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ABSTRACT 

 

DEVELOPMENT OF AN APPLICATION FOR DYNAMIC ITEMSET 

MINING UNDER MULTIPLE SUPPORT THRESHOLDS  

  

Handling dynamic aspect of databases and multiple support threshold 

requirement of items are two important challenges of frequent itemset mining 

algorithms. Frequent itemsets should be updated when the database is updated without 

re-running the mining algorithm. Frequent itemset mining algorithm should consider 

different support thresholds in order not to cause rare item problem. Existing dynamic 

itemset mining algorithms are devised for single support threshold whereas multiple 

support threshold algorithms are static. This thesis focuses on dynamic update problem 

of frequent itemsets under multiple support thresholds and introduces Dynamic MIS1 

and Dynamic MIS2 algorithms. They are i) tree based and scan the database once, ii) 

consider multiple support thresholds, and iii) handle increments of additions, additions 

with new items and deletions. Proposed algorithms are compared to CFP-Growth++ and 

findings are; in static databases 1) Dynamic MIS1 achieves up to 5 times speed-up 

against CFP-Growth++ since it does not require tree pruning and merging, 2) execution 

time of Dynamic MIS2 and CFP-Growth++ are similar, 3) memory usage of Dynamic 

MIS1 is higher than CFP-Growth++, since it keeps whole tree in memory, in dynamic 

database 1) Dynamic MIS1 and Dynamic MIS2 perform better than CFP-Growth++ 

since they run only on increments, 2) Dynamic MIS1 can achieve speed-up of 56 times 

against CFP-Growth++, whereas the speed-up of Dynamic MIS2 cannot exceed 2 times, 

3) Dynamic MIS2 is slightly better than CFP-Growth++ until increment size is less than 

85% when the database is large and sparse, 25% when the database is small and dense. 

 

 

 

 

 

 



v 
 

 ÖZET 

 

ÇOKLU DESTEK EŞIKLERINDE DINAMIK SIK KÜMELER 

MADENCILIĞI IÇIN UYGULAMA GELIŞTIRILMESI  

 

Veritabanlarının devingenliği ve kümelerin farklı destek eşiklerine olan 

gereksinimi, sık kümeler madenciliği algoritmalarının önemli iki zorluğudur. 

Veritabanına gelen her güncellemede, sık kümelerin tüm algoritmanın baştan 

çalıştırılmasına gerek kalmadan güncellenebilmesi ve seyrek kümeler problemine yol 

açmayacak şekilde kümelerin farklı eşik değerlerine olan gereksiniminin dikkate 

alınması gerekmektedir. Mevcut algoritmalar ya güncellemeleri sık kümelere 

yansıtmaya ya da farklı eşik değerlerini dikkate almaya odaklanmışlardır. Bu tez; 

veritabanlarının devingen güncellenmeleri durumunda, sık kümelerin de 

güncellenmesine ve sık kümelerin farklı eşik değerleri gözedilerek bulunmasına 

yoğunlaşmış ve Dynamic MIS1 and Dynamic MIS2 algoritmalarını önermiştir. Bu 

algoritmalar i) ağaç tabanlıdır ve veritabanını sadece bir kere tarar, ii) çoklu eşik 

değerlerini dikkate alır ve iii) eklemeli, yeni elemanla eklemeli ve silmeli 

güncellemelerde sık kümeleri güncelleyebilirler. Önerilen algoritmalar CFP-Growth++ 

algoritması ile karşılaştırılmış ve şunlar bulunmuştur; statik veritabanlarında 1) 

Dynamic MIS1, CFP-Growth++’dan 5 kata kadar daha hızlıdır çünkü ağaç budama ve 

birleştirme yapmamaktır, 2) Dynamic MIS2 ve  CFP-Growth++ algoritmalarının çalışma 

zamanları yakındır, 3) Dynamic MIS1’ın bellek gereksinimi tüm ağacı tutması gerektiği 

için CFP-Growth++’dan daha fazladır, devingen veritabanlarında ise 1) sadece gelen 

güncelleme üzerinde çalıştıkları için Dynamic MIS1 and Dynamic MIS2 algoritmaları 

CFP-Growth++’dan hızlıdırlar, 2) Dynamic MIS1’ın hızlanması  56 kata kadar 

ulaşırken, Dynamic MIS2’inki 2 katı geçemez,  3) geniş ve seyrek veritabanında gelen 

güncellemenin büyüklüğü % 85’i, küçük ve sık veritabanlarında ise % 25’i geçmediği 

durumlarda Dynamic MIS2 algoritması CFP-Growth++’dan daha etkindir.  
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1 CHAPTER 1 

INTRODUCTION 

 

Lately intensive research focused on association rule mining, which is one of the 

main tasks of data mining. Association Rule Mining has received greater focus because 

of its applicability in decision support, share market, layout of shelves in supermarkets, 

web log analysis, text mining, understanding customer behavior, telecommunication 

alarm diagnosis, and prediction [19]. 

Association rule was first introduced by Agarwal et al. [12] and is defined as, 

X% of the customers who buy item A also buy item B (formulated as A B). Therefore 

association rules are meant to find the impact of one set of items on another set of items. 

Association rule mining has two problems: (1) finding frequent itemsets/patterns, (2) 

generating association rules [13]. But the first problem is the more challenging so it is a 

focus of many studies. Many powerful algorithms have been proposed to find the 

frequent itemsets from massive databases. The most classical one is the Apriori 

algorithm [13] that uses candidate generation and testing approach to discover frequent 

itemsets. Later on other algorithms using Apriori-like technique were introduced in [20, 

21, 22, 23, 24, 25, 26, 27, and 28]. Because of the drawback of candidate generation and 

multiple hits on the database in Apriori-like algorithms, algorithms that do not depend 

on candidate generation were introduced, such as FP-Growth [14] and Matrix Apriori 

[15]. 

The major drawback of the above algorithms is their dependence on single user 

given support value. Single support is not enough because of the rare item problem [18] 

since all items in the data does not have similar frequencies. In many applications, some 

items appear very frequently in the data, while others rarely appear. If minsup is set too 

high, those rules that involve rare items will not be found. To find rules that involve 

both frequent and rare items, minsup has to be set very low. This may cause 

combinatorial explosion because those frequent items will be associated with one 

another in all possible ways [17]. As a result of this. Some algorithms like 

MSapriori[17], CFP-Growth[2], CFP-Growth++[3] and MISFP-Growth [36] are 

introduced to solve the problem of itemset mining under multiple support threshold. 
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One main assumption in all the above-mentioned algorithms is that database is 

static, but in real life, databases are constantly updated with new data, and old data may 

as well be deleted or modified. This implies, the originally discovered association rule 

may no longer be valid and yet new interesting rules may emerge as a result of an 

update on the database. The most straightforward way to update the rules would be to 

repeat the entire mining process from scratch however this is very expensive in terms of 

execution time and memory allocation. Therefore many efficient algorithms both 

dependent on candidate generation and non-candidate generation techniques have been 

introduced in [6, 7, 29, 30, 31 and 32]. These algorithms perform faster and use less 

system resources than repeating the processes from scratch. 

The previous works handle either the dynamic itemset mining with single 

support threshold or static itemset mining with multiple support thresholds. In this 

thesis, we introduce two new algorithms; Dynamic MIS1 and Dynamic MIS2 

algorithms. They provide a solution to the dynamic itemset mining under multiple 

support thresholds problem. The two algorithms are tree based structure, scan the 

database only once and avoid the candidate generation problem, also they handle 

increments with additions, increments with additions with new items and increments 

with deletions. 

The organization of this thesis is as follows: 

Chapter 2 is the related work that gives general information about association 

rule mining, frequent itemset mining. Existing important algorithms for frequent itemset 

mining under multiple support thresholds are presented, followed by a review of 

dynamic itemset mining algorithms and finally an algorithm for dynamic itemset under 

multiple support threshold is mentioned. Chapter 3 proposes Dynamic MIS1 and 

Dynamic MIS2 Algorithms. First, the base algorithm CFP-Growth++ is explained, and 

then the Dynamic MIS1and Dynamic MIS2 Algorithms are introduced with several 

examples. These examples show how each proposed algorithm handles the tree 

building, additions, additions with new items and finally they demonstrate how the 

deletion is handled. Chapter 4 shows the performance evaluation. The chapter begins 

with a presentation of the dataset properties followed by the complexity analysis of the 

algorithms. Then, the performance of our static and dynamic algorithms are compared 

with the base algorithm CFP-Growth++, followed by the last sub section for the 
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discussion on results. Chapter 5 is the conclusion chapter. A summary of this thesis is 

stated and the future work. 
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2 CHAPTER 2    

RELATED WORK 

 

Association rule mining aims to discover the relationships and the patterns in a 

dataset by including two steps: i) finding all frequent itemsets and ii) generating 

association rules from those frequent itemsets. The frequency of an itemset is also 

referred to as the support count, which is the number of transactions that contain the 

itemset. An itemset is named as frequent itemset if its support count satisfies the 

minimum support threshold [34]. Minimum support and minimum support threshold are 

used interchangeably. Confidence, which assesses the strength of an association rule, is 

another measure for defining association rules. The confidence for an association rule X 

 Y is the ratio of transactions that contain X  Y to the number of transactions that 

contain X [12, 14]. A formal definition of association rule mining is: 

Given a set of items I = {I1, I2,…, Im} and a database of transactions D = {T1, 

T2,… , Tn} where each transaction T is a set of items such that T  I, and X, Y are set 

of items, the association rule mining problem is to identify all association rules X Y 

with a minimum support and confidence, where support of association rule X Y is the 

percentage of transactions in the database that contain  X  Y , and confidence is the 

ratio of support of X  Y to support of X [14]. 

 

2.1 Association Rule Mining Algorithms 

 

The Apriori Algorithm is one of the best-known association rule mining 

algorithms [12]. It uses prior knowledge of frequent itemset properties and runs an 

iterative approach called level-wise search. That is, k-itemsets are used to explore (k 

+1)-itemsets (they are called candidate itemsets before testing them against the 

database) by eliminating the candidates that do not satisfy the minimum support. This 

process terminates when no frequent or candidate set can be generated. The efficiency 

of the level-wise generation of frequent itemsets is improved by the Apriori Property: 

“All nonempty subsets of a frequent itemset must be frequent”. By means of this 
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property, many unnecessary candidate generation and support counting are eliminated 

[34]. This property is used in many other association rule mining algorithms such as 

Fast Update Algorithm [6], Fast Update 2 Algorithm [7], FP-Growth Algorithm [14] 

and Matrix Apriori Algorithm [15].  

FP-Growth Algorithm handles the weaknesses of Apriori which are multiple 

scans of the database and candidate generation. It finds frequent itemsets without 

candidate generation by using a tree structure, called FP-tree, where each node stores an 

item with its number of occurrence in the database and a link to the next node. FP-tree 

creation is shown in Figure 2.1. First, frequent items are determined from the database 

as in Figure 2.1.a and then the tree is constructed as in Figure 2.1.b. A header table, in 

which frequent items with their support counts are kept in a descending order of support 

counts, is built to simplify tree traversal. The frequent itemsets are discovered with only 

two scans over the database. The first scan is for getting frequent 1-itemsets and their 

support counts same as the Apriori Algorithm and the second one is for generating the 

FP-tree. When the minimum support decreases, the length of frequent items and the 

number of candidate items increase consequently in Apriori. Therefore, FP-Growth 

performs better than Apriori when minimum support value is decreased [14]. 

Here is an example for the FP-Growth as presented in [16]. The FP-Growth 

methods adopts a divide and conquer strategy as follows: compress the database 

representing frequent items into a frequent-pattern tree, but retain the itemset 

association information, and then divide such a compressed database into a set of 

condition databases, each associated with one frequent item, and mine each such 

database. 

In Figure 2.1 FP-Growth algorithm is visualized for an example database with 

minimum support value 2 (50%). 
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Figure 2.1.  FP-Growth example. 

 

First, a scan of database derives a list of frequent items in descending order (see 

Figure 2.1a). Then FP-tree is constructed as follows. Create the root of the tree and scan 

the database second time. The items in each transaction are processed in the order of 

frequent items list and a branch is created for each transaction. When considering the 

branch to be added for a transaction, the count of each node along a common prefix is 

incremented by 1. In Figure 2.1b, we can see the transactions and the tree constructed 

[16]. 

The Matrix Apriori Algorithm offers a simple and efficient solution to the 

association rule mining. Database scan step is similar to FP-Growth whereas generating 

association rules from discovered patterns is similar to Apriori. As a result, Matrix 

Apriori combines the two algorithms by using their positive properties [15]. [16] 

Compared FP-Growth and Matrix Apriori algorithms by using different characteristics 



7 
 

of data and found that the total performance of the Matrix Apriori is better than FP-

Growth for minimum support values below 10%. 

 

2.2 Association Rule Mining with Multiple Support Thresholds 

Algorithms 
 

The major drawback of the above algorithms is their dependence on single 

minimum support value assuming that all the items in the data have the same nature or 

similar frequencies.   So, Single support is not enough because of the rare item problem 

[18] since all items in the data does not have similar frequencies. In many applications, 

some items appear very frequently in the data, while others rarely appear. If minsup is 

set too high, those rules that involve rare items will not be found. To find rules that 

involve both frequent and rare items, minsup has to be set very low. This may cause 

combinatorial explosion because those frequent items will be associated with one 

another in all possible ways [17]. Some algorithms like MSapriori [17] , CFP-Growth 

[2],  CFP-Growth++ [3]  and MISFP-Growth [36], are introduced to solve the problem 

of itemset mining under multiple support thresholds. 

MSapriori [17] is an extension of the existing association rule model that allows 

user to specify multiple minimum support thresholds in order to reflect different 

frequencies or natures of the items in the database. So the user can specify a different 

minimum support for each item (MIS) value. By providing different MIS values for 

different items, the user will effectively describe different support requirements for 

different rules. Let MIS (i) denote the MIS value of item i. The minimum support of a 

rule R is the lowest MIS value among the other items in the rule. Such that, a rule R, a1 , 

a2 , ……, ar where aj belongs to I , satisfies its minimum support if the rule’s actual 

support is greater than or equal: min(MIS(a1), MIS(a1),……, MIS(ar)) [17]   

Example in [17]: Consider the following items in a database, bread, shoes, clothes. 

The user-specified MIS values are as follows: 

MIS(bread) = 2% , MIS(shoes) = 0.1%, MIS(clothes) = 0.2% 

The following rule does not satisfy its minimum support: 

clothes  bread [sup = 0.15%, conf = 70%] 
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because min(MIS(bread), MIS(clothes)) = 0.2%. 

 The following rule satisfies its minimum support: 

clothes  shoes [sup = 0.15%, conf = 70%] 

because min(MIS(clothes), MIS(shoes)) = 0.1% [17]. After the application of MSapriori 

algorithm [17], all frequent itemsets are found but the supports of some subsets may still 

be unknown. So, to generate association rules, a post processing phase is needed to find 

the supports of all subsets of frequent itemsets. This process is time consuming because 

we need another scan for the database to compute the supports of all subsets of frequent 

itemsets. To overcome both problems, a multiple item support tree (MIS-tree) is 

proposed which is an extension of the FP-tree structure, the CFP-Growth algorithm was 

developed to mine the complete set of frequent patterns with multiple minimum items 

supports [2].   

The CFP-growth algorithm has the following three steps: 

 Construction of a tree structure, called MIS-tree, using every item in the 

database. 

 Generating compact MIS-tree by pruning the items from MIS-tree that cannot 

generate any frequent pattern. 

 Mining compact MIS-tree using conditional pattern bases until all frequent 

patterns are generated. 

Below is an example for CFP- Growth algorithm [2]. 

Table 2.1 shows the items sorted the right most column in descending order of their 

MIS values as given in Table 2.2: 

 

Table 2.1. Transaction database D. 

 TID Item bought Item bought (ordered) 

100 d, c, a, f a, c, d, f 

200 g, c, a, f, e a, c, e, f, g 

300 b, a, c, f, h a, b, c, f, h 

400 g, b, f b, f, g 

500 b, c b, c 
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Table 2.2. Multiple minimum supports (MIS) values of each item in D. 

Item  A b c D e f G h 

MIS 

value 

80%(4) 80%(4) 80%(4) 60%(3) 60%(3) 40%(2) 40%(2) 40%(2) 

 

The incompact MIS-tree is built using every item in the database D. The result 

MIS-tree is illustrated in Figure 2.2. 

 

Figure 2.2. The incompact MIS-tree (before MIS_Pruning and MIS_Merge). 

 

 Those items with supports no less than MIN = 2 (all items in F) in our MIS-tree 

should be retained. While these items {h, d, e} will be deleted because their 

support is less than MIN = 2. This process is called the pruning process. 

  After removing these nodes, the remaining nodes in the MIS-tree may contain 

child nodes carrying the same item-name. MIS_Pruning process of MIS-tree is 

shown in Figure 2.3. 
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Figure 2.3. MIS_Pruning process of MIS-tree. 

 

 For the sake of compactness, we traverse the MIS-tree and find that node (c:2) 

has two child nodes carrying the same item-name f. 

 These two nodes are merged into a single node with item-name=f, and its count 

is set as the sum of counts of these two nodes. 

 MIS_Merge process of MIS-tree after removing items d, e and h is shown in 

Figure 2.4. 
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Figure 2.4. MIS_Merge process of MIS-tree. 

 

The final result complete and compact MIS-tree is presented in Figure 2.5. 

 

 

Figure 2.5. The complete and compact MIS-tree. 

 

The CFP-Growth algorithm is examined by starting from the bottom of the header table 

 To build a conditional pattern base and conditional MIS-tree for item g. 

 There are two paths in the MIS-tree: (a:3, c:2, f:2, g:1) and (b:2, f:1, g:1). 

To build the conditional pattern base and conditional MIS-tree for g: 

 The node g is excluded in these two paths, so (a:1, c:1, f:1) and (b:1, f:1) are the 

g’s Conditional pattern base. The g’s conditional MIS-tree is shown in Figure 

2.6. 
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Table 2.3. Conditional pattern base. 

 

 

Figure 2.6. g’s conditional MIS-tree. 

 

 All the frequent pattern must be greater than or equal MIS (g). 

By repeating this process for other items we will get the conditional patterns and 

conditional frequent patterns in Table 2.4. 
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Table 2.4. All Conditional patterns and conditional frequent patterns. 

 

An efficient CFP-Growth algorithm is proposed in [3] by proposing novel 

pruning techniques to Reduce Search Space which is called CFP-Growth++ algorithm. 

The CFP-growth++ algorithm is an improvement over CFP-growth algorithm. The 

differences between CFP-growth and CFP-growth++ are as follows: 

- The CFP-Growth++ employs a better criterion to identify the items that 

cannot generate any frequent pattern. This criterion enables CFP-Growth++ 

to construct compact MIS-tree with only those items that can generate 

frequent patterns. 

- The CFP-Growth++ will not search for frequent patterns until the 

conditional pattern base of a suffix pattern is empty. Instead, it tries to 

identify which suffix patterns can generate frequent patterns at higher order 

and perform search only in them [3].  

 

 The steps involved in CFP-Growth++ are as follows; 

i. Construction of MIS-tree 

ii. Generating compact MIS-tree 

iii. Mining frequent patterns from the compact MIS-tree. 

More explanation and a complete example about CFP-Growth++ are illustrated 

in Chapter 3. 

MISFP-Growth [36], is an extended version of FP-Growth [14]. It is similar to 

FP-Growth with slight differences. The main differences between MISFP-Growth and 

FP-Growth are as follows;  

1. FP-Growth is based on single threshold whereas MISFP-Growth is based on multiple 

item support thresholds.  
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2. Items in FP-Growth method are arranged in descending order in terms of their actual 

support whereas in MISFP-Growth items are sorted in descending order in terms of 

their support threshold values.  

MISFP-Growth requires the following essential steps: 

1. Scan database DB once to find out the actual support of each item. 

 2. Find the lowest minimum support threshold (MIN-MIS) among all items in database. 

 3. Scan DB once again to collect items that satisfy MIN-MIS in each transaction, sort 

them in the descending order of their predefined MIS and insert these items into the 

MISFP-Tree. If the appropriate node of an item exists, its count is increased by one. 

Otherwise, a new node is inserted in the MISFP-Tree.  

4. Create MIN-MIS-frequent header table of MISFP-Tree, that holds items with support 

no less than MIN-MIS in descending order of MIS values of items. It consists of item-

name, MIS of item and the head of nodelink that point to item’s occurrences in the 

MISFP-Tree. Nodes that have the same itemname are linked in sequence to simplify 

tree traversal.  

5. Build the conditional pattern base and the conditional MISFP-Tree of each suffix 

item whose support is greater than or equal to its predefined MIS. These two data 

structures represent the knowledge extracted from MISFPTree. 

The experimental results indicate that MISFP-Growth performs better than CFP-

Growth++  in term of both runtime and memory consumption. 

All of the above algorithms ignore the dynamicity of the databases. However, 

transactional databases are dynamic in general. When new transactions arrive or some 

transactions are deleted from the database, these algorithms should be re-run in order to 

find the current frequent itemsets. Dynamic frequent itemset mining is the solution for 

that problem.  
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2.3 Dynamic Association Rule Mining Algorithms 

 

The first group of incremental itemset mining algorithms are Apriori based [6] 

and [7]. Fast Update (FUP) Algorithm is the first algorithm proposed for incremental 

mining of frequent itemsets. It handles the databases with transaction insertion. The 

main working principle of this algorithm can be summarized in two steps. In the first 

step only new transactions are scanned to generate 1-itemsets. In the second step these 

itemsets are compared with the previous ones and all frequent itemsets of the same size 

are discovered iteratively. There are four possible cases in this algorithm when new 

transactions are added:  

 Case 1: If the itemset is frequent both in the original database and the new 

transactions, 

the itemset is always frequent. 

 Case 2: If the itemset is frequent in the original database but infrequent in the 

new transactions, the frequency of the itemset is determined from the existing 

information. 

 Case 3: If the itemset is infrequent in the original database but frequent in the 

new transactions, the original database should be scanned in order to determine 

frequent itemsets. 

 Case 4: If the itemset is infrequent both in the original database and the new 

transactions, the itemset is always infrequent. 

 

The original database should be scanned only in Case 3. In the first iteration, 

new transactions are scanned. If the itemset is frequent in the original database, the 

support count is calculated by adding the supports in the original database and the new 

transactions. 

This support count is compared with the support threshold of the updated 

database and if it does not satisfy the support threshold, the item is accepted as a loser 

and is pruned. Otherwise, when the itemset satisfies the support threshold, it remains to 

be frequent in the updated database. If the itemset is not frequent in the original 

database, it is a potential candidate set. If its support count fails to satisfy the minimum 

support threshold in the new transactions, the item is pruned. Otherwise, original 

database is scanned in order to determine its frequency. FUP significantly reduces the 
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number of candidate sets generated and is found to be 3 to 7 times faster than re-running 

Apriori for small support threshold. For larger support, FUP still outperforms [6]. 

FUP2 copes with both insertion and deletion of transactions, was proposed by 

[7]. The algorithm is an extended version of FUP and it is equivalent to FUP in the 

insertion case. Previous mining results are used in order to find frequent itemsets in the 

insertion case and in the deletion case as well. The frequent k-itemsets from previous 

mining results are used in order to divide the candidate set Ck into Pk and Qk where Pk is 

the set of candidate itemsets which have been frequent previously and Qk is the set of 

candidate itemsets, which have been infrequent before. The support counts of any 

candidate item in Pk are known from previous mining result, so scanning only deleted 

and inserted transactions is enough to update the support counts of candidates in Pk. The 

main working principle can be summarized in two steps. First, the deleted transactions 

are scanned so some candidate items can be deleted from Pk. On the other hand, the 

support counts of itemsets in Qk are unknown because they have been infrequent. 

However, when an itemset in Qk is frequent in the deletions, it must be infrequent in the 

updated database. Second, the inserted transactions are scanned. The insertion case is 

the same as FUP.  

The second group of incremental itemset mining algorithms are without 

Candidate Generation like TIARM [4], IULFP [9] and Dynamic Matrix Apriori [10, 

11]. TIARM (Tree-based Incremental Association Rule Mining) algorithm [4], is an 

extension of FP-growth algorithm and mines frequent pattern without candidate 

generation with different supports. TIARM is capable of handling transaction insertions 

as well as deletions, and achieves this by using a new data structure called INC-Tree 

(INCremental Tree), which is mainly intended to improve storage compression of FP-

tree. Figure 2.7, Initially, INC-Tree is empty with a null root node. Then, transactions 

except the first one are preprocessed by sorting its items according to the item’s 

appearance order in the database and also based on previously inserted transactions. In 

the next step, when transactions are inserted, the support count of the items is also 

updated. 
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Figure 2.7. INC-Tree Construction. 

Association rule mining is a two-step process: 

• Frequent itemsets generation i.e. all the itemsets having support greater than the user 

specified minimum support. 

• Frequent itemsets generated in the step 1 will be used to generate association rules that 

satisfy user specified minimum support. 

Since association rules are generated directly from frequent itemsets, each rule 

automatically satisfies minimum support. 

After constructing INC-Tree, it can be used for mining frequent patterns. First 

discard all the items from INC-Tree which are not satisfying user given min support. 

The sort-list is updated by removing all infrequent items one after another and at the 

same time the tree is pruned by deleting all nodes representing that item.  

After building INC-Tree, new transactions can be added to and deleted from it. 

Lastly, mining of frequent patterns is done as in FP-Growth, with even different support 

values support values without rebuild the tree. TIARM follows divide and conquer 

method to generate frequent patterns without generating candidate itemsets as in FP-

growth. 

 

Steps of TIARM algorithm are: 

TIARM (INC-Tree, min_supp) 

If INC-Tree contains a single path P, then 

For each combination (denoted as b) of the nodes in the 

path P,  

then 

Generate pattern b + a with support = min_supp of 

nodes in b 

Else for each a in the header of tree, do 

{ 
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Generate pattern b = a + a with support = a.support; 

Construct 

(1) b’s conditional pattern base and 

(2) b’s conditional INC-Tree Treeb 

If Treeb is not empty, then 

Call TIARM(INC-Tree, b); 

 } 

 

IULFP (Incremental Updating algorithm based on LFP-tree) [9] uses a different 

data structure known as LFP-tree (Layered Frequent Pattern tree) to maintain frequent 

itemsets whenever the database is updated. As shown in Figure 2.7, LFP-tree is built by 

scanning the database and getting 1-itemsets and their frequency, which forms the first 

level of the tree. Every itemset in each level is represented as 3-tuple < a, v, t >, where 

“a” denotes the itemset, “v” denotes its frequency and “t” is a Boolean value which is 

either 1 or 0 to indicate whether the itemset is frequent or not, respectively. For the case 

of frequent 2-itemsets, they are generated from level 1 itemsets and linked to level 2 and 

the remaining frequent k -itemsets are linked to level k  

 

 

Figure 2.8. LFP- Tree Construction. 

 

When transactions arrive, they are scanned once to get the support count of the 

itemsets. The itemset values for support in level 1 are updated and then determined if 

they are frequent or not. For the remainder of the levels, potential k-frequent itemsets 

are determined from the previous level, and later updated in the LFP-tree. Lastly, all 

frequent patterns are generated by inspecting each conditional pattern in the tree. From 

the comparison tests in [9], IULFP has a mining time of only 69% of FUP. 
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Unlike other dynamic rule mining algorithms that eliminate candidate 

generation, by representing the signature of database in a tree data structure, DMA 

(Dynamic Matrix Apriori) [10, 11] uses a matrix and vector as its data structures. DMA 

is built with the dynamic aspect in mind. This involves storing all the itemsets 

irrespective of their support in the matrix.  

All of the above algorithms are either handle static with single and multiple 

support or dynamic with single support ignoring the dynamicity of the databases with 

multiple support thresholds. However, multiple support is very effective to solve the 

rare item problem. The transactional databases are dynamic in general. When new 

transactions arrive or some transactions are deleted from the database, these algorithms 

should be re-run in order to find the current frequent itemsets. So a solution for the 

problem of dynamic frequent itemset with multiple support mining is needed. 

  

2.4 Dynamic Association Rule Mining with Multiple Support 

Algorithms 
 

In [33] algorithms are developed for maintenance of the MIS tree after support 

tuning and incremental update of database without rescanning database. The 

maintenance algorithm is implemented for MS tuning violating the restriction used in 

the existing maintenance method. This algorithm is based on the CFP-Growth 

algorithm. The results indicate that it performs better than the existing approach (CFP-

Growth). The algorithm is examined for the incremental approach. It performs faster 

than the method of reconstructing the MIS tree. In short, this research has two main 

results. First, it solved the problem occurred in the MIS tree algorithm in [2]. That it 

cannot tune supports of each item with the full flexibility without rescanning the 

database again. Second, it developed an efficient maintenance algorithm after 

incremental update that performs better than reconstruction MIS tree algorithm after 

update of database [33].   

Actually this paper [33] have the same title as our thesis but the contents are 

different and it is based on different algorithm, the main differences are as follows: 

- The algorithm in [33] is a CFP-Growth based. But our proposed algorithms 

are CFP-Growth++ based, while CFP-Growth ++ algorithm is a 

development of the CFP-Growth, and it performs better than CFP-Growth. 
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- The algorithms in [33] handle the maintenance and MS tuning mechanism in 

the based algorithm supposing the case of changing the MIS values of the 

items after building the tree but we assume that the MIS values do not 

change after building the tree. 

- We build the static version of Dynamic MIS1 algorithm, but the algorithm in 

[33] is based on the static version of CFP-Growth. 

- For the update purpose; our algorithms handle increments with additions, 

additions with new items and deletion. While the algorithm in [33] handle 

increments with additions. 

Next chapter proposes our two algorithms which are Dynamic MIS1 and 

Dynamic MIS2 Algorithms. First, the base algorithm CFP-Growth++ is explained, and 

then the Dynamic MIS1and Dynamic MIS2 Algorithms are introduced with several 

examples. These examples show how each proposed algorithm handles the base tree 

building, additions, additions with new items and finally they demonstrate how the 

deletion is handled. 
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3 CHAPTER 3                                                                                 

DYNAMIC MINING UNDER MULTIPLE SUPPORT 

THRESHOLDS ALGORITHMS 
  

There are several outstanding algorithms for the problem of itemset mining 

under single user given support value. However the major drawback of all these 

algorithms is their dependence on single user given support value. Single support is not 

enough because it may cause rare item problem [18]. So recently some algorithms are 

introduced for the problem of itemset mining under multiple support threshold. 

When new transactions arrive or some transactions are deleted from the 

database, the problem of repeating the entire process of mining from the beginning 

occurs. Several research works have developed feasible algorithms for deriving precise 

association rules efficiently and effectively in such dynamic databases but they are 

devised for single support threshold.  

The focus of this thesis is on dynamic update problem of frequent itemsets under 

multiple support thresholds; the challenge is to propose a solution that combines the two 

problems to mine the frequent itemsets under multiple support thresholds dynamically. 

In this study, two new dynamic itemset mining under multiple support thresholds 

algorithms which are called (Dynamic MIS1 and Dynamic MIS2) are introduced and 

explained, which are 1) tree based, 2) have one scan for the databases, 3) avoid the 

candidate generation problem, 4) they handle increments with additions, additions with 

new items and deletions. 

This chapter is divided into three subsections, in the first the motivating example 

dataset. In the second subsection, the base algorithm CFP-Growth++ is explained. In the 

third subsection, our proposed algorithms Dynamic MIS1and Dynamic MIS2 are 

introduced with several examples. These examples show how each proposed algorithm 

handles the base tree building, additions, additions with new items and finally they 

demonstrate how the deletion is handled. 
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3.1 Motivating Example 

 

Throughout the text, we use the following example presented in two tables. 

Table 3.1 [2] shows a sample database D that consists of five transactions. Table 3.2 on 

the other hand, shows the user given multiple item support (MIS) of each item in 

decreasing order. Last row of Table 3.2 shows actual support of each item in the 

database D. In the right most column of Table 3.1, items in the transactions are in an 

order of support values as given in Table 3.2 [2].  

Table 3.1. Transaction database D. 

TID Item bought Item bought (ordered) 

100 D, C,A, F A, C, D, F 

200 G, C, A, F, E A, C, E, F, G 

300 B, A, C, F, H A, B, C, F, H 

400 G, B, F B, F, G 

500 B, C B, C 

 

Table 3.2. MIS and actual support of each item in D. 

Item  A B C D E F G H 

MIS value 80% 80% 80% 60% 60% 40% 40% 40% 

Actual Support 60% 60% 80% 20% 20% 80% 40% 20% 

 

3.2 Itemset Mining under Multiple Support Thresholds 

 

There are several algorithms for the problem of itemset mining under single user 

given support value. Apriori [13], FP-Growth [14] and Matrix Apriori [15]. However 

major drawback of all these algorithms is their dependence on single user given support 

value. Single support is not enough because it may cause rare item problem [18]. So 

recently some algorithms like MSapriori[17] , CFP-Growth[2] ,  CFP-Growth++[3] and 

MISFP-Growth [36] are introduced for the problem of itemset mining under multiple 

support threshold. 

In this section we will explain the CFP-Growth++ algorithm since we use this 

algorithm in our proposed dynamic approaches which are explained in the following 

section. CFP-Growth++ algorithm has following steps;  
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Step 1:  Construction of MIS-tree 

Step 2:  Generating compact MIS-tree 

Step 3:  Mining frequent patterns from the compact MIS-tree. 

In our two algorithms we apply Step 1 dynamically. Our second algorithm 

Dynamic MIS2 follows Step 2 and Step 3 in the same way as CFP-Growth++. On the 

other hand, Dynamic MIS1 algorithm skips Step 2 and apply Step 3 of CFP-Growth++ 

for only the items that exist in the primary header table.  

Step 1 Construction of MIS-tree: The MIS-tree consists of two components: MIS-list 

and prefix-tree. The MIS-list is a list having three fields {item name (item), support (S) 

and minimum item support (MIS)}. The structure of the prefix-tree in MIS-tree is same 

as that in FP-tree [2] but items here sorted by MIS. The items are sorted in descending 

order of their MIS values and items are inserted into the MIS-list with support equal to 

zero. MIS-tree is then created like FP-growth given in [14]. 

Step 2 Construction of compact MIS-tree: A method to prune such items from the 

MIS-tree is as follows: 

i. Starting from the last item of the MIS-list, the items that have support less than their 

respective MIS value are pruned. 

ii. Once the frequent item is found, its MIS value is chosen as the MIN MIS (minimum 

MIS) value. Next , support of the remaining items in the MIS-list are compared with 

MIN MIS value, and those items that have support less than MIN MIS are pruned from 

the MIS-tree 

iii. After tree-pruning, tree-merging process is carried out to merge the child nodes of a 

parent node that share a common item. 

iv. The compact MIS-tree is generated after tree-pruning and tree-merging operations. 

v. The process of infrequent leaf node pruning is carried on the compact MIS-tree to 

decrease its size. 
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Step 3 Mining frequent patterns from compact MIS-tree: Conditional minsup and 

conditional closure property are used for mining frequent patterns [3]. It is started by the 

lowest level items and repeated until all frequent patterns are generated. 

Now let us demonstrate the flow of CFP-growth++ algorithm with our motivating 

example given in Table 3.1 and Table 3.2. The resultant incompact MIS-tree is given in 

Figure1. Its generation is same as the generation of FP-tree [2]. 

Figure 3.1.  The incompact MIS tree. 

 

The MIS-tree is constructed with every item in the transaction database. So, 

lowest multiple support (MIN MIS) and infrequent leaf node pruning are used in 

pruning step (Step 2) to decrease the search space. MIN MIS is 2(40%) from the MIS-

tree. As a result, any item that has support less than 2 is discarded (i.e., D, H, E).The 

last item in the MIS-list is G that is frequent item. Hence, no tree-pruning operation is 

done for the item G. The tree-pruning operation ends as the supports of the remaining 

items in the MIS-tree are greater than MIN MIS = 2. 
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After tree-pruning, tree-merging process is carried out to merge the child nodes 

of a parent node that share a common item like FP-growth given in [2]. The result MIS-

tree is called compact MIS-tree as given in Figure 3.2. The process of infrequent leaf 

node pruning is carried on the compact MIS-tree to decrease its size. The process is as 

follows. Among the remaining items in the MIS-list of MIS-tree, A and B are infrequent 

items (i.e., their support is less than the required minsup value). Therefore, using the 

node-links of A and B, we collect all the branches containing A or B. The branches 

containing A are {{A, C: , F , G : 1}, {A, B, C, F :1 }}. In these branches A is not leaf 

node so we cannot delete it. As the same way B is not a leaf node, so it will not be 

removed because the coming pattern contains B may be frequent.  

Figure 3.2.  The compact MIS-tree after pruning and merging. 

 

Now let us explain how mining frequent patterns are generated from compact 

MIS-tree is done. Consider the item G that has lowest MIS among all items in the 

compact MIS-tree. It occurs in 2 branches of compact MIS-tree. The branches are {A, 

C, F, G} and {B, F, G}. Considering G as a suffix pattern, its conditional prefix paths 

are {A, C, F} and {B, F} which form its conditional pattern base.  

As the compact MIS-tree is constructed in MIS descending order of items, G 

(suffix item) will have lowest MIS value among all the items in its conditional pattern 

base. Therefore, using MIS value of the item g (i.e., 2) as the conditional minsup, 

conditional MIS-tree is generated with {F: 2} the items A, B and C are not included 

because the support counts are less than the specified conditional minsup value (i.e., 

conditional closure property).  
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The single path generates the frequent pattern {F, G: 2}.Similar process is repeated for 

other remaining items in the compact MIS-tree to discover the complete set of frequent 

patterns. The results are shown in Table 3.3. 

 

Table 3.3. Conditional pattern base and frequent pattern mining results. 

Suffix 

item  

Conditional 

minsup 

Conditional pattern base  Conditional MIS-tree  Frequent 

pattern  

G 2 { A, C , F :1}, { B , F : 1}  {F:2}  FG:2  

F 2 {A,C :2},{A,B,C :1},{B :1 }  {A:2},{C:2},{B:2}, 

{AC:3}  

AF:2,CF:2,

BF:2, 

ACF:2  

C 4 {A:2},{A,H:1} ,{B}  -  -  

B 4 {A:1}  -  -  

A 4 -  -  -  
  

3.3 Dynamic Frequent Itemset Mining Algorithms 

 

 When the database is updated, the problem of repeating the whole process of 

mining from the beginning occurs. Several research works have developed feasible 

algorithms for deriving precise association rules efficiently and effectively in such 

dynamic databases. Such as FUP [6, 8], FUP2 [7], Prelarge trees [5], TIARM [4], 

IULFP [9],and DMA [15, 16]. However all these algorithms can cause rare item 

problem since they are designed for single support threshold. 

In this chapter we introduce two new algorithms; Dynamic MIS1 and Dynamic 

MIS2 algorithms. They provide a solution to the dynamic itemset mining under multiple 

support thresholds problem. The previous works handle either the dynamic itemset 

mining with single support threshold or static with multiple support thresholds. Our two 

approaches take the advantages of the previous approaches and combine them to 

provide a solution to dynamic aspect of itemset mining problem under multiple support 

thresholds. Both approaches handle additions, additions with new items and deletions in 

increments. Our two algorithms use tree based data structure to minimize database scan. 

Dynamic MIS1 algorithm uses two header tables, while Dynamic MIS2 uses one header 

table. Mining using CFP-Growth++ [3] is applied in both of them in mining frequent 

patterns from the tree. Compacting the tree before mining is required only for the 

second one.   
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3.3.1 Dynamic MIS1 Algorithm 

 

This algorithm builds the first MIS-tree as in [2] from the original DB and 

divide the items between primary and secondary header tables according to their status, 

such that the primary header table contains the items which have support more than the 

MIN MIS value, and the secondary table contains the other items. Each time an 

incremental database d comes, it will be added to the existing tree, as a result; some 

items need to be added to the tables while others need to change their place between the 

two header tables. After that, mining is applied only for the items that exist in the 

primary header table. 

 

3.3.1.1 Building MIS-tree 

 

Figure 3.3. MIS-tree builder algorithm. 

INPUT: Original database D, Minimum support thresholds of items MIS 

OUTPUT: Sorted MIS values MISsorted, Multiple item support tree MIS-

tree 

BEGIN 

1 Build sorted list MISsorted of the MIS values in decreasing 

order 

2 Create the root of MIS-tree and label it as null 

3 Create primary and secondary header tables 

4 Insert items in the primary table with count 0  

5 Scan D 

6 FOR each transaction T in D do: 

7   Sort all items in T according to MISsorted 

8   Add T to the tree 

9 END FOR 

10 Calculate the support of items in D 

11 Update the supports in the tables 

12 Relocate items between the two tables 

13 Return MISsorted, MIS-tree  

END 
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In order to build the MIS-tree, the MIS-tree builder algorithm given in Figure 

3.3 is used. First, the MISsorted list is created from the MIS values and ordered in 

decreasing order as indicated in Line 1 of Figure 3.3. After that primary header table (a 

table with columns: item’s name, item’s count, item’s support, item’s MIS value) and 

secondary header table (a table with columns: item’s name, item’s count, item’s 

support, item’s MIS value) are created (Line 3). Then the items ordered as MISsorted 

are inserted into the primary header table with item’s count 0 as in Line 4. Database D is 

scanned, and the transactions are added to the tree (Lines 6-9).  First, the items in the 

new transaction are sorted in decreasing order as the MISsorted list. Then transaction 

is added to the tree, such that transactions that share prefix with other transactions, these 

prefixes are incremented by 1, otherwise; new nodes will be created starting from the 

root node with item’s count equal to 1. Update each item’s count in this transaction by 

incrementing its count in the primary header table by 1. Then link the nodes of same 

item all through the tree and to the header table. This entire process is indicated in Lines 

5-9.  

The supports of all items in D are calculated then updated in the header table 

(Lines 10-11). Finally, the items are located in the two tables; such that; the items with 

support more  than the MIN MIS value are inserted into the primary header table or else 

the  items with support less than the MIN MIS value are inserted into the secondary 

header table, their node links are changed accordingly (Line 12) . 

Figure 3.4. MIS-tree using MIS tree builder algorithm. 
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Let us explain MIS-tree builder algorithm with the example presented in Table 

3.1 and Table 3.2. First, the MISsorted list is created from the MIS values in Table 3.1 

and ordered in decreasing order. After that, the root node of the tree is created. Primary 

header table and secondary header tables are created as shown in Figure 3.4. Then the 

items ordered as MISsorted are inserted into the primary header table with item’s count 

0. The database D is scanned, and the transactions are added to the tree. First, the items 

in the new transaction are sorted in decreasing order according to MISsorted list as 

shown in the right most column of Table 3.1.Then transaction is added to the tree, such 

that transactions that share prefix with other transactions, these prefixes will be 

incremented by one, otherwise; new nodes will be created starting from the root node 

with item’s count equal one. Update each item’s count in this transaction by 

incrementing its count in the primary header table by 1. Then link the nodes of same 

item all through the tree and to the header table.  The supports of all items in D are 

calculated then updated in the header table. Finally, the items are located in the two 

tables. Such that; the items with support more than the MIN MIS value (40%) are 

inserted into the primary header table, otherwise; the items with support less than the 

MIN MIS value (40%) are inserted in the secondary header table. Also the node links 

are arranged. The items’ insertions into the tables are done with respect to the order of 

the sorted list. 

 

3.3.1.2 Adding Increments  

 

Let us explain the pseudo code of the update process for additions which is 

given in Figure 3.5. New transactions arrive, they are scanned to be added to the tree as 

follows. First, the items in the new transaction are sorted in decreasing order as 

MISsorted list. Then transaction is added to the tree, such that transactions that share 

prefix with other transactions, these prefixes will be incremented by 1, otherwise; new 

nodes will be created starting from the root node with item’s count equal 1. Update each 

item’s count in this transaction by incrementing its count in the primary header table by 

1. Then link the nodes of same item all through the tree and to the header table. This 

entire process is indicated in Lines 1-5.  The supports of all items in the whole database 

are calculated then updated in the header tables as in Lines 6-7. Finally, compare each 

item support with its MIN MIS value; the items which were in the primary table and 
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their supports become less than the MIN MIS value, they are transferred to the 

secondary header table. Otherwise; the items which are in the secondary header table 

and their supports are more than the MIN MIS value, they are transferred to the primary 

header table. The transfer operations are done with respect to the items’ order sort list 

MISsorted. This process indicated in Line 8. 

 

Figure 3.5. Update process in Dynamic MIS1 for additions. 

  

Table 3.4. The incremental database d. 

TID Item bought Item bought ( ordered) 
1 C, B, H B ,C, H 

2 G, B, F B ,F, G 

3 C, D, H C ,D, H 

  

Let us give an example for the addition process. This example is based on the 

MIS-tree in Figure 3.4, its sort list on MIS values Table 3.2 and the incremental 

database given in Table 3.4. When new transactions arrive (Table 3.4), they are scanned 

to be added to the tree. First, the items in the new transaction are sorted in decreasing 

order of MISsorted list as in the right most column in table above. Then transactions are 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d 

OUTPUT:Dynamic MIS-tree 

BEGIN 

1 Scan d 

2 FOR each transaction T in d do: 

3   Sort all items in T according to MISsorted 

4   Add T to the tree 

5 END FOR 

6 Calculate the support of items 

7 Update the supports in the tables 

8 Relocate the items between the primary and secondary header 

tables 

9 Return Dynamic MIS-tree 

END 
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added to the tree one by one as in Figure 3.6. Each item’s count in this transaction is 

updated by incrementing its count in the primary header table by 1. Then link the nodes 

of same item all through the tree and to the header tables of the same figure.  The 

supports of all items in the whole database are calculated then updated in the header 

tables. Finally, items are relocated between header tables, each item support is 

compared with its MIN MIS value. Here we note that the items (A and G) are 

transferred from the primary to secondary header table, because their supports become 

less than the MIN MIS value (40%). Note that when items (A and G) are inserted into 

the secondary table. Figure 3.6 shows the result Dynamic MIS-tree. 

 

Figure 3.6.  Dynamic MIS-tree after adding d. 

  

Now the Dynamic MIS-tree is ready for mining using the modified CFP-

Growth++ algorithm presented in the previous section for only the items which are in 

the primary header table. We use this algorithm because we want to apply mining for 

frequent items with multiple support thresholds. 
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3.3.1.3 Adding Increments with New Items 

 

Figure 3.7.  Dynamic MIS1 for additions with new items. 

Let us explain the pseudo code of the update process for additions with new 

items which given in Figure 3.7. When new items appear, the MISsorted is updated by 

adding the new MIS values it in decreasing order as in Line 1. Then the new items in 

MISnew are appended to the primary header table with item’s count 0 and their MIS 

value as in Line 2. These two lines are the main difference between additions and 

additions with new items. The remaining steps of this process are similar to additions 

without new items previously.  

  

Table 3.5. MIS values for new items in d. 

Item  J K L 

MIS value 70% 35% 30% 

 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d, Minimum support threshold of new items MISnew 

OUTPUT: MISsorted, Dynamic MIS-tree 

BEGIN 

1 Build new sorted list MISsorted from MISsorted and MISnew in 

decreasing order. 

2 Insert the new items in the primary table with count 0 

3 Scan d 

4 FOR each transaction T in d do: 

5   Sort all items in T according to MISsorted 

6   Add T to the tree 

7 END FOR 

8 Calculate the support of all items 

9 Update the supports in the tables 

10 Relocate the items between the primary and secondary header 

tables 

11 Return MISsorted, Dynamic MIS-tree 

END 
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Table 3.6. The incremental database d with new items J, K, L. 

TID Item bought Item bought ( ordered) 
1 C, B, K, J, H, L B ,C, J, H, K, L 

2 K , H H, K 

3 K, B, C B , C, K 

 

 

Table 3.7. MIS values of all items (old values and new values). 

Item  A B C J D E F G H K L 

MIS 

value 

80% 80% 80% 70% 60% 60% 40% 40% 40% 35% 30% 

 

Let us give an example for the addition with new items process. The input tree 

for this case is the MIS-tree in Figure 3.4. The first step is to combine the new MIS 

values in Table 3.5 with the MIS values of the old items in Table 3.2 to get Table 3.7. 

Items are arranged in decreasing order according to the MIS values. Then the new items 

in Table 3.6 are appended to the primary header table with item’s count 0 and their MIS 

values. New transactions in d are scanned (Table 3.6) and then added to the tree as in 

Figure 8. Item counts are updated. From these counts, supports are calculated. 

According to the new items’ supports, some items will be transferred from the primary 

header table to the secondary header table, and vice versa. In our example; item (G) is 

transferred from primary to secondary because its new support (25%) is less than the 

new MIN MIS value (30%). And item (H) is transferred from secondary to primary 

because it new support (37%)   becomes higher than the MIN MIS value (30%). Also 

new items that appeared in d are added to the either one of the two tables according to 

their supports. It is important to notice that the transfer operations and new items’ 

addition are done with taking into account the items’ MIS order as in Table 3.7.Figure 

3.8 shows the result MIS-tree after adding the three transactions. 
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Figure 3.8. Dynamic MIS-tree after adding d with new items. 

 

3.3.1.4 Adding Increments with Deletions 

 

Figure 3.9. Update process in Dynamic MIS1 for deletions. 

Let us explain the pseudo code of the update process for deletions which is 

given in Figure 3.9. When new transactions arrive, they are scanned to be deleted from 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d 

OUTPUT: Dynamic MIS-tree 

BEGIN 

1 Scan d 

2 FOR each transaction T in d do: 

3   Sort all items in T according to MISsorted 

4   Delete T from the tree 

5 END FOR 

6 Calculate the support of all items 

7 Update the supports 

8 Relocate the items between the primary and secondary header 

tables 

9 Return Dynamic MIS-tree 

END 
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the tree. First, the items in the new transaction are sorted in decreasing order as 

MISsorted list. Then transaction is deleted from the tree, such that transactions that 

have count greater than 1are decremented by 1, otherwise; nodes are deleted. Each 

item’s count is updated in this transaction by decrementing its count in the header table 

by 1. Then link the nodes of same item all through the tree and to the header table. This 

entire process is indicated in Lines 1-5.  The supports of all items in the whole database 

are calculated then updated in the header tables (Lines 6-7). Finally, each item support 

is compared with its MIN MIS value; the items which are in the primary table and their 

supports become less than the MIN MIS value, they will be transferred to the secondary 

header table. Otherwise; the items which was in the secondary header table and their 

supports become more than the min MIS value, they will be transferred to the primary 

header table. The transfer operations are done with respect to the items’ order sort list 

MISsorted. This process indicated in Line 8. 

Table 3.8. Transactional database d with deletions. 

TID Item bought Item bought ( ordered) 
100 D,C,A,F A ,C, D, F 

400 B,F,G B, F,G 

 

Table 3.8 describes two transactions to be deleted from the original tree. The 

rightmost column of it lists all the items in each transaction following this order 

according to their MIS values in decreasing order as Table 3.2. 

Here we will apply the deletion example on the tree of Figure 3.4. The new 

transactions in d in Table 3.8 are scanned and then deleted from the tree as in Figure 

3.10. Some items’ counts are decremented. From these counts supports are calculated 

and updated in the tables of tree. According to the new items’ supports, some items will 

be transferred from the primary header table to the secondary header table, and vice 

versa. In our example; the support of item (G) is 33.3%, which is less than the MIN 

MIS value(40%). So it is removed from the primary header table and inserted into the 

secondary header table taking into account the order of items.  
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Figure 3.10. Dynamic MIS-tree after deletions. 

After applying the decrement on the items of the deletion database, the nodes 

with count 1 are deleted from the tree, but their records are kept in its specified table, 

and other nodes are decremented by 1 for each deleted transaction. The result Dynamic 

MIS-tree is shown in Figure 3.10. 

Now the Dynamic MIS-tree contains the complete information for frequent 

pattern mining with multiple MS. So we can do mining for the tree by the same way as 

CFP-Growth++ algorithm [3] for only the items that exist in the primary header table. 

When we apply mining for each item we skip the items that exist in secondary header 

table. 

3.3.2 Dynamic MIS2 Algorithm 

 

 This algorithm builds the first MIS-tree as in [2] from the original DB, and 

each time an incremental database d is added, it will be added to the existing tree. This 

tree is reserved and pruning is applied as a preparation phase before mining. Mining 

will be applied using CFP-Growth++  in [3]. Once Tree is built, new transaction can be 

added to and deleted from MIS-tree, frequent patterns can be mined with multiple 

support values without rebuilding the tree. 

 

 

 



37 
 

3.3.2.1 Building MIS Tree 

 

 

Figure 3.11. MIS-tree builder algorithm. 

In order to build the first MIS-tree, MIS2-tree builder algorithm in Figure 3.11. 

is used, First, MISsorted list is created from the MIS values and ordered in decreasing 

order as indicated in Line 1. After that Min frequent item header table (a table with 

columns: item’s name, item’s count, item’s support, item’s MIS value). Then insert the 

ordered items of the MISsorted into this table with item’s count 0 as in Lines 3-4. Then 

the database D is scanned, and the transactions are added to the tree as follows. First, 

the items in the new transaction are sorted in decreasing order as the MISsorted list. 

Then transaction is added to the tree, such that transactions that share prefix with other 

transactions, these prefixes will be incremented by one, otherwise; new nodes will be 

created starting from the root node with item’s count equal one. Update each item’s 

count in this transaction by incrementing its count in the primary header table by 1. This 

INPUT: Original database D, Minimum support thresholds of items MIS 

OUTPUT: Sorted MIS values MISsorted, Multiple item support tree MIS-

tree 

BEGIN 

1 Build sorted list MISsorted of the MIS values in decreasing 

order. 

2 Create the root of MIS-tree and label it as null 

3 Create Min frequent item header table 

4 Insert sorted items in the table with count 0 for each  

5 Scan D 

6 FOR each transaction T in D do: 

7   Sort all items in T according to MISsorted 

8   Add T to the tree 

9 END 

10 Calculate the support of items in D 

11 Update the supports in the header table 

12 Return MISsorted, MIS-tree  

END 
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entire process is indicated in Lines 5-9. The supports of all items in D are calculated 

then updated in the header table as in Lines 10-11.  

 

Figure 3.12.  The incompact MIS-tree. 

 

Based on Tables 3.1 and Table 3.2, we try to explain the flow of MIS-tree 

builder algorithm. MISsorted list is created from the MIS values of Table 3.2and 

ordered in decreasing order as indicated. After that create Min frequent item header 

table as in Figure12. Then insert the ordered items of the MISsorted in this table with 

item’s count 0. The database D is scanned, and the transactions are added to the-tree. 

The items counts and supports are updated. Figure12 shows the incompact tree from 

this example. After that mining is applied using CFP-Growth++ algorithm. 
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3.3.2.2 Adding Increments 

 

 

Figure 3.13. Update process in Dynamic MIS2 for additions. 

We explain the pseudo code of the update process for additions that is given in 

Figure 3.13. When new transactions arrive the database d is scanned, and the 

transactions are added to the tree as follows. The items in the new transaction are sorted 

in decreasing order as the MISsorted list. Then transaction is added to the tree, such 

that transactions that share prefix with other transactions, these prefixes will be 

incremented by one, otherwise; new nodes will be created starting from the root node 

with item’s count equal one. Each item’s count in this transaction is updated by 

incrementing its count in the primary header table by 1. Then the links the nodes of 

same item all through the tree and to the header table are updated. This entire process is 

indicated in Lines 1-5. The supports of all items in the whole database are calculated 

then updated in the Min frequent item header table as in Lines 6-7. 

 

 

 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d 

OUTPUT: Dynamic MIS-tree 

BEGIN 

1 Scan d 

2 FOR each transaction T in d do: 

3   Sort all items in T according to MISsorted 

4   Add T to the tree 

5 END FOR 

6 Calculate the support of all items 

7 Update the supports in the Min frequent item header table  

8 Return Dynamic MIS-tree 

END 
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Table 3.9. Transactional database d. 

TID Item bought Item bought ( ordered) 
1 C, B, H B, C, H 

2 G, B, F B , F, G 

3 C, D, H C, D, H 

 

Let us give an example for the addition process. Table 3.9 shows incremental 

database d that consists of three transactions, and the right most column shows these 

transactions ordered according to the sort list in Table 3.2. 

This example is based on the MIS- tree in Figure 3.12 and its sort list MIS 

values Table2.When new transactions arrive (Table 3.9), they are scanned to be added 

to the tree. The items in the new transaction are sorted in decreasing order as the 

MISsorted list as in the right most column in table above. Then transactions are added 

to the tree one by one as in Figure14. Each item’s count in this transaction is updated by 

incrementing its count in the primary header table by 1. Then link the nodes of same 

item all through the tree and to the header tables of the same figure.  The supports of all 

items in the whole database are calculated then updated in the MIN-frequent item 

header table. Figure 3.14 shows the result Dynamic MS-tree after addition. 

 

 

 

 

 

 

 

Figure 3.14. Dynamic MIS-tree after adding d. 

Now the Dynamic MIS-tree is ready for mining using the second and third steps 

of CFP-Growth++ algorithm. 
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3.3.2.3 Adding Increments with New Items 

 

Figure 3.15. Update process in Dynamic MIS2 for additions with new items. 

Let us explain the pseudo code of the update process for additions with new items 

which given in Figure 3.15. When new items appear, the MISsorted is updated by 

adding the new MIS values MISnew to it then sorting the combination in decreasing 

order as in Line 1. Then the new items in MISnew are inserted in the Min frequent item 

header table with item’s count 0 and their MIS values, this insertion is done with taking 

into account the MISsorted order. This is indicated in Line 2.  These two lines is the 

main difference between additions and additions with new items. The remaining steps 

of this process is similar to additions without new items that given in Figure 3.13. 

 

Table 3.10. MIS values table for the new items in d. 

Item  J K L 

MIS value 70% 35% 30% 

 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d, Minimum support threshold of new items 

MISnew 

OUTPUT: New Sorted MIS values MISsorted, Dynamic MIS-tree 

BEGIN 

1 Build new sorted list MISsorted from MISsorted and MISnewin 

decreasing order. 

2 Insert the new items in the Min frequent item header table 

with count 0 for each 

3 Scan d 

4 FOR each transaction T in d do: 

5   Sort all items in T according to MISsorted 

6   Add T to the tree 

7 END FOR 

8 Calculate the total support of all items 

9 Update the supports in the Min frequent item header table  

10 Return MISsorted, Dynamic MIS-tree 

END 
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Table 3.11. Incremental database d with new items J, K, L. 

TID Item bought Item bought ( ordered) 

1 C, B, K, J, H, L B ,C, J, H, K, L 

2 K , H H, K 

3 K, B, C B , C, K 

 

Table 3.12. MIS values of all items (old values and new values). 

Item  A B C J D E F G H K L 
MIS 

value 

80% 80% 80% 70% 60% 60% 40% 40% 40% 35% 30% 

 

The input tree for this case is the MIS-tree in Figure12. The first step is to 

combine the new MIS values in Table 3.2 with the MIS values of the old items in Table 

3.10 to get Table 3.12 in non-increasing order of MIS values.  

Then the new items in MISnew are inserted in the Min frequent item header table 

with item’s count 0 and their MIS values, this insertion is done with taking into account 

the MISsorted order. Now the increment d in Table 3.11 is scanned, and then sorted 

according to Table 3.12. After that; the transactions are added to the tree, then the item’s 

counts and node links are updated as shown in Figure 3.16. From these counts the 

supports are calculated and updated in the header table. 

 

Figure 3.16. Dynamic MIS-tree after adding d with new items. 

Now the Dynamic MIS-tree in the Figure 3.16 is ready for mining after applying 

pruning and merging. Mining is done using CFP-Growth++ [3].  
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3.3.2.4 Adding Increments with Deletions 

 

 

Figure 3.17. Update process in Dynamic MIS2 for deletions. 

Let us explain the pseudo code of the update process for deletions which given 

in Figure 3.17.When new transactions arrive, they are scanned to be deleted from the 

tree as follows. First, the items in the new transaction are sorted in decreasing order as 

the MISsorted list. Then transaction is deleted from the tree, such that transactions that 

has count greater than one are decremented by one, otherwise; nodes are deleted. 

Update each item’s count in this transaction by decrementing its count in the header 

table by 1. Then link the nodes of same item all through the tree and to the header table. 

This entire process is indicated in Lines 1-5.  The supports of all items in the whole 

database are calculated then updated in the header tables as in Lines 6-7.  

Table 3.13. Incremental database d with deletions. 

TID Item bought Item bought ( ordered) 
100 D,C,A,F A ,C, D, F 

400 B,F,G B, F,G 

 

INPUT: MIS-tree, Sorted Minimum items support thresholds MISsorted, 

incremental database d 

OUTPUT: Dynamic MIS-tree 

BEGIN 

1 Scan d 

2 FOR each transaction T in d do: 

3   Sort all items in T according to MISsorted 

4   Delete T from the tree 

5 END FOR 

6 Calculate the support of all items 

7 Update the supports in the Min frequent item header table  

8 Return Dynamic MIS-tree 

END 
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Table 3.13 shows two transactions to be deleted from the original tree. The right 

most column of it lists all the items in each transaction following this order according to 

their MIS values in decreasing order as Table 3.2. 

Here we will apply the deletion example on the tree of Figure 3.12.Deletions in 

Table 3.13 are scanned. And then deleted from the tree as in Figure18, some items’ 

counts are decremented. From these counts supports are calculated and updated in the 

tables of tree.  

 

 

 

 

 

 

Figure 3.18. The MIS-tree after deletions. 

Now the Dynamic MIS-tree contains the complete information for all the 

database transactions and their items’ count and support. Once Dynamic MIS-tree is 

built, new transaction can be added to and deleted from the tree and frequent patterns 

can be mined with multiple support values without rebuilding the tree. Mining steps are 

the same as CFP-Growth++ [3] as explained in the previous section.  
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4 CHAPTER 4   

PERFORMANCE EVALUATION 
 

In this chapter, we compare the performance of Dynamic MIS1, Dynamic MIS2 

and CFP-Growth++ algorithms. We are not considering MSApriori and CFP-Growth 

algorithms for comparison because it has been shown that CFP-Growth++ algorithm is 

better than the corresponding MSApriori and CFP-Growth algorithms, respectively [3]. 

However CFP-Growth++ does not have an update feature, it runs from the beginning on 

the updated database, while our two dynamic algorithms only run on the updates. All 

algorithms are implemented in C#. All experiments are executed on an Intl(R) core i7 - 

5500u CPU@ 2.40 GHz with  8 GB main memory, running on Microsoft Windows 10 

operating system.   

During performance evaluation, it is ensured that the system state is similar in 

all test runs and they give similar results when they are repeated. Four datasets are used 

as in the performance evaluation of this work.  

This chapter is divided into seven subsections where in the first, the datasets are 

presented. In the second subsection, the complexity analysis is done,in the third 

subsection the static parts of the Dynamic MIS1 and Dynamic MIS2 algorithms are 

compared to CFP-Growth++ algorithm when we vary β (a parameter that controls how 

the MIS values for items should be related to their frequencies). In the fourth subsection 

comparison is done on the increments with additions. In the fifth subsection, we 

measure the performance of the algorithms on the increments of additions with new 

items. In the sixth subsections, a comparison is done on the increments with deletions. 

In the last subsections, a discussion on results is done.  

 

4.1 Properties of datasets 

 

Dynamic MIS1, Dynamic MIS2 and CFP-Growth++ algorithms are tested on 

four datasets in order to measure their performances on datasets having different 

characteristics. Two real datasets (D1 and D4) and two synthetic datasets (D2 and D3) 

are used in the experiments. Table 4.1 displays the information about the properties of 
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the datasets: average size of the transactions (T), number of transactions (D) and 

number of items (N) and the density1 of a dataset that indicates the similarity of the 

transactions. The real dataset (D1) is taken from Frequent Itemset Mining 

Implementations Repository [FIMI] in [35], the synthetic dataset (D2) is generated 

using the generator by the IBM Almaden Quest research group, and we generate the last 

synthetic dataset (D3) using the data generator software in [35]. Real dataset Kosarak 

(D4) which is a very large dataset containing 990002 sequences of click-stream data 

from hungarian news portal and a very large number of items [35]. 

 

Table 4.1. Properties of datasets. 

Dataset Type T D  N Density% 

D1 (Retail) Real 10.3 88162 16470 0.06 

D2 (T40I1D100K) synthetic 40 100K 942 4.25 

D3 synthetic 1.1 100K 5356 0.02 

D4 (Kosarak) Real 8.1 990002 41270 0.02 

 

D1, D2 and D4 are used for testing the performance of Dynamic MIS1, Dynamic MIS2 

and CFP-Growth++ algorithms. The previous datasets are used for measuring the 

performance of increments with additions and deletions. Finally, since increments with 

additions with new items need to have new items with their MIS values in each 

increment, we generate D3 for this purpose.  

Generating MIS values  

For our experiments, we need a method to assign MIS values to items in the data 

set. We use the actual frequencies (or the supports) of the items in the dataset as the 

basis for MIS assignments. Specifically, we use the following formulas: 

 

 
 

f(i) is the actual frequency (or the support expressed in percentage of the data set size) 

of item i in the data. LS is the user-specified lowest minimum item support allowed. β 

                                                           
1 Density (%) =  (Average Transaction Length / # of Distinct Items) × 100 
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(0  ≤  β ≤ 1) is a parameter that controls how the MIS values for items should be related 

to their frequencies. Thus, to set MIS values for items we use two parameters, β and LS. 

If β = 0, we have only one minimum support, LS, which is the same as the traditional 

association rule mining. If β = 1 and f(i) ≥ LS, f(i) is the MIS value for i [17]. This 

formula is used to generate MIS values to algorithms which use multiple support 

thresholds as in [2, 3, 17 and 33]. 

 

4.2 Complexity analysis of algorithms 

 

Computational complexity of building the initial tree is same for both 

algorithms. It is (T * V); where T is the number of transactions, and V the average 

transaction length. It is reasonable to conclude that building the tree is directly 

proportional to the density of the dataset. 

The complexity of the pruning procedure in CFP-Growth++ is O (N * C) where 

N is the number of nodes holding the items to be pruned, C is the num-ber of their 

children. However in Dynamic MIS the pruning procedure is replaced by relocating 

items between header tables which has a complexity of O (N) where N is the number of 

items to be transferred; it is linear and much less than that of pruning in CFP-Growth++. 

The merging procedure in CFP-Growth++ is O (N2 * K) where N is number of nodes in 

the tree and K is the node links, however this high complexity is skipped in Dynamic 

MIS since it has no merging procedure.  

The complexity of adding increments to the tree (Addition, Addition with new 

items and Deletion) is O (T * V) where T is the number of the incremental transactions, 

and V the average transaction length, so it is proportional to the number of transactions 

in the incremental DB d and its density.  

In terms of space complexity; Dynamic MIS needs more space since it keeps the 

whole tree in memory while CFP-Growth++ keeps a compact pruned tree. 
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4.3 Performance of the static algorithms 

 

To test the execution time and memory usage performance of the static version 

of our algorithms (Dynamic MIS1 Builder and Dynamic MIS2 Builder), we only 

compare Dynamic MIS1 Builder with the CFP-Growth++ algorithm since Dynamic 

MIS2 Builder algorithm is the same as CFP-Growth++. We use three datasets; real life 

datasets D1, D4 and synthetic dataset D2. We choose LS = 0.01 and varies ten values of 

β (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). We varied β values against the execution 

time and memory usage of the algorithms. In other words we varied the MIS values of 

the items in the dataset. From the formula of generating MIS values; we conclude that 

as β increases the items have higher MIS values as a result the number of frequent 

patterns decreases. 

 

4.3.1 Execution time  

 

It is clear from Figure 4.1 that when the Retail dataset is used, the execution time 

performance for the Dynamic MIS1 builder algorithm is better than CFP-Growth++.  

For different values of β, when β increases; the number of frequent itemsets decreases, 

as a result the execution time of the two algorithms decreases. Dynamic MIS1 Builder 

algorithm achieves reasonable success since it does not apply tree pruning and merging 

which is time consuming, it only applies mining for the items that exist in the primary 

header table. The execution time values of Dynamic MIS1 Builder seems as they have 

the same values, but actually these values are different and they decrease  from 2.06 to 

1.98 (they are very close to each other). 
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Figure 4.1. Execution time on the dataset D1 (Retail). 

 

The execution time performance of Dynamic MIS1 Builder and CFP-Growth++ 

on D2 is illustrated in Figure 4.2.  As β increases; the number of frequent itemsets 

decreases, as a result the execution time of the two algorithms decreases. Dynamic 

MIS1 builder algorithm is slightly better than CFP-Growth++. Since it does not apply 

tree pruning and merging which is time consuming, it only applies mining for the 

primary header table items. 

 

 

 

Figure 4.2. Execution time on the dataset D2 (T40i10d100K). 
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The execution time performance of Dynamic MIS1 Builder and CFP-Growth++ 

on D4 with different values of β is demonstrated in Figure 4.3. While β increases; the 

number of frequent itemsets decreases, as a result the execution time of the two 

algorithms decreases. In every value of β, Dynamic MIS1 Builder performs better than 

CFP-Growth++. Dynamic MIS1 Builder algorithm achieves reasonable success since it 

does not apply tree pruning and merging, it only applies mining for the items that 

located in the primary header table. The execution time values of Dynamic MIS1 

Builder are very close to each other and they are decreased  from 35.64 to 33.17 (a 

small decreasing rate) since the process of transferring items between the two header 

tables takes a small time. 

 

 

Figure 4.3. Execution time on the dataset D4 (Kosarak). 

 

From Figure 4.1, Figure 4.2 and Figure 4.3; the difference in execution time 

performance is more clear when the datasets D1 and D4 are used, this is due to the 

nature of the datasets, such that they are sparse, and have larger number of items with a 

variant length of transactions.  

The speed-up table for static versions is shown in Table 4.2. The speed-up 

decreases from 5.22 to 3.05 on D1 for MIS1 Builder algorithm, while β values increase 

from 0.1 to 1. MIS1 Builder algorithm can be up to 5.02 times better than CFP-

Growth++ in terms of execution time when it is executed on the real dataset D1. The 
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reason for this is the nature of this real dataset and structure of  the MIS1 Builder 

algorithm which uses two header tables for the items that enable the mining process of 

the algorithm to be executed without pruning and merging as  CFP-Growth++. When 

the algorithms are executed on D2, the speed-up of MIS1 Builder algorithm decreases 

from 1.06 to 1.01 while β values increase, this is due to the nature of synthetic dataset 

D2. When the algorithms are executed on D4, the speed-up of MIS1 Builder algorithm 

decreases from 4.78 to 3.05 while β values increase, this is due to the difference in 

structure of the two algorithms and the nature of the dataset D4. 

 

Table 4.2. Speed-up table for static versions. 

Dataset β Speed-up with MIS1 Builder2 

D1 (Retail) 0.1 - 1 5.22 - 3.05 

D2 (T40I1D100K) 0.1 - 1 1.06 - 1.01 

D4 (Kosarak) 0.1 - 1 4.78 - 3.05 

 

4.3.2 Memory usage  

 

It is illustrated in Figure 4.4 that the memory usage of MIS1 Builder algorithm is 

a little bit higher than or equal to the memory usage of CFP-Growth++ algorithm, since 

it keeps the whole tree in memory without pruning and merging. CFP-Growth++ 

algorithm apply pruning and merging for the tree, therefore it has memory usage less 

than or equal to MIS1 Builder algorithm.  

 

                                                           
2 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of MIS1 Builder algorithm. 
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Figure 4.4. Memory usage on dataset D1 (Retail). 

 

Figure 4.5 shows that the Dynamic MIS1 Builder algorithm has the highest 

memory usage in most cases since it keeps the whole tree in memory without pruning 

and merging. Since CFP-Growth++ and applies pruning and merging for the tree, it has 

memory usage less than MIS1 Builder algorithm. 

 

 

Figure 4.5. Memory usage on synthetic dataset D2 (T40i10d100K). 

 

The memory usage performance of  Dynamic MIS1 Builder and CFP-Growth++  

on D4 is demonstrated in Figure 4.6.  The memory usage of MIS1 Builder algorithm is 
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a little bit higher than or equal to the memory usage of CFP-Growth++ algorithm, since 

it keeps the whole tree in memory without pruning and merging. CFP-Growth++ 

algorithm apply pruning and merging for the tree, therefore it has memory usage less 

than or equal to MIS1 Builder algorithm. 

 

 

Figure 4.6. Memory usage on dataset D4 (Kosarak). 

 

The memory gain table for static versions is given in Table 4.3. The memory 

gain increases from (- 1.27) to 0.00 on D1 for MIS1 Builder algorithm while β values 

increase from 0.1 to 1, so for β = 0.1; MIS1 Builder algorithm is 1.27 times less than 

CFP-Growth++ in terms of memory usage when it is executed on the real dataset D1, 

for β = 1; MIS1 Builder algorithm memory usage is equal to it in CFP-Growth++ on 

D1. The reason for this is due to the nature of the Real dataset and structure of the MIS1 

Builder algorithm which uses two header tables for the items that enable the algorithm 

to execute mining without pruning and merging whereas CFP-Growth++ keeps the 

whole tree in memory. When the algorithms are executed on D2, the memory of MIS1 

Builder algorithm increases from (-14.29) to (-0.29), this is due to the nature of 

synthetic dataset D2. The memory gain increases from (- 0.93) to 0.24 on D4 for MIS1 

Builder algorithm while β values increase from 0.1 to 1, this memory gain values are 

due to the nature of D4 and the structure of each algorithm.    
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We conclude that MIS1 Builder algorithm memory usage is higher than or equal 

to the memory usage of CFP-Growth++, since MIS1 Builder algorithm keeps the whole 

tree in memory, however CFP-Growth++ keeps minimized pruned tree in memory.  

 

Table 4.3. Memory gain table for static versions. 

Dataset β Memory-gain with MIS1 Builder3 

D1 (Retail) 0.1 - 1 (- 1.27) - 0.00 

D2 (T40I1D100K) 0.1 - 1 (- 14.29) - (-0.29) 

D4 (Kosarak) 0.1 - 1 (- 0.93) - 0.24 

 

4.4 Execution time on increments (additions) 

 

 In this experiment we compare the execution time performance of the algorithms 

on the increments with additions; dynamic algorithms (MIS1 and MIS2) and CFP-

Growth++. For this purpose; two real datasets D1 and D4 and one synthetic dataset D3 

are used. 

In the increments with additions tests, we split each dataset into two parts. The part 

with D = (100 - x)% from the beginning of the transactions forms the initial dataset and 

the remaining part with d = x% of the transactions forms the increments. This 

subsection includes the performance analysis of the algorithms on datasets varying the x 

(d). The purpose is to observe how the addition size of increments affects the 

performance of the algorithms for the datasets. The MIS values are kept same as those 

in the addition tests. The execution time of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ are measured with thirteen split sizes, namely. 1%, 2%, 3%, 4%, 5%, 6%, 

7%, 8%, 9%, 10%, 11%, 12%, and 13%, for D1. Ten splits are used as 5%, 10%, 15%, 

20%, 25%, 30%, 35%, 40%, 45% and 50%, for D2. And eighteen splits are used as 5%, 

10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 

85%, and 90%, for D4. In all splits the MIS values are kept same. 

 

                                                           
3 Memory-gain = ((Memory usage of CFP-Growth++ algorithm - Memory usage of MIS1 Builder 

algorithm) / Memory usage of CFP-Growth++)*100   
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The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different addition sizes on the dataset D1 is demonstrated in Figure 4.7. 

In every increment size, Dynamic MIS1 and Dynamic MIS2 performs better than re-

running CFP-Growth++ from the beginning since they only run for the increments. 

Execution time of Dynamic MIS1 is less than Dynamic MIS2. The reason for this result 

is due to the structure of the MIS1 Builder algorithm which uses two header tables for 

the items and that allows this algorithm to execute mining without pruning and merging 

operations whereas MIS2 Builder algorithm does mining with pruning and merging 

operations. We conclude that on D1; Dynamic MIS1 performs much better than both of 

Dynamic MIS2 and CFP-Growth++ in terms of execution time. 

 

 

Figure 4.7. Execution time on real dataset D1 (Retail) with increments (additions). 

 

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different addition sizes on Dataset D4 (Kosarak) is illustrated in Figure 

4.8. In every increment size, Dynamic MIS1 and Dynamic MIS2 performs better than 

re-running CFP-Growth++ from the beginning since they are only running for the 

increment. Dynamic MIS1 execution time is faster than Dynamic MIS2. The reason for 

this result is the difference between the structure of the two algorithms, such that; MIS1 

Builder algorithm uses two header tables for locating the frequent and infrequent items, 

consequently; the algorithm does mining without pruning and merging operations 

whereas MIS2 Builder algorithm does mining with pruning and merging operations. 

Dynamic MIS2 is still better than CFP-Growth++ until the increment size is 85% of the 
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original size of data, after that size; CFP-Growth++ becomes better than Dynamic MIS2 

algorithm. 

 We conclude that on D4; Dynamic MIS1 performs much better than both of Dynamic 

MIS2 and CFP-Growth++ in terms of execution time. 

 

 

Figure 4.8. Execution time on dataset D4 (Kosarak) with increments (additions). 

 

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different addition sizes on dataset D2 is demonstrated in Figure 4.9. In 

every increment size, Dynamic MIS1 and Dynamic MIS2 perform better than re-

running CFP-Growth++ from the beginning since they only run for the increments. In 

most cases of splits; Dynamic MIS1 execution time is faster than Dynamic MIS2. The 

main reason for this result is due to the   structure of the MIS1 Builder algorithm, which 

uses two header tables for the items, thus the algorithm does mining without pruning 

and merging operations, whereas MIS2 Builder algorithm does mining with pruning and 

merging operations. We conclude that on D2; Dynamic MIS1 performs much better 

than both of Dynamic MIS2 and CFP-Growth++ in terms of execution time. 
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Figure 4.9. Execution time on dataset D2 (T40i10d100K) with increments (additions). 

 

 The speed-up by running Dynamic MIS1 and Dynamic MIS2 instead of re-

running CFP-Growth++ when the database is updated is displayed in Table 4.4. For 

Dynamic MIS1; the speed-up increases from 22.21 to 55.94 while the split size 

decreases on D1. Speed-up of Dynamic MIS1 is from 1.15 to 1.33 on D2, and from 

37.67 to 3.61 on D4 respectively. For Dynamic MIS2; the speed-up increases from 1.19 

to 1.32 while the split size decreases on D1, and from 1.60 to 1.35 on D2. As the table 

point outs, the highest speed-up occurs when the Dynamic MIS1 runs on D1, and this 

range is from 1.37 - 0.99 on D4. The reason for this speed-up over CFP-Growth++ is 

running Dynamic MIS1 on the addition only instead of running from the beginning. 

Speed-up of Dynamic MIS1 is higher than Dynamic MIS2 because of the structure of 

the MIS1 Builder algorithm, which has two header tables for the items, mining is 

executed without pruning and merging operations, while MIS2 Builder algorithm does 

mining with pruning and merging operations.  
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Table 4.4. Speed-up table on increments (addition). 

Dataset Split size 

% 

Speed-up with Dynamic 

MIS14 

Speed-up with 

Dynamic MIS25 

D1 (Retail) 1 – 13 55.94 - 22.21 1.32 - 1.19 

D2 (T40I1D100K) 5 – 50 1.56 - 1.35 1.31 - 1.14 

D4 (Kosarak) 5 – 90 37.67 - 3.61 1.37 - 0.99 

 

4.5 Execution time on increments (additions with new items)  

 

Here we want to evaluate the execution time performance of increments with 

additions with new items for the two dynamic algorithms (MIS1 and MIS2) and CFP-

Growth++.  For this purpose we generate our own dataset D3 using dataset generator 

(IBM_Quest_data_generator[35]), The properties of D3 are shown in Table 4.1. In this 

experiment we generate our data set to control the new items that not exist in the 

original data base and to determine their MIS values, in order to take them as input to 

our two dynamic algorithms. We use the same strategy mentioned in section 4.4 for 

splitting the data set. Also we use eighteen split sizes, namely 5%, 10%, 15%, 20%, 

25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% and 90%. 

And in each run; the incremental part has new items with their new MIS values. In all 

parts LS (the user-specified lowest minimum item support) and β (parameter that 

controls how the MIS values for items should be related to their frequencies) are still the 

same values. To allow variation in MIS values we choose (beta = 0.5 and LS = 0.01). 

The number of new items in each split is constant and equal to 100. We measure the 

size of d (split) against the time for each algorithm.  

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different addition sizes with new items for each addition on Dataset D3 

is demonstrated in Figure 4.10. In every increment size, Dynamic MIS1 and Dynamic 

MIS2 perform better than re-running CFP-Growth++ from the beginning since they are 

only running for the increment. In most cases of splits; Dynamic MIS1 is faster than 

Dynamic MIS2. The reason for this result is due to the   structure of the MIS1 Builder 

algorithm which uses two header tables for the items that enable the algorithm to 

                                                           
4 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS1 algorithm. 
5 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS2 algorithm. 
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execute mining without need to pruning and merging operations as MIS2 Builder 

algorithm. Dynamic MIS2 is faster than CFP-Growth++ for all splits before the split 

size 90%. We conclude that on D3; Dynamic MIS1 has the best performance in terms of 

execution time. 

 

 

Figure 4.10. Execution time on dataset (D3) with increments (additions with new 

items). 

 

The speed-up by running Dynamic MIS1 and Dynamic MIS2 instead of re-

running CFP-Growth++ when the database is updated is shown in Table 4.5. For 

Dynamic MIS1; the speed-up decreases from 5.76 to 1.72 while the split size increases 

in D3. For Dynamic MIS2; the speed-up increases from 0.99 to 2.03 while the split size 

decreases in D3. As the table point outs, the Dynamic MIS1 and Dynamic MIS2 have 

higher speed-up than CFP-Growth++, the reason for this speed-up over CFP-Growth++ 

is dynamic aspect of algorithms; Dynamic MIS1is running on the addition only instead 

of running from beginning. Also the speed-up of Dynamic MIS1 is slightly higher than 

in Dynamic MIS2 because of the structure of the MIS1 Builder algorithm which has 

two header tables for the items, so the algorithm executes mining without pruning and 

merging operations as MIS2 Builder algorithms. 
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Table 4.5. Speed-up table on increments (addition with new items). 

Dataset Split size 

% 

Speed-up with Dynamic 

MIS16 

Speed-up with Dynamic 

MIS27 

D3 (synthetic) 1 – 13 5.76 - 1.72 

 

2.03 - 0.99 

 

4.6 Execution time on increments (deletions) 

 

The last comparison is to determine how the size of deletions affects the 

performances of algorithms. In these tests, we use the real datasets D1, D4 and the 

synthetic dataset D2. First we split the dataset into two parts like the addition tests. In 

this experiment we will run the three algorithm. The part with D = 100% from the 

beginning of the transactions forms the initial dataset and the remaining part with d = 

x% of the transactions forms the additions. The x is set to 20 for the dataset D1 during 

the tests. In other words, for the tests on D = 100% of the transactions of D1 are the 

initial dataset and 20% of the transactions of D1 are the additions with deletions. In case 

of running CFP-Growth++; the number of transactions of dataset for will equal (D - 

d)% from beginning. The MIS values are kept same as those in the addition tests. 

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different deletion sizes on Dataset D1 is demonstrated in Figure 4.11. 

Dynamic MIS2 performs better than CFP-Growth++  before split size 10% while 

Dynamic MIS1 has better execution time than both CFP-Growth++  and Dynamic MIS2 

in all splits in our experiment. In every increment size, Dynamic MIS1 performs better 

than re-running CFP-Growth++ from the beginning since they it only running for the 

increment. In most cases of splits; Dynamic MIS1 execution time faster than Dynamic 

MIS2. The reason for this result is due to the   structure of the MIS1 Builder algorithm 

which uses two header tables for the items that enable the algorithm to execute mining 

without pruning and merging operations as MIS2 Builder algorithms. We conclude that 

on D1; Dynamic MIS1 has the best performance while CFP-Growth++ has better 

performance than Dynamic MIS2 starting from 10% of the incremental size. 

 

                                                           
6 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS1 algorithm. 
7 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS2 algorithm.  
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Figure 4.11. Execution time on dataset D1 (Retail) with increments (deletions).  

 

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different deletion sizes on Dataset D4 is demonstrated in Figure 4.12. 

Dynamic MIS2 performs better than CFP-Growth++  before split size 15% while 

Dynamic MIS1 has better execution time than both CFP-Growth++  and Dynamic MIS2 

in all splits in our experiment. In every increment size, Dynamic MIS1 performs better 

than re-running CFP-Growth++ from the beginning since they it only running for the 

increment. In most cases of splits; Dynamic MIS1 execution time faster than Dynamic 

MIS2. The reason for this result is due to the   structure of the MIS1 Builder algorithm 

which uses two header tables for the items that enable the algorithm to execute mining 

without pruning and merging operations as MIS2 Builder algorithms. We conclude that 

on D4; Dynamic MIS1 has the best performance while CFP-Growth++ has better 

performance than Dynamic MIS2 starting from 15% of the incremental size. 

 

 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

5 10 15 20 25 30 35 40 50 55 60 65 70

T
im

e 
(s

ec
)

Split size%

CFP-Growth++ Dynamic MIS1 Dynamic MIS2



62 
 

 

Figure 4.12. Execution time on dataset D4 (Kosarak) with increments (deletions). 

 

The execution time performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ with different deletion sizes on Dataset D2 is illustrated in Figure 4.13. CFP-

Growth++ has higher execution time than both dynamic MIS1 and Dynamic MIS2 in 

the splits until 20%. From 25% to 50% CFP-Growth++ has less execution time than 

both dynamic MIS1 and Dynamic MIS2. Starting from 55% to the last split CFP-

Growth++ execution time become higher than the other two dynamic since the number 

of frequent items equal 0. In all splits dynamic MIS1 is a slightly better than dynamic 

MIS2. This result is due to the structure of the algorithms and the properties of the 

dataset D2 which are dense and has less number of items, and it is observed from the 

results that on each increment size, the frequent  itemsets count decreases in a marked 

rate, which can be up to half of it in the previous increment in some cases. Thus; in our 

dynamic algorithms, the time spent in mining process becomes less while the time for 

deleting these increments increases, but this rate of time increasing is much less than the 

rate of time decreasing in mining, so the total execution time for the our two dynamic 

algorithms decreases while  the increment splits increases  
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Figure 4.13. Execution time on dataset D2 (T40i10d100K) with increments (deletions).  

 

The speed-up by running Dynamic MIS1 and Dynamic MIS2 instead of re-

running CFP-Growth++ when the database is updated for deletion is shown in Table 

4.6. For Dynamic MIS1; the speed-up increases from 2.26 to 44.88 while the split size 

decreases in D1. For Dynamic MIS2; the speed-up increases from 1.07 to 1.29 while the 

split size decreases in D1. For Dynamic MIS1; the speed-up increases from 2.06 to 

40.16 while the split size decreases in D4. For Dynamic MIS2; the speed-up increases 

from 0.15 to 1.28 while the split size decreases in D4. For Dynamic MIS1; the speed-up 

increases from 1.12 to 1.25 while the split size decreases in D2. For Dynamic MIS2; the 

speed-up increases from 0.84 to 1.22 while the split size decreases in D2. As the table 

point outs, the Dynamic MIS1 and Dynamic MIS2 have higher speed-up than CFP-

Growth++, the reason for this speed over CFP-Growth++ is Dynamic MIS1, Dynamic 

MIS1are running on the addition only instead of running from beginning. Also the 

speed-up of Dynamic MIS1 is higher than it in Dynamic MIS2 because of the structure 

of the MIS1 Builder algorithm which has two header tables for the items that allow the 

algorithm to execute mining without pruning and merging operations. The minimum 

speed-up of Dynamic MIS2 algorithm less than one since CFP-Growth++ has better 

performance than Dynamic MIS2 after 10% on D1 and after 15% on D4 of the 

incremental size. Speed-up with Dynamic MIS1 on D2 is very small compared with it 

onD1 and D4, the reason for this is due to the nature of the synthetic dataset D2 which 
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are dense and has less number of items, whereas D1 and D4 are sparse and have larger 

number of items. 

Table 4.6. Speed-up table on increments (deletions). 

Dataset Split size % Speed-up with 

Dynamic MIS18 

Speed-up with 

Dynamic MIS29 

D1 (Retail) 5 – 70 44.88 - 2.26 1.07 -  0.07 

D4 (Kosarak) 5 – 60 40.16 - 2.06 1.28 -  0.15 

D2 (T40I1D100K) 5 – 70 1.25  - 1.12  1.22 -  0.84 

 

  

4.7 Discussion on results 

 

In this research, we compare the performance of Dynamic MIS1, Dynamic MIS2 

and CFP-Growth++ algorithms. We first compare the execution time and memory usage 

performance of (Dynamic MIS1 and CFP-Growth++) algorithms on static databases, 

then we compare the execution time performance of (Dynamic MIS1, Dynamic MIS2 

and CFP-Growth++) algorithms on dynamic databases. We generate a synthetic dataset 

D3 to be used in the experiment of increments with additions with new items. In all 

other experiments; we use three datasets; real life datasets D1, D4 and synthetic dataset 

D2.  

In the first experiment, the execution time performance of the static version of our 

algorithm Dynamic MIS1 Builder is compared with the CFP-Growth++ algorithm. We 

choose LS = 0.01 and varies ten values of β.  As β increases the items have higher MIS 

values as a result the number of frequent patterns decreases. The speed-up decreases 

from 5.22 to 3.05 on D1 for MIS1 Builder algorithm, while β values increase from 0.1 

to 1. MIS1 Builder algorithm can be up to 5.02 times better than CFP-Growth++ in 

terms of execution time when it is executed on the dataset D1. When the algorithms are 

executed on D2, the speed-up of MIS1 Builder algorithm decreases from 1.06 to 1.01.  

When the algorithms are executed on D4, the speed-up of MIS1 Builder algorithm 

decreases from 4.78 to 3.05 while β values increase, these results are due to the nature 

                                                           
8 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS1 algorithm. 
9 Speed-up = Execution time of CFP-Growth++ algorithm / Execution time of Dynamic MIS2 algorithm.  
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of each dataset ,the difference in structure of the algorithms and the variation of number 

of frequent patterns.  

In the second experiment, the memory usage performance of the static version of 

our algorithm Dynamic MIS1 Builder is compared with the CFP-Growth++ algorithm. 

Ten values of β are varied against the execution time the algorithms. The memory gain 

increases from (- 1.27) to 0.00 on D1 for MIS1 Builder algorithm while β values 

increase from 0.1 to 1, so for β = 0.1; MIS1 Builder algorithm consumes 1.27 times 

more memory than than CFP-Growth++  when it is executed on the real dataset D1, for 

β = 1; MIS1 Builder algorithm memory usage is equal to it in CFP-Growth++ on D1. 

When the algorithms are executed on D2, the memory of MIS1 Builder algorithm 

increases from (-14.29) to (-0.29). On D4; the memory gain increases from (- 0.93) to 

0.24 for MIS1 Builder algorithm while β values increase from 0.1 to 1. We conclude 

that MIS1 Builder algorithm memory usage is higher than or equal to the memory usage 

of CFP-Growth++, since MIS1 Builder algorithm keeps the whole tree in memory, 

however CFP-Growth++ keeps minimized pruned tree in memory. 

In the third experiment, we compare the execution time performance of the 

algorithms on the increments with additions on the dynamic algorithms (MIS1 and 

MIS2) and base algorithm CFP-Growth++. In the increments with additions tests, we 

split each dataset into two parts. The part with D = (100 - x)% from the beginning of the 

transactions forms the initial dataset and the incremental part with d = x% of the 

transactions forms the increments. The purpose is to observe how the addition size of 

increments affects the performance of the algorithms for the datasets. The execution 

time of Dynamic MIS1, Dynamic MIS2 and CFP-Growth++ are measured with thirteen 

split sizes. For Dynamic MIS1; the speed-up increases from 22.21 to 55.94 while the 

split size decreases on D1. Speed-up of Dynamic MIS1 is from 1.15 to 1.33 on D2, and 

from 37.67 to 3.61 on D4 respectively. For Dynamic MIS2; the speed-up increases from 

1.19 to 1.32 while the split size decreases on D1, and from 1.60 to 1.35 on D2. As the 

values point outs, the highest speed-up occurs when the Dynamic MIS1 runs on D1, and 

this range is from 1.37 - 0.99 on D4. The reason for this speed-up over CFP-Growth++ 

is running Dynamic MIS1 on the addition only instead of running from the beginning. 

Speed-up of Dynamic MIS1 is higher than Dynamic MIS2 because of the structure of 

the MIS1 Builder algorithm, which has two header tables for the items, mining is 

executed without pruning and merging operations, while MIS2 Builder algorithm does 

mining with pruning and merging operations.  
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 In the fourth experiment, we compare the execution time performance of 

increments with additions with new items for the two dynamic algorithms (MIS1 and 

MIS2) and CFP-Growth++.  We use the same strategy mentioned in the third 

experiment for splitting the data set. Also we use eighteen split sizes (5% to 90%). And 

in each run; the incremental part has new items with their new MIS values. In all parts 

LS and β have the same values (β = 0.5 and LS = 0.01). The number of new items in 

each split is constant and equal to 100. We measure the size of split against the time for 

each algorithm. The speed-up decreases from 5.76 to 1.72 while the split size increases 

in D3. For Dynamic MIS2; the speed-up increases from 0.99 to 2.03 while the split size 

decreases in D3. As mentioned, the Dynamic MIS1 and Dynamic MIS2 have higher 

speed-up than CFP-Growth++, the reason for this speed-up over CFP-Growth++ is 

dynamic aspect of algorithms; Dynamic MIS1 is running on the addition only instead of 

running from beginning. Also the speed-up of Dynamic MIS1 is slightly higher than in 

Dynamic MIS2 because of the structure of the MIS1 Builder algorithm which has two 

header tables for the items, so the algorithm executes mining without pruning and 

merging operations as MIS2 Builder algorithms. 

In the fifth experiment, the comparison is to determine how the size of deletions 

affects the performances of algorithms. The two dynamic algorithms (MIS1 and MIS2) 

and CFP-Growth++ run on the datasets D1, D2 and D4.  First we split the dataset into 

two parts. The part with D = 100% from the beginning of the transactions forms the 

initial dataset and the remaining part with d = x% of the transactions forms the deletion. 

In case of running CFP-Growth++; the number of transactions of dataset for will equal 

(D - d)% from beginning. For Dynamic MIS1; the speed-up increases from 2.26 to 

44.88 while the split size decreases in D1. For Dynamic MIS2; the speed-up increases 

from 1.07 to 1.29 while the split size decreases in D1. For Dynamic MIS1; the speed-up 

increases from 2.06 to 40.16 while the split size decreases in D4. For Dynamic MIS2; 

the speed-up increases from 0.15 to 1.28 while the split size decreases in D4. For 

Dynamic MIS1; the speed-up increases from 1.12 to 1.25 while the split size decreases 

in D2. For Dynamic MIS2; the speed-up increases from 0.84 to 1.22 while the split size 

decreases in D2. It is observed that, the Dynamic MIS1 and Dynamic MIS2 have higher 

speed-up than CFP-Growth++, the reason for this speed over CFP-Growth++ is 

Dynamic MIS1, Dynamic MIS1are running on the increments only instead of running 

from beginning. Also the speed-up of Dynamic MIS1 is higher than it in Dynamic MIS2 

because of the structure of the MIS1 Builder algorithm which has two header tables for 
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the items that allow the algorithm to execute mining without pruning and merging 

operations. The minimum speed-up of Dynamic MIS2 algorithm less than one since 

CFP-Growth++ has better performance than Dynamic MIS2 after 10% on D1 and after 

15% on D4 of the incremental size. Speed-up with Dynamic MIS1 on D2 is very small 

compared with it on D1 and D4, the reason for this is due to the nature of the synthetic 

dataset D2 which are dense and has less number of items, whereas D1 and D4 are sparse 

and have larger number of items. 
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5 CHAPTER 5 

CONCLUSION 
 

The frequent itemset mining algorithms discover the frequent itemsets from a 

database. But they face many challenges such as accessing data multiple times, response 

time, huge sizes of database, single support threshold, dynamicity nature of the 

databases, etc.. Single support threshold that does not allow user to specify support 

threshold according to the nature of the items. When the database is updated, the 

frequent itemsets should be updated as well. However, running the frequent itemset 

mining algorithms with every update is not feasible. Several dynamic update algorithms 

are proposed but they are devised for single support threshold.  

In this study, we focus on dynamic update problem of frequent itemsets under 

multiple support thresholds; the challenge is to mine the frequent itemsets under 

multiple support thresholds. In this study, two new dynamic itemset mining under 

multiple support thresholds algorithms which are called (Dynamic MIS1 and Dynamic 

MIS2) are introduced and explained, which are tree based, scan the databases only once 

and avoid the candidate generation problem. They handle increments of additions, 

additions with new items and deletions. Proposed algorithms are compared with CFP-

Growth++ algorithm which is a popular algorithm that is able to find frequent itemsets 

under multiple support thresholds. 

We compare the performance of Dynamic MIS1, Dynamic MIS2 and CFP-

Growth++ algorithms. Memory usage performance of our static algorithms is compared, 

execution time performance of our static and dynamic algorithms are compared. For this 

purpose; four datasets are used in the experiments. Our findings reveal that in static 

databases 1) Dynamic MIS1 achieves up to 5 times speed-up against CFP-Growth++ in 

terms of execution time since it does not require tree pruning and merging, it only 

applies mining for items in the primary header table, 2) execution time performance of 

Dynamic MIS2 and CFP-Growth++ are similar, 3) memory usage of Dynamic MIS1 is 

higher than or equal to CFP-Growth++, since it keeps whole tree in memory,however 

the other two keep minimized pruned tree in memory. In incremental database 1) 

Dynamic MIS1 and Dynamic MIS2 perform better than  rerunning CFP-Growth++ from 

the begining since they run only on increments, 2) Dynamic MIS1 is faster than 
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Dynamic MIS2 and with large sparse database; its speed-up can be up to 55.94, whereas 

the speed-up of Dynamic MIS2 cannot exceed 2.03, 3) on large sparse dataset; Dynamic 

MIS2 is slightly better than CFP-Growth++ until increment size is 85% of the original 

size of data, while in small dense dataset until 25%  of the original size of data. We 

conclude that Dynamic MIS1 algorithm is more efficient than both of Dynamic MIS2 

and CFP-Growth++ and its speed-up is more clear with large sparse datasets. 

As a part of our future work, we are planning to enchance our proposed 

algorithms,  and carry on more experiments on different types of datasets, with 

changing values of MIS values  according to different LS and β values, in order to 

investigate how the proposed algorithms can behave with these changes.  
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