

r(t(τ))µ(t(τ))U(0, t(τ))
]
ϕ(0, τ) + ϕη(0, τ) = 0, 0 < τ < ∞.

(4.51)
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As we found in previous Chapter, solution of this Heat IBVP is formally

ϕ(η, τ) =

∫ ∞

0

(e−
(η−ξ)2

2τ + e−
(η+ξ)2

2τ

√
2πτ

)
e−

∫ ξ
U(η′,0)dη′dξ −

∫ τ

0

e−
η2

2(τ−τ′)

√
2π(τ − τ′)

Q(τ′)︸︷︷︸
ϕη(0,τ′)

dτ′,

where Q(τ) is found by solving the integral equation

Q(τ) =
[
r(t(τ))µ(t(τ))U(0, t(τ))

] ( ∫ τ

0

Q(τ′)
√

2π(τ − τ′)
dτ′ − 2

∫ ∞

0

e−
ξ2
2τ

√
2πτ

e−
∫ ξ

U(η′,0)dη′dξ
)
.

4.2. The Neumann Problem for Inhomogeneous Burgers Equation

with Time-variable Coefficients on Semi-infinite Line

Proposition 4.2 The IBVP for the variable parametric BE


Ut +

µ̇(t)
µ(t)U + UUx = 1

2µ(t)Uxx − ω
2(t)x, 0 < x < ∞, t0 < t < T,

U(x, t) |t=t0= U(x, t0), 0 < x < ∞,

Ux(0, t) = Θ(t), t0 < t < T,

(4.52)

where µ(t) > 0 is continuously differentiable, ω2(t), Θ(t) are real-valued continuous for

t > t0, has solution in the following forms:

a)

U(x, t) =
ṙ(t)
r(t)

x +
r0

µ(t)r(t)
V(η(x, t), τ(t)),

if for t ≥ t0 r(t) is a positive solution of the IVP for the following linear ODE

r̈ +
µ̇(t)
µ(t)

r + ω2(t) = 0, (4.53)

r(t0) = r0 , 0, ṙ(t0) = 0, (4.54)
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with functions η(x, t) = r0
r(t) x, τ(t) = r2

0

∫ t

t0
dξ

µ(ξ)r2(ξ) and V(η, τ) satisfies the IBVP for BE


Vτ + VVη = 1

2Vηη, 0 < η < ∞, 0 < τ < τ(T ),

V(η, 0) = µ0U(η, t0), 0 < η < ∞,

Vη(0, τ) = r−2
0 [Ux(0, t(τ))µ(t(τ))r2(t(τ)) − µ(t(τ))ṙ(t(τ))r(t(τ))], 0 < τ < τ(T ).

(4.55)

b)

U(x, t) =
ṙ(t)
r(t)

x −
r0

µ(t)r(t)
ϕη(η(x, t), τ(t))
ϕ(η(x, t), τ(t))

,

where η, τ and r defined in a) and ϕ(η, τ) satisfies the IBVP for the HE


ϕτ = 1

2ϕηη, 0 < η < ∞, 0 < τ < τ(T ),

ϕ(η, 0) = exp
[
−

∫ η
µ0U(ξ, t0)dξ

]
, 0 < η < ∞,

ϕ2
η(0, τ) − 2ϕτ(0, τ)ϕ(0, τ) − ϕ2(0, τ)

[
r−2

0 [Ux(0, t(τ))µ(t(τ))r2(t(τ)) − µ(t(τ))ṙ(t(τ))r(t(τ))]
]

= 0.

Proof:

a) If the functions ρ(t), τ(t) and s(t) satisfy the nonlinear system of ordinary differential

equations

ρ̇ +
ρ2

µ(t)
+ µ(t)ω2(t) = 0, ρ(t0) = 0, (4.56)

τ̇ −
s2

µ(t)
= 0, τ(t0) = 0, (4.57)

ṡ +
ρ(t)
µ(t)s

= 0, s(t0) = 1, (4.58)

and V(η, τ) satisfies the standard BE (4.55), then

U(x, t) =
ρ(t)x + s(t)V

(
s(t)x, τ(t)

)
µ(t)

, (4.59)

satisfies the inhomogeneous BE (4.52). Notice that, equation (4.56) is a nonlinear Riccati

equation and substitution ρ(t) = ṙ(t)/r(t) gives r̈ +
µ̇(t)
µ(t)r + ω2(t) = 0, then system is easily
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solved and we obtain ρ(t) = µ(t) ṙ(t)
r(t) , τ(t) = r2

0

∫ t

t0
dξ

µ(ξ)r2(ξ) , s(t) = r0
r(t) where r(t) is the

solution of linear ODE and by substituting in (4.59) gives solution in the form

U(x, t) =
ṙ(t)
r(t)

x +
r0

µ(t)r(t)
V(η(x, t), τ(t)).

Then, IC U(x, t) |t=t0= U(x, t0) easily transforms to IC V(η, 0) = µ0U(η, t0). But the

Neumann BC for the inhomogeneous BE Ux(0, t) = Θ(t) transforms to the Neumann BC

for the standard BE. Thus, solution of the inhomogeneous Burgers problem is explicitly

obtained in terms of solution of V(η, τ) (4.55) and solution r(t) of the IVP for the linear

ODE (4.53).

Part b) of the proposition follows directly from the Cole-Hopf transformation

V = −ϕη/ϕ. The Neumann BC for BE r−2
0 [Ux(0, t(τ))µ(t)r2(t) − µ(t)ṙ(t)r(t)] transforms to

nonlinear BC for HE by Cole-Hopf and using the relation Vη =
2ϕη
ϕ
−

ϕ2
η

ϕ2 as follows

ϕ2
η(0, τ) − 2ϕτ(0, τ)ϕ(0, τ) − ϕ2(0, τ)

[
r−2

0 [Ux(0, t(τ))µ(t)r2(t) − µ(t)ṙ(t)r(t)]
]

= 0,

and IC V(η, 0) = µ0U(η, t0) for the standard BE transforms to IC for the HE ϕ(η, 0) =

exp
[
−

∫ η
µ0U(ξ, t0)dξ

]
. Then the IBVP (4.55) for the standard BE is reduced to the IBVP

(4.56) for the HE. �
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CHAPTER 5

THE CAUCHY PROBLEM

In this Chapter, firstly we review the closed form solution of Cauchy problem for

the Heat equation, [10]. Then, motivated by the works of [7] and [8], we consider Cauchy

problem for standard Burgers equation. And we will show that some special well-known

solutions of Burgers equation can be obtained as solution of Cauchy problem for Burgers

equation. Finally, we investigate the Cauchy problem for the variable Burgers equation.

5.1. The Cauchy Problem for Heat Equation

We consider Cauchy problem for the HE on the non-characteristic line η = 0


ϕτ = 1

2ϕηη, −∞ < η < ∞ τ > 0,

ϕ(0, τ) = F(τ), τ > 0,

ϕη(0, τ) = G(τ), τ > 0,

(5.1)

where F(τ) and G(τ) are analytic functions. Assuming a power series solution of the

form,

ϕ(η, τ) =

∞∑
n=0

an(τ)ηn,

one can easily determine the functions an(τ) in terms of F(τ) and G(τ) for all n =

0, 1, 2, · · · . Indeed, by substituting ϕ into Heat equation (5.1), we have

ϕτ −
1
2
ϕηη =

∞∑
n=0

(
a′n(τ) −

(n + 2)(n + 1)
2

an+2(τ)
)
ηn = 0,
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which requires that

an+2(τ) = 2
a′n(τ)

(n + 2)(n + 1)
, n = 0, 1, 2, · · · .

From this recursion relation, we see that

a2n(τ) = 2n a(n)
0 (τ)

(2n)!
, n = 0, 1, 2, · · · ,

a2n+1(τ) = 2n a(n)
1 (τ)

(2n + 1)!
. n = 0, 1, 2, · · · .

Note that a0(τ) = F(τ) and a1(τ) = G(τ). Thus, solution of the problem (5.1) is obtained

in the form, [5]

ϕ(η, τ) =

∞∑
n=0

(
F(n)(τ)

η2n

(2n)!
2n + G(n)(τ)

η2n+1

(2n + 1)!
2n

)
. (5.2)

When F(τ) and G(τ) are analytic functions for τ > 0, then solution (5.2) is unique on

−∞ < η < ∞, and also it is analytic for τ > 0 and fixed η, and is entire in η for fixed τ,

[10].

5.2. The Cauchy Problem for Burgers equation

In the works [9] and [7], the Cauchy problem for the Burgers equation was for-

mulated and its solution was obtained in terms of the series solution of the corresponding

Cauchy problem for the Heat equation, [10]. Then, these results were used by Rodin

to solve some concrete problems and show that some well-known solutions of Burgers

equation can be recovered as solutions of a Cauchy problem. The following Proposition

1 is a basic result and consequence of the Cole-Hopf transform, [9].
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Proposition 5.1 If f (τ) and g(τ) are analytic functions for τ > 0, then the Cauchy prob-

lem for the Burgers equation defined by


Vτ + VVη = 1

2Vηη, −∞ < η < ∞, τ > 0,

V(0, τ) = f (τ), τ > 0,

Vη(0, τ) = g(τ), τ > 0,

(5.3)

has a solution of the form

V(η, τ) = −

∑∞
n=0

(
F(n+1)(τ) η2n+1

(2n+1)!2
n+1 + G(n)(τ) η2n

(2n)!2
n
)

∑∞
n=0

(
2nF(n)(τ) η2n

(2n)! + 2nG(n)(τ) η2n+1

(2n+1)!

) ,

where

F(τ) = e−
1
2

∫ τ
0 (g(τ′)− f 2(τ′))dτ′ , τ > 0, (5.4)

G(τ) = − f (τ)e−
1
2

∫ τ
0 (g(τ′)− f 2(τ′))dτ′ , τ > 0. (5.5)

Proof:

It is enough to show that the Cauchy problem for Burgers equation (5.3) is reducible to

the Cauchy problem for heat equation


ϕτ = 1

2ϕηη, −∞ < η < ∞, τ > 0,

ϕ(0, τ) = c0F(τ), τ > 0,

ϕη(0, τ) = c0G(τ), τ > 0,

(5.6)

where F(τ) and G(τ) are as defined in (5.4) and c0 = ϕ(0, 0+). Indeed, the Cauchy data

can be transformed using that

V(η, τ) = −
ϕη(η, τ)
ϕ(η, τ)

, Vη(η, τ) = −2
ϕτ(η, τ)
ϕ(η, τ)

+

(ϕη(η, τ)
ϕ(η, τ)

)2

. (5.7)
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This implies

f (τ) = −
ϕη(0, τ)
ϕ(0, τ)

, g(τ) = −2
ϕτ(0, τ)
ϕ(0, τ)

+

(ϕη(0, τ)
ϕ(0, τ)

)2

, (5.8)

so that

g(τ) = −2
ϕτ(0, τ)
ϕ(0, τ)

+ f 2(τ). (5.9)

Then, integrating (5.9) with respect to τ we obtain

ϕ(0, τ) = c0e−
1
2

∫ τ
0 (g(τ′)− f 2(τ′))dτ′ , (5.10)

and this immediately gives

ϕη(0, τ) = −c0 f (τ)e−
1
2

∫ τ
0 (g(τ′)− f 2(τ′))dτ′ . (5.11)

The rest of the proposition follows from the solution (5.2) of the Cauchy problem for the

heat equation. �

Given some special Cauchy data for the Burgers equation, we write the Cauchy

data for the corresponding heat equation as follows. V(0, τ) = f (τ) = 0 =⇒ ϕ(0, τ) = constant,

Vη(0, τ) = g(τ) = 0 =⇒ ϕη(0, τ) = 0. V(0, τ) = f (τ) = 0 =⇒ ϕ(0, τ) = e−
1
2

∫ τ
0 g(τ′)dτ′ ,

Vη(0, τ) = g(τ) , 0 =⇒ ϕη(0, τ) = 0. V(0, τ) = f (τ) , 0 =⇒ ϕ(0, τ) = e
1
2

∫ τ
0 f 2(τ′)dτ′ ,

Vη(0, τ) = g(τ) = 0 =⇒ ϕη(0, τ) = − f (τ)e
1
2

∫ τ
0 f 2(τ′)dτ′ .

In particular, if the Burgers conditions are of the form

V(0, τ) = −
G(τ)
F(τ)

, Vη(0, τ) =
G2(τ)
F2(τ)

− 2
F′(τ)
F(τ)

, (5.12)
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then the corresponding heat conditions become

ϕ(0, τ) = F(τ), ϕη(0, τ) = G(τ). (5.13)

Using the above results, Rodin [7] obtained solution of the problem related with moving

piston, and showed that the Fay’s solution and Benton’s solutions can be found also as

solutions of a Cauchy problem.

Here, we give different examples. We show how the shock-wave, triangular wave

and N-wave solutions of the Burgers equation can be obtained as solutions of a Cauchy

problem by the approach described in this section.

Example 5.1 : Shock-Wave Solution

We show that the well-known solution for Burgers can be obtained by solving the follow-

ing BVP for Burgers


Vη + VVη = 1

2Vηη, −∞ < η < ∞ τ > 0,

V(0, τ) = c − A tanh(−A(cτ − c0)), A, c, c0 : constant, τ > 0,

Vη(0, τ) = A2 tanh2(−A(cτ − c0)) − A2 τ > 0.

(5.14)

The corresponding BC’s F(τ) and G(τ) for Heat are found as follows

V(0, τ) = c − A tanh(−A(cτ − c0)) = −
G(τ)
F(τ)

, (5.15)

Vη(0, τ) = A2 tanh2(−A(cτ − c0)) − A2 =
G2(τ)
F2(τ)

− 2
F′(τ)
F(τ)

. (5.16)

Taking square of the first BC (5.15) and substituting into second one, we get

c2 − 2Ac tanh(−A(cτ − c0)) + A2 tanh2(−A(cτ − c0)) − 2
F′

F
= A2(tanh2(−A(cτ − c0)) − 1),
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where we have

F′

F
=

c2 + A2

2
− Ac tanh(−A(cτ − c0)),

F(τ) = cosh(A(c0 − cτ))e
c2+A2

2 τ =
1
2

(
e−Ac0e

(c+A)2
2 τ + eAc0e

(c−A)2
2 τ

)
.

The derivatives of F(τ) are given as follows

F′(τ) = e−Ac0

2
(c+A)2

2 e( (c+A)2
2 )τ + eAc0

2
(c−A)2

2 e
(c−A)2

2 τ,
...

F(n)(τ) = e−Ac0

2
(c+A)2n

2 e( (c+A)2
2 )τ + eAc0

2
(c−A)2n

2 e
(c−A)2

2 τ.

(5.17)

From condition V(0, τ), we have G(τ) = −F(τ)(c − A tanh(Ac0 − Acτ)), then substituting

F(τ) we get

G(τ) = −c cosh(A(c0 − cτ))e
c2+A2

2 τ + A sinh(A(c0 − cτ))e
c2+A2

2 τ, (5.18)

= −
e−Ac0

2
(c + A)e

(c+A)2
2 τ −

eAc0

2
(c − A)e

(c−A)2
2 τ. (5.19)

The derivatives of G(τ) are given by

G′(τ) = − e−Ac0

2 (c + A) (c+A)2

2 e
(c+A)2

2 τ − eAc0

2 (c − A)e
(c−A)2

2 τ (c−A)2

2 ,
...

G(n)(τ) = − e−Ac0

2
(c+A)2n+1

2n e
(c+A)2

2 τ − eAc0

2
(c−A)2n+1

2n e
(c−A)2

2 τ.

(5.20)

Substituting F(τ) and G(τ) into closed form solution of Burgers (5.24), we obtain

V(η, τ) =
(c + A)e

(c+A)2
2 τ−Ac0−η(c+A) + (c − A)e

(c−A)2
2 τ+Ac0−η(c−A)

e
(c+A)2

2 τ−Ac0−η(c+A) + e
(c−A)2

2 τ+Ac0−η(c−A)
,

or equivalently the shock-wave solution is

V(η, τ) = c − A tanh(A(η − cτ + c0)).
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Example 5.2 : Triangular Wave Solution

Here, we show that the well-known Triangular-Wave can be obtained as solution of a

Cauchy problem for standard Burgers,


Vη + VVη = 1

2Vηη, −∞ < η < ∞ τ > 0,

V(0, τ) = 2
√

2πτ
( eA−1

eA+1 ), τ > 0,

Vη(0, τ) = 2
πτ

(
eA−1
eA+1

)2
, τ > 0.

(5.21)

The corresponding BC’s F(τ) and G(τ) for Heat are found as follows

V(0, τ) = 2
√

2πτ
( eA−1

eA+1 ) = −
G(τ)
F(τ) ,

Vη(0, τ) = 2
πτ

(
eA−1
eA+1

)2
=

G2(τ)
F2(τ) − 2 F′(τ)

F(τ) .
(5.22)

Taking square of first BC in (5.22) and substituting into second one

4
2πτ

(
eA − 1
eA + 1

)2

− 2
F′(τ)
F(τ)

=
2
πτ

(
eA − 1
eA + 1

)2

−2
F′(τ)
F(τ)

= 0 => F(τ) = c : constant,

G(τ) = −F(τ)
2
√

2πτ

(
eA − 1
eA + 1

)
= −

2c
√

2πτ

(
eA − 1
eA + 1

)
.

Since F(τ) is constant, F(n)(τ) = 0 for n = 1, 2, 3, · · · .

G(τ) = − 2c
√

2π
( eA−1

eA+1 ) 1
√
τ

and define − 2c
√

2π

(
eA−1
eA+1

)
= K : constant, then the derivatives of G(τ)

are in the following form

G(τ) = Kτ−1/2,

G′(τ) = K −1
2 τ
−3/2,

G′′(τ) = K (−1)2

22 1.3.τ−5/2,

G′′′(τ) = K (−1)3

23 1.3.5.τ−7/2,
...

G(n)(τ) = K (−1)n

2n
(2n)!
2nn! .τ

−n−1/2.

(5.23)
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Previously, we get general closed form solution of the standard Burgers i.e,

V(η, τ) = −

∑∞
n=0

(
F(n+1)(τ) η2n+1

(2n+1)!2
n+1 + G(n)(τ) η2n

(2n)!2
n
)

∑∞
n=0

(
F(n)(τ) η2n

(2n)!2
n + G(n)(τ) η2n+1

(2n+1)!2
n
) . (5.24)

Substituting F(τ) and G(τ) into (5.24),

V(η, τ) = −
K

∑∞
n=0

(−1)n

2n
(2n)!
2n.n! .τ

−n−1/2. η
2n

(2n)! .2
n

c + K
∑∞

n=0
(−1)n

2n
(2n)!
2n.n! .τ

−n−1/2. η2n+1

(2n+1)! .2
n
, (5.25)

= −

K
√
τ

∑∞
n=0

(−1)n

n! .(
η2

2τ )n

c +
ηK
√
τ

∑∞
n=0

(−1)n

n! ( η
2

2τ )n. 1
2n+1

.

Using e−
η2
2τ =

∑∞
n=0

1
n! (−

η2

2τ )n and substituting K = − 2c
√

2π
( eA−1

eA+1 ) into (5.25), we obtain

V(η, τ) =

2c
√

2π
( eA−1

eA+1 ).e−
η2
2τ

c − 2ηc
√

2πτ
( eA−1

eA+1 )
∑∞

n=0
(−1)n

n! ( η
2

2τ )n. 1
2n+1

. (5.26)

We know Er f (x) = 2
√
τ

∑∞
n=0(−1)n x2n+1

(2n+1)n! . By changing variable x =
η
√

2τ
, we have

Er f
(
η
√

2τ

)
=

2
√
τ

∞∑
n=0

(−1)n η2n+1

(
√

2τ)2n+1

1
(2n + 1)n!

. (5.27)

Then equation (5.26) is equivalent to the following

V(η, τ) =

2
√

2πτ
( eA−1

eA+1 )e−
η2
2τ

1 − ( eA−1
eA+1 )

2
√
π

∞∑
n=0

(−1)n x2n+1

(2n + 1)n!︸                         ︷︷                         ︸ er f ( η
√

2τ
)

(5.28)
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=
2
√

2πτ

 ( eA−1
eA+1 )e−

η2
2τ

2
eA+1 + ( eA−1

eA+1 )Er f c
[

η
√

2τ

] .

If we multiply and divide right hand side of (5.28) by (eA + 1)/2, then we obtain the

solution of (5.21) for Burgers equation as follows

V(η, τ) =
1
√

2πτ

 (eA − 1)e−
η2
2τ

1 + 1
2 (eA − 1)Er f c

[
η
√

2τ

] .
Example 5.3 : N-Wave Solution


Vη + VVη = 1

2Vηη, −∞ < η < ∞ τ > 0,

V(0, τ) = 0, τ > 0,

Vη(0, τ) = 1
τ

( √
a
τ

1+
√

a
τ

)
, τ > 0.

(5.29)

The BC’s for the Heat are found as follows,

V(0, τ) = 0 = −
G(τ)
F(τ) ,

Vη(0, τ) = 1
τ

√
a
τ

(1+
√

a
τ )

=
G2(τ)
F2(τ) − 2 F′(τ)

F(τ) .
(5.30)

Taking square of first BC and substituting into second one we have

−2
F′(τ)
F(τ)

=
1
τ

√ a
τ

(1 +
√ a

τ
)
, (5.31)

and integrating both sides of (5.31), we get

F(τ) =

(
1 +

√
a
τ

)
= 1 +

√
aτ−1/2, (5.32)
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where the derivatives of F(τ) as follows

F′(τ) =
√

a. (−1)
2 τ−3/2,

F′′(τ) =
√

a. (−1)
2 . (−3)

2 τ−5/2,
...

F(n+1)(τ) =
√

a. (−1)n+1

2n+1 . (2n+2)!
2n+1n! τ

−(2n+3)/2.

(5.33)

Since G(τ) = 0, we have closed form solution for the standard Burgers as follows

V(η, τ) = −

√
a
∑∞

n=0
(−1)n+1

2n+2 . (2n+2)!
(n+1)!

η2n+1

(2n+1)!2
n+1τ(−n−3/2)

1 +
√ a

τ
+
√

a
∑∞

n=1
(−1)n

2n . (2n)!
2n(n)!

η2n

(2n)!2
nτ(−n−1/2)

,

=

√
a η
√
τ

1
τ

∑∞
n=0(−1)n( η

2

2τ )n 1
n!

1 +
√a

τ
+

√ a
τ

∑∞
n=1

(−1)n

n! .(
η2

2τ )n
,

or equivalently we obtain the N-wave solution

V(η, τ) =
η

τ


√ a

τ
e−

η2
2τ

1 +
√ a

τ
e−

η2
2τ

 .

5.3. The Cauchy Problem for the Inhomogeneous Burgers Equation

with Time-variable Coefficients

Proposition 5.2 Let the Cauchy problem for inhomogeneous Burgers equation with vari-

able coefficients be given as


Ut +

µ̇(t)
µ(t)U + UUx = 1

2µ(t)Uxx − ω
2(t)x, −∞ < x < ∞, t0 < t < T,

U(0, t) = A(t), t0 < t < T,

Ux(0, t) = B(t), t0 < t < T,

(5.34)

where µ(t) > 0, A(t) and B(t) are analytic functions for t ∈ (t0,T ). If for t0 ≤ t < T the

function r(t) is strictly positive analytic solution of the IVP for the second order linear
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ODE

r̈ +
µ̇(t)
µ(t)

ṙ + ω2(t)r = 0, (5.35)

r(t0) = r0 , 0 ṙ(t0) = 0, (5.36)

and

η(x, t) =
r(t0)
r(t)

x, τ(t) = r2(t0)
∫ t

t0

dξ
µ(ξ)r2(ξ)

, (5.37)

then the problem (5.34) has solution of the form

U(x, t) =
ṙ(t)
r(t)

x −
r(t0)
µ(t)r(t)

∑∞
n=0

(
F(n+1)(τ(t)) [η(x,t)]2n+1

(2n+1)! 2n+1 + G(n)(τ(t)) [η(x,t)]2n

(2n)! 2n
)

∑∞
n=0

(
2nF(n)(τ(t)) [η(x,t)]2n

(2n)! + 2nG(n)(τ(t)) [η(x,t)]2n+1

(2n+1)!

) ,

where

F(τ) = exp
(
−

1
2

∫ τ

0

µ(t(τ′))r2(t(τ′))
r2

0

(
B(t(τ′)) − A2(t(τ′)) −

ṙ(t(τ′))
r(t(τ′))

)
dτ′

)
, (5.38)

G(τ) = −
µ(t(τ)r(t(τ))

r0
A(t(τ))F(τ). (5.39)

Proof:

If V(η, τ) satisfies the standard Burgers equation Vτ + VVη = 1
2Vηη, then

U(x, t) =
ṙ(t)
r(t)

x +
r0

µ(t)r(t)
V(η(x, t), τ(t)),

satisfies the Burgers equation of problem (5.34). Then the Cauchy problem (5.34) reduces

to the Cauchy problem for the standard Burgers equation


Vτ + VVη = 1

2Vηη, −∞ < η < ∞, 0 < τ < τ(T ),

V(0, τ) =
µ(t(τ))r(t(τ))

r0
A(t(τ)), 0 < τ < τ(T ),

Vη(0, τ) =
µ(t(τ))r2(t(τ))

r2
0

(
B(t(τ)) − ṙ(t(τ))

r(t(τ))

)
, 0 < τ < τ(T ).

(5.40)
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Using the results obtained in previous section, problem (5.40) reduces to the following

heat problem


ϕη = 1

2ϕηη, −∞ < η < ∞, 0 < τ < τ(T ),

ϕ(0, τ) = c0F(τ), 0 < τ < τ(T ),

ϕη(0, τ) = c0G(τ), 0 < τ < τ(T ),

(5.41)

where F(τ) and G(τ) are given by (5.38), (5.39). �
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CHAPTER 6

CONCLUSION

In this thesis, we have investigated initial-boundary value problems (IBVP’s) on

semi-infinite line 0 < x < ∞ for inhomogeneous Burgers equations with time-variable

coefficients (VBE). We have formulated the solutions for the cases with Dirichlet BC and

Neumann BC imposed at x = 0.

First, we showed that the Dirichlet problem for the VBE reduces to solving a

linear ODE and a second kind singular Volterra integral equation. Therefore, solutions

in general can be obtained using approximate and numerical techniques. However, for

particular VBE models with special initial and Dirichlet BCs we found some class of

exact solutions. Next, we worked on the Neumann problem for the VBE and we found

that it reduces to a second order linear ODE and an IBVP for the standard heat equation

with nonlinear boundary conditions.

Finally, we recalled the Cauchy problem for the heat equation on the non-characteristic

line, and derived its well-known solution as an infinite power series, whose coefficients

are obtained in terms of the Cauchy data [10]. This result was used in [9] to solve the

Cauchy problem for the standard Burgers equation. We gave examples to illustrate how

some well known solutions of the Burgers equation can be recovered by solving a corre-

sponding Cauchy problem. Then we formulated the Cauchy problem for the VBE, and

obtained its solution in terms of a linear ODE and the series solution of the corresponding

Cauchy problem for the heat equation.

In this work, we were able to derive mostly the general form of the solutions

for the given problems. Our research on exact solutions for the Burgers problems with

variable coefficients is not complete and we plan to extend the list of the exactly solvable

models and study their properties in details.
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APPENDIX A

SOME BASIC PROPERTIES AND DEFINITIONS

•Properties of the fundamental solution K(η, τ) :

1. K(η, τ) > 0 for τ > 0.

2. For fixed τ > 0, K and its derivatives tends to zero exponentially fast as |η| tends to

infinity.

3. For any fixed δ > 0, limτ−>0 K(η, τ) = 0 uniformly for all |η| > δ.

4. For all τ > 0,
∫ ∞
−∞

K(η, τ)dη = 1.

5. For τ > 0, K is an analytic function of η and τ.

6. limt−>τ
∂K
∂η

(η, τ − t) = 0 for η > 0 and τ > 0.

7. limτ−>0

∫ τ

0
∂K
∂η

(η, t − τ)dt = 0 for η > 0.

8. limη−>0

∫ τ

0
∂K
∂η

(η, t − τ)dt = 1 for τ > 0.

•Some integrals for the special initial data A(η) = ηn:

∫ ∞

0

e−
ξ2
2τ

√
2πτ

A(ξ)dξ =⇒

∫ ∞

0

e−
ξ2
2τ

√
2πτ

dξ =
1
2
,∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξdξ =
1
√

2π
τ

1
2 ,∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξ2dξ =
1
2
τ,∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξ3dξ =

√
2
π
τ

3
2 ,∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξ4dξ =
3
2
τ2,

...∫ ∞

0

e−
ξ2
2τ

√
2πτ

ξndξ =
2−

1
2 (1−n)τ

n+1
2 Γ(n+1

2 )
√

2πτ
.
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•Dirac Delta function

The Dirac delta can be loosely thought of as a function on the real line which is zero

everywhere except at x = x0, where it is infinite,

δ(x − x0) =

 +∞ , x = x0 ,

0, x , x0,

and which is also constrained to satisfy the identity

∫ ∞

−∞

δ(x − x0) = 1,

with the convolution property

δ(x) ∗ f (x) =

∫ ∞

−∞

δ(x − x0) f (x)dx = f (x0),

for any f : R→ R continuous around x = x0. And as a special case

∫ ∞

−∞

δ(x − y)δ(y − ξ)dy = δ(x − ξ).

•Leibnitz’s Rule

Suppose that F = F(x, t) is defined on [a, b]x[α, β] such that, for each t ∈ [α, β], F(x, t)

is an integrable function of x and that for each x, (∂F/∂t)(x, t) exists and is continuous.

Suppose that for all t ∈ [α, β], ∣∣∣∣∣∂F
∂t

(x, t)
∣∣∣∣∣ 6 g(x),

for some nonnegative integrable function g. Then, G(t) =
∫ b

a
F(x, t)dx is differentible and

G′(t) =

∫ b

a

∂F
∂t

(x, t)dx,

for t ∈ [α, β].
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•Error Function

The error function is defined as

Er f (x) =
2
√
π

∫ x

0
e−t2dt.

The complementary error function, denoted erfc, is defined

Er f c(x) = 1 − Er f (x)

=
2
√
π

∫ x

0
e−t2dt.

= ex2
Er f cx(x)

The Taylor series of error function

Er f (z) =
2
√
π

∞∑
n=0

(−1)nz2n+1

n!(2n + 1)
.

The derivative of the error function follows immediately from its definition:

d
dz

Er f (z) =
2
√
π

e−z2
.

•Analytic Function

Let f be a real-valued function defined on an open set S in the xy-plane, and let (x0, y0) ∈

S . Then f is analytic at point (x0, y0) if f has continuous partial derivatives of all orders

w.r.t x and y, and the Taylor’s series of f about P0 = (x0, y0)

f (x0, y0) +
∂ f
∂x
|P0(x − x0) +

∂ f
∂y
|P0(y − y0)

+
1
2

[∂2 f
∂x2

]
P0

(x − x0)2 + 2
∂2 f
∂x∂y

|P0(x − x0)(y − y0) +
∂2 f
∂y2 |P0(y − y0)2 + · · ·

 ,
converges to f (x, y) for points (x, y) in some neighbourhood of (x0, y0).

? f is analytic on S , if f is analytic at each point of S .
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Properties :

1) The sums, products and composiions of analytic functions are analytic.

2) The inverse of an analytic function whose derivative is nowhere zero is also analytic.

If a complex function is analytic on a region R, it is infinitely differentiable in R. A

complex function may fail to be analytic at one or more points through the presence of

singularities, or along lines or line segments through the presence of branch cuts. The

situation is quite different when one considers complex analytic functions and complex

derivatives. It can be proved that any complex function differentiable (in the complex

sense) in an open set is analytic. Consequently, in complex analysis, the term analytic

function is synonymous with holomorphic function. A complex function that is analytic

at all finite points of the complex plane is said to be entire.

•Convolution Properties

f (t) ∗ g(t) =

∫ ∞

−∞

f (τ)g(t − τ)dτ, (A.1)

1. If f (t) = δ(t), then δ(t) ∗ g(t) = g(t) and also g(t) ∗ δ(t + y) = g(t + y).

2. f ∗ (g ∗ h) = ( f ∗ g) ∗ h.

3. f ∗ (g + h) = ( f ∗ g) + ( f ∗ h).

4. a( f ∗ g) = (a f ) ∗ g where a is scalar.

5. For the derivative case f ′(t) ∗ g(t) = f (t) ∗ g′(t).

6. Fourier transform F( f ∗ g) = F( f ).F(g).

•Fubini’s Theorem

Let f = f (x, y) denote an integral function on the rectangle D = {(x, y) : a 6 x 6 b, c 6

y 6 d}. If one of the following integrals exists, then the other two exists and

∫
D

∫
f dxdy =

∫ d

c

{ ∫ b

a
f (x, y)dx

}
dy =

∫ b

a

{ ∫ d

c
f (x, y)dy

}
dx.
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