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ABSTRACT

THE HIGGS BOSON AND RIGHT-HANDED NEUTRINOS IN
SUPERSYMMETRIC MODELS

The results represented in this thesis are based on our work in [1], where the pre-

dictions on the mass spectrum and Higgs boson decays are investigated in the supersym-

metric standard model extended by U(1)B−L symmetry (BLSSM). The model requires

two singlet Higgs fields, which are responsible for the radiative breaking ofU(1)B−L sym-

metry. Radiative breaking of U(1)B−L symmetry yields right-handed neutrino of mass at

the TeV scale. It predicts degenerate right-handed neutrino masses (1.7−2.2 TeV) as well

as the right-handed sneutrinos of mass . 4 TeV. The presence of right-handed neutrinos

and sneutrinos trigger the baryon and lepton number violation processes, until they decou-

ple from the Standard model particles. Besides, the model predicts rather heavy colored

particles; mt̃,mb̃ & 1.5 TeV, whilemτ̃ & 100 GeV andmχ̃±1
& 600 GeV. Even though the

implications on the SM-like Higgs boson are similar to minimal supersymmetric standard

model (MSSM), BLSSM can predict another Higgs boson lighter than 150 GeV. We find

that the second Higgs boson can be degenerate with the lightest CP-even Higgs boson of

mass about 125 GeV and contribute to the Higgs decay into two photons. In addition, if

it is not degenerate, it can provide a possible explanation for the excess in h → 4l at the

mass scale ∼ 145 GeV.
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ÖZET

SÜPERSİMETRİK MODELLERDE HİGGS BOZON VE SAĞ-EL
NÖTRİNOLAR

Bu tezde sunulan sonuçlar U(1)B−L simetrisi ile genişletilmiş süpersimetrik stan-

dart modelde (BLSSM) kütle spektrumu ve Higgs bozonunun bozunmalarını araştırdığımız

çalışmamıza dayanmaktadır [1]. Bu model ışınımsal U(1)B−L simetrisini kırmaktan so-

rumlu iki adet tekil Higgs alanı içerir ve 1.7 − 2.2 TeV enerji skalasında dejenere sağ-

el nötrino kütleleri ile kütlesi 4 TeV’den küçük snötrino öngörür. Sağ-elli nötrino ve

snötrinoların varlığı baryon ve lepton sayısının korunumunun ihlal edildiği süreçleri bu

parçacıklar Standart Model parçacıklarına ayrışına dek tetikler. Ayrıca, model oldukça

ağır renkli parçaçıklar; mτ̃ & 100 GeV and mχ̃±1
& 600 GeV iken mt̃,mb̃ & 1.5 TeV,

öngörür. Standart model benzeri Higgs bozon özellikleri minimal süpersimetrik standart

modele çok benzese de, BLSSM 150 GeV’den hafif bir başka Higgs bozunu daha öngörür.

Son olarak, bu ikinci Higgs bozonunun 125 GeV’deki en hafif CP-çift Higgs bozununa

dejenere olacağı ve Higgs’in iki foton bozunum kanalına katkı sağladığı gösterilmiştir.

Buna ek olarak, dejenere olmasa da yine aynı Higgs bozonu ∼ 145 GeV kütle skalasında

h→ 4l bozunma kanalına olası bir açıklama getirmektedir.
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CHAPTER 1

INTRODUCTION

One of the most essential property of human being is the aspiration which leads

people to explain the natural phenomena. The questions of “What is the building block

of nature?” and “What are the fundamental structures and how do they interact with each

other?” always make scientists excited in every period of history. As an answer to these

questions the Standard Model (SM) constructed by Weinberg, Salam and Glashow in

1964 opened a new era in understanding of the elementary particles and explanation

of three of four fundamental interactions of nature the so-called electromagnetic, weak

and strong interactions. According to the SM, elementary particles are divided into two

groups as fermions and bosons. Elementary particles which constitute the matter are

called fermions. Fermions are particles having fractional spin and obey to the Fermi-

Dirac statistics. Fermion group include the quarks and leptons. In addition to this, the

SM also explains how the basic building blocks of matter interact. These interactions are

mediated by spin-1 particles which are called gauge bosons. These spin-1 particles which

are responsible for carrying physical forces are called bosons and obey the Bose-Einstein

statistics. The mediators of the strong, weak and electromagnetic interactions are, re-

spectively, gluon, W± , Z0 bosons and photon. Each type of interactions corresponds the

gauge symmetry group and the theory exhibits an exact invariance under the combination

of these symmetries. Therefore, the SM basically depends on a certain gauge principle

according to which all the forces of nature are mediated by the exchange of the gauge

fields of the corresponding local gauge symmetry group.

In the SM, this gauge symmetry forbids mass terms for fermions and gauge bosons.

That is why we need to break the symmetry and allow particles to have their masses.

Hence, the origin of both gauge boson and fermion masses is explained with the help

of the electroweak symmetry breaking (EWSB). This spontaneous symmetry breaking is

implemented by means of the Higgs mechanism. In the Higgs mechanism [2], a scalar

Higgs field develops a non-zero vacuum expectation value (VEV) through its potential,

which includes also self-interactions of the Higgs fields, and the particles acquire their

masses proportionally to this VEV and their Yukawa couplings to the Higgs field. In

addition, the three Goldstone bosons, which emerge within the spontaneous breaking of

the electroweak symmetry breaking, are swallowed by W± and Z0 bosons such that these
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gauge bosons become massive. At the end, one scalar boson remains after EWSB, which

is called the Higgs boson. With the discovery of the Higgs boson of mass about 125 - 126

GeV by the ATLAS [3] and the CMS [4] experiments, analyses have confirmed that the

SM predictions are in a very good agreement with the observations. Hence, this discovery

provided extra motivation for future studies on new physics beyond the SM. In Chapter 2,

we will examine the properties of Higgs particle boson and we will point out the serious

problem about the radiative corrections to the Higgs boson mass in detail.

Although the SM has been completed with the Higgs boson discovery and con-

firmed in numerous high energy experiments with great precision in the past decades,

there is no doubt that the SM is not a fundamental theory, since it cannot provide any

explanation concerning the gauge hierarchy problem between the electroweak scale and

the Planck Scale (MPl) [9], the absolute stability of the Higgs potential [10], neutrino

oscillations, dark matter, baryon asymmetry in the universe, family problem, the unifi-

cation of fundamental forces etc. Because of unanswered questions in the SM based on

gauge hierarchy problem, neutrino oscillations, we need a covering model beyond the SM

that is broken into the SM at low scales. In Chapter 2, we will examine the properties of

the Higgs boson. We will give a brief introduction about the unanswered problems and

we concentrate on the hierarchy problem which is the main motivation of the new physics

beyond the SM. Then, we will introduce an elegant solution as a further symmetry for sta-

bilizing dangerously large radiative corrections to Higgs boson mass. This new symmetry

which is firstly proposed to solve gauge hierarchy problem by J. Wess and B. Zumino in

1974 is called as supersymmetry (SUSY) whose basic concepts will be discussed in detail

in Chapter 3.

SUSY is simply a symmetry that relates the fermion and bosons to each other with

supersymmetric transformations. Interestingly, If two successive SUSY transformations

are applied to a particle, the spin remains the same, but the field is shifted in space-time.

In this context, SUSY is the only known symmetry that relates the internal symmetries

with the space-time symmetries. The Minimal Supersymmetric Standard Model (MSSM)

which is the first realistic supersymmetric version of the SM was proposed in 1981 by

Howard Georgi and Savas Dimopoulos, is the minimal supersymmetric extension of the

SM. Besides this, we give a discussion about the MSSM in regard to its symmetries,

gauge structure as well as particle and superpartner spectrum in Chapter 3. For example,

the Higgs sector of the MSSM can be summarized as following. There are two Higgs

doublets in the MSSM contrary to the SM. While in the SM there is only one Higgs

boson, in the MSSM five Higgs bosons arise: two of them are neutral and CP even scalar

2



Higgs bosons (h and H), two of them are charged Higgs bosons (H ±) and the rest is the

neutral and CP odd pseudoscalar Higgs boson (A).

Even though MSSM can provide possible explanations to some of the problems,

particularly to the gauge hierarchy problem, it leaves others unanswered. We empha-

size excesses in certain Higgs boson decay channels in h → γγ [12] and h → ZZ →
l+l−l+l− channels [13]. Even though MSSM has five physical Higgs states, we conclude

that such excesses cannot be explained within the MSSM Higgs bosons if one considers

SUSY GUT models in which an underlying GUT gauge group breaks into the MSSM

at the GUT scale. We proposed that these excesses can be explained if one considers

an extra U(1)B−L which is spontaneously broken at some scale of order TeV. In Chapter

4, we study characteristic properties of supersymmetric U(1)B−L model, and explain the

differences from the MSSM.

Finally, in Chapter 5, we discuss our scanning method and the experimental con-

straints that we apply to deal with the experimental observations. After we present mass

spectrum of some particles, especially those pertaining to decay channels that we would

like to explain, we emphasize the Higgs boson decays in supersymmetric U(1)B−L model.

We show that the observed excesses in the Higgs sector can be accommodated in SUSY

B-L model and conclude the thesis with the discussion of the result of our analysis. This

study is published with the title “Mass Spectrum and Higgs Profile in BLSSM” in Phys.

Rev. D 93, 055024.
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CHAPTER 2

STANDARD MODEL

As a main success of 20th century particle physics, the questions of how the funda-

mental particles interact and how three of four forces are related to each other are included

in an elegant way in the Standard Model of particle physics.

2.1. Main Blocks of the Standard Model

In this section, we will describe the SM without giving all the details. Detailed

reviews and books can be found in the literature [5–8]. The SM is a theory that explains

the particles that have been discovered so far and three of four fundamental forces which

are important for interactions of these particles. These three forces are electromagnetic,

strong and weak forces. One of the biggest success of the SM is to calculate the properties

of the particles and the interactions between them with great precision. The SM is briefly

a gauge theory of spin 0, 1/2 and 1 particles based on SU(3)C x SU(2)L x U(1)Y gauge

symmetry group with subscripts C, L, Y that refer to color, left chirality and weak hyper-

charge. SU(2)L x U(1)Y governs the electroweak interactions and SU(3)C decribes the

strong interactions. For each gauge group there are corresponding generators and each

generator constitutes a “vector field”. These vector fields keep lagrangian invariant by

gauging itself under the local transformations. Therefore, these vector fields which are

carriers of physical forces are also called as “gauge fields”.

In the SM, particles are organized in two groups as fermions and bosons. Fermions

are particles having half spin. They obey Fermi-Dirac Statistics. In the SM, the fermions

are divided into three families. These three families are identical to each other, except

their masses. The ordinary matter is constituted by the first families, while the heavier

families are rather unstable and decay to the particles of the first families. Leptons are

organized as singlets under SU(3)C . In other words, they do not carry color charge; and

hence, they do not participate in the strong interactions. They join only to the electroweak

interactions. However, quarks are color triplets. Namely, each quark flavour carries three

colors. Since quarks have both color charge and hyper-charges, they participate both

strong and electroweak interactions. According to solution of Dirac equation, we have left
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with left and right handed particles. Left handed particles are defined as doublets under

SU(2)L x U(1)Y symmetry by giving them the same hypercharge, while the right-handed

particles are singlets under SU(2)L . In this context, SU(2)L forms a chiral theory, since

it distinguishes the left-handed particles from the right-handed ones. On the other hand,

bosons are particles having integer spin. They obey Bose-Einstein Statistics and they are

force carrier particles. SU(3)C has 8 generators (with 32 - 1 = 8 generators) which are 8

gluons (Ga
µ,a=1,2,..,8) of SU(3)C . 3 generators of SU(2)L (Wa

µ, a=1,2,3 gauge fields) and

1 generator of U(1)Y (Bµ gauge field) associate with W±, Z0 which are mediator of the

weak interactions and the photon as the mediator of the electromagnetic interactions.

SU(3)C −→ 8 gauge boson (Gluons Ga
µ)

SU(2)L −→ 3 gauge boson (W±, Z0)

U(1)Y −→ 1 gauge boson (Bµ)

These 12 gauge bosons are massless at high energies, however at low energies

SU(2)L x U(1)Y symmetry breaks down to U(1)EM through the spontaneous symmetry

breaking, with which the gauge bosons acquire their masses. The mechanism behind this

symmetry breaking is called the Higgs Mechanism. Therefore, in order to be consistent

masses for all fermions and vector bosons, SM predicts a scalar (spin=0) Higgs boson

which is experimentally observed in CERN in 2012, July.

2.1.1. Spontaneous Symmetry Breaking

The electroweak part of the SM distinguishes the left-handed and right-handed

fermions and hence it forms a chiral theory. The subscript “L” in SU(2)L refer that SU(2)L
acts only on left-handed fermions and is blind to right-handed ones. Therefore, in the

formalization of the SM, left-handed fermions reside in SU (2)L doublets, while right-

handed ones are singlet. In the electroweak Lagrangian, it could be easily seen that left-

handed and right-handed particles transform differently under SU(2)L x U(1)Y .

LEW = ΨRγ
µD(R)

µ ΨR + ΨLγ
µD(L)

µ ΨL (2.1)

where

D(L)
µ = ∂µ −

igL
2
W i
µ · σi −

igY
2
Bµ
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D(R)
µ = ∂µ −

igY
2
Bµ

Left-handed particles transform as ΨL → Ψ′L = exp(− igL
2
W i
µ · σi)ΨL under

SU(2)L transformations, whereas right-handed particles remain unchanged (i.e. ΨR →
Ψ′R = ΨR). This arises from the fact that right-handed fermions do not have SU(2)L
charge.

When one writes down the electroweak Lagrangian, one can also think to write

a mass term, mψψ= m(ψRψL+ψLψR), for fermion fields at first sight. Since if the unit

analyses is processed, it seems like there is no obstruction to write down such a term.

However, mass term of fermions contains mixing of the left and right handed fermions

and since left-handed and right-handed fermions transform differently under SU(2)L x

U(1)Y , one can easily see that the Lagrangian is not invariant with such a mass term.

Therefore, mass terms of fermions are forbidden by SU (2)L x U(1)Y symmetry in the

electroweak Lagrangian.

LEW = ΨRγ
µD(R)

µ ΨR + ΨLγ
µD(L)

µ ΨL +((((
((((

((hhhhhhhhhhm(ΨRΨL + ΨLΨR) (2.2)

However, experiments show that the fermions are massive. To obtain mass terms

of fermion, a new complex scalar doublet Higgs field, Φ =

(
φ1

φ2

)
is introduced as

an SU(2)L doublet with no color charge. This Higgs complex scalar field interacts with

fermions as indicated below in the Yukawa Lagrangian which is written for only first

families.

Ly = ydQΦdR + yRLΦeR + yuQΦcuR + ... (2.3)

where Q =

(
uL

dL

)
and L =

(
νeL

eL

)

To be able to conserve hypercharge in the electroweak interactions, total hyper-

charge of each term in the Yukawa Lagrangian must be zero. This is satisfied if hyber-

charge of our complex scalar Higgs field is 1. Then it turns out that according to the

Gell-Mann-Nishijima formula, the upper component of the complex Higgs doublet has

electric charge 1, whereas the lower component is neutral as indicated below where τ3

stands for the isospin.
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Φ =

(
φ1

φ2

)
−→ τ3 = 1/2, Y = 1 , then QEM = +1

−→ τ3 = −1/2, Y = 1 , then QEM = 0
−→ Φ =

(
φ+

φ0

)

Another important point in the Yukawa Lagrangian is that d-type quarks masses

are generated with the interaction of the Higgs field itself, while the masses of the u-type

quarks are obtained with the interaction of the charge conjugation of the Higgs scalar

field. The Higgs field has a non-zero VEV, which induces the mass terms for the fermions.

Higgs potential is introduced in Eq. 2.4 where λ is always defined as positive to satisfy

vacuum stability. If we have a higgs potential in the form below, two different configura-

tion is possible according to sign of µ2 as represented in Fig. 2.1.

Figure 2.1. Higgs potential before (left) and after (right) spontaneously symmetry
breaking

For the positive value of µ2, it gives zero vacuum expectation value, whereas for

the negative value of µ2, it gives non-zero vacuum expectation value.

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (2.4)

∂V (φ)

∂φ
= φ(µ2 + λφ2) = 0

µ2 > 0 −→ v = 〈φ〉 = 0

µ2 < 0 −→ v = 〈φ〉 = ±
√
−µ2

λ
(2.5)

When the Higgs scalar field develops its VEV due to its desire to be at the mini-

mum potential energy, the fermion mass terms, which could not be written in electroweak
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lagrangian, are obtained by spontaneously symmetry breaking. The fact that gauge bosons

of weak interactions (W±, Z bosons) are massive and photon as a mediator of electromag-

netic interactions is massless alludes to SU(2)L x U(1)Y symmetry breaking to U(1)EM
symmetry. Note that the Higgs field does not carry any color charge; and hence, its non-

zero VEV does not break the SU(3)C symmetry. In this sense, the gluons remain massless

after the electroweak symmetry breaking, but SU(3)C forms a confined symmetry.

Since Higgs field is described as a doublet and complex scalar, it has four degree

of freedom. After the spontaneous symmetry breaking, three massless Higgs bosons arise

in addition to one massive Higgs boson. These massless Higgs bosons which are called

“Goldstone Bosons” are swallowed by W± and Z bosons and the remaining massive one

arises as the physical state called the Higgs boson.

As fermions acquire their masses via Yukawa interactions, the masses of gauge

bosons are gained through the gauge interactions. To give a mass to gauge bosons, one has

to handle with kinetic terms associated with the Higgs field in the Lagrangian indicated

as follow.

Lkin =
1

2
(DµΦ)†(DµΦ) (2.6)

where Φ is given as follows after it develops VEV.

Φ =

(
0

v + h

)
(2.7)

While v denotes the VEV of the neutral Higgs field, h represents the perturbative

effects around the vacuum expectation value. Since φ1 is charged Higgs field, its VEV

must be zero not to violate the charge conservation. Dµ in the Equation 2.6 is defined as

follows under SU(2)L × U(1) symmetry.

Dµ = ∂µ −
igL
2
W i
µ · σi −

igY
2
Bµ (2.8)

After expanding (DµΦ)†(DµΦ) expression, one comes up with the terms which is

arranged in v2, hv and hh parantheses as represented in Equation 2.9.

(DµΦ)†(DµΦ) = v2

(
g2
L

2
W−
µ W

µ+ +
g2
L

8
W 3
µW

µ3 − gLgY
4

W 3
µB

µ +
g2
Y

8
BµB

µ

)
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+hv

(
g2
L√
2
W−
µ W

µ+ +
g2
L

2
√

2
W 3
µW

µ3 − gLgY√
2
W 3
µB

µ +
g2
Y

2
√

2
BµB

µ

)

+hh

(
g2
L

2
W−
µ W

µ+ +
g2
L

4
W 3
µW

µ3 − gLgY
2

W 3
µB

µ +
g2
Y

4
BµB

µ

)
(2.9)

where W+
µ and W−

µ are defined as follows, respectively.

W+
µ =

1√
2

(W1 − iW2) W−
µ =

1√
2

(W1 + iW2) (2.10)

It turns out that the terms in the v2 paranthesis in Equation 2.9 are the mass terms

of weak gauge bosons. These bosons acquire their masses with respect to magnitude

of the coupling constant g. The first term stands for the mass term of W− and W+

bosons. Nevertheless, the mass of Z0 boson cannot be obtained from the second, third

and the fourth terms since the mass of Z0 boson exists in a mixture of W 3
µ and Bµ fields.

Therefore, the mass of Z boson can be extracted after diagonalisating the second, third

and the fourth terms.

1

8

(
W 3
µ Bµ

) g2
L −gLgY

gLgY g2
Y

 W 3
µ

Bµ

 =
(

Aµ Zµ

) a 0

0 b

 Aµ

Zµ


(2.11)

Then, Aµ, Zµ,Wµ and Bµ can be obtained as follows.

W 3
µ = cos(θ)Aµ − sin(θ)Zµ Bµ = −sin(θ)Aµ + cos(θ)Zµ

Zµ = −sin(θ)W 3
µ + cos(θ)Bµ Aµ = cos(θ)W 3

µ + sin(θ)Bµ (2.12)

where θ is called “Weinberg angle” and responsible for the mixing. It is repre-

sented in the following way.

sin(θ) =
gY√
g2
Y + g2

L

cos(θ) =
gL√

g2
Y + g2

L

(2.13)

Then, one can obtain the following expression which the mass terms of W+,W+

and Z0 bosons can be seen easily.
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(DµΦ)†(DµΦ) =
1

8
v2

[(
g2
L

2
W−
µ W

µ+

)
+ (g2

L + g2
Y )ZµZ

µ

]
+ ... (2.14)

In Eq. 2.14, the mass of W− and W+ bosons are dependent only on the constant

gL whereas the mass of Z0 boson depends on both the constant gL and gY . After diago-

nalisation process, variable “a” in Eq. 2.11 is obtained to be equal to zero which refers to

the massless photon.

2.1.2. Decay and Production Channels of Higgs

Figure 2.2. Production Channels of Higgs Boson in the SM

When one calculates the (DµΦ)†DµΦ expression as indicated in Eq. 2.9 , one also

comes up with the terms which can be seen in the vh and hh parantheses in addition to

the mass terms of weak gauge bosons in the v2 parantheses. The terms in the vh paranthe-

ses show production and decay channels of single higgs boson at tree level whereas the

terms in the hh paranthesis represent production and decay channels of two higgs bosons

at tree level. However, the biggest cross section in the Higgs boson production comes

from gluon-gluon fusion (GGF) in the SM as represented in Fig. 2.2 even though Higgs
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boson does not have a tree level coupling with gluon directly. In GGF the Higgs boson is

produced through a loop level process in which the quarks run in the loop. Even though

all quarks can, in principle, contribute to the Higgs boson production process, top and

bottom quarks give the biggest contributions because of their large Yukawa couplings to

the Higgs boson. The second biggest contribution comes from vector boson fusion. Each

of two quarks can radiate a vector boson as can be seen from Fig. 2.2 and since Higgs

boson has a coupling with W−
µ W

µ+ and ZµZµ at tree level, these two produced vector

bosons interact with the Higgs boson. Therefore, Higgs boson can also be produced in this

way. In addition to these production channels, Higgs boson can also be produced through

vector boson radiation and tt associated production. However, contributions coming from

these production channels are generally negligible in comparison to the gluon-gluon fu-

sion and vector boson fusion. We will again refer gluon-gluon fusion and vector boson

fusion in subsection 5.3.1 when we discuss Higgs boson production in the framework of

supersymmetric B-L model.

Figure 2.3. Decay Channels of Higgs Boson in the SM

When Higgs boson decay channels are examined, Higgs to bb decay channel dom-

inates the region below 150 GeV as demonstrated in Fig. 2.3. In this region, Higgs boson

mass is not sufficient to decay to two W bosons or two Z bosons. However, above 150

GeV, Higgs to W+W− and Z0Z0 are the most important decay channels since mass of

Higgs is sufficient to decay into two W bosons or two Z bosons. Even though Higgs boson
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does not have a coupling with γγ and Zγ at tree level, Higgs boson can decay into γγ or

Zγ through loop level as represented in Fig. 2.4.

Figure 2.4. Higgs boson decay to two photon via top quark or W boson loop

2.2. Problems of SM

Even though the Standard Model (SM) is consistent with the experimental results

in almost all its predictions, it is still far from being a complete theory due to the lots

of unexplained arbitrary parameters and unexplained problems. Some of the problems

which SM suffers are summarized as follows:

Gauge Hierarchy Problem : In the SM, a doublet Higgs field is introduced to

generate masses for weak gauge bosons and fermions. When the Higgs boson mass is

calculated at tree level, its mass is obtained around electroweak scale. Besides that, the

Higgs boson mass must remain stable in a theoretical consistent model. However, quan-

tum corrections from every particle that couples directly or indirectly to the Higgs field

yield enormous contributions to Higgs boson mass. This is known as “Gauge Hierarchy

Problem”. This problem will be analysed in more detail in subsection 2.2.1.

Neutrino Masses and Mixings : According to the minimal version of the SM,

the right-handed neutrino is not included in the theory. Therefore, left-handed neutrinos

cannot acquire their masses even after the electroweak symmetry breaking since mass

term contains both left and right-handed spinors and right-handed neutrinos have not been

observed experimentally yet. On the other hand, although neutrino masses are predicted

much lighter compared to the other fermions, the experimental measurements support that

the neutrinos must have mass.

Baryon Asymmetry Problem : The SM does not explain the dominance of mat-

ter with respect to anti-matter. There are convincing clues that the amounts of matter and
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anti-matter were equal at high energies as the solution of Dirac equation described. How-

ever, as the temperature decreases after Big Bang, this symmetry is somehow broken. As

a consequence of this, we live in a matter dominated universe. The source of this asym-

metry can be characterized with the CP violation which is firstly observed in neutral Kaon

meson. However, the amount of CP violation in the SM is not sufficient to generate the

observed baryon asymmetry in the universe.

Dark Matter : Based on the cosmological observations, the standard model is

able to explain only about 4% of the universe. This observation states that 23% of the

energy density of the universe should be formed by dark matter which does not interact

via electromagnetic interactions. In the SM, there is no suitable candidate particle for dark

matter which is proposed as durable and only interacting weakly with standard model

particles.

Family Problem : All observed matter is generated by only the first family (νe,

e−, u, d). However, existence of two more families (νµ, µ−, c, s) and (ντ , τ−, t, b) has

been proved by experiments. Second and third families are just heavier copies of the first

family and they eventually decay to the first family particles and do not participate in

forming the existent matter. Hence, the SM cannot give an appropriate explanation to the

question of why second and third families of quarks and leptons exist in the universe.

Fermion Masses : It seems that Higgs mechanism can explain the fermion masses

precisely. However, the value of the fermion masses is related to the Yukawa coupling

which described the strength of the interaction of Higgs boson and fermions. Yet this

coupling cannot be determined in the SM and are expressed as a free parameter in the

theory.

Gauge Symmetry Problem : The SM has a direct product of three groups SU(3)C
x SU(2)L x U(1)Y with their different corresponding arbitrary gauge couplings. However,

SM does not provide deep explanation to understand the origin of these different gauge

groups. In addition, there is no understanding for the parity violating chiral feature of

electroweak part of SM. Moreover, since SU(2) charge and hypercharge of fermions under

its gauge group are assigned to obtain the correct electric charge of each fermion, they are

completely arbitrary quantum numbers.

Electrical Charge Quantization : The Standard Model has no explanation to the

question of why electric charges of particles are always quantized with the multiples of

e/3 to form neutral atoms and stabilize the matter.

Gauge Coupling Unification : According to the Standard Model, gauge cou-

plings corresponding to three fundamental forces do not unified at any energy scale.
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However, in Grand Unified Theories (GUT), only one single symmetry group and its

corresponding gauge coupling is proposed at high energies. Since the SM is approved

at the low scales, this single gauge group should consist of the SM as a subgroup, and

its breaking mechanism can enlighten the origin of the SM gauge groups. On the other

hand, the gauge couplings unify at Grand Unification Scale (MGUT ≈ 1016 GeV) and it

provides a strong motivation for SUSY GUTs.

2.2.1. Gauge Hierarchy Problem

As summarized briefly above, one of the most important problems of the SM is

known as the “Gauge Hierarchy Problem”. Gauge hierarchy problem arises from the con-

tributions to the Higgs boson mass resulting from quantum corrections when we take the

loop level interactions into account. Every particle that interacts with the Higgs field gen-

erates tremendous contributions to its mass. If there is no other accepted theory between

the Plank scale and electroweak scale, Planck scale can be accepted as the cut-off scale

(ΛUV ). In this way, radiative corrections to the Higgs boson mass squared have scale

of 1038 GeV2. This quantum corrections depend on Yukawa couplings, self interaction

coupling of Higgs boson and gauge boson couplings as represented in Fig. 2.5.

These contributions diverge quadratically in terms of the cut-off scale as indicated

in Eq. 2.15, 2.16 and 2.17.

δfm
2
H ≈ −

|λf |2

16π2
∧2
UV (2.15)

δHm
2
H ≈

λs
8π2
∧2
UV (2.16)

δgm
2
H ≈

|g|2

16π2
∧2
UV (2.17)

Contributions to Higgs boson mass are much larger than Higgs boson’s own mass.

To cancel these corrections, the amount of required fine-tuning is enormous. In the SM,

quadratic divergences are present only in the Higgs sector because fermions and bosons

have chiral and gauge symmetries respectively to protect their own masses and they de-

pend on cut-off scale (ΛUV ) as logarithmically. However, Higgs boson mass is not pro-

tected by any symmetry.

As indicated in Eq. 2.15 and 2.17, bosonic and fermionic loops yield contributions

with different sign. Therefore, supersymmetry (SUSY) can cancel this contributions in
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Figure 2.5. Quantum corrections to higgs masses after interacting with fermions, itself
and gauge bosons respectively

a elegant way by defining a fermionic partner for each boson and vice versa as demon-

strated in Fig. 2.6. In order to cancel the contribution in Eq. 2.15 resulting from the

fermion loop, the coupling of the fermion loop and the coupling of the corresponding

bosonic superpartner must be equal, that is, λf = g. Besides that, Higgsino loop which

is fermionic superpartner of Higgs boson brings the contribution in Eq. 2.15. In order

to cancel this contribution, there must be two Higgs boson in the theory (2|λf |2 = λs).

As we will discuss in subsection 3.1.3, two Higgs doublet must exists in SUSY due to

the holomorphic superpotential. Therefore, all ultraviolet divergences can be cancelled

smoothly in SUSY.
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Figure 2.6. Supersymmetry (SUSY) defines a superpartner to each particle to cancel
quadratic quantum corrections
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CHAPTER 3

BASICS OF SUPERSYMMETRY AND MINIMAL

SUPERSYMMETRIC STANDARD MODEL(MSSM)

The “Hierarchy Problem” of the Standard Model is the most important problem

about the Higgs mass stabilization. Supersymmetry (SUSY) is one of the theories sug-

gested to solve this problem. SUSY cancels the quadratic corrections of the Higgs mass by

introducing a boson partner for each fermion and a fermion partner for each boson which

are called superpartners. For this purpose, SUSY requires a transformation so-called su-

persymmetric transformation which turns a bosonic state into a fermionic state and vice

versa. Therefore, SUSY can be simply described as a symmetry that gives a connection

between fermions and bosons. SUSY generators represented by operator Q constructed

in such a way that when they hit a bosonic state, they transform it to a fermionic one and

vice versa.

Q̂|Fermion〉 = |Boson〉, Q̂|Boson〉 = |Fermion〉 (3.1)

In the rest of this thesis,Q stands for the SUSY generator Q̂. Since SUSY operator

Q alter only spin of the particles by 1/2 unit, all quantum numbers of the particles and

superpartners are exactly the same except for their spin. Interestingly, two successive

SUSY transformations end with the initial state, but they shift the field in spacetime. In

this context, SUSY is the only known symmetry that also relates the internal symmetries

to the spacetime symmetries.

3.1. Supersymmetry Algebra

In the light of success of the special relativity, any kind of relativistic model of

the elementary particles should be constructed in a way that guarantees the Lorentz in-

variance. In this sense, the Lagrangian and relevant operators must be consistent with the

relativistic transformations of the fields. In the SM, the internal symmetries and Lorentz

symmetry are not really connected to each other. On the other hand, the connection be-

tween SUSY and Lorentz symmetry can be understood within the graded Lie algebra of
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Poincare group in which the Poincare group generators are extended with anti-commuting

operators.

The symmetry group of 4 dimensional spacetime, SL(2,C) is isomorphic to SU(2)

× SU(2) which differently transform under Lorentz transformations [5]. Hence the spinor

representation of SL(2,C) should be formed by two Weyl spinors, one of which is indi-

cated with dotted indices, while the other with the undotted ones. If one extends the

Poincare algebra with the generators that transform these dotted and undotted spinors, the

commutation and anti-commutation rules can be obtained as

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 (3.2)

{Qi
α, Q

j

β̇} = 2δij(σµ)αβ̇Pµ (3.3)

[Pµ, Q
i
α] = [Pµ, Q

i

α̇] = 0 (3.4)

[Qi
α,Mµν ] =

1

2
(σµν)βαQ

i
β (3.5)

[Q
i

α̇,Mµν ] = −1

2
Qi
β̇
(σµν)β̇α̇ (3.6)

where Pµ represents the generators of translations and Mµν stands for the gener-

ators of Lorentz transformations while the spinorial indices α, α̇, β, β̇ = 1, 2, space-time

indices µ, ν = 0, .., 3 and i, j = 1, 2, .., N . If we apply the commutation rules given in

Eqs.(3.5 and 3.6) for M1,2 = J3, it is seen that the generators Q and Q respectively raise

and lower the spin by 1/2 when they hit to the particle state, and this is basically definition

of the SUSY transformations.

This extended algebra which provides us a useful possibility to combine statistics

of particles of integer and half-integer spin by enlarging space-time symmetries is called

“Super-Poincare Algebra”. In this thesis, we consider only unextended N=1 supersym-

metry which corresponds one spinor charge Qα and its conjugate Qα̇ in order to deal with

minimal particle content and due to the renormalizability problems in the extented SUSY

models.

Despite of the fact that left handed and right handed fermions are indicated by

doublets and singlet, respectively in SM, particles in SUSY can be represented in ir-

reducible particle states so called “supermultiplets” where each supermultiplet contains
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both fermionic and bosonic states with the condition that fermionic and bosonic degree of

freedom of each supermultiplet must be equal to each other.

nF = nB (3.7)

where the fermionic and bosonic degrees of freedom in the supermultiplet is rep-

resented as nF and nB, respectively.

In order to construct the SUSY fairly, there are two types of supermultiplets in

which each fundamental particle of SM takes part with its corresponding superpartner.

Chiral (Matter) Supermultiplets : A chiral supermultiplet consists of a two com-

ponent chiral Weyl fermion and its corresponding superpartner as a complex scalar field.

Since a two component spinor has two degree of freedom on-shell, its corresponding su-

perpartner must be complex scalar field to satisfy the equality of number of degree of

freedom in supermultiplets. Chiral supermultiplets classify fermions whose left-handed

parts transform differently than the right-handed parts under SU(2)L × U(1)Y , Higgs

bosons and their fermionic superpartners higgsinos. Since there must be one chirality in

the SUSY, instead of introducing right handed particles, conjugates of the right handed

particles and corresponding right handed superpartners are included in supermultiplets.

Gauge (Vector) Supermultiplets : Vector bosons (spin 1) of SM and their fermionic

(spin 1/2) superpartners are combined in one supermultiplet so-called “gauge (vector) su-

permultiplets”. To conserve the equality of number of fermionic and bosonic degrees of

freedom, superpartner of massless spin 1 vector boson must be a massless two component

spin 1/2 Weyl spinor.

3.1.1. The Lagrangian for Non-Interacting Wess-Zumino Model

The most basic supersymmetric lagrangian can be represented with one scalar and

one fermion field. The Lagrangian and the transformation of these fields can be given as

follows

Lfree = ∂µΦ∗∂µΦ + Ψ†iσµ∂µΨ (3.8)

δΦ = εΨ δΦ∗ = ε†Ψ† (3.9)

δΨα = σµε
†∂µΦ δΨ†α = εσµ∂

µΦ∗ (3.10)
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Since the dimension of the scalar field is equal to 1 and the fermion field has

dimension of 3
2
, the dimension of infinitesimal SUSY parameter ε can be found as −1

2
.

Moreover, square of this infinitesimal SUSY parameter is equal to zero since it is a Grass-

man number which obey εiεj = −εjεi relation. Then, (εi)
2 = 0 since εiεi = −εiεi

3.1.2. Introducing F terms and D terms

In West-Zumino model, SUSY algebra is not close off-shell. As we stated before,

SUSY requires the number of bosonic and fermionic degrees of freedom to be equal

in supermultiplets. As a Weyl spinor has two complex components, it has four degree

of freedom. However, in case of on-shell fields, the equation of motion imposes two

constraints which reduce the number of degree of freedom into two. Since a complex

scalar field has two degrees of freedom, the number of fermionic and bosonic degrees

of fredom match on-shell. On the other hand, off-shell fields do not have to satisfy the

equation of motion and so the number of bosonic and fermionic degrees of freedom do not

match. Therefore, SUSY algebra only closes on-shell in case of having a single complex

scalar field and a Weyl spinor in theory.

SUSY can be rendered a symmetry also in the off-shell cases by adding scalar

“auxiliary field” denoted by F . Such a field provides two more bosonic off-shell degree

of freedom. On the other hand, it does not have a kinetic term, it has to be zero on-shell in

a model which is invariant under SUSY transformations. The degrees of freedom of the

fields are listed in Table 3.1.

on-shell off-shell
Φ 2 2
Ψ 2 4
F 0 2

Table 3.1. Number of bosonic and fermionic degrees of freedom in Chiral Lagrangian

In order to get the field F to have no on-shell degrees of freedom, the equation of

motion for this field is written as F ∗ = F = 0. Since the simplest real term depending on

F and F∗ is FF ∗, Lagrangian takes the form as represented in Eq 3.11.

L = ∂µΦ∗∂µΦ + Ψ†iσµ∂µΨ + FF ∗ (3.11)
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Despite of being a scalar field, dimension of field F is 2, that is, [F]=2.

[Φ] = 1 [Ψ] = 3/2 [F ] = 2

After adding F field in our theory, variation of each field can be represented as

follows:

δΦ = εΨ (3.12)

δΨ = −iσµ(iσ2ε∗)∂µΦ + Fε (3.13)

δF = −iε†σµ∂µΨ (3.14)

In order to have a interacting supersymmetric theory, one also has to deal with

supersymmetric gauge theories. If we consider U(1) free gauge theory, the superpartner

of the photon field Aµ will be a left-chiral Weyl spinor denoted by λ and called “photino”.

Therefore, summation of kinetic terms for the photon and the photino constitute the gauge

Lagrangian represented in Eq. 3.15

L = −1

4
FµνF

µν + λ†iσµ∂µλ (3.15)

where transformation of the fields are described as follows

δAµ = ε†σµλ+ λ†σµε (3.16)

δλ =
i

2
Fµνσ

µσνε δλ† = − i
2
Fµνε

†σνσµ (3.17)

However, here again the algebra does not close off-shell. In case of on-shell, Aµ
has two degrees of freedom as the two transverse polarization states and also photino rep-

resented as a left-chiral Weyl fermion has two degrees of freedom on-shell. Nevertheless,

when off-shell, a vector field Aµ has three degrees of freedom whereas a left-chiral Weyl

fermion has four. Therefore, one has to add one extra bosonic degree of freedom in the

form of a real scalar field which is conventionally denoted by D as indicated in Table 3.2.

In order to guarantee the field D to have no on-shell degrees of freedom, the equa-

tion of motion for this field is written as D = 0. Like the auxilary field F, dimension of D

field is also 2. Therefore, following term is added to the Lagrangian.

Laux =
1

2
D2 (3.18)
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on-shell off-shell
A 2 3
λ 2 4
D 0 1

Table 3.2. Number of bosonic and fermionic degrees of freedom in Gauge Lagrangian

L = Lgauge + Laux = −1

4
FµνF

µν + λ†iσµ∂µλ+
1

2
D2 (3.19)

Variation of the fields after adding D real scalar field are defined as follows:

δAµ = ε†σµλ+ λ†σµε (3.20)

δλ =
i

2
Fµνσ

µσνε+Dε (3.21)

δD = −iε†σµ∂µλ+ i(∂µλ)†σµε (3.22)

3.1.3. Superpotential

So far we have considered all the fields are massless and there are no interac-

tion at all. In order to acquire mass to the particles and their superpartners and to make

an interacting theory for chiral superfields by describing interactions between the Higgs

fields and the matter fields as Higgs field interacts with chiral fields of SM via Yukawa

interactions, an analytic function which is called “superpotential” can be proposed as

W (Φ̂) = aΦ̂ + bΦ̂2 + cΦ̂3 (3.23)

where Φ̂ stands for a chiral superfields. Mass dimensions of the parameters a,b,c

are given as [a]= 2, [b]= 1, [c]= 0. Scalar potential of superfields can be obtained from

superpotential. In addition to being an analytic function, superpotential is also a holomor-

phic function which I will refer this property of superpotential in discussing the Higgs

sector of MSSM and BLSSM in section 3.2 and subsection 4.1.1. Interaction lagrangian

can be written in terms of superpotential as follows
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Lint =

(
W iFi −

1

2
W ijΨiΨj

)
+ h.c (3.24)

where W is superpotential introduced in Eq. 3.25 and W i and W ij are the first

and second derivatives of the superpotential with respect to scalar components of the

superfields as indicated in Eq 3.26 and Eq 3.27.

W =
1

2
M ijΦiΦj +

1

6
ΦiΦjΦk (3.25)

W i =
∂

∂Φi

W (3.26)

W i =
∂2

∂Φi∂Φj

W (3.27)

Total chiral lagrangian can be described as follows

Lchiral = Lfree + Lint (3.28)

L = ∂µΦ∗i∂µΦi + iΨ†iσ̄µ∂µΨi + F ∗iFi +

(
∂W

∂Φi

Fi −
1

2

∂2W

∂ΦiΦj

Ψi.Ψj + h.c.

)
(3.29)

The equation of motion for the auxiliary field F gives

∂L
∂Fi

= 0 −→ F ∗i = −∂W
∂Φi

= −W i (3.30)

∂L
∂F ∗i

= 0 −→ Fi = −∂W
∗

∂Φ∗i
= −W ∗

i (3.31)

Then, we can represent the terms below

F ∗iFi +

(
∂W

∂Φi

)
Fi +

(
∂W ∗

∂Φi∗

)
F i∗ = −

∣∣∣∣∂W∂Φi

∣∣∣∣2 (3.32)

Therefore, we can express all the chiral lagrangian with independent of F field as

indicated in Eq 3.33

L = ∂µΦ∗i∂µΦi + iΨ†iσ̄µ∂µΨi −
∣∣∣∣∂W∂Φi

∣∣∣∣2 − 1

2

(
∂2W

∂Φi∂Φj

Ψi.Ψj + h.c.

)
(3.33)
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where the scalar potential is introduced in terms of superpotential as follow

V (Φi) =

∣∣∣∣∂W∂Φi

∣∣∣∣2 (3.34)

3.1.4. SUSY Breaking

Supercharges commute with the momentum operator as indicated in Eq. 3.35. So,

when supercharges is acted on a state, the eigenvalue of P µPµ remains unchanged as in

the following.

[Pµ, Qα] = 0 (3.35)

P µPµ|Ψ〉 = m2|Ψ〉

Qα|Ψ〉 = m2|Ψ〉 (3.36)

Therefore, all the particles in the same supermultiplet have the same mass. How-

ever, if the bosonic partner of electron, so the-called selectron, had exactly the same mass,

this would mean that electron could decay to the selectron by giving out a virtual photon.

Since selectrons are bosons, they are not restricted by Pauli-Exclusion Principle. There-

fore, all selectron could be located in ground state and this would be totally disaster.

Fortunately, this kind of particle degeneracy does not exist in nature.

SUSY can be broken by adding some terms to the Lagrangian which are not in-

variant under SUSY transformations. However, SUSY breaking interactions leads to lost

the cancellation of divergences which is the main motivation of SUSY. Therefore, only

softly-broken terms are included into the Lagrangian as in Eq. 3.37 in order to keep main

motivation of SUSY.

L���SUSY = −1

2
(M1B̃B̃ +M2W̃W̃ +M3g̃g̃) + h.c.

−m2
Hu
H†uHu −m2

Hd
H†dHd − (bHuHd + h.c.)

−m2
Qq̃
†q̃ −m2

Ll̃
†l̃ −m2

uũ
†
RũR −m

2
dd̃
†
Rd̃R −m

2
eẽ
†
RẽR

−(AuũRq̃Hu + Add̃Rq̃Hd + AeẽR l̃Hd) (3.37)
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To break supersymmetry, spontaneous symmetry breaking (SSB) can also be used

as an another method as we used in SM. In case of SSB, charges that generate the sym-

metry do not annihilate the ground state.

Q|0〉 6= 0 (3.38)

In SUSY, supercharges Q1 and Q2 do not annihilate the ground state. Then, non-

zero VEV of the Hamiltonian is obtained.

〈0|H|0〉 > 0 (3.39)

In free space, kinetic energy part of the Hamiltonian can be taken as zero which

leaves us only potential energy part. Since scalar field is the only field that has non-zero

VEV, we come up with

〈0|V (φ)|0〉 > 0 (3.40)

The auxilary fields yield the potential energy as in the following.

V (φi) = FiF
†
i +

1

2
D2 (3.41)

where Fi = ∂W
∂φi

and D = qiφ
†
iφi − ξ for abelian gauge theories. In this case, a

term ξD so-called Fayet-Illiopoulos term is included to the Lagrangian. This term is im-

portant for D-type SUSY breaking. However, gauge invariance prevents to write a Fayet-

Illiopoulos term for non-abelian theories and DaDa term is included to the Lagrangian

where Da = gφ†iT
aφi.

3.2. MSSM

Since they have the same gauge group SU(3)C × SU(2)L × U(1)Y , Minimal Su-

persymmetric Standard Model (MSMM) which is the minimal extention of the SM is the

simplest N=1 supersymmetric model. Each gauge field and each fermion is replaced by

a vector supermultiplet and a chiral supermultiplet, respectively. Therefore, MSSM has

minimal number of superpartners and their interactions. Since there is a corresponding

superpartner for each SM particle, MSSM doubles the number of particles of SM. While

SM has one Higgs doublet, for some reason that I explain below, there is an extra doublet

Higgs field in MSSM as demonstrated in Eq. 3.42. In SM while d-type quark masses

are gained by complex scalar Higgs field itself, charge conjugate of the Higgs field is
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introduced to acquire mass to the u-type quarks. However, as it is discussed in subsec-

tion 3.1.3, holomorphy feature of superpotential strictly prohibits any field and complex

conjugate of that field to exist in the superpotential simultaneously. Since introducing

complex conjugate of Higgs field is not allowed in superpotential, one Higgs doublet is

not adequate to give mass to all particles as we did in SM. Because of the fact that Yukawa

interaction terms can be obtained only from superpotential, second doublet Higgs field is

required in the MSSM as represented in Eq. 3.42. To conserve hypercharge, second Higgs

doublet (Hd) is introduced by assigning -1 hypercharge (YHu = +1 and YHd
= −1).

Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

H−d

)
(3.42)

Superpotential for MSSM is stated by

Ŵ = µĤu · Ĥd + huQ̂ · Ĥuû
c
R + hdQ̂ · Ĥdd̂

c
R + heL̂ · Ĥdê

c
R (3.43)

where Hu, Hd, Q, L, ucR, dcR, ecR denote the superfields and hu, hd, he stands for

dimensionless yukawa couplings. The dot product in the superpotential can be expressed

with antisymmetric parameter εαβ such as µĤu · Ĥd = µεαβ(Hu)α(Hd)β . Instead of

antisymmetric parameter εαβ , µĤu ·Ĥd = µĤT
u (iσ2)Ĥd can be used as a another notation.

3.2.1. R-parity

In addition to conservation of hypercharge, baryon and lepton number are also

conserved in Eq. 3.43. However, it is possible to add some gauge invariant extra terms

into superpotential as represented in Eq. 3.44. Even though hypercharge is conserved

in these terms and they are not restricted by gauge invariance and renormalization, these

extra terms in Eq. 3.44 violate baryon and lepton number conservation.

Ŵ ′ = µ′L̂ · Ĥu + λ1L̂ · L̂êcR + λ2L̂ · Q̂d̂cR + λ3û
c
Rd̂

c
Rd̂

c
R (3.44)

where the lepton numbers are L = +1 for L̂i , L = -1 for êcR and L = 0 for all

other supermultiplets and B = +1/3 for Q̂i, B = -1/3 for ûcR, d̂
c
R and B = 0 for all others.

Therefore, the first three terms in Eq. 3.44 violates conservation of lepton number by

1 unit and the last term in Eq. 3.44 violates the conservation of baryon number by 1

unit. However, baryon and lepton number violating processes have not been observed in

experiments. Besides, if these violating terms are allowed, then proton, which constitutes
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the matter, decays rapidly. Proton decay through s̃∗R interaction is represented in Fig. 3.1.

Therefore, a new symmetry so-called “R-parity” is introduced to prohibit rapid proton

decays and to make it a stable particle.

Figure 3.1. Proton decays via R-parity violating s̃∗R interaction

R-parity is defined by introducing opposite R-parity number to the scalar and

fermion components of a chiral superfield as follows:

PR = (−1)3B+L+2S (3.45)

where B, S and L denotes baryon number, spin and lepton number, respectively.

R-parity introduces opposite R-parity number to the scalar and fermion compo-

nents of a chiral superfield due to the spin dependence as (-1)2S . Considering the de-

pendence on the baryon and lepton numbers, all SM particles and the Higgs bosons have

PR = +1 while all superpartners have PR = −1. Since this new symmetry is not con-

served in Eq 3.44, these interactions become strictly prohibited and proton keeps its sta-

bility safely.

R-parity brings two significant results that I remark below

• Since the initial state in the LHC experiments involve only with the SM particles

(PR = +1), the conservation of R-parity allows only the processes whose final states

include even number of superpartners (PR = −1).

• In the decay chain of a superpartner, lightest supersymmetric particle (LSP)

which cannot decay into a SM particle in the final state due to conservation of R-parity

must be a stable particle. So, at least one sparticle must be existed as LSP in the final

state. If LSP is neutral, it could be evaluated for non-baryonic dark matter candidate.
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3.3. Successes and Problems of the MSSM

MSSM is firstly introduced to solve the gauge hierarchy problem by stabilizing

the Higgs sector which suffers from contributions coming from quantum corrections. In

addition to its success in stability of Higgs sector, unifying there gauge couplings in high

energies so-called “Grand Unification Scale” provides extra motivation to MSSM.

In SM, gauge couplings of electromagnetic, weak and strong forces do not unify

in high energy scales as shown in Figure 3.2. However, MSSM has an energy scale at

which three gauge couplings has the same strength. In Figure 3.2, while X axis represents

Figure 3.2. Evaluation of gauge couplings in SM (left) and MSSM (right)

the mass or energy on logarithmic scale, Y axis shows 1/strength in terms of fine-structure

constant which is linked into square of the corresponding gauge coupling constant.

R-parity and additional particle content of MSSM provide a strong motivation for

dark matter problem of SM. As discussed in section 2.2, even though SM explains all

the observed particles and their interactions with great precision, these particles corre-

spond to small fraction of total matter in the universe. Dark matter which composes 23%

of the observable universe remains unexplained in SM. As result of R-parity, if light-

est supersymmetric particle (LSP) is neutral and colorless such as neutralino, sneutrino

and gravitino, it cannot take part in electromagnetic and strong interactions. Therefore

MSSM could represent its lightest supersymmetric particle (LSP) as a candidate for the

dark matter.

Since sparticles are not observed in experiments in the same energy level of their

corresponding SM particles, it is sure that SUSY should be a broken symmetry. In order
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to cancel one loop radiative correction from the top quark, corresponding top squark mass

should be around 1 TeV. Therefore, soft SUSY breaking scale must be above electroweak

scale. Although this rescaling creates gauge hierarchy problem one more time, the re-

quired fine-tuning is not so much. In this way, MSSM reduces gauge hierarchy problem

of SM to “little hierarchy problem”.

One of the most important problem of the MSSM is the µ problem. The bi-linear

mixing of the MSSM Higgs doublets are characterized with the µ-term in the superpo-

tential, and this term is crucial in the electroweak symmetry breaking (EWSB). In this

context, EWSB condition can determine the value for µ-term up to its sign. Despite its

connection to EWSB, µ-term can be at any scale, since it preserves SUSY. This is called

µ-problem in MSSM.

3.3.1. Higgs Boson Excesses in CMS

In addition to the problem discussed above, detailed analyses have revealed some

anomalies in decay channels of the Higgs boson. While combination of all decay channels

excludes the range ∼ 150 < mh < 1000 GeV [11], there is an excess in h → γγ at

mγγ ≈ 137 GeV, in addition to that observed at mγγ ≈ 125 GeV [12]. Similarly, h→ 4l

exhibits an excess at around m4l ≈ 146 GeV [13].

Figure 3.3. CMS data for Higgs boson decays to two photons and Higgs boson decays
to four leptons
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Figure 3.3 displays the cross-sections of h → γγ and h → ZZ → l+l−l+l−

decay channels normalized to the SM prediction. CMS data for h→ γγ and h→ ZZ →
l+l−l+l− decay channels have revealed excesses at 125 GeV as illustrated in Figure 3.3.

Even though MSSM predicts five physical Higgs bosons, they are quite heavy

(generally > 500 GeV) if one considers SUSY GUT models in which an underlying

GUT gauge group breaks into the MSSM at the GUT scale. Figure 3.4 illustrates the

mass relation between MSSM Higgs bosons. The excess in h → γγ channel (left) can-

not be accommodated in SUSY GUT models with universal boundary conditions [24].

Moreover, the peak at about 135 GeV requires extra Higgs bosons in addition to those in

MSSM. Similarly, in CMS data of higgs boson decaying to four lepton via two Z bosons

as shown in Fig.3.3 (right), the first peak at 125 GeV can be explained with the SM Higgs

boson. However, the excess at about 145 GeV cannot be explained with the Higgs bosons

in minimal SUSY GUT models.

Figure 3.4. Mass of the second lightest Higgs boson vs mass of the SM-like Higgs
boson in MSSM
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CHAPTER 4

B-L SYMMETRIC SSM

4.1. U(1)B−L Extention of MSSM

Some of the terms in the MSSM superpotential violates lepton or baryon number

which lead to the unobserved rapid proton decay. One possible solution to this problem

is to define a new symmetry so-called R-parity under MSSM gauge group as discussed in

subsection 3.2.1. Since the attempts to explain R-parity in MSSM require some assump-

tions, these are all “non-minimal” solutions. When the minimality discussion is taken into

consideration, MSSM may not cover the full story and one may consider some extensions

of the MSSM gauge group. One of the simplest extension of MSSM gauge group can be

constructed by imposing an extra U(1) group. Such an extension can be obtained from

the underlying GUT theories including a gauge group larger than SU(5) [21]. Among

the many different U(1) extensions, U(1)B−L can be preferred since anomaly cancella-

tions are achieved by adding three MSSM singlet and R-parity arises in a natural way if

the MSSM is invariant under a global U(1)B−L symmetry. Right-handed neutrino can be

considered for these MSSM singlet fields. In this way, non-zero neutrino masses [22] can

be acquired through different see-saw mechanisms in anomaly free U(1)B−L extention

of MSSM. In the type-I seesaw mechanism, Majorana mass term is not allowed till B-L

symmetry gets broken. After B-L symmetry breaking, the right handed neutrinos acquire

their Majorana masses. Moreover, R-parity which we define to avoid rapid proton decay

by demanding the MSSM gauge group to be invariant under Z4 symmetry must also be

imposed again with the U(1)B−L extension. Fortunately, smallness of the neutrino masses

do not allow the R-parity violation. Besides, R-parity conservation continues even after

U(1)B−L symmetry breaking [23]. U(1)B−L symmetry can be broken radiatively through

a similar mechanism to the radiative electroweak symmetry breaking (REWSB) of MSSM

[25]. A proposed field which has non-zero vacuum expectation value (VEV) break the

U(1)B−L symmetry. Besides, this field has to carry non-zero B-L charge and it should

preferably be singlet in order not to break MSSM gauge symmetry. If B-L charge of this

proposed singlet particle is 2, then the R-parity conservation can be sustained. Because
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of the holomorphy feature of the superpotential, another singlet field with B-L charge -2

is required to construct an invariant lagrangian under U(1)B−L gauge group. In this way,

U(1)B−L extention of MSSM (BLSSM) proposes two new singlet Higgs fields X1 and

X2 whose B-L charges are +2 and -2, respectively. These new singlet Higgs fields can

accomodate to the observed Higgs decay excesses at the mass scales other than ∼ 125

GeV. In the rest of this chapter, we briefly describe the model by emphasizing the Higgs

sector of BLSSM.

Names Superfields Spin 0 Spin 1/2 SU(3)C ,
SU(2)L,
U(1)Y ,

U(1)B−L
Squarks, Quarks Q̂i (ũLi

d̃Li
) (uLi

dLi
) (3, 2, 1

6
, 1

3
)

ûcRi
ũ∗Ri

u†Ri
(3, 1, 2

3
, 1

3
)

d̂cRi
d̃∗Ri

d†Ri
(3, 1,−1

3
, 1

3
)

Sleptons,
Leptons

L̂i (ν̃Li
ẽLi

) (νLi
eLi

) (1, 2,−1
2
,−1)

êcRi
ẽ∗Ri

e†Ri
(1, 1,−1,−1)

N̂ c
i Ñ∗i N †i (1, 1, 0,−1)

Higgs,
Higgsinos

Ĥu (H+
u H

0
u) (H̃+

u H̃
0
u) (1, 2, 1

2
, 0)

Ĥd (H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2,−1

2
, 0)

X̂1 X 0
1 X̃1 (1, 1, 0,−2)

X̂2 X 0
2 X̃2 (1, 1, 0,+2)

Table 4.1. Chiral (Matter) Supermultiplets in the BLSSM

Names Superfields Spin 1/2 Spin 1 SU(3)C ,
SU(2)L,
U(1)Y ,

U(1)B−L
Gluino, Gluons Ĝ g̃ g (8, 1, 0, 0)

Winos, W
bosons

Ŵ W̃±, W̃ 0 W±,W 0 (1, 3, 0, 0)

Bino, B boson B̂ B̃0 B0 (1, 1, 0, 0)

B′-ino, B′

boson
B̂′ B̃′0 B′0 (1, 1, 0, 0)

Table 4.2. Gauge (Vector) Supermultiplets in the BLSSM
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4.1.1. Model Description

In this section, we will describe BLSSM with the gauge group

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B−L (4.1)

The superpotential of the BLSSM is given in the following way.

W = µHuHd + Y ij
u QiHuu

c
j + Y ij

d QiHdd
c
j + Y ij

e LiHde
c
j

+Y ij
ν LiHuN

c
i + Y ij

N N
c
iN

c
jX1 + µ′X1X2 (4.2)

where the terms in the first line are associated with MSSM superpotential while the

terms in the second line stand for the interaction between neutrinos and the doublet Higgs

fields, Majorana interactions for the neutrinos and the interaction between singlet Higgs

fields, respectively. Since BLSSM includes right-handed neutrinos, a term describing

neutrino interactions is allowed to write into the superpotential. The coupling of this

term Yν is defined as Yukawa coupling for neutrinos. In a similar way, the interaction

between right-handed neutrinos and singlet Higgs boson X1 is determined by YN yukawa

coupling. Finally, the last term in the BLSSM superpotential stands for bilinear mixing of

the singlet Higgs bosons X1 and X2. In Non-SUSY version of B-L model, mixing terms

for doublet and singlet Higgs fields are allowed in the Lagrangian and Higgs potential

(λ3H
†H|X |2). However, these mixings terms are not allowed through superpotential in

BLSSM. Therefore, Higgs potential of BLSSM does not include any mixing term of these

fields. Then, the Higgs potential of doublet Higgs fields and the Higgs potential of singlet

Higgs fields can be analysed separately. The Higgs potentials associated with the doublet

and singlet Higgs fields are represented in the following way, respectively.

VBLSSM = V (H1, H2) + V (X1,X2) (4.3)

V (H1, H2) =
1

2
g2

(
H∗1

τa

2
H1 +H∗2

τa

2
H2

)2

+
1

8
g′2
(
|H2|2 − |H1|2

)2

+m2
1|H1|2 +m2

2|H2|2 −m2
3 (H1H2 + h.c) (4.4)

V (X1,X2) = µ2
1|X1|2 + µ2

2|X2|2 − µ2
3(X1X2 + h.c.)
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+
1

2
g2
BL(|X2|2 − |X1|2)2 (4.5)

where

m2
i = m2

0 + µ2, i = 1, 2 m2
3 = −Bµ

µ2
i = m2

0 + µ′2, i = 1, 2 µ2
3 = −Bµ′

and gBL is the gauge coupling associated with the B − L gauge group.

Since the singlet Higgs potential is similar to the MSSM Higgs potential, simi-

lar equations are obtained as a result of minimization of the singlet Higgs potential. If

the same steps in the minimization of MSSM potential are applied, the minimization of

V(X1,X2) gives the VEV’s of X1 and X2 as follows:

v′2 = (v′21 + v′22 ) =
(µ2

1 − µ2
2)− (µ2

1 + µ2
2)cos2θ

2g2
BLcos2θ

where the angle tanθ =
v′1
v′2

. Consequently, when singlet Higgs boson masses mX1

or mX2 (or both) is negative, the VEV’s of the X1 and X2 correspond a value bigger than

zero.

4.1.2. Soft SUSY Breaking in BLSSM

Relevant soft supersymmetry breaking (SSB) Lagrangian is represented as fol-

lows:

−L���SUSY = −LMSSM
���SUSY +m2

Ñc|Ñ c|2 +m2
X1
|X1|2 +m2

X2
|X2|2

+AνL̃HuÑ
c + ANÑ

cÑ cX1 (4.6)

+
1

2
MB̃′B̃

′B̃′ +B(µ′X1X2 + h.c.)

In addition to the terms associated with the SSB terms of MSSM, extra terms

breakingU(1)B−L symmetry are added to the SSB Lagrangian of BLSSM to breakU(1)B−L

symmetry. In Eq. 4.6, mÑc , mX1 and mX2 denote the mass terms for the right-handed

sneutrinos and singlet Higgs fields, respectively. Aν term is trilinear scalar interaction

of sneutrinos and MSSM Higgs doublet Hu while AN term is trilinear scalar interac-

tion between right-handed sneutrinos and singlet Higgs boson of BLSSM X1. The term,

MB̃′B̃
′B̃′, is the mass term for gaugino B̃′ which corresponds to the superpartner of the

gauge boson associated with U(1)B−L group. In addition to this, there also exists a vector
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boson partner Z ′. The experimental bounds constrain the Z ′ boson mass to be larger than

2.5 TeV.

When a similar analysis to Radiative Electroweak Symmetry Breaking (REWSB)

is conducted, it can be easily seen from the associated renomalization group equation

(RGE) that the coupling YN between the right-handed neutrinos and the singlet Higgs

boson X1 contributes negatively to m2
X1

as represented in Eq. 4.7.

dm2
X1

dt
=

1

16π2

[
6gBLM

2
BL − 2YN(m2

X1
+ 2m2

N + A2
N)
]

(4.7)

If YN value is large enough, m2
X1

can take negative values which leads to the

spontaneous B-L symmetry breaking. However, it turns out that for the larger values

of YN , the right-handed sneutrino can develop a non-zero VEV as can be seen from the

relevant RGE in Eq. 4.8.

dm2
N

dt
=

1

16π2

[
3

2
gBLM

2
BL − YN(m2

X1
+ 2m2

N + A2
N)

]
(4.8)

As a result, Majorana mass term breaks the R-parity by destabilizing the vacuum

[26]. Therefore, YN value should be large enough to break B-L symmetry but small

enough not to break R-parity.

4.1.3. The Higgs Sector of BLSSM

In this subsection, we will emphasize the Higgs sector of BLSSM. After the spon-

taneous symmetry breaking, fields mix and construct non-diagonal mass matrices. Since

MSSM doublet Higgs bosons and BLSSM singlet Higgs bosons do not mix each other,

doublet and singlet Higgs boson sectors can be analysed separately. Since singlet Higgs

bosons X1 and X2 are singlet under MSSM gauge group, they do not couple to MSSM

particles at tree-level. However, they can still interact with MSSM particles through loop

level.

The Feynman diagrams in Fig. 4.1 represent the interaction between singlet Higgs

field and the fermions in loop level. The top diagrams stand for the non-supersymmetric

interactions while the below ones illustrate how the singlet Higgs field interact through su-

persymmetric partners. In Fig. 4.1, f̃ , Ñ , χ̃0 and χ̃± represent the sfermions, right-handed

sneutrinos, neutralinos and charginos, respectively. In the top left diagram, fermions inter-

act with the singlet Higgs boson through Z ′ loop. However, this interaction is generally

suppressed due to the heavy mass of Z ′ (mZ′ & 2.5 TeV). In the right top and bottom
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Figure 4.1. The effective Yukawa interactions between the singlet Higgs boson and
fermions. The top diagrams illustrate the non-SUSY loops, while the bot-
tom diagrams displays the SUSY interference.

diagrams, since there is no interaction between MSSM gauge group and BLSSM sin-

glet Higgs fields, the singlet Higgs fields cannot couple to the left-handed neutrinos at

tree level. In these diagrams, the interaction between leptons and the singlet Higgs boson

depends on the interaction between right-handed neutrinos, Yukawa coupling of the Majo-

rana mixing YN and the sparticle mass running through the loop. The right below diagram

is also generally suppressed due to heavy masses of right-handed sneutrinos (generally at

TeV scale). The contribution obtained from left below diagram depends on B̃′ mass which

can be light (about 100 GeV) enough to be LSP since there is no experimental bound on

B̃′ mass [27].

According to the discussion above, even though singlet Higgs boson can join to

low scale implications, these contributions obtained from loop order will not be enough to

explain the observed decay anomalies in the SM. However, when the mixing term of the

U(1) gauge groups are added into the Lagrangian, new Lagrangian still remains invariant.

This mixing is defined with the term −κabBa
µνB

b,µν where Bµν is the field strength tensor

of U(1) gauge fields, a, b = Y, B − L, the hypercharge and B-L charge, respectively and

κab is an antisymmetric tensor which mixes the fields associated with U(1)a and U(1)b

gauge groups. Even if the mixing between the MSSM gauge sector and B-L sector is

set to zero at the GUT scale MGUT, it can be induced through RGEs at low energy scale

[28]. In case of non-zero gauge kinetic mixing, the gauge covariant derivative is defined

as follow:

Dµ = ∂µ − i(Y,B − L)

(
gY g̃

g̃′ gB−L

)(
Bµ

B′µ

)
(4.9)
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where the fields is declared in the flavour basis. As discussed in [29], the fields

can be rotated as illustrated below.

(
gY g̃

g̃′ gB−L

)
→

(
g1 gY B

0 g4

)
where g1 stands for the hypercharge coupling associated with the BLSSM, g4 cor-

responds to coupling of the B-L charge and gY B is the coupling related to the mixing of

the U(1)Y and U(1)B−L group [29, 30].

When the gauge kinetic mixing is included into the Lagrangian, the contribution

obtained from the Z ′ loop in the top left diagram starts to be significant. Moreover, gauge

kinetic mixing shows its effect in other sectors, as well. Especially, as soon as the gauge

mixing is included into the BLSSM, MSSM Higgs doublets and BLSSM Higgs singlets

directly interact with each other at tree level. The mixing ratio of the abelian U(1) gauge

groups depends on the coupling gY B. After the gauge kinetic mixing is allowed and

MSSM doublet Higgs bosons and BLSSM singlet Higgs bosons interact with each other,

their mass squared matrices should be diagonalized together. As a fact of this, all particles

in BLSSM can interact at tree level. In this way, the contributions obtained from the

interactions in Fig. 4.1 becomes corrective contribution to tree level interactions. With

the BLSSM singlet Higgs bosons which couples to the MSSM particles at tree level, the

motivation becomes obtained in order to provide an explanation for the excesses at the

scales other than 125 GeV as discussed in previous chapter.

4.1.4. The Right-Handed Neutrino Contribution

As can be seen from the superpotential in Eq. 4.2, there exists a Yukawa term

Y ij
ν LiHuN

c
i so that the right-handed neutrino can interact with MSSM doublet Higgs

boson Hu. This term gives contribution to the SM-like Higgs boson in addition to the

contributions from the stop sector; and hence, it can improve the required fine tuning in

BLSSM by loosing the mass bound on stop. However, after the electroweak symmetry

breaking, this term provides a Dirac mass for neutrinos. The relevant Yukawa coupling

Yν remains to be small (Yν . 10−7) due to the smallness of the neutrino masses [31]. As

a result, the contributions to the Higgs boson from the neutrino sector is suppressed by

such a small Yν . Therefore, the low scale Higgs phenomenology of MSSM and BLSSM

are similar to each other. Yν values can be at the order of unity by implementing the

inverse see-saw mechanism to BLSSM [32]. With the inverse see-saw mechanism, the
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contribution to the Higgs boson from the right-handed neutrinos become unavoidable

[33]. In the superpotential of BLSSM with inverse seesaw, there exists a term (YS ν̂X̂1Ŝ2)

which the SM singlet Higgs field interacts with the SM singlet chiral superfields [27].

This term increases the masses of the singlet Higgs boson in a substantial amount. Hence,

another Higgs boson cannot be accommodated to the mass scale lighter than 150 GeV

in BLSSM with inverse seesaw constrained from MGUT. In other words, another Higgs

boson has to be heavier than 150 GeV in order to be consistent with SM Higgs boson at the

mass scale of 125 GeV. Therefore, we did not involve the inverse seesaw mechanism into

the BLSSM. However, even if BLSSM is not blended with the inverse seesaw mechanism,

the right-handed neutrino sector has significant contribution to the singlet Higgs boson

masses due to the Majorana mixing term (Y ij
N N

c
iN

c
jX1) in the superpotential. However,

since the SM-like Higgs boson Hu does not take significant contribution from the right-

handed neutrinos through the Yukawa interaction term Y ij
ν LiHuN

c
i , the singlet Higgs

bosons can be light enough in spite of diagonalizing with doublet Higgs fields of MSSM.
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CHAPTER 5

MASS SPECTRUM AND HIGGS BOSON DECAYS IN

BLSSM

This chapter is arranged as follow: After we summarize the scanning procedure

and the experimental constraints employed in our analysis in section 5.1, we present our

results for the mass spectrum in section 5.2. We also briefly mention about leptogenesis

in this section. In section 5.3, we consider the Higgs boson decays into two photons and

four leptons. Finally we summarize and conclude the thesis in section ??

5.1. Scanning Procedure and the Experimental Constraints

We have employed SPheno 3.3.3 package [34] obtained with SARAH 4.5.8 [35].

In this package, weak scale values of the gauge and Yukawa couplings in MSSM are

evolved to the unification scale MGUT through RGEs. MGUT scale is determined by the

requirement of the gauge coupling unification. Since the effective field theory (EFT)

is just an approximation of a full theory which is valid at the low energy scale (below

some threshold), the threshold corrections should also be calculated or estimated while

studying with a GUT theory. If Aeff is any amplitude calculated with the EFT and Afull is

the amplitude for the same process calculated with the full theory, the threshold correction

is defined as Afull − Aeff . Since a few percent deviation at MGUT scale is considered for

GUT-scale threshold corrections, we do not strictly enforce the exact unification condition

g1 = g2 = g3 atMGUT [36]. We rather allow a few percent deviation in g3 in order to count

some unknown threshold corrections at MGUT. With the boundary conditions determined

at MGUT scale, all SSB parameters along with gauge and Yukawa couplings are evolved

back to the weak scale. The gauge coupling associated with the U(1)B−L is determined

by a constraint g1 = g2 = g4 ≈ g3.

The requirement of the radiative electroweak symmetry breaking (REWSB) [37]

puts an important theoretical constrain in the parameter space. In addition, B-L symmetry

breaking and R-parity conservation contraint rather right-handed neutrino sector and the

relevant Yukawa coupling YN as discussed in the subsection 4.1.2. We set YN = 0.4 in

our work also to avoid the Landau pole while the RGEs are run up to the GUT scale.
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We have performed random scans over the following parameter space.

0 ≤ m0 ≤ 3 (TeV)

0 ≤ M1/2 ≤ 5 (TeV)

1.2 ≤ tan β ≤ 60

−3 ≤ A0/m0 ≤ 3

µ > 0, µ′ > 0, mt = 173.3 GeV

(5.1)

In Eq. 5.1, m0 is the SSB mass term for all scalar fields including the MSSM

doublet and BLSSM singlet Higgs fields while M1/2 stands for the SSB mass term for

gauginos including the B′ gauge boson corresponding to the U(1)B−L group. As A0 rep-

resents the SSB trilinear scalar interacting terms, tan β denotes the ratio of the vacuum

expectation values of MSSM Higgs doublets. The ratio of the VEVs of BLSSM singlet

Higgs fields is also a free parameter in BLSSM. However, in this work this ratio is con-

strained at the unity order (tan β′ ≡ vX1/vX2 ≈ 1−1.2). Moreover, we scan only positive

values of µ and µ′ which are bilinear mixing of the MSSM doublet and BLSSM singlet

Higgs fields, respectively. Besides, we set the top quark mass mt to its central value (≈
173.3 GeV) [38]. The reason of this is that sparticle masses are not too sensitive to top

quark mass [39] while Higgs boson mass can vary approximately 1-2 GeV depending on

the top quark mass [40]. Finally, we also vary the coupling gY B associated with gauge

kinetic mixing but fix YN ≈ 0.4.

While scanning the parameter space, we use our interface which employs Metropolis-

Hasting algorithm as in [41]. All the data points are controlled by SPheno package to

satisfy the requirement of REWSB. After the data is collected, the mass bounds for all

particles [42] and the following phenomenological constraints are applied.

mh = 123− 127 GeV [3, 4] (5.2)

mg̃ ≥ 1.8 TeV (5.3)

mτ̃ ≥ 105 GeV (5.4)

mχ̃±1
≥ 103.5 GeV (5.5)

mt̃1 ≥ 175 GeV (5.6)

0.8× 10−9 ≤ BR(Bs → µ+µ−) ≤ 6.2× 10−9(2σ) (5.7)

2.99× 10−4 ≤ BR(b→ sγ) ≤ 3.87× 10−4 (2σ) (5.8)

0.15 ≤ BR(Bu → τντ )MSSM

BR(Bu → τντ )SM

≤ 2.41 (3σ) (5.9)
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In parameter space, we choose µ > 0 and µ′ > 0 to force the solutions at least as

good as the Standard Model prediction for the muon anomalous magnetic moment [45].

In addition to the constraints mentioned above, another constraint comes from

the dark matter (DM) observations. This constraint demands the lightest supersymmetric

particle (LSP) stable and of no electric or color charge. However, when this constraint is

applied, it significantly limits the parameter space and excludes the regions leading to τ̃ or

t̃ LSP solutions. On the other hand, even if a solution is excluded by the DM constraints,

such solutions can still survive in some DM scenarios [46]. Therefore, the DM constraints

is not implemented in our scan and we do not require the solutions to yield neutralino LSP.

5.2. Mass Spectrum

Figure 5.1. Plots in m0 − M1/2, m0 − A0/m0, m0 − tan β, and gY B(GUT) −
gY B(SUSY) planes. All points are consistent with REWSB. Green points
satisfy the mass bounds and the constraints from the rare B-decays. Blue
points form a subset of green, and they represent solutions withmh2 ≤ 150
GeV.
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Figure 5.2. Plots in the MSUSY− vX , mN2 −mN1 , MÑ1
− vX , and mÑ2

−mÑ1
planes.

The color coding is the same as Figure 5.1. The solid line in the MSUSY −
vX plane indicates the regions where MSUSY = vX .

In this section, we present the results for the mass spectrum obtained from the

scan over the parameter space given in Eq.(5.1). Figure 5.1 displays the regions with

plots in m0−M1/2, m0−A0/m0, m0− tan β, and gY B(GUT)−gY B(SUSY) planes. All

points are consistent with REWSB. The solutions which satisfy the mass bounds and the

constraints from the rare B-decays are illustrated with green points. Blue points form a

subset of green, and they stand for solutions withmh2 ≤ 150 GeV. We can easily see from

the m0 −M1/2 plane that the condition for the second Higgs boson lighter than 150 GeV

(blue) excludes significant portion of the LHC allowed region (green). ForM1/2 ∼ 1 TeV,

m0 is restricted to a narrow range at about 500 GeV, and this range evolves to 2 TeV for

heavier gaugino masses. This relation can be partially understood with the heavy gaugino

effect on the singlet Higgs boson mass. Even though we require very light mass range

for all scalar particles at the GUT scale, the heavy gaugino masses (MB−L) increase the

singlet Higgs boson mass such that mh2 . 150 GeV. On the other hand, large values of

m0 correspond to heavy mX1 and mN . As can be seen from Eq.(4.7), larger values of
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Figure 5.3. Plots in mt̃1 −mχ̃0
1
, mb̃1

−mχ̃0
1
, mτ̃1 −mχ̃0

1
, and mχ̃±1

−mχ̃0
1

planes. The
color coding is the same as Figure 5.1. In addition, the solid line shows the
degenerate mass region in each plane.

mX1 and mN reduce the singlet Higgs boson mass. The results in the m0 −M1/2 plane

represents that the highest values of m0 can be obtained when m0 ≈ M1/2 ∼ 2 TeV.

On the other hand, one needs to consider the effects of the tri-linear scalar interaction

coupling to clarify the shape of the BLSSM parameter space. The regions with larger m0

values requires positive SSB trilinear scalar interaction term. Besides, whenA0/m0 & 1.5

, m0 can be as large as 2 TeV and the solutions can still yield two Higgs boson with mass

≤ 150 GeV. When A0 is negative, the RGE evolution of AN has an increasing slope, and

its contribution to the singlet Higgs boson decreases the heavy gaugino effect. Therefore,

the solutions with large AN needs to be restricted with the low m0 and M1/2 values. The

m0 − tan β plane shows that it is possible to find solutions with mh2 ≤ 150 GeV for

almost all values of tan β. Finally the gY B(GUT) − gY B(SUSY) plane represents our

results based on the gauge kinetic mixing. Even though we vary it in the perturbative

level at the GUT scale, its low scale value is found in the range (−0.15− 0).

In Figure 5.2 we present our results in the MSUSY − vX , mN2 −mN1 , MÑ1
− vX ,
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Figure 5.4. Plots in mq̃ −mg̃ and mµ̃L −mµ̃R planes. The color coding is the same as
Figure 5.1.

and mÑ2
−mÑ1

planes. The color coding is the same as Figure 5.1. The solid line in the

MSUSY − vX plane indicates the regions where MSUSY = vX . According to our results,

the breaking of U(1)B−L happens at about vX ≈ 5 TeV. Since U(1)B−L is no more the

symmetry in the model, the existence of the right-handed neutrinos can trigger baryon and

lepton number violating processes, which can be considered as a source for the baryon

asymmetry in the Universe. Assuming that the supersymmetric particles all decouple

below MSUSY, the MSUSY − vX plane shows that U(1)B−L symmetry breaking can be

realized in both supersymmetric regime (vX > MSUSY) and non-supersymmetric regime

(vX < MSUSY). In the non-supersymmetric regime, the baryon and lepton violating pro-

cesses depend on the right-handed neutrinos. Since the Yukawa coupling associated with

the neutrinos is very small (Yν ∼ 10−7), the thermal leptogenesis can provide sufficient

baryon asymmetry when the right-handed neutrinos are degenerate in mass [31, 47]. As

shown in the mN2 −mN1 plane, the right-handed neutrino masses (∼ 1.7− 2.2 TeV) are

nearly degenerate . In addition to the right-handed neutrinos, the sneutrino-antisneutrino

can be counted as another source in the supersymmetric regime [48]. After the right-

handed neutrinos decouple, B − L symmetry is restored as a global symmetry.

Figure 5.3 represents the results for the sparticle mass spectrum with plots inmt̃1−
mχ̃0

1
, mb̃1

− mχ̃0
1
, mχ̃±1

− mχ̃0
1

and mτ̃1 − mχ̃0
1

planes. The color coding is the same as

Figure 5.1. In addition, the solid line shows the degenerate mass region in each plane. As

is seen from the mt̃1 − mχ̃0
1

and mb̃1
− mχ̃0

1
planes, mt̃1 & 1 and mb̃1

& 1.5 TeV, and

these masses are mostly required to realize the SM-like Higgs boson mass at about 125

GeV. Moreover, the mχ̃±1
−mχ̃0

1
plane shows that the lightest chargino cannot be lighter

than 600 GeV. Even though we do not require the neutralino to be LSP, it is found much
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lighter than other sparticles except stau. The mτ̃1 − mχ̃0
1

plane represents the stau mass

along with the neutralino mass, and it can be lighter than neutralino as well as being much

heavier. One can constrain the stau mass further by the prompt decay of stau to gravitino

in the case of gravitino LSP [49].

We continue with Figure 5.4 to present our results for the sparticle spectrum with

plots in mq̃ − mg̃ and mµ̃L − mµ̃R planes. The color coding is the same as Figure 5.1.

The mq̃ − mg̃ shows that the squarks from the first two families and gluino should be

heavier than 2 TeV. Even though we impose a mass bound on gluino at about 1.8 TeV, the

other LHC results mentioned in Section 5.1 constrain gluino mass further to about 2 TeV

(green). Imposing the condition that mh2 ≤ 150 GeV (blue) does not constrain the gluino

or squark masses strictly. Similarly the results for the smuon masses are represented in the

mµ̃L −mµ̃R plane. According to the our results, the lightest left- and right-handed smuon

masses are about 1 TeV. In this case, one can expect relatively better result for the muon

anomalous magnetic moment (muon g − 2), but since the supersymmetric contributions

are more or less suppressed by the smuon masses, the results for the muon g − 2 hardly

reach to 2σ band of the experimental results.

Figure 5.5. Plots in mh2 −mh1 and mh3 −mA1 planes. The color coding is the same
as Figure 5.1 except that the Higgs mass bound in green is not applied in
the mh2 − mh1 plane since mh1 is plotted in one axis. The diagonal line
represents the mass degeneracy.

Finally we display our results for the mass spectrum of the Higgs bosons in Figure

5.5 with plots inmh2−mh1 andmh3−mA1 planes. The color coding is the same as Figure

5.1 except that the Higgs mass bound in green is not applied in the mh2 −mh1 since mh1

is plotted in one axis. The diagonal line represents the mass degeneracy. The mh2 −mh1

plane shows that there are plenty of solutions with mh1 , mh2 ≤ 150 GeV. Moreover,
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following the diagonal line we can see that it is also possible to find the lightest two

Higgs boson with almost degenerate at about mh1 ≈ mh2 ∼ 125 GeV. The other Higgs

bosons are found rather heavy (& 1 TeV) as shown in the mh3 −mA1 plane.

5.3. Higgs Boson Decays

We have represented the mass spectrum in BLSSM in the previous section. As

mentioned, BLSSM provides an extra Higgs boson which can be lighter than 150 GeV,

and even two Higgs bosons can be degenerate at about 125 GeV. With the mixing between

two Higgs fields this region can provide a relatively rich phenomenology for the Higgs

decays. In this section, we present our results for the Higgs decays into two photons and

four leptons.

5.3.1. h→ γγ

The sparticles shown in Figure 5.3 contribute to the loop induced coupling be-

tween the Higgs boson and two photons in SUSY models. Since their contributions are

inversely proportional to their masses, the contributions from stop and sbottom are sup-

pressed by their heavy masses. The main contribution comes from the stau, since its mass

can be as low as 100 GeV. In addition, chargino contribution can be counted as a correc-

tion. Moreover, since the second Higgs boson mass lighter than 150 GeV can be realized,

there is also an induced coupling between h2 and two photons. One can quantify the

excess relative to the SM prediction in h→ γγ with the parameter Ri
γγ defined as

Ri
γγ =

σ(pp→ hi)× BR(hi → γγ)

σ(pp→ h)SM × BR(h→ γγ)SM

(5.10)

where σ(pp → hi) denotes the production cross-section of the Higgs boson hi, and

BR(hi → γγ) is the branching ratio of the process in which the Higgs boson decays

into two photons. The definitions for the terms in the denominator are the same, but they

represent the SM predictions for the same process.

Eq.(5.10) reveals the importance of the Higgs boson production at the LHC as

well as the loop induced coupling between the Higgs bosons and photons. Since the

Higgs boson couplings to the matter fields in the first two families are negligible, the

main contributions to σ(pp → hi) come from gluon fusion (GGF), vector boson fusion

(VBF), associated vector boson-Higgs (VH) production and higgs production along with
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Figure 5.6. Plots for the Higgs boson production cross-section through GGF (top
panel) and VBF (bottom panel) in the σ(gg → h1) − mh1 , σ(V B →
h1)−mh1 , σ(gg → h2)−mh2 and σ(V B → h2)−mh2 planes. The color
coding is the same as Figure 5.1, except we do not apply the SM Higgs
boson constraint (mh1 ∼ 125 GeV) to the left panel, since mh1 is directly
plotted here. Similarly, the condition mh2 ≤ 150 GeV, represented by the
blue region, is not applied to the right panels, sincemh2 is on the horizontal
axis.

the top quark pair (ttH). Figure 5.6 displays plots for the Higgs boson production cross-

section through GGF (top panel) and VBF (bottom panel) in the σ(gg → h1) − mh1 ,

σ(V B → h1) − mh1 , σ(gg → h2) − mh2 and σ(V B → h2) − mh2 planes. The color

coding is the same as Figure 5.1, except we do not apply the SM Higgs boson constraint

(mh1 ∼ 125 GeV) to the left panel, since mh1 is directly plotted here. Similarly, the

condition mh2 ≤ 150 GeV, represented by the blue region, is not applied to the right

panels, since mh2 is on the horizontal axis. As seen from the plots of Figure 5.6, GGF

dominates in the Higgs boson production at the LHC as happened for the SM Higgs boson.

However, while GGF yields a production cross-section of the order about 102 pb in the

SM [50] and MSSM [51], in BLSSM the GGF cross-section is found at about 20 pb at

most. This is because the Higgs boson couplings are diminished by sinα and cosα, where
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Figure 5.7. Plots in R1
γγ−mh1 , R2

γγ−mh2 and Reff
γγ−meff

h planes. The color coding is
the same as Figure 5.6. The red dashed line indicates the observed cross-
section in h→ γγ normalized to the SM prediction.

α measures the mixing between the Higgs fields. As shown in the σ(gg → h1) − mh1

plane, h1 behaves mostly like the SM Higgs boson, while h2 can share this behavior when

mh2 . 150 GeV. As seen from the σ(gg → h2)−mh2 plane, the h2 production has a sharp

fall for relatively heavier mass scales, and finally it drops to zero for mh2 & 200 GeV. It

is because the second lightest higgs boson is mostly formed by the BLSSM Higgs fields,

which are SM-singlets, as the mass difference between the two lightest Higgs bosons

increases. A similar discussion can hold for the VBF as shown in the bottom plane of

Figure 5.6. VBF is usually the production channel with the second larger contribution,

and it is one order of magnitude smaller than the GGF results.

We present our results for the possible excesses in hi → γγ with plots in R1
γγ −

mh1 , R2
γγ − mh2 and Reff

γγ − meff
h planes. The color coding is the same as Figure 5.6.

The red dashed line indicates the observed cross-section in h → γγ normalized to the

SM prediction. As seen from the R1
γγ − mh1 plane, BLSSM yields plenty of solutions

which can feed the excess in h → γγ for both mh2 ≤ 150 GeV (blue) and mh2 ≥ 150
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GeV (green). These solutions can be explained by effects of the light staus and relatively

light charginos as shown in Figure 5.3. In addition to the light sparticles, also the second

lightest Higgs boson mass can be realized as nearly degenerate with mh1 ≈ 125 GeV, and

it can be seen from the R2
γγ−mh2 plane that it can provide some cross-section in h→ γγ

as much as the SM (R2
γγ ∼ 1). In this region, we have two Higgs bosons of mass about

125 GeV, and both contribute to the cross-section of h → γγ. If we define meff
h and Reff

γγ

as

meff
h =

mh1R
1
γγ +mh2R

2
γγ

R1
γγ +R2

γγ

, Reff
γγ = R1

γγ +R2
γγ (5.11)

the predicted effective cross-section by many solutions are lifted up to region where

Reff
γγ & 1 for meff

h ∼ 125 GeV, as seen from the Reff
γγ −meff

h plane.

Before concluding it should be noted that the second lightest higgs boson can be

accounted for the other peaks at about 137 GeV and 145 GeV observed in the experiments.

As seen from the R2
γγ −mh2 panel, the solutions may relatively provide some non-zero

cross-sections at these mass scales. However, the solutions around the second peak at

137 GeV are excluded by the Higgs boson constraint. Since we have restricted ourselves

with the universal boundary conditions at MGUT, these predictions can be ameliorated by

imposing non-universality.

5.3.2. h→ 4l

Figure 5.8. Plots inR1
ZZ−mh1 andR2

ZZ−mh2 . The color coding is the same as Figure
5.6. The dashed line indicates the observed cross-section, while the solid
line represents the expected cross-section without the Higgs boson.
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A similar discussion can be followed for the process in which the Higgs boson

decays into four leptons. In the SM, this process is mediated via two Z-bosons, each of

which eventually decays into a lepton pair. In BLSSM, such decays can include also Z ′,

but due to its heavy mass (mZ′ = 2.5 TeV in our work), such processes are highly sup-

pressed. Hence, the difference in h → 4l between BLSSM and the observation basically

come from the Higgs boson decays into two Z−bosons. Figure 5.8 represents our results

with plots in R1
ZZ − mh1 and R2

ZZ − mh2 . The color coding is the same as Figure 5.6.

The dashed line indicates the observed cross-section, while the solid line represents the

expected cross-section without the Higgs boson. In contrast to the Higgs decays into two

photons, BLSSM’s predictions can be only as good as ones in the SM, even in the case

of the degenerate Higgs bosons. On the other hand, if one considers the second peak

observed at mh ∼ 145 GeV, it can be seen from the R2
ZZ −mh2 plane, the second Higgs

boson can nicely fill the region around this peak.
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CHAPTER 6

CONCLUSION

We presented the predictions on the mass spectrum and Higgs boson decays in

the BLSSM framework with universal boundary conditions. We briefly mentioned about

the right-handed neutrino sector. The radiative breaking of U(1)B−L symmetry happens at

about 5 TeV below whichB−L is no more the conserved symmetry and the right-handed

neutrinos can trigger baryon and lepton number violating process till they decouple from

the SM sector at 1.7−2.2 TeV. Radiative breaking ofB−L symmetry can happen in both

supersymmetric (vX > MSUSY) and non-supersymmetric (vX < MSUSY). The sneutrino-

antisneutrino mixing can be counted as another source for baryon and lepton asymmetry

in the Universe.

We found the stop and sbottom masses heavier than 1.5 TeV, and gluino mass

greater than 2 TeV. The color sector is required to be heavy in order to realize the SM-

like Higgs boson consistent with the observations. Even though BLSSM’s predictions

for the Higgs boson are similar to MSSM, it predicts another Higgs boson, which can be

lighter than 150 GeV, and even degenerate with the lightest CP-even Higgs boson at about

125 GeV. Besides light staus (& 100 GeV), the second Higgs boson also contributes to

the Higgs decay processes in the presence of gauge kinetic mixing. We showed that the

excess in h → γγ at about 125 GeV mass scale can be realized. The solutions which

can provide an excess at 137 GeV and 145 GeV in this process are rather excluded by the

125 GeV Higgs boson constraint. Such solutions can be improved by considering non-

universal boundary conditions in BLSSM. In addition, we concluded that the BLSSM

predictions for h → 4l are only as good as the ones of the SM, but it is eligible to fit the

second excess at about 145 GeV.
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