

PRIVACY PRESERVATION ON MOBILE

SYSTEMS USING CONTEXT-AWARE ROLE

BASED ACCESS CONTROL

A Thesis submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by

Juhar Ahmed Abdella

June 2016

İZMİR

We approve the thesis of Juhar Ahmed ABDELLA

Examining Committee Members:

Assist. Prof. Dr. Mustafa ÖZUYSAL

Department of Computer Engineering, Izmir Institute of Technology

Assist. Prof. Dr. Şerap ŞAHİN

Department of Computer Engineering, Izmir Institute of Technology

Assist. Prof. Dr. Tuncay ERCAN

Department of Computer Engineering, Yaşar University

06 June 2016

 __________________________ ____________________________

Assist. Prof. Dr. Mustafa ÖZUYSAL Dr. Emrah TOMUR
Supervisor, Department of Co-Supervisor, Department of

Computer Engineering Computer Engineering

Izmir Institute of Technology Izmir Institute of Technology

__________________________ ____________________________

Prof. Dr. Yusuf Murat ERTEN Prof. Dr. Bilge KARAÇALI
Head of the Department Dean of the Graduate School of

of Computer Engineering Engineering and Sciences

ACKNOWLEDGEMENTS

I am very grateful to my thesis supervisors Asst.Prof.Dr.Mustafa Ozuysal and

Dr.Emrah Tomur for their continuous support, encouragement and guidance from the

initial step to the final stage. This thesis work could not have been realized without their

intelligent counseling. They have been always there to help me when I need them. It is

amazingly pleasant to work with advisors like them. They gave me the opportunity to

work on my own and at the same time the advice to get back when my steps faltered.

They were more than thesis advisors for me.

 Besides my advisors, my sincere thanks goes to all my professors in IYTE from

whom I have taken courses and advices during my graduate study. The knowledge I got

from them has helped me to develop an understanding of my research subject.

I would like to thank my family. The care, love and support I received from

them helped me to stand challenges and concentrate on my study. I would also like to

thank all my friends who have stayed besides me during difficult times.

I would like to also appreciate the financial support I received from Turkish

government during the course of my graduate studies.

Last but not least, I am indebted to my wife Elham Asmamaw for her tireless

patience of the lonely nights she spent without me when I left her for study in Turkey.

Her love and support has been a constant source of power and strength all these years.

 iv

ABSTRACT

PRIVACY PRESERVATION ON MOBILE SYSTEMS USING

CONTEXT-AWARE ROLE BASED ACCESS CONTROL

Existing mobile platforms require the user to manually grant and revoke

permissions to applications. Once the user grants a given permission to an application,

the application can use it without limit unless the user manually revokes the permission.

This has become the reason for a lot of privacy problems. One of the solutions

suggested by a lot of researchers is Context Aware Access Control (CAAC). However,

dealing with policy configurations at permission level becomes very complex as the

number of policy rules to configure will become very large. For instance, if there are A

applications, P permissions and C contexts, the user may have to deal with A x P x C

number of policy configurations. Therefore, we propose a Context-Aware Role-Based

Access Control (CA-RBAC) model that can provide dynamic permission granting and

revoking while keeping the number of policy rules as small as possible. We demonstrate

our model based on Android. In our model, Android applications are assigned roles

where roles contain a set of permissions and contexts are associated with permissions.

Permissions are activated and deactivated for the containing role based on the associated

contexts. Our approach is unique in that our system associates contexts with

permissions as opposed to existing similar works which associate contexts with roles.

As a proof of concept, we have developed a prototype application called CA-ARBAC

(Context-Aware Android Role Based Access Control). We have also performed various

tests using our application and the result shows that our model is working as desired.

 v

ÖZET

MOBİL SİSTEMLERDE BAĞAM BİLİNÇLİ ROLE TABANLI ERİŞİM

DENETİMİ İLE KİŞİSEL GİZLİLİĞİN KORUNMASI

Mevcut mobil platformlar kullanıcıların uygulamalara izinleri elle vermesini ya

da iptal etmesini zorunlu tutmaktadır. Kullanıcı bir uygulamaya bir izin verdikten sonra,

elle izni iptal etmediği takdirde, o uygulama o izni sınırsız olarak kullanabilmektedir.

Bu pek çok kişisel gizlilik sorunlarına neden olmaktadır. Bir çok araştırmacı tarafından

önerilen çözümlerden biri bağlam bilinçli rol tabanlı erişim denetimidir. Ancak, izin

düzeyinde politika yapılandırmaları ile ilgilenmek çok karmaşık hale gelir, çünkü

politika kurallarının sayısı çok fazladır. Örneğin, A tane uygulama, P tane izin ve C tane

bağlam varsa, kullanıcı A x P x C adet politika yapılandırması ile uğraşmak zorunda

kalabilir. Bu nedenle politika kural sayısını mümkün olduğunca küçük tutarken aynı

zamanda dinamik izin verme ve iptal etme fonksiyonu sağlayabilecek bağlam bilinçli

rol tabanlı erişim denetimi kullanan bir model önermekteyiz. Modelimizi Android

üzerinde göstermekteyiz. Modelimizde, Android uygulamaları için izin kümesi içeren

roller atanmakta ve bağlamlar da izinler ile ilişkilendirilmektedir. İzinler, onları içeren

rol için ilişkili bağlamlara dayalı olarak aktive edilmekte ya da devre dışı

bırakılmaktadır. Yaklaşımımız roller ile bağlamları ilişkilendiren benzer çalışmaların

aksine izinler ile bağlamları ilişkilendirdiği için benzerlerinden ayrılmaktadır. Önerilen

kavramların kanıtı olarak CA-ARBAC (Context-Aware Android Role Based Access

Control) adı verilen bir prototip uygulama geliştirilmiştir. Ayrıca, prototip

uygulamamızı kullanarak çeşitli testler gerçekleştirilmiş ve sonuçlar önerilen modelin

arzu edildiği şekilde çalışıtığını göstermektedir.

 vi

 TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES .. x

ABBREVIATIONS ... xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. RELATED WORKS .. 6

2.1. RBAC Models .. 7

2.1.1. MPDROID ... 7

2.2. CAAC Models: ... 7

2.2.1. ConUcon .. 8

2.2.2. CRêPE….. .. 8

2.2.3. ConXsense ... 9

2.3. CA-RBAC Models: .. 9

2.3.1. DR BACA .. 9

2.3.2. CtRBAC.. ... 10

2.3.3. CA-RBAC .. 10

2.3.4. User Relation Ship based Context Aware Role Based Access

Control…………………………………………………………………..11

2.3.5. RBACA… .. 11

2.4. Summary of Related Works ... 15

CHAPTER 3. Android Background ... 16

3.1. Android System Overview ... 16

3.1.1. Android Kernel .. 16

3.1.2. Libraries ... 17

3.1.3. Android Runtime ... 17

3.1.4. Application Framework ... 18

3.1.5. Applications ... 18

 vii

3.2. Android System Security .. 18

3.2.1. Mandatory Application Sandbox ... 19

3.2.2. Secure Inter Process Communication .. 19

3.2.3. Application Signing ... 20

3.2.4. Android Permission System .. 21

CHAPTER 4. CA-ARBAC Design .. 30

4.1. CA-ARBAC Access Control Model .. 30

4.1.1. Application Assignment (AA) ... 31

4.1.2. Permission Assignment (PA) ... 32

4.2. CA-ARBAC Architecture .. 36

4.2.1. ASM……. .. 37

4.2.2. Architecture Overview ... 38

4.2.3. Components of CA-ARBAC ... 39

4.2.4. Working Principle of CA-ARBAC .. 40

CHAPTER 5. IMPLEMENTATION ... 42

5.1. ASM Simulator .. 42

5.2. CA-ARBAC Implementation ... 43

CHAPTER 6. EXPERIMENT AND ANALYSIS ... 48

6.1. Experimental Tests ... 48

6.1.1. Creating Roles ... 49

6.1.2. Associating Contexts ... 53

6.1.3. Assigning Roles to Applications and Making Experimental

Tests…. .. 56

6.2. Formal verification ... 59

CHAPTER 7. DISCUSSION AND FUTURE WORKS .. 63

CHAPTER 8. CONCLUSION ... 65

REFERENCES ... 66

 viii

APPENDICES

APPENDIX A. NORMAL PERMISSIONS .. 70

APPENDIX B. DANGEROUS PERMISSIONS ... 72

APPENDIX C. ANDROID PERMISSION GROUPS ... 73

 ix

LIST OF FIGURES

Figure Page

Figure 1. CA-ARBAC system way of context Usage .. 12

Figure 2. RBACA system way of context usage .. 12

Figure 3. High level Picture of Android Architecture Layers .. 16

Figure 4. More Detailed Android Architecture Layers ... 17

Figure 5. Sample Manifest file showing permission declaration 22

Figure 6. Android User Permission Approvals ... 23

Figure 7. Android application resource access procedure .. 28

Figure 8. Simplified Android application resource access procedure 29

Figure 9. Application-to-role assignment relation .. 31

Figure 10. Role-to-permission assignment relation without context 33

Figure 11. Role-to-permission assignment relation with context 36

Figure 12. ASM Framework ... 38

Figure 13. Architecture of CA-ARBAC based on ASM .. 39

Figure 14. Architecture of CA-ARBAC based on ASM Simulator 42

Figure 15. CA-ARBAC System Sequence Diagram .. 45

Figure 16. Entity Relationship Diagram ... 46

Figure 17. Source Code of CA-ARBAC .. 47

Figure 18. User Interface of CA-ARBAC system .. 47

Figure 19. Applications Used for Experimental Test ... 48

Figure 20. Role Creation in CA-ARBAC System .. 53

Figure 21. Context Configuration Screen ... 54

Figure 22. Location and Time Context Configuration ... 55

Figure 23. Call State and Screen State Context Configuration 55

Figure 24. Role Assignment for MyMessenger Application .. 57

Figure 25. MyMessenger Application Crashing and Recording Cases 59

Figure 26. Security Exception Thrown by ASM Simulator ... 59

Figure 27. CA-ARBAC run time authorization decision by example 62

 x

LIST OF TABLES

Table Page

Table 1. CA-RBAC way of creating roles for application A .. 13

Table 2. RBACA way of creating roles for application A .. 13

Table 3. Summary of related works .. 15

Table 4. Example application roles, permissions and contexts 52

 xi

ABBREVIATIONS

AA DB: Role Assignment Database

APS: Android Permission System

ARM: Application Role Mapping

ASF: Android Security Framework

ASM: Android Security Modules

BYOD: Bring Your Own Device

CAAC: Context-Aware Access Control

CA-RBAC: Context Aware Role Based Access Control

CA-ARBAC: Context Aware Android Role Based Access Control

PAP: Policy Administration Point (a user interface used to configure security policy)

PA DB: Permission Assignment Database

PDP: Policy Decision Point

PEP: Policy Enforcement Point

PRM: Permission Role Mapping

RBAC: Role Based Access Control

1

CHAPTER 1

INTRODUCTION

With the advent of more powerful, affordable and multi-purpose mobile

phones, the world is shifting towards mobile computing. Nowadays, mobile devices

are capable of doing many of the things which were normally done by the traditional

desktop and laptop computers. Thus, in addition to personal use, companies have also

started using mobile devices for enterprise Bring Your Own Device (BYOD)

environment. According to the report from market research team eMarketer [1], there

were around 1.13 billion smartphone users in 2012. Nearly 2.5 billion people or 35 %

of the global population is expected to use smartphones by the end of 2017. In spite of

these figures, the security and privacy aspect of smart phones is at its infancy stage.

There are a lot of security and privacy issues related to mobile devices. As mobile

phones are always attached with the user, users’ privacy is of special importance. A

study from [2], shows that currently Google’s Android is the most popular mobile

platform dominating 85% of the smart phone market. Due to this popularity, its open

nature and the weaknesses in the permission system, Android is also the most targeted

mobile platform by attackers. Kaspersky Labs [3] estimate that Android is the recipient

of more than 98 percent of the mobile threats currently in existence. In the first half of

2014 alone, Kaspersky researchers identified 175,442 new, unique malicious programs

designed for Android. A joint report from Kaspersky Lab and INTERPOL [3], collected

based on more than five million mobile devices secured by Kaspersky security products

between 2013 and 2014 indicates that the number of attacks per month exploded from

69,000 per month to almost 650,000. In that same timeframe, the number of users

attacked also increased rapidly, from 35,000 to 242,000. It’s worth noting that almost

60% of malware detections are related to some form of information theft.

The current permission systems do not support the dynamic alteration of

applications’ privileges based on the context of the user opening the door for malicious

use of permissions and privacy leak without the user’s consent [4], [5], [6]. In mobile

systems, the environment around the user changes frequently which makes it

implausible to rely on static policy configurations. The dangerousness of permissions

depends on the present condition of the mobile user. A permission which is normal at

2

some condition may be very dangerous at other occasion. As is the case in the existing

systems, manually adjusting permission grants from time to time seems impractical for

a long list of permissions like that of in Android.

Because of a lot of privacy issues, Google started modifying Android

Permission system (APS) beginning from Android version 4.3 although it did not

officially declare the change until Android version 6. Google announced the new

permission system on Android version 6 with more other modifications including

making the permission system fine-grained and dynamic. The old static and coarse-

grained APS has been discussed in more detail in the related works part.

Google has also made improvements concerning usability issues in Android

version 6. In earlier versions of Android, every time the user wants to install new

application, he had to review a long list of permissions and accept all of them before

installing the application. This had significantly affected the usability of the system. The

new APS is similar to that of Apple’s iOS permission system in that permission is not

requested during installation time as before. Instead, users have to grant permissions to

applications during runtime through a popup window that asks for permission. Once the

user grants permission to a specific application, the permission will be added to the list

of allowed permissions for that application and it will permanently stay granted until the

user manually revokes the permission. However, if the user denies the requested

permission, the decision will not be permanent. The application has the chance to

request the permission at a later time.

The negative side of this approach is that permission requests could become

annoying if users have to be asked confirmation for each specific permission requested

by applications. As a solution to this problem, Google grouped related permissions

together. Therefore, when a user is asked to grant permission, he is actually being asked

to grant many permissions at a time not just a single permission. For example, when the

user grants PHONE permission, he is granting six permissions: Directly call phone

numbers, Write call log, Read call log, Reroute outgoing calls, Modify phone state and

Make calls without user’s intervention permissions. This may result in privacy problems

because users are being made to grant all permissions inside the group even though they

do not want to grant some of the permissions inside the group. The other important

point in APS is that the new system grants Normal Permissions such as internet

permission to all applications by default. Users will not be asked to grant access to the

Internet and it is not even possible to revoke it, even if they wanted to do so.

3

Despite a lot of other changes, Google did not take context awareness into

consideration yet. Context-aware access control is still not possible with the new APS.

Once the user grants permission to an application, the application can use the

permission at all conditions without limit. Nevertheless, taking the advantage of mobile

device sensors and the dynamic nature of mobile phones, other researchers have

introduced context awareness to Android permission system as discussed in the related

works section.

However, existing context aware access control models give little attention to

usability in contrary to the fact that most users of smartphones are ordinary users which

have little or no knowledge about security and privacy. To the extent of our knowledge,

most of the systems require users to laboriously configure detailed policies. Privacy

policy rules have to be configured for each individual entity separately. The problem

with such kinds of models is that the user has to deal with large number of policy

configurations. For example, in APS, we may have to deal with approximately 140

permissions. Generally, if we have A number of applications and P number of

permissions, in the worst case, we need to deal with A x P number of policy rules. In

addition, in the case where context is considered, context policy configuration has to be

performed for each permission per each application. Users usually need to associate

more than one context with a single permission. If we have C number of contexts for

each permission on average, we will end up with A x P x C number of policy rules. For

systems which have large number of permissions and installed applications, configuring

this much number of policy rules does not seem fascinating especially for the ordinary

users.

In fact, different studies show that most mobile device users are not interested or

not able to configure detailed policies; rather they prefer to accept every permission

request without careful examination resulting in over privileged applications. [7] for

example, made an investigation to see if Android users understand APS and pay

attention to privacy risks during application installation. The result shows that only 3%

of users could correctly understand the permissions and only 17% of the users give their

attention to permissions requested by applications.

To overcome the previous problems, we propose a permission system that

combines RBAC with CAAC. Our model named Context-Aware Android Role Based

Access Control (CA-ARBAC) works by assigning roles to applications where roles

consist of a list of permissions which will be activated and deactivated for the

4

containing role depending on a set of contexts. We found that CA-RBAC is a promising

method to implement better privacy preservation without significant effect on the

usability of the permission system. In CA-ARBAC, users are not required to deal with

large number of permissions; instead they just need to assign roles to applications. In

other words, the kind of permission grouping adopted by Google to promote usability is

replaced by RBAC in our system without compromising the privacy. However, there is

small amount of overhead at the beginning. The user has to configure policies initially.

Once created, roles can be used for as many applications as needed. Furthermore, it is

possible to have default roles such that ordinary users who have difficulty in creating

their own roles can use them.

Therefore, in our proposed method, the number of policy rules can be reduced to

A x R where R is the number of roles. Moreover, in our model, since role-permission

and permission-context maps are independent of applications, we do not need to redo

these configurations if applications have to be uninstalled and installed again. But

without RBAC, every time we need to uninstall and install back a given application, all

the rules related to that application have to be reconfigured since they are dependent on

the application. Altogether, our method satisfies three requirements at the same time:

least privilege, dynamic permission granting and revoking and keeping the number of

policy rules as small as possible.

To create roles, we followed a method of categorizing applications into logical

groups. Examples of functional groups include messenger applications, photography

applications, multimedia applications, travel applications etc. Roles correspond to these

functional groups. Different functional groups require different type and number of

permissions and hence will be assigned different kinds of roles. This approach should

not be taken as the best way of creating roles. It is rather a one kind of approach chosen

by us to demonstrate our model. We recognize that this approach has its own

limitations. Being able to create roles which contain an optimum number of permissions

is one of the challenges of our system. We believe that there can be better way of doing

this. However, as the main goal of this thesis is not providing an appropriate method of

creating roles, we have chosen to postpone this work to the future. Detailed discussion

about role creation and the limitation of this approach is presented in Chapter 6.

We argue that CA-ARBAC yields an improved privacy preserving system with

little or no effect on the usability of the system. Primarily, CAAC helps protect the

privacy of the user by allowing dynamic alteration of application privileges based on

5

pre-defined contexts. Secondly, as RBAC is a known method of applying Principle of

Least Privilege (PLP), it allows user privacy protection by enabling the user to give a

minimum number of permissions as he wishes preventing over-privileged applications.

Furthermore, we also believe that CA-ARBAC promotes usability. As explained earlier,

the numbers of policy rules needed to be configured is less in CA-ARBAC as compared

to the access control models suggested by others.

Contributions:

The concept of CA-RBAC is not totally new to the mobile environment and to

Android. There are few prior works which have introduced CA-RBAC to Android for

different purposes. The following are the novel contributions made by this thesis:

 A new CA-RBAC model for APS that assigns roles to applications and associates

contexts with permissions allowing PLP and dynamic granting & revoking of

application permissions with little effect on usability

 A dynamic and fine-grained permission system for Android versions earlier than

Android version 6

 A new CA-RBAC architecture for Android permission system that can possibly

be integrated to Android Security Modules (ASM) [8]

The rest of this thesis is organized as follows: Chapter 2 discusses related work.

We revise Android background and its security mechanisms in Chapter 3. Our proposed

design for CA-ARBAC system is presented in Chapter 4. Chapter 5 explains the

implementation of our system. Our system is further demonstrated with examples and

experimental test in Chapter 6. We discuss our work and indicate future works in

Chapter 7. Finally, Chapter 8 summarizes and concludes the thesis.

6

CHAPTER 2

RELATED WORKS

Going back to Android versions earlier than Android version 4.3, Android

permission system (APS) was not only coarse-grained but also static. By coarse grained,

it means that the user has to accept all the permissions requested by the application

during installation to be able to install the application. It was not possible to accept only

some of the permissions and yet be able to install the application. Moreover, there was

no way of revoking permissions later on during run time which makes it static. This

weakness of the permission system had been the cause for a lot of over privileged

applications that harm the privacy of the user. In response to these security and privacy

risks, a lot of researchers have tried to enhance Android’s security system in different

ways. Hence, the first generation of researches focused on making Android permission

system fine-grained and dynamic. Some of the most prominent papers published on this

topic are Apex [9], AppGuard [10], BlurSense [11], [12], Flaskdroid [13], TISSA [14],

MockDroid [15] and Dr. Android and Mr. Hide [16].

The second generation of researches started introducing context aware access

control to the mobile environment. The majority of them are designed for all platforms

in general and some of them are for Android in particular. Some of the most recent

papers which fall under this category include [17], ConUcon [18], CRêPE [19] and

ConXsense [20]. At the same time, there are other researchers who worked on role

based access control. Furthermore, a limited number of papers have been published on

context-aware role based access control.

Our CA-ARBAC system is a combination of two types of access control

models: RBAC and CAAC. In the consecutive sections, we will see at previous

publications related to our work in different ways. Some of them are related to pure

RBAC. Others are linked to CAAC only. Few others are associated to both RBAC and

CAAC. Therefore, we chose to examine previous articles closely related to our work by

dividing them into three groups: those that focus on RBAC, those that deal with CAAC

and those that combine both of these (CA-ARBAC models).

7

2.1.1. RBAC Models

2.1.2. MPDROID

MPDROID [21] is good example of pure RBAC model that is close to our

approach. It is a security framework that supports two kinds of access control models at

two layers of Android system: role-based access control at the application framework

layer and mandatory access control at the kernel layer. At the application framework

layer, it enhances APS with role-based access control to provide fine-grained access

control. This enables users to define their own security policy and control malicious

applications. At the kernel layer, it implements mandatory access control to allow

administrators enforce fine-grained access control. Administrators can limit activities of

applications and their processes according to a centralized security policy. Similar to

our system, users authorize Android applications by assigning roles instead of

permissions. But MPDROID doesn’t take context into account.

2.2. CAAC Models

Mobile devices are dynamic by nature. A lot of things around mobile

environment change from time to time which makes them suitable for context

information collection. Leveraging this nature of mobility, a lot of researchers have tried

to present various kinds of context aware access control models on different mobile

platforms including Android mobile phone. We would like to have a look at four of the

most common and recent ones: Bilal Shebaro Et Al. [17], ConUcon [18], CRêPE [19],

and ConXsense [20].

Our context aware access control policy model part is analogous to that of Bilal

Shebaro Et Al. [17]. Similar to our proposed system, it associates android permission

with contexts. However, Bilal Shebaro Et Al. [17] is a pure CAAC model unlike our

model which is a hybrid of RBAC and CAAC. Moreover, Bilal Shebaro Et Al. [17]

works only for two kinds of contexts: location and time. Our system is designed to

support different kinds of contexts.

8

2.2.1. ConUcon

ConUcon [18] proposed a general context-aware usage control model that can be

used in different mobile platforms. It uses context information to protect privacy and to

control resource usage. ConUcon is a context aware access control model that is applied

in a system wide manner. It doesn’t allow per application configuration of context

policy. ConUcon is different from other context aware access control models in that it

supports active context usage control i.e. context check is not only performed prior to

resource access, but also during the access. In addition to proposing the model, they also

implemented the model in Android to provide an interface that enables users to

configure their policy dynamically in a context-aware and fine-grained manner. Two

kinds of contexts (system and environmental contexts) such as CPU rate, battery, device

location and time are used in ConUcon.

2.2.2. CRêPE

CRêPE [19] developed a system that enforces fine-grained context- related

policies on Android. In addition to local configuration, CRêPE allows remote policy

configurations via methods such as SMS and Bluetooth. It also allows phone users and

administrators to define context policies in a system-wide manner. The kinds of

contexts supported by CRêPE include sensor contexts like time & location, contexts

generated by further processing on these data or contexts coming from particular

interactions of these sensors with the users or third parties. CRêPE allows dynamic and

active context policy management i.e. it is not only possible to create and or modify

contexts policies at runtime but also it is possible to stop ongoing service/application.

For example, disabling audio recording while entering to meeting room does not only

require denying new requests to record audio but also needs to stop ongoing recording

operations if any. In CRêPE system, access control policies are stored as context and

policy pairs. Since all of these couples may not be active at a given time, CRêPE works

by keeping the subset of active policies at a given time in a different place.

9

2.2.3. ConXsense

ConXsense [20] is a framework for context aware access control on mobile

devices based on context Classification. ConXsense’s main goal is aimed at solving the

usability issues ignored by most other context aware access control models before it. It

is unique from other similar models in that it doesn’t require users to configure policies.

Instead, it is based on a probabilistic approach that automatically classifies contexts

according to their security and privacy risks. It uses machine learning and context

sensing for automatic classification of contexts. Earlier works on context-aware access

control systems usually need either users to laboriously configure policies or they rely

on pre-defined policies not necessarily indicating the real preferences of users.

ConXsense is applied for protection against device misuse using a dynamic device lock

and protection against sensory malware. It is implemented on Android permission

system focusing on usability.

2.3. CA-RBAC Models

There exist also works that combine aspects of RBAC model with context

awareness. Some of the recent studies that fall under this category are: DR BACA [22],

CtRBAC [23], CA-RBAC [24], Kangsoo Jung Et Al. [25], and RBACA [26]. We will

look at the these five papers in the following sections

2.3.1. DR BACA

DR BACA [22] offers an RBAC system similar to that in traditional desktop

computers. It allows the management of multiple users on a single Android mobile

device by controlling resource access based on the role of the current user using the

device. It also allows a single Android device to be used by different users without

interference. At the same time, a single user can use different devices seamlessly.

Similar to the traditional RBAC system, users are assigned roles. However, instead of

associating roles to permissions directly, DR BACA introduces an additional layer they

called rule. The rules can either be applied on applications or on permissions. At the

application level, DR BACA can control user’s execution of applications. At the

10

permission level, it is used to allow or deny application permission requests based on

the role of current user.

DR BACA also supports dynamic RBAC by taking advantage of the context-

aware capabilities of mobile devices and Near Field communication (NFC) technology.

By associating rules with context, DR BACA provides fine-grained Role Based Access

Control (RBAC) at both the application and permission levels.

2.3.2. CtRBAC

CtRBAC (context-related role based access) [23] proposes a finer access control

mechanism for mobile systems based on traditional role based access control enhanced

with context aware access control. In CtRBAC, users are categorized according to their

access rights and each user is allowed to possess one role at a time. Access to resources

is determined based on the role of the user currently using the device. CtRBAC can also

dynamically change the permissions of users depending on the contextual information

obtained from information of the user and system environment. The administrator is

responsible for creating roles and defining access control policies. The phone owner is

considered as the system administrator. CtRBAC did not provide implementation.

2.3.3. CA-RBAC

CA-RBAC [24] proposes an access control model that combines RBAC with

context awareness for users in ubiquitous computing environments. As opposed to the

traditional RBAC model where User assignment (UA) and Permission assignment are

handled by administrators, in CA-RBAC model, UA and PA are performed dynamically

depending on context satisfaction.

To be able to achieve dynamic UA and PA, CA-RBAC model uses various

access control algorithms including role assignment, role delegation, role revocation,

permission modification, and permission restoration. Personalized access control that

considers the user’s preferences is also included. They haven’t implemented it. CA-

RBAC is similar to our system in that it dynamically assigns permissions to roles

according to the current context. However, like most others, CA-RBAC is designed for

11

mobile users in ubiquitous computing environments not for applications. In addition,

our system does not change roles contextually to avoid unnecessary creation of roles.

2.3.4. User Relation Ship based Context Aware Role Based Access

Control

Dynamic RBAC has also been designed using user relationship as contextual

information. Kangsoo Jung Et Al. [25] is a relationship based context aware role based

access control approach for mobile users in enterprise environment. It considers the

relationship between employees of a company as contextual information. The access

control design uses NFC technology in mobile devices. In real world, employees have

different kinds of relationships with each other for cooperative work to perform

organization’s task. For example a manager or supervisor may want to share his

privilege to his employee to do some work on behalf of him temporarily. The manager

can delegate the employee using NFC technology as long as the employee is around the

office.

2.3.5. RBACA

This is probably the closest existing work to our approach. They proposed

RBAC approach for Android mobile systems in order to mitigate the security risks

caused by over-privileged applications. In this system, similar to our system, roles are

assigned to applications and roles contain a subset of android permission. The main

difference between our system’s design and RBACA system design is the way context

is handled. In RBACA system, context is associated with roles. Application’s roles are

switched manually or dynamically depending on some contexts i.e. i.e. applications will

have different roles at different conditions. In CA-ARBAC system, roles assigned to

applications stay the same and do not change. Context is applied on permissions i.e.

permissions are turned on for the role they belong only when the associated context is

fulfilled. Figure 1 and 2 below show a comparison of CA-ARBAC system and RBACA

system context handling methodologies. P1, P2… represent permissions and C1, C2…

represent sample contexts.

12

Figure 1. CA-ARBAC system way of context usage

Figure 2. RBACA system way of context usage

We believe that our way of context usage has two advantages over that of

RBACA system’s method. First of all, allowing applications to have different roles at

different contexts leads to the unnecessary creation of large number of roles. To explain

this by example let’s assume that a given user has installed application A which requires

five permissions P1, P2, P3, P4 and P5. Moreover, let’s assume that the user wants to

associate three contexts C1, C2 and C3 with permissions P1, P3 and P5 respectively. i.e.

P1, P3 and P5 are allowed for application A only when contexts C1, C2 and C3 are

satisfied consequently. However, P2 and P4 are always allowed for application A as

there is no context associated with them. To satisfy the previous requirement, in our

model, only one role needs to be created for application A as shown in Table 1 below.

13

However in the case of RBACA, three roles need to be created for application A as

shown in Table 2. Application A will be assigned either role R1, R2 or R3 based on the

contexts C1, C2 and C3.

Table 1. CA-ARBAC way of creating role for application A

Role Permissions Condition to use the permission

R1 P1 When C1 is satisfied

P2 Always

P3 When C2 is satisfied

P4 Always

P5 When C3 is satisfied

Table 2. RBACA way of creating roles for application A

Role assigned to application A Role Permissions inside the role

At context C1

R1 P1

P2

P4

At context C2

R2 P2

P3

P4

At context C3

R3 P2

P4

P5

Secondly, being able to associate contexts with permissions rather than

associating contexts with roles allows a more flexible and finer-grained context policy

configuration i.e. users will have the ability to set contexts at permission level.

The other important difference between our access control model and that of

RBACA is that in RBACA, each application should have at least one default role. In our

system, applications may not be given a role at all which reduces the burden on users. In

addition to this, RBACA didn’t provide any architecture and implementation. We have

14

designed and implemented a new architecture for our CA-ARBAC system as you will

see in the subsequent sections.

15

2.4. Summary of Related Works

The summary of related works is presented in table 3 below.

Table 3. Summary of Related Works

Name

Type of Access Control Model

Description
RBAC CAAC Hybrid

MPDROID - RBAC at the application frame work layer

- Assign roles to applications

- MAC at the kernel layer

- Enhances APS with RBAC

Bilal

Shebaro Et

Al. [12]

 - Associates Android permissions with context

- Works for only two kinds of contexts

ConUcon - A general context-aware usage control model that can be

used in different mobile platforms

- System wide policy; does not allow per application policy

configurations

- Supports active context management

CRêPE - Fine-grained context- related policies for Android in a

system-wide manner

- Remote context configuration is possible via SMS, MMS,

Bluetooth, or QR-code.

- Supports active context management

ConXsense - Context aware access control for mobile devices that does

not require users to configure context policies

- It is uses a probabilistic approach that uses machine learning

and context sensing to classify user context according to

their risks

- For protection against device misuse using a dynamic device

lock and protection against sensory malware

DR BACA - Multi user management on Android mobile devices

- Associates users with roles and roles with rules

- Rules are either applied to applications to control user’s

execution of applications or to permissions to grant/deny

permission requests to applications

CtRBAC - RBAC for multiple users on Android phone

- Permissions change based on context

CA-RBAC - Dynamic RBAC based on contextual information for users

in ubiquitous computing environments.

- Both UA and PA are performed dynamically

Kangsoo

Jung Et Al

[22]

 - Context aware RBAC based on user relationship to promote

cooperation between employees in enterprise environment

- Employees can share privileges based on contexts

RBACA - Similar to our system except that context is associated with

roles and not permissions

- Applications should have at least one default role

- No architecture and implementation

16

CHAPTER 3

ANDROID BACKGROUND

3.1. Android System Overview

Android is a complete software stack consisting of different layers. It is based on

the Linux kernel. It is developed by the Open Handset Alliance (OHA), which is led by

Google. Android system is made up of four layers, each layer manifesting well-defined

behavior and providing specific services to the layer above it as shown below in figure

3. A more detailed figure showing the components inside each layer is also shown in

figure 4.

Figure 3. High level Picture of Android Architecture Layers

3.1.1. Android Kernel

The Android Kernel is the first layer of Android system that interacts with the

device hardware. This is the layer that acts as a bridge that connects the device hardware

and the Android software layers above the kernel. Android Kernel is a modification of

the traditional Linux Kernel for an embedded environment. Android Kernel has also

made many enhancements to the original Linux Kernel. Android kernel takes care of

duties such as process management, memory management, device drivers, networking,

power and security.

17

Figure 4. More Detailed Android Architecture Layers

3.1.2. Libraries

The libraries component consists of a set of C and C++ libraries used by

different components of the Android system. This layer is also called the “native

layer” because of the fact that the libraries are written in C and C++ and optimized

for the hardware, as opposed to the Android applications and framework, which are

written in Java. It acts as a translation layer between the kernel and the application

framework. Developers use these libraries through the Android application

framework. Android applications can access native capabilities through Java Native

Interface (JNI) calls.

3.1.3. Android Runtime

The Android Runtime has two parts: the Dalvik Virtual Machine (DVM) and

Java Core Libraries. The DVM executes java class files compiled into .dex format. It is

analogous to the Java Virtual Machine (JVM) that exists on personal computers and

servers today. In Android, every application runs in an isolated process inside a separate

Dalvik virtual machine instance allocated for that application. The Dalvik VM relies on

18

the Linux kernel for providing lower level functionality (e.g., memory management).

Android relies on Java core Libraries for most of the services related to Java

programming language. Java core libraries depend on the service they get from the

kernel and Dalvik VM.

3.1.4. Application Framework

The application framework provides a collection of services or systems for the

developer to be used when writing applications. The presence of the application

framework simplifies the reuse of components. The services in the application

framework publish interfaces for different functions so that any other third party

applications can then use those functions without the need to reinvent the wheel.

3.1.5. Applications

The application layer of the Android operating system is the closest to the end

user. By default, Android comes with rich set of applications, including the browser, the

SMS program, the calendar, the e-mail client, maps, Contact Manager, an audio player,

and so forth. User applications also belong to this layer.

3.2. Android System Security

Android is a truly open mobile platform. To secure an open platform, we

require a robust security architecture. Android is considered as one of the most secure

and flexible operating system for mobile platforms. Android security mechanism is a

multi-layered security system that is designed by imitating traditional Linux system

security approaches. Hence it provides similar security services such as protecting user

data, system resources and providing application isolation. It is designed with both

developers and device users in mind. Android achieves these security objectives based

on the following key security features provided by the Linux kernel:

1. Mandatory application sandbox (process isolation)

2. Secure inter process communication mechanism

3. User-based Permission model

19

4. Cryptography

5. Mandatory access control using Security-Enhanced Linux in

Android(SEAndroid)

3.2.1. Mandatory Application Sandbox

Android makes use of one of the key security features (user-based security

model) provided by Linux kernel to provide mandatory application sandbox. The user-

based security model allows application resources to be identified and kept isolated. The

Application Sandbox is performed in the Linux Kernel. Since the Application Sandbox

is implemented in the lowest level of the Android software stack (in the kernel), this

security model is also applicable to native code applications and to operating system

applications. The application sandboxing encompasses all user applications, the

application framework, the application runtime and operating system libraries. With the

exception of the kernel and some operating system code running as root, all of the other

components run within the application sandbox. Moreover, each component above

considers that the parts beneath it are trusted and properly secured. A given application

or component is sandboxed by executing it in separate process with a unique user ID

(UID). Each application is assigned its own set of private data structures and is

prevented from interfering with other processes’ execution or from performing sensitive

operations such as accessing the recording audio, making phone calls, or receiving SMS

messages. The private data structures are also labeled the application’s UID.

3.2.2. Secure Inter Process Communication

In addition to any Linux-type Inter process communication methods such as

local sockets, file system and signals, Android provides different kinds of new IPC

mechanisms such as Binders, Services, Content Providers and Intents. Application

sandbox can talk to other applications via such kinds of secure IPC mechanisms.

Binder: Binder is a type of remote procedure call (RPC) mechanism in Android. It

allows communication between processes in the same application and also between

processes in different applications. Traditional Linux driver is used to implement it.

20

Services: Services are one of the Android application components that run in the

background to accomplish long lasting tasks. Services also expose RPC communication

interfaces that are reachable through binders.

Intent: Intent is a lightweight messaging object used by applications to tell other

applications that they want to do something. In other words, it is a notification message

from one process to another to accomplish some work.

Content Providers: A Content Provider is a way of having access to data stored on the

device. Applications get access to data exposed by other applications through Content

Providers. An application can also define its own Content Providers to expose its data to

other applications.

Although it is possible to implement inter process communication using Linux

IPC mechanisms such as network sockets and world-writable files, the new Android

IPC mechanisms are the recommended ones.

3.2.3. Application Signing

All Android applications running on Android system must be signed by the

developer before they can be installed. An android system refuses installation of

applications that are not signed. The main purpose of application signing is to

distinguish applications from one to another. Developers sign their applications with

their own private keys (self-signed). Even though it is allowed, it is not a requirement to

sign Android applications with a certificate authority which also shows that no

applications are trusted. Android system will not be able to place an application in an

Application Sandbox unless the application is properly signed. The Android system

uses the signed certificate to determine which application is represented by which user

id. With application signing, since different applications run under different user IDs,

one application cannot access private data of other applications except through one of

the secure IPC mechanisms discussed earlier.

When an Android application is going to be installed, the new application can

choose to share a UID with other applications already installed on the device.

Applications ask to share UID with other applications by specifying it in their manifest

file. In such cases, the Android system checks if the public key certificate of the

requesting applications matches the key used to sign the other application installed on

21

the device. If the two keys are the same, the two applications are then treated as being

the same application regarding security issues. Besides this, Applications signed with

the same key can also have different Application Sandboxes and UIDs with the option

to share security permissions at the signature protection level. Therefore, Android

system also uses Application signing to allow and or deny access to signature protection

level permissions.

3.2.4. Android Permission System

As mentioned earlier, all user applications installed on Android system run in

their own sandbox. Hence, by default, an application is only allowed to access data in

its sandbox (its own private data) and a limited range of less sensitive resources such as

internet. The permissions associated with such kind of less sensitive resources are

automatically granted at install time and the user will not be able to revoke them later.

These permissions are called Normal Permissions.

For all other resources and services, application’s access to resources is

performed through a strictly controlled access procedure which is managed by Android

system security. The access controls are implemented in two ways. Some functions are

totally not allowed to be used by user applications. For example, there is no way to

access the SIM card directly. In other cases, the sensitive APIs are allowed for trusted

applications and are protected through a security mechanism known as Permissions.

Some out of the many protected APIs include: Telephony functions, SMS/MMS

functions, Camera functions, Location data (GPS), Bluetooth functions and

Network/data connections. To be able to access such kinds of security and privacy

sensitive resources other than their own private data directories, applications need to be

granted different application layer permissions by the user. Applications have to

explicitly request the permissions they need in order to use those permissions and

execute successfully. They do so by declaring the required permissions in the manifest

file as shown in Figure 5.

22

Figure 5. Sample Manifest file showing permission declaration

User approval is required before an application can get access to critical

operations (e.g., making calls, sending SMS messages). Starting from Android version

6, user approval is done during runtime. When an application is going to perform some

operation that requires a given permission (more accurately group of permissions),

Android prompts the user to either allow or reject the requested permission/permissions.

The left side of Figure 6 shows a screen shot of permission user approval in Android.

Furthermore, the user can later modify permissions (revoke previously allowed

permissions or allow new permissions). The right side of the same figure (figure 6)

shows runtime permission modification.

23

Figure 6. Android User Permission Approvals

Once the user has granted permission, the permissions will be applied to the

application as long as the application is not uninstalled. Permissions granted to an

application are removed if the application is uninstalled. Therefore, re-installation of the

application will result in requesting all of the permissions again. If the application

attempts to use a sensitive resource or service without declaring the necessary

permission in its manifest, a security exception will be thrown back to the application.

3.2.4.1. Permissions

Android defines a set of core permissions for protecting OS resources and

services. These are called system-built-in permissions. Android defines around 140

system-built-in permissions. All of the system-built-in permissions in Android are listed

in Android developers’ website [27]. Some examples of system-built permissions are

CALL_PHONE, INTERNET, CAMERA, READ_CONTACTS, READ_LOGS,

READ_SMS, RECEIVE_SMS, SEND_SMS, WRITE_SMS and so forth. System-built

permissions provide a means to get access to restricted content and APIs.

24

Third-party application developers can also define new permissions that are

enforced using the same mechanisms as system-built permissions. We call these later

ones as user-defined permissions or custom permissions. User-defined permissions are

used by third-party application developers to protect their applications/components from

other applications. However, some device capabilities are not available to developers

such as the ability to send SMS broadcast intents because these permissions are

signature level permissions. The main concern of this paper is about Android system-

built permissions and not about user-defined permissions. Therefore, from now on, we

will simply use the word permission to refer to Android system-built permissions.

3.2.4.2. Permission Protection Levels

Android classifies permissions into four levels depending on the potential risk

that may come from granting a given permission. This classification helps the system in

determining whether or not to grant the permission to an application requesting. The

four protection levels are described below.

Normal Permissions: Normal permissions are permissions that are considered to have

relatively minimal risk to the system, other applications or the user. Permissions such

as ACCESS_NETWORK_STATE, CHANGE_NETWORK_STATE, INTERNET and

SET_TIME_ZONE are categorized under normal permissions. Appendix A shows the

list of all normal permissions in Android. Applications require normal permissions to

access data or resources outside their sandbox/private data. Permissions with normal

protection level are automatically granted to a requesting application at installation time

without explicitly asking approval from the user. For example, if an application declares

in its manifest file that it needs INERNET, Android system automatically grants

INERNET permission to the application at installation time.

Dangerous Permissions: These are risky permissions that could potentially harm the

operation of other applications or user's data if granted. Examples of dangerous

permissions are CONTACTS, LOCATION, PHONE and SMS. Android system does

not automatically grant dangerous permissions to a requesting application because it

could introduce a negative impact on the private user information or on the device. To

get access to dangerous permissions, applications should declare in their manifest file

that they need the permission and the user has to explicitly grant the permission.

25

Dangerous permissions requested by an application will be displayed to the user during

run time for confirmation before allowing the application to use it. The exhaustive list

of dangerous permissions is listed in Appendix B.

Signature: As explained previously, Android system grants permissions declared by

one application to another application if the two applications are signed with the same

certificate. Permissions achieved this way are called signature permissions. Android

system automatically grants the permission without asking user's explicit approval if the

certificates of the two applications match.

SignatureOrSystem: Similar to the Signature protection level, applications that are

signed with the same certificate as the application that declared the permission are

automatically granted the permission. The difference between Signature and

SignatureOrSystem protection levels is that SignatureOrSystem can also be requested

by an application that came with the Android system image. Hence, SignatureOrSystem

protection level permissions can be granted to Android operating system applications

even though they are not signed with the same certificate as the application declaring

the permission. The "SignatureOrSystem" permission is used for certain special

situations where multiple vendors have applications built into a system image and need

to share specific features explicitly because they are being built together.

In addition to the above four divisions, there are also some special permissions

in Android that are very sensitive and are not allowed for most applications.

SYSTEM_ALERT_WINDOW and WRITE_SETTINGS are two examples of special

permissions. If an application wants to use one of the special permissions, it should first

declare the permission in the manifest. In addition, it should create an intent that is used

to request confirmation from the user. The Android system displays authorization

screen to the user for approval.

3.2.4.3. Permission Grouping

Android system permissions are grouped into related permissions. For example,

the following four permissions are grouped under the “PHONE” permission group:-

-Directly call phone numbers; this may cost you money

-Write call log (example: call history)

-Read call log

26

-Reroute outgoing calls

-Modify phone state

-Make calls without your intervention

The list of Android permission groups is listed in appendix C. Starting from

Android version 6.0 (API level 23), permission requests are presented to the user in the

form of permission groups and not as a single permission. As previously stated, Android

system automatically grants Normal permissions to a requesting application. However,

a dangerous permission must be approved by the user before granted. When an

application requests a dangerous permission that belongs to some permission group that

is declared in its manifest file, Android system performs one of these two things:-

If the application had previously been granted one or more other permissions in

that permission group, the system automatically grants the permission without

informing the user. For instance, let say an application which had previously requested

and been allowed WRITE_CALENDAR permission requests READ_CALENDAR

permission, then the system immediately grants the READ_CALENDAR permission.

However, if the application does not have any prior granted permission in that

permission group, the system displays a dialog box to the user for approval. The

authentication window shows a description of the permission group that the requested

permission belongs but does not show a description of the specific requested permission

within that group. As an example, if an application requests the READ_CALENDAR

permission, the system displays an authentication window saying the application needs

access to your CALENDAR. The system grants the permission only if the user accepts

it.

3.2.4.4. Permission Enforcement

As stated previously, in Android, every time the user installs application, a

unique user ID is generated for the application and the application is assigned that UID.

The application runs under that UID for the whole of its life. In addition, all data stored

by that application is assigned that same UID, whether a file, database, or other

resource. Every application sandbox accesses its own private resources by direct system

call to the kernel. The Linux Kernel enforces private resource access by comparing the

UID of the requesting application with the UID of the requested resources. The Linux

27

Kernel permissions on private resources for that application are set to allow full

permission by default. However, an application needs permission from the user to

access resources other than its private resources.

An application can access resources other than its private directory using two

different ways. Firstly, when an application is granted less sensitive public resources

such as SDCard and CAMERA permissions, it is added to a Linux group that has access

to the corresponding resources. Thus, the application is assigned a group ID (GID) in

addition to the UID. Such kinds of public resources are also accessed by directly

interacting with the underlying kernel through system calls in a similar fashion to

private resource access. The Linux Kernel enforces the access control policy i.e. the

access control in the file system ensures that the application has the necessary

permissions. E.g. it checks whether the application is allowed to open a file on the

CAMERA by checking the GID of the application with the GID that is privileged to

access the CAMERA. The file system access control uses traditional Linux

Discretionary Access Control. The Linux Kernel access control also supports a

Mandatory Access Control (MAC) scheme called Security Enhanced Android

(SEAndroid) starting from Android v4.3. SEAndroid is Security Enhanced Linux

(SELinux) enabled for Android.

Secondly, to access highly sensitive public resources such as SMS, PHONE and

CONTACTS, applications should use the Middleware Layer Android system API in a

strictly controlled way. Applications are not allowed to access highly privileged

resources by direct system call to the Kernel. Such kinds of resources are accessed

through Middleware layer system services and applications that implement the target

API. For example, the Location Service provides the API used to communicate with the

GPS or other location providers. Therefore, if an application wants to get users’

location, it communicates with the location service instead of directly interacting with

the GPS or other location providers. Permission check is also performed by system

services/applications at the Middleware Layer. The system services/applications use

Android Permission Validation Mechanism to check whether the caller application with

the given UID has the necessary permission or not. The system service/application gets

the UID of the caller application from the Binder IPC. Fig. 7 elaborates Android

application resource access procedure.

The fact that in Android, applications are uniquely identified by their UIDs

makes assigning roles to applications possible. In our CA-ARBAC system also

28

applications are identified by their UIDs. Our system assigns roles to applications based

on their UIDs. Therefore, permission check is also performed by UID during resource

access.

Figure 7 below elaborates Android application sandbox and resource access

procedure. The application APP1 has UID of 1. It also has two groups IDs (2 and 3).

This shows that the application has access to two public resources with GID of 2 and 3

(BLUETOOTH and CAMERA for our example) and can access them by direct system

call to kernel. However, APP1 cannot access highly privileged resources directly. It has

to go through a system service API at the Middleware Layer.

Figure 7. Android application resource access procedure

In our CA-ARBAC system design, we used a simplified version of the above

Android resource access procedure shown in Figure 8 not to show much details and

make the design more complex.

29

Figure 8. Simplified Android application resource access procedure

30

CHAPTER 4

CA-ARBAC DESIGN

4.1. CA-ARBAC Access Control Model

CA-ARBAC is an adaptation of the traditional RBAC model. The three main

components of the traditional RBAC are users, roles and permissions. In CA-ARBAC,

applications replace users. Applications are considered as users. In a traditional RBAC

model, user assignment (UA) and permission assignment (PA) are handled by

administrators. In case of CA-ARBAC, smart phone users are expected to perform

application assignment (AA) and permission assignment (PA). Application assignment

is assigning applications to roles and permission assignment is assigning permissions to

roles. In addition to these, our model contains a fourth component: context. In CA-

ARBAC, users are also expected to configure contexts associated with permissions (if

any). If permission is associated with one or more contexts, it will not be allowed for

the application that owns it unless the contexts are satisfied. Context checking and

granting is done by the system dynamically during resource access.

In the following sections, we describe CA-ARBAC access control policy model.

Here is the definition of the basic system components:-

Definition 1 (Applications): An application is any user Application in the system. Let

A represent the set of all user applications installed on the device.

Definition 2 (Roles): In CA-ARBAC, a role is a functional category of Android

applications which consists of a set of permissions. Let R stand for the set of roles in the

system.

Definition 3 (Permissions): The permissions in our system are any one of the

permissions defined in Android system. Let P represent the set of all permissions in

Android system.

31

4.1.1. Application Assignment (AA)

CA-ARBAC policy is designed in such a way that applications are assigned

roles and roles contain a set of permissions. Application assignment (AA) is a mapping

that associates an application with an assigned role.

Definition 4 (Application Role Mapping): Let ARM be the list containing the

mapping between applications and roles.

The elements of ARM are duplets:

<Ai, Rj> where Ai ∈ A and Rj ∈ R.

The user manually creates roles and assigns it to one or more applications. When

the user assigns roles to applications, it is added to the ARM. The Application Role

Mapping is static and do not change dynamically based on contextual data. A many-to-

many mapping (application-to-role assignment relation) exists between applications and

roles:

ARM⊆ A × R.

Figure 9 shows application role assignment relation. As we can see from the

figure, a role can be assigned to multiple applications at the same time. Similarly, an

application can also have more than one role simultaneously.

Figure 9. Application-to-role assignment relation

32

4.1.2. Permission Assignment (PA)

Permission assignment (PA) is a mapping that associates roles with an assigned

permission. A role can be assigned multiple permissions and a single permission can

also occur in many roles. Permission assignment can be classified into two based on the

presence and absence of context: Static Permission Assignment and Dynamic

Permission Assignment. When there is context data associated with permissions, the

permission assignment is called Dynamic Permission Assignment. Otherwise, it is

called Static Permission Assignment.

4.1.2.1. Static Permission Assignment without Context (PA)

In the absence of context associated with permissions, the permission set

assigned to roles stays active for the role all the time i.e. all the permissions assigned to

a role are allowed for the role all the time.

Definition 5 (Role Permission Mapping): Let RPM be the list containing the mapping

between roles and permissions. The elements of RPM are duplets:

<Rm, Pk> where Rm ∈ R and Pk ∈ P.

A many-to-many mapping (role-to-permission assignment relation) exists

between roles and permissions,

RPM ⊆ P × R.

Role permission assignment relation is shown pictorially in Figure 10. As we

can see from the figure, a role can be assigned to multiple applications at the same time.

Similarly, an application can also have more than one role simultaneously

33

Figure 10. Role-to-permission assignment relation without context

4.1.2.2. Dynamic Permission Assignment in the Presence of Context

In CA-ARBAC, the usage of permissions inside a given role can be restricted by

specifying the conditions under which the permission should or should not be allowed.

In this paper, we use two kinds of context sources: Environmental context and

system context. Location of the user and surrounding temperature are types of

environmental contexts. Some examples of system context include: Time, battery status,

whether there is an ongoing phone call or not, whether the screen is locked or not etc.

Definition 6 (Context): Many kinds of contexts can be applied in our model. Each

context is identified by its name and one or more attributes.

Context = < ContextName, ContextAttributes> (4.1)

For example, LOCATION is a context that is identified by two attributes:

latitude and longitude; TIME is a context identified by single attribute: time of day.

Definition 7 (Context Policy): A context policy is a rule that specifies the condition

under which a given permission should be allowed or not allowed. It consists of two

34

parts: the context description and the action to take. ContextDescription is expressed as

follows:

ContextDescription=[ContextName,Operator, AttributeValues] (4.2)

The operator represents different kinds of key words used for comparison. It

includes: EqualTo, GreaterThan, LessThan, GreaterThanOREqualTo,

LessThanOREqualTo, INBetween and IN. AttributeValues is the set of values for each

of the context attribute of the given context.

Let CD be a set of context descriptions and CP be the set of context policy rules

configured in the system, then

CPi = <CDi, Action> where CPi ∈ CP and CDi ∈ CD (4.3)

When we configure context policy, we may need to specify multiple values for

the context based on the range we want to include. For example, we may specify that

some permission should be denied access from some starting time to some end time.

Another case is we may specify that a given permission can be allowed on week days.

The action attribute indicates the action to be taken when the context is satisfied. It is

either allow or deny.

Definition 8 (Context Combination): Often context policies are made up of a

combination of contexts combined together using logical conjunction operator. Let CCP

(combined context policy) be the set of context policies containing combination of

context descriptions, then

CCPi = < (CD1 ∧ CD2 ∧ … ∧ CDm), Action> where

 CCPi ∈ CCP and CDi ∈ CD. (4.4)

The value of CCP is either true or false based on the value of the Action

attribute and the return value of the combination of the context descriptions. When the

Action attribute is set to allow, it returns true if all the contexts in the combination are

satisfied. Otherwise, it returns false. When the Action attribute is set to deny, it returns

false if all the contexts in the combination are satisfied. Otherwise, it returns true.

35

Definition 9 (Context List): Sometimes permissions are also associated with a list of

combined contexts joined together using logical disjunction operator. Let CPL be the set

of context policy lists, CPLi ∈ CPL where CPLi is the context policy list associated with

permission Pi.

CPLi = < (CD1 ∨ (CD2 ∧ CD3) ∨ CD4… ∨ CDn), Action>

 where CCPi ∈ CCP. (4.5)

In this case, when the Action is set to allow, CPL returns false if all of the CDs

in the list return false. Otherwise, it returns true. When the Action is set to deny, CPL

returns true if all the CDs in the list return false. Otherwise, it returns false.

Definition 10 (Active Permissions): Not all the permissions assigned to a role are

active for the role all the time. An application can only use active permissions. Whether

permission is active or not for a given role is determined by the list of contexts

associated with the permission. Active permissions are permissions for which the

associated context is satisfied.

Figure 11 below illustrates our access control model graphically. In the figure,

APPx is assigned the role Rx. Role Rx is granted j permissions. Permission P1 has no

any context associated with it which means that it will be active for role Rx at all times.

Permissions P2, P3 and PJ of role Rx on the other hand have contexts associated with

them. P2 is associated with single context. P3 is associated with combination of two

contexts and PJ is associated with a context list which contains two combined contexts.

APPx can access these permissions only if the contexts associated with them are

satisfied.

36

Figure 11. Role-to-permission assignment relation with context

4.2. CA-ARBAC Architecture

Because of the absence of comprehensive security API for the development and

modularization of security extensions on Android, all of the earlier Android security

system enhancements required modification to the android operating system.

Consequently, these previous works are provided in one of two ways. Some of them are

presented as separate model-specific patches to the Android software stack. Others are

embedded into Android’s mainline codebase and become integrated component of the

Android OS design. Both of these lessen the effectiveness of the practical and

theoretical aspects of security solutions. As noted by Android Security Framework

(ASF) [28], first, there is in general no consensus on the “right” security model, as

demonstrated by the broad range of Android security extensions. Thus, OS security

mechanisms should not limit policy authors to one specific security model by

embedding it into the OS design. Second, providing security solutions as “security-

model-specific Android forks” impedes their maintainability across different OS

versions, because every update to the Android software stack has to be re-evaluated for

and applied to each fork separately. Apart from this, rebuilding the operating system to

patch the security applications is very difficult for the majority of the user unless the

user is highly skilled or device manufacturers include it in the operating system during

device production.

37

Understanding this gap, ASF [28] and ASM [8] recently developed an extensible

security framework for Android that provides a programmable interface for the

development and integration of different kinds of security models in the form of code

based security modules. ASF and ASM are two independent but similar systems

developed by independent researcher groups. Both of these groups are dealing with

Google to integrate their work to android operating system mainline codebase.

Taking the above two unsatisfactory situations into consideration, we decided to

design CA-ARBAC as independent code based security module that does not require

modification to the android operating system. Hence, we designed CA-ARBAC as a

pure java application built on the application layer based on ASM. Before we explain

about our design it will be helpful to have a small introduction about ASM.

4.2.1. ASM

The motivation behind the development of ASM is to provide a programmable

interface that will enable security application developers to extend Android security

without the need to change the operating system. Existing Android security

enhancements define their own specific hooks in different ways. Such kinds of hooks

only support the specific model they are designed for. They cannot provide general and

complete support for others who wish to implement a different logic. To solve this

problem, ASM provides a reference monitor interface for building new reference

monitors (Security applications/Security modules). This allows reference monitor

developers to focus on their novel security models and not worry about enforcement

hooks. The reference monitors are called ASM apps and they are developed just like

any other conventional Android applications. ASM apps implement the security logic.

They use ASM hooks for policy enforcement. This is possible through registration for

authorization hooks. Each ASM app registers for a unique set of hooks and will receive

a callback from ASM when a sensitive resource is going to be accessed. The ASM on

the other hand automatically invokes the callback in the ASM app. The part of ASM

which contains the ASM reference monitor interface is the ASM Bridge shown in

Figure 12. Besides interacting with ASM apps, the ASM Bridge also receives protection

events from authorization hooks distributed all over the Android OS. All authorization

hooks are not involved in this communication with ASM Bridge. Only those hooks that

38

are enabled as a result of ASM apps making registration will notify the ASM Bridge

when protected resources are to be accessed. ASM also supports authorization hooks

within the Linux kernel. To achieve kernel authorization, a special ASM LSM (Linux

Security Modules) performs up calls to the ASM Bridge, once more only doing so for

hooks explicitly enabled. ASM framework looks like that in Figure 12.

Figure 12. ASM Framework

4.2.2. Architecture Overview

The design of CA-ARBAC which is based on ASM is shown in Figure 13. On

the figure, there are three kinds of components. The lower light-grey colored parts

belong to existing Android system components which participate in the resource access

process. The two blue colored boxes represent ASM system extensions to Android

operating system. The two (A to G) and (1 to 5) numbered arrows indicate the steps

followed when an application needs to access a sensitive resource in Android system

that is enhanced with ASM and CA-ARBAC. The big light-grey colored part on the top

right corner is our CA-ARBAC system.CA-ARBAC is an ASM app. With ASM,

security module developers do not need to worry about policy enforcement hooks and

concentrate only on the logic that makes policy decision. Therefore, in our case, CA-

ARBAC is only responsible for implementing the policy logic. It is concerned about

39

policy decision making, policy configuration, context detection and policy storage.

Policy enforcements are handled by ASM. CA-ARBAC receives call back from ASM

when a sensitive resource is going to be accessed. CA-ARBAC consists of four

components. Each components of CA-ARBAC are explained in the subsequent sections

as follows:

Figure 13. Architecture of CA-ARBAC based on ASM

4.2.3. Components of CA-ARBAC

Policy Decision Manager (PDM): The PDM is the core component of CA-ARBAC. It

is the part that makes security decisions inside CA-ARBAC. CA-ARBAC is connected

to ASM through PDM.

Policy Configuration Manager (PCM): Policies are configured by the user through

the user interface component called PCM.

Context Manager: The PDM needs to get the current contextual information to make

access decision i.e. it needs to check whether the pre-specified context associated with

permissions is fulfilled or not. The PDM gets current context information from the

Context Database (CDB). The CDB stores different kinds of context and their current

40

values. The Context Manager is the part responsible for continuously receiving updates

of contextual information from different context provider elements and updating the

CDB with the new values.

CA-ARBAC Policy Databases: Access control policies are stored in two separate

databases. Application Assignment Database (AADB) stores applications and their

corresponding roles. Permission Assignment Database (PADB) is used to store roles

and the permissions assigned to roles. PADB also contains context information for

permissions that have associated contexts.

4.2.4. Working Principle of CA-ARBAC

Every time an application wants to access sensitive resource other than its

private resource, it makes a call to either the Middleware Layer Android API or directly

to the kernel as shown by steps (A and 1) of the two lines on Fig. 13. Permissions are

also enforced at both of these points. In the existing Android system, when the two

Permission Enforcement Points (PEPs) receive access request message, they will decide

whether the application should be allowed access or not and they either allow access to

resources or send back exception message.

In Android system enhanced with ASM, the ASM intercepts access request

messages and sends callback to registered ASM applications. CA-ARBAC is an ASM

application. Thus, it receives callback from ASM through the PDM interface. The

message contains tuples {Application ID, Permission} i.e. the application that requests

access and the requested permission. The PDM analyzes the request and decides on

whether the request should be allowed or denied. The PDM then responds with

allow/deny message to ASM based on the decision made. The steps (4 and E) in the

lines going from PDM to ASM on Fig. 13 shows allow and deny responses.

The PDM performs the following actions to make decision. It first checks if

there is a role assigned to the requesting application in the AADB. If there is no any role

given for the application in AADB, the PDM automatically sends deny message to

ASM. If it finds a role associated with that application, it retrieves the list of

permissions allowed for that role from PADB. If the requested permission is not found

in the list, PDM will again send back a deny message to ASM. If the requested

41

permission is found in the list, there are two cases. Either there is context data

associated with the permission or not.

Therefore, the PDM then goes on to checking if there are any contexts

associated with the permission. If the permission is not accompanied by context, it will

be allowed for the application automatically. If however, there are some contexts

associated with the permission, the PDM gets the current value of the context from

CDB and checks if the pre-configured context is equal to the current value of the

context. If all the contexts are satisfied, an allow message will be sent to ASM.

Otherwise, deny message will be sent to ASM. Based on the response from

PDM, the ASM either allows the application to access the requested resource or sends

back an access denied exception to the application.

42

CHAPTER 5

IMPLEMENTATION

Currently, ASM is not integrated to Android operating system. Therefore, we

could not use ASM; instead we simulated ASM with our own application called ASM

Simulator. Figure 14 shows the architecture of CA-ARBAC after ASM is replaced with

ASM Simulator. In the future, we have a plan to rebuild Android operating system with

ASM and integrate our system to it. For the time being, we will explain the

implementation of our system using ASM Simulator application.

Figure 14. Architecture of CA-ARBAC based on ASM Simulator

5.1. ASM Simulator

ASM Simulator is an Android library application that controls resource access

operations of other applications. ASM Simulator is different from ASM in that it lies in

the application layer as opposed to ASM which is placed at two of the other layers, the

middleware and kernel layers. In normal case in Android, applications directly

communicate with either the Middleware Layer or the Kernel Layer PEPs to access

43

sensitive resources. In this case, applications get access to sensitive resources through

ASM Simulator.

When an application wants to access some resource, it calls the public method

getCaarbacSystemService() of ASM Simulator by specifying the resource it needs to

access.

The ASM Simulator checks whether the application has the necessary

permission to access the requested resource by contacting CA-ARBAC. ASM Simulator

calls the public method call() inside the PDM. The call() method in turn invokes the

private method checkAppPermission() inside PDM itself. The arguments to both

methods are tuples {Application ID, Permission}. The response to ASM Simulator is

either ALLOW or DENY. If the response is ALLOW, ASM Simulator gets the resource

from Android system on behalf of the application and passes the acquired resource to

the requesting application. Otherwise, it sends back a security exception to the

application.

5.2. CA-ARBAC Implementation

CA-ARBAC system is implemented using four of the Android application

components: Activities, Services, Content Providers and Broadcast Receivers. It

consists of various components that altogether perform these four main operations:

policy configuration, context detection, policy decision and storage.

Policy Configuration:

PCM is the component of CA-ARBAC that provides user interfaces for policy

configurations. As such, it is made up of many Android Activity classes which allow

the user to perform various activities. It consists of classes used for role creation, role

assignment and role modification. Role creation involves giving appropriate name to the

role, assigning one or more permissions to the role and associating context with the

permissions (in the case where the user is interested to associate context with

permissions).

When a new role is created, it is stored in PADB. PADB and all other databases

in our system are implemented using SQLite database. Role assignment is assigning

roles to applications. When a role is assigned to an application, the data is saved in

AADB. Role modification enables the user to modify existing roles.

44

Context Detection:

This part consists of the Context Manager and CDB. The list of contexts defined

in the system and their current values is kept in CDB. The Context Manager is an

Android service class that works continuously in the background. It constantly collects

current context information from different context sources and updates the values in

CDB. To be able to do so, it implements different kinds of listeners such as Android

LocationListener. Context collection does not affect the performance of the other parts

of our system since the service runs on a separate process independent of the other

components. Moreover, not to harm the overall performance of the mobile device, it is

possible to adjust the frequency at which the Context Manager collects context data.

The Context Manager service is started at boot time by the

ContextManagerStarter class that extends Android Broadcast Receiver class. Broadcast

Receivers can register for Intent.ACTION_BOOT_COMPLETED system intent that

tells the device has completed booting. Our ContextManagerStarter class is also

registered for this intent. Hence, it starts the Context Manager service when it receives

the Intent.ACTION_BOOT_COMPLETED intent.

Policy Decision: Upon the arrival of request message from ASM Simulator, the PDM

performs policy decisions based on the entries in the AADB, PADB and CDB. The

PDM extends Android Content Provider class. It consists of various methods such as

checkAppPermission(), getAppRoles(), getRolePermissions() and checkContext().

checkAppPermission() is the main method that checks whether the Application should

be currently granted a given permission or not. It uses getAppRoles() to get the roles of

the application from AADB and getRolePermissions() to retrieve the permissions

assigned to the roles of the Application from PADB. Finally, checkContext() is used to

check if the preconfigured context is satisfied or not.

Sequence Diagram: Figure 15 represents the sequence diagram for CA-ARBAC

system. It shows the interaction between various components involved in the process of

resource access through CA-ARBAC system.

Entity-Relationship Diagram: The various entities in our database and their

relationships are also shown in the entity relationship diagram in Figure 16.

45

Figure 15. CA-ARBAC System Sequence Diagram

46

Figure 16. Entity Relationship Diagram

The Source code for our CA-ARBAC application is shown in Figure 17 below.

CA-ARBAC application’s user interface looks like that in Figure 18. The user interface

allows users to create roles, assign created roles to applications and or modify existing

roles later on. We show how these operations are performed step by step in the

following sections.

47

Figure 17. Source Code of CA-ARBAC

Figure 18. User Interface of CA-ARBAC system

48

CHAPTER 6

EXPERIMENT AND ANALYSIS

6.1. Experimental Tests

In this section, we further demonstrate our system by using some real examples.

We test the working of our system using three applications, three roles and four kinds of

contexts. We developed three test applications for this purpose. The three test

applications are shown in Figure 19. The first one is a messenger application called

MyMessenger that allows phone call, SMS sending and audio recording. The second

one is called PhotoEditor. It is a photography application that allows taking photos and

editing them. The last application is a simple application that gets the users current

location and displays it. We named it LocationGetter. The three roles we created for our

test are: MESSENGER, PHOTOGRAPHY and TRAVEL roles. Four types of contexts

namely LOCATION, CALL_STATE, SCREEN_STATE and TIME are used for this

test.

Figure 19. Applications Used for Experimental Test

49

6.1.1 Creating Roles

Before we look at examples, it is essential to discuss the method we used to

generate roles for applications and determine permissions to be assigned for roles.

Different techniques may be used to do this. As mentioned earlier, we assign roles to

applications based on their functional group. Applications are developed to give some

kind of services to users. Different applications provide different kinds of functions.

Some applications like games are designed for simple entertainment purposes. Others

are intended to be used for critical functions like financial transactions. As a result of

this, not all applications need the same kind of permissions. There are permissions

which are necessary for one type of application and prone to misuse for other type. For

instance, allowing sending SMS messages is quite normal for messengers but very

suspicious for games. Therefore, to discover sample roles, we followed a method of

classifying applications into logical groups based on the functionality they are designed

for. Therefore, we categorize applications into functional groups and create different

roles which are appropriate for each functional category.

To give more insight into the process of role creation and assignment in our

system, we look at some examples. For instance, “PHOTOGRAPHY” role can be

created for photography applications and a “MESSENGER” role can be created for

messenger applications. These roles will be allocated different number and types of

permissions. For example, permissions such as CALL_PHONE, SEND_SMS,

RECIEVE_SMS, RECORD_AUDIO, CAMERA, WRITE_CONTACTS or

READ_CONTACTS are normal for messenger applications but most of them are

suspicious if requested by photography applications. Thus, out of these mentioned

permissions, PHOTOGRAPHY role may be assigned only CAMERA permission

whereas MESSENGER role could be granted all of them.

Moreover, using the context awareness functionality of the system, we can

impose restrictions on permission usage for already granted permissions. For instance,

we can set the precondition that RECORD_AUDIO permission is not allowed for

MESSENGER role during the time that the user is talking on the phone or the user is in

meeting room. We can also say that PHOTOGRAPHY role is forbidden from using

CAMERA permission if the user is at home or in meeting room. One of the common

attacks by hackers is calling and or sending SMS messages to premium numbers when

50

the phone is locked. In such cases, we may have a context policy that forbids the

application from using permissions such as CALL_PHONE, SEND_SMS and

RECIEVE_SMS if the screen is locked. Another common privacy attack is tracking

users’ location. The user can have a policy that denies location permission to

applications when the user is at secure locations such as home. As mentioned earlier, in

Android version 6, all applications have internet permission by default. This is not what

users really want. We believe that limiting the internet permission depending on context

is the better way to do it which is possible in our system.

When we come to the implementation of this method of categorizing

applications into logical groups, it is not as simple as it seems. Being able to create roles

which contain optimum number of permissions is one of the challenges of our system.

For skilled users, we believe that deciding which permissions to assign to which roles is

completely up to the user. However, as most users of mobile devices are ordinary users

who have difficulty in creating roles, there is a need to create default system roles that

can be used as needed. Currently, there is no any reference standard that states which

kinds of applications should use which kind of permissions. There is also no satisfactory

system that can identify the permissions appropriate for the different categories of

applications. This topic by itself is a new research area that needs further study.

However, there are few works such as [29], [30], [31], [32] and [33] which have

done limited researches on this topic. Most of these studies used this methodology as a

way of detecting malicious Android applications. Among them we found [29] to be

more convenient for our work. We used their open source application called

“SuspiciousAppsChecker” [29] to find sample application roles and corresponding

permissions. “SuspiciousAppsChecker” is an application that analyzes Android

applications for over-privilege. It checks Android applications for over-privilege by

comparing the permissions used by the applications with a pre-defined permission list

allowed for the category that the application belongs. We identified sample applications

roles and permission lists for each role by using the data we get from

SuspiciousAppsChecker.

We recognize that this is not sufficient way of generating roles for applications.

First of all, the methodology by itself may not be taken as a good means of dealing with

this problem. Secondly, SuspiciousAppsChecker is not yet mature and has limitations.

To mention one, the categorization is too general and not fine-grained. For instance, the

system assumes that all messenger applications belong to the same category and

51

believes that all messenger applications should be given the same set of permissions. In

reality, there are various kinds of messenger applications such as text messaging

applications and voice messaging applications. For example, RECORD_AUDIO

permission is not necessary for text messaging applications but is must for voice

messaging applications. So it is wrong to group all messenger applications into one

category and assign them the same set of permissions.

In the future, we have a plan to develop a system that can automatically analyze

applications, determine appropriate permissions for applications and suggest appropriate

roles to users. We also hope that a better automated technique may be discovered by

other researchers. Nonetheless, for the purpose of explaining our model, we believe that

it is adequate to use simple samples developed with the help of SuspiciousAppsChecker

because our main goal in this thesis is not identifying roles and equivalent permissions

but rather showing that Context Aware Role Based Access Control can be used to

provide usable privacy preserving permission system.

Helped by SuspiciousAppsChecker application, we derived three roles that we

use for test purpose. The three roles, the permissions they contain and the contexts

associated with them are shown in Table 4 below. Roles are created in CA-ARBAC

system as shown in Figure 20. During role creation, a popup window is displayed and

asks the user if he wants to configure context for one or more of the permissions

selected for the role. We present how context is configured in the next section.

52

Table 4. Example Application roles, permissions and contexts

Role Permissions Assigned to the Role Context Policy Context

Policy

Type

MESSENGER

RECORD_AUDIO USER IN MEETING

(LOCATION +TIME)

DENY

USER TALKING ON

PHONE

DENY

PHONE IS LOCKED DENY

READ_CONTACTS

WRITE_CONTACTS

CALL_PHONE PHONE IS LOCKED DENY

SEND_SMS PHONE IS LOCKED DENY

RECEIVE_SMS

READ_SMS PHONE IS LOCKED DENY

…

…

…

TRAVEL

INTERNET

ACCESS COARSE LOCATION USER NOT AT HOME ALLOW

ACCESS_FINE_LOCATION USER NOT AT HOME ALLOW

…

…

…

PHOTOGRAPHY

CAMERA USER NOT AT HOME ALLOW

WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

…

…

…

53

Figure 20. Role Creation in CA-ARBAC System

6.1.2 Associating Contexts

Once the user created a role by selecting one or more permissions, CA-ARBAC

system asks the user if he wants to associate contexts with the selected permissions. If

the user is willing to configure contexts, he is forwarded to a context configuration

screen. Figure 21 shows CA-ARBAC context configuration screen. It allows the user to

select policy type (allow/deny), context types (location, time, call state, screen status)

and the permission for which the context should be applied.

54

Figure 21. Context Configuration Screen

We associated contexts with three of the permissions assigned to our roles as

shown in Table 4. For example, RECORD_AUDIO permission is a desirable

permission for messenger applications. However, it may be very dangerous at some

conditions such as when the user is in a meeting, or if the user is talking on phone and if

the phone is locked. Therefore, we can set a policy that says RECORD_AUDIO

permission is not allowed if the user is in one of these situations. To know that the user

is in a meeting, we may need to know the meeting place and time. Hence, it is expressed

using a combination of LOCATION and TIME contexts. For instance, let say user John

has meeting at IYTE computer engineering department every Monday and Friday from

2:30 pm to 4:30 pm and he doesn’t want applications to record audio while he is in a

meeting. The snapshot in Figure 20 shows how location and time context policy can be

configured in our system. For location context, the user sets a circular area by selecting

two points on the map. Configuring time context involves selecting time range and

days. The context policy for user John’s context requirement is represented in our

system as:

55

<([LOCATION=38.32099966466455;26.64043352007866;

38.321032544732574;26.640723198652267] ∧

[TIME=1430;1630;MONDAY,FRIDAY]),DENY>.

Figure 22. Location and Time Context Configuration

Moreover, John also does not want applications to record audio if he is talking

on phone or if his phone is locked. Figure 21 below shows how these two contexts are

configured. The context policy for these two situations looks like this in our system:

<[CALL_STATE=CALL_STATE_OFFHOOK],DENY> and

<[SCREEN_STATE=SCREEN_STATE_OFF],DENY> respectively.

Figure 23. Call State and Screen State Context Configuration

56

Similarly, the user John specified a context rule which says that CALL_PHONE,

SEND_SMS and READ_SMS permissions are not allowed if his phone is locked.

Finally, John stated that ACCESS_FINE_LOCATION and CAMERA permissions are

allowed only if he is out of his home such as in cafeteria, markets and work place. Let

us assume that John’s work place is at IYTE computer engineering department and his

home is at Inciralti Ataturk Students Dormitory.

6.1.3 Assigning Roles to Applications and Making Experimental Tests

In this section, we first see role assignment to our test applications and then we

conduct an experiment by running our test applications in different contexts.

Let say John who has configured the prior contexts has installed our three

applications. John then has to assign roles to the applications based on the permissions

they require. Our test applications require different number of permissions. The

MyMessenger application which represents a messenger application requires the highest

number of risky permissions. It usually requires most of the permissions in

MESSENGER role. Moreover, messengers may require CAMERA permission which is

in the PHOTOGRAPHY role. Messengers also usually need access to location.

Location permission is contained in TRAVEL role. Hence, John assigned MyMessenger

all the three roles in the system. The other two applications each is assigned one role;

PhotoEditor is assigned PHOTOGRAPHY role and LocationGetter is assigned

TRAVEL role. Role assignment for MyMessenger application is performed as shown in

Figure 22.

57

Figure 24. Role Assignment for MyMessenger Application

We did various tests based on John’s policy configurations as follows:-

Firstly, we performed the following four tests using MyMessenger application.

TEST1:

We tried to record audio using MyMessenger at IYTE computer engineering department

meeting room on Monday and Friday between 2:30pm and 4:30pm.

We also checked if we can record audio at some other contexts.

RESULT1:

The result shows that we are not able to record audio on the given days and time.

MyMessenger application crashes. Have a look at left side of Figure 23. Moreover, a

security exception is thrown by ASM Simulator as shown in Figure 24. However, we

can record audio at other contexts (right side of Figure 23).

TEST2:

We tried to record audio while there is an ongoing phone call. We also tried to record

audio while the phone is idle.

RESULT2:

We cannot record audio on the first case but we are able to record audio for the second

scenario.

58

TEST3:

We again tried to record audio while the phone’s screen is on. We also tried to record

audio while the phone is locked.

RESULT3:

It is possible to record audio for the former case but not for the latter case.

TEST4:

We checked if it is possible to call a phone, send and read SMS while the phone is

locked. We also tested if the same thing may happen when the phone is unlocked.

RESULT4:

The result shows that it is possible to call a phone, send and read SMS when the phone

is unlocked but not possible for the opposite case.

Secondly, we made a single test using PhotoEditor application

TEST5:

We tried to take photos at Inciralti Ataturk Students Dormitory and also at IYTE

computer engineering department.

RESULT5:

PhotoEditor can take photos when we are at IYTE computer engineering department but

not at Inciralti Ataturk Students Dormitory.

Finally we made a test using LocationGetter application.

TEST6:

We tried to get the current location of the user at IYTE computer engineering

department and outside of it.

RESULT6:

We can get the location of the user outside of IYTE computer engineering department

but not inside it.

59

Figure 25. MyMessenger Application Crashing and Recording Cases

Figure 26. Security Exception Thrown by ASM Simulator

6.2. Formal Verification

In the previous sections, we showed how our system enhances user privacy in

APS by enabling dynamic permission granting and revoking. However, this is not

enough to show that the system is valid. One of the important criteria for access control

policies is the ability to prevent unauthorized access to resources. An access control

60

policy shouldn’t also deny access to resources for actors which possess the right

privilege. In this section, we present the formal expression of our access control policy

to prove that our system allows only authorized applications to get access to

permissions. In our model, an application is authorized to use a given permission if all

of the three properties below are fulfilled:-

- If there exists a role that the application is assigned and

- If that role contains the requested permission and

- If the context (if any) associated with the given permission for that role is

satisfied and

- If there does not exist any other role containing the same permission and

also assigned to the same application but the context associated with the

permission is not satisfied.

The last rule is required because a single permission can appear in different roles

and hence can have different context policies associated with it for different roles. For

example permission P can have context policy CP1 for role R1. The same permission

may be associated with another context policy CP2 when assigned to role R2. Hence, for

instance, if application A is assigned the two roles R1 and R2, allowing permission P for

application A requires that both of the two contexts CP1 and CP2 be satisfied.

Otherwise, if application A is allowed to use permission P based on the satisfaction of

only one of the contexts, it leads to contradiction.

We demonstrate the formal expression of our model based on the previous

definitions covered in Chapter 4: - A: set of applications, R: set of roles, P: set of

permissions, CP: set of context policies, ARM: application role mapping and RPM: role

permission mapping. We also introduce more definitions in this section as follows:-

 AssignedApps(r:Role) → 2
A
 is the mapping of a set of applications to role r.

i.e.

AssignedApps(r) = {a ∈ A | (a, r) ∈ ARM} (6.1)

 AssignedPerms(r:Role) → 2
P
 is the mapping of a set of permissions to role r. i.e.

AssignedPerms(r) = {p ∈ P | (r, p) ∈ RPM} (6.2)

61

 Permission Context Mapping: Let PCM be the list consisting of the mapping

between permissions and associated context policies. It contains triplets <Pi, Ri,

CPi > where Pi ∈ P, Ri ∈ R and CPi ∈ CP. CP.

 AssociatedContext(p:Permission, r: Role)→CP is the mapping of permission p

to context policy cp for role r. i.e.

AssociatedContext(p, r) = {cp ∈ CP | (p, r, cp) ∈ PCM} (6.3)

 ContextState = {1, 0}, is the set containing the possible outcome of a context

policy rule. At any given time, the context policy rule evaluates to either true or

false. If it evaluates to true, the ContextState is set to 1, otherwise it is set to 0.

 Context State Mapping: Let CSM be the list consisting of the mapping between

context policy rules and their states. It contains duplets <CPi, CS> where CPi ∈

CP and CS ∈ ContextState.

ActiveContextPolicies={cp ∈ CP | (cp, 1) ∈ CSM} (6.4)

InactiveContextPolicies ={cp ∈ CP | (cp, 0) ∈ CSM} (6.5)

Hence, the run time authorization decision in our system is governed by the

following formal expression:-

:):)(:(PermissionpnApplicatioa

),(paallow

:):)(:(PermissionpRoler

())',(

)'()'()'(::'

)),((

)Ø),((

)()(

iesntextPolicInactiveCorpContextAssociated

rrmsAssignedPeprpsAssignedAparrRoler

sextPolicieActiveContrpContextAssociated

rpContextAssociated

rrmsAssignedPeprpsAssignedApa

Figure 25 also explains the run time authorization decision pictorically by

example.

In Figure 25, A1 cannot use P1 because even if A1 ∈ AssignedApps(R1) ∧ P1 ∈

AssignedPerms(R1) ∧ AssociatedContext(P1, R1) ∈ ActiveContextPolicies, there is

another contradicting rule. i.e. A1 ∈ AssignedApps (R2) ∧ P1 ∈ AssignedPerms (R2) ∧

62

AssociatedContext (P1, R2) ∈ InactiveContextPolicies. Similarly A1 cannot use P4

because A1 ∈ AssignedApps (R2) ∧ P4 ∈ AssignedPerms (R2) ∧ AssociatedContext (P4,

R2) ∈ InactiveContextPolicies. However, A1 can use P2 and P5 because A1∈

AssignedApps (R1) ∧ P2 ∈ AssignedPerms (R1) ∧ AssociatedContext (P2, R1) = Ø and

also A1∈ AssignedApps (R2) ∧ P5 ∈ AssignedPerms (R2) ∧ AssociatedContext (P5, R2) =

Ø. Moreover, A1 can use P3 because A1∈ AssignedApps (R1) ∧ P3 ∈ AssignedPerms (R1)

∧ AssociatedContext (P3, R1) ∉ ActiveContextPolicies.

Figure 27. CA-ARBAC run time authorization decision by example

63

CHAPTER 7

DISCUSSION AND FUTURE WORKS

The motivation behind this thesis was the privacy problems caused by the

manual nature of permission granting/revoking in mobile systems and particularly in

Android permission system. As a solution to this problem, we proposed a context-aware

role based access control where the context is associated with permissions. Others

researchers have also suggested solutions close to ours. Some suggested context-aware

role based access control where context is associated with roles. Others suggested pure

context aware access control which links permissions to context but does not include

role based access control. The former may result in unnecessary creation of large

number of roles. Moreover, the former also does not provide permission level fine grained

context policy while the later creates usability problems by requiring the user to tackle

with a lot of policy configurations. Our approach is different from the two in that it can

protect user’s privacy without affecting the usability and also without the requirement to

create excess roles.

The various steps we passed through in the previous chapters show that our

approach is feasible and can be realized. We designed our access control model policy

model in a novel way. We also contributed a new architecture on Android and

implemented the prototype on Android. Based on the prototype implementation, we did

various experiments to see if our system gives the desired result. Experimental results

gave us promising results. All of the outputs were as expected. Furthermore, we showed

how formal verification is done in our model. Nevertheless, because of the various

restrictions we have, there are some issues which we are forced to leave aside for now.

The following are some directions in which this thesis research can be improved:-

Active Context Management: In our current system, we use passive context

management. In passive context management, once an application is granted

permission, it can use it irrespective of changes in context information. However, for

realistic situations, the application should be revoked access if the context changes

during the time that the application is using the permission. We could not use Active

Context Management in CA-ARBAC as the underlying Android security policy

enforcement framework does not support context management. ASM framework also

64

does not support context management. For the future, we suggest the integration of

security APIs similar to ASM that support Active Context Management.

Integrating CA-ARBAC System to Android: There are two choices to implement

security applications such as CA-ARBAC on Android. The first one is by modifying the

operating system. This way is not effective as already explained in Chapter 4. The

second and better way is implementing it on a security framework that provides API.

Currently, in Android, there is no security framework that provides security API that

allows the development of independent security applications such as CA-ARBAC

system. ASM is one such security framework project aimed to solve this problem. We

designed CA-ARBAC system based on ASM. However, ASM is not yet integrated to

Android. Therefore, we used a simulation for ASM. In the future, CA-ARBAC system

implementation should be tested based the real ASM or any other framework similar to

ASM.

Usability Test: We argue that our system can be better in usability than the existing

Android permission system. But, this claim needs to be confirmed with user studies that

measure usability.

Default System Roles: Skilled users can easily create roles on their own. This might

not be an easy task when it comes to naive users. The situation becomes more difficult

if the user has to configure context for permissions. One of the solutions for this

problem can be having system default roles. Creating default roles requires that the roles

should contain optimum number of permissions and context configuration. As explained

earlier, we used a rough method of grouping applications into functional groups to

create roles. We believe that this is not the only way to so do. For example, we can

think of an automated system that can analyze applications and suggest roles to the user.

65

CHAPTER 8

CONCLUSION

In this thesis paper, we proposed a new access control model to protect user’s

privacy on mobile systems. Our model allows dynamic granting and revoking of

applications’ permissions based on predefined contexts. Even though the proposed

model can be used on other platforms, our work in this thesis focuses more on Android

permission system. Our system is a variety of CA-RBAC designed in such a way that

roles which will consist of a set of Android permissions are assigned to applications and

contexts are associated with permissions. The proposed model is different from most

traditional CA-RBAC models in that it associates contexts with permissions in contrary

to the classical one which associates contexts with roles. We designed a novel

architecture for our proposed system based on ASM. ASM is a new project that is

aimed to provide security enforcement framework API that enables others to develop

their own security applications without worrying about the low level security policy

enforcement. However, as ASM is not currently integrated to Android, we simulated

ASM. We also developed and implemented a prototype application called CA-ARBAC

(Context-Aware Android Role Based Access Control) on Android. Based on our

prototype application, we made various experimental tests using three test applications,

three roles and four kinds of contexts. The experimental results are all as expected. Both

the Role based access control and the context access control part works well. Moreover,

we tried to show the formal verification of our access control model.

We have also identified some important future works such as Active context

management, usability test, creating default systems roles and integrating our system to

Android. One of the challenges was creating system default roles that can be used by

ordinary users. We believe that our proposed system can provide better privacy without

significant effect on the usability of the permission system. However, to reach on full

conclusion about the usability aspect of our system, a usability test is required which we

leave it to future works.

66

REFERENCES

[1] "Smartphone Users Worldwide Will Total 1.75 Billion in 2014," eMarketer, 16 01

2014. [Online]. Available: http://www.emarketer.com/Article/Smartphone-Users-

Worldwide-Will-Total-175-Billion-2014/1010536. [Accessed 20 04 2015].

[2] "Worldwide Smartphone Shipments Edge Past 300 Million Units in the Second

Quarter; Android and iOS Devices Account for 96% of the Global Market," IDC,

14 08 2014. [Online]. Available:

http://www.idc.com/getdoc.jsp?containerId=prUS25037214. [Accessed 20 04

2015].

[3] "Kaspersky Lab KSN Report mobile cyberthreats," Kaspersky Lab & INTERPOL

Joint Report, 10 2014. [Online]. Available:

http://media.kaspersky.com/pdf/Kaspersky-Lab-KSN-Report-mobile-cyberthreats-

web.pdf. [Accessed 20 04 2015].

[4] J. Leyden, (Apr. 2013). Your phone may not be spying on you now—but it soon

will be. [Online]. Available: http://www.theregister.

co.uk/2013/04/24/kaspersky_mobile_malware_infosec/

[5] R. Templeman, Z. Rahman, D. J. Crandall, and A. Kapadia, “Placeraider: Virtual

theft in physical spaces with smartphones,” in Proc. 20th Annual Netw. Distrib.

Syst. Security Symp. (NDSS), Feb. 2013.

[6] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,

“Soundcomber: A stealthy and context-aware sound trojan for smartphones,” in

Proc. 18th Annu. Netw. Distrib. Syst. Security Symp., Feb. 2011, pp. 17–33.

[7] A.P.Felt, S. E. E. Ha, A. Haney, E. Chin and D. Wagner, "Android Permissions:

User Attention, Comprehension, and Behavior," in Proceedings of the Eighth

Symposium on Usable Privacy and Security, New York, ACM, 2012, pp. 3:1--3:14.

[8] S.Heuser, A.Nadkarni, W.Enck and A.R.Sadeghi, "A Programmable Interface for

Extending Android Security," in Proceedings of the 23rd USENIX Security

Symposium, San Diego, CA, 2014.

[9] M.Backes, S.Gerling, C.Hammer, M.Maffei and P.Styp-Rekowsky, "AppGuard -

Fine-grained Policy Enforcement for Untrusted Android Applications," in Proc.\

8th International Workshop on Data Privacy Management (DPM 2013), Springer,

2013, pp. 213-231.

http://www.theregister/

67

[10] M.Nauman, S.Khan and X.Zhang, "Apex: Extending Android Permission Model

and Enforcement with User-defined Runtime Constraints," in Proceedings of the

5th ACM Symposium on Information, Computer and Communications Security,

Beijing;, ACM, 2010, pp. 328-332.

[11] "BlurSense: Dynamic fine-grained access control for smartphone privacy," in

Sensors Applications Symposium (SAS), 2014 IEEE, 2014, pp. 329-332.

[12] C.D.Stelly, "Dynamic User Defined Permissions for Android Devices," M.S.thesis,

Dept. Com.Sci., University of New Orleans, LA, USA, 2013.

[13] S.Bugiel, S.Heuser and A.Sadeghi, "Flexible and Fine-grained Mandatory Access

Control on Android for Diverse Security and Privacy Policies," in Proceedings of

the 22Nd USENIX Conference on Security, Washington, D.C., USENIX

Association, 2013, pp. 131-146.

[14] Y.Zhou, X.Zhang, X.Jiang and V.W.Freeh, "Taming Information-stealing

Smartphone Applications (on Android)," in Proceedings of the 4th International

Conference on Trust and Trustworthy Computing, Berlin, Springer-Verlag, 2011,

pp. 93-107.

[15] A.R.Beresford, A.Rice, N.Skehin and R.Sohan, "MockDroid: Trading Privacy for

Application Functionality on Smartphones," in Proceedings of the 12th Workshop

on Mobile Computing Systems and Applications, New York, ACM, 2011, pp. 49-

54.

[16] J.Jeon, K.K.Micinski, J.A.Vaughan, A.Fogel, N.Reddy, J.S.Foster and T.Millstein,

"Dr. Android and Mr. Hide: Fine-grained Permissions in Android Applications," in

Proceedings of the Second ACM Workshop on Security and Privacy in

Smartphones and Mobile Devices, New York, ACM, 2012, pp. 3-14.

[17] B. Shebaro, O. Oluwatimi and a. E. Bertino, "Context-Based Access Control

Systems for Mobile Devices," in Dependable and Secure Computing, IEEE

Transactions on, 2015, pp. 150-163.

[18] G.Bai, L.Gu, T.Feng, Y.Guo and X.Chen, "Context-Aware Usage Control for

Android," in Security and Privacy in Communication Networks, Singapore,

Springer Berlin Heidelberg, 2010, pp. 326-343.

[19] M.Conti, B.Crispo, E.Fernandes and Y.Zhauniarovich, "CRêPE: A System for

Enforcing Fine-Grained Context-Related Policies on Android," in Information

Forensics and Security, IEEE Transactions, IEEE, 2012, pp. 1426-1428.

68

[20] S. W. M.Miettinen, A. Sadeghi and N. Asokan, "ConXsense: Automated Context

Classification for Context-aware Access Control," in Proceedings of the 9th ACM

Symposium on Information, Computer and Communications Security, New York,

NY, USA, ACM, 2014, pp. 293-304.

[21] T.Guo, H.Liang, P.Zhang and S.Shao, "Enforcing Multiple Security Policies for

Android System," in 2nd International Symposium on Computer, Communication,

Control and Automation, 2013.

[22] F.Rohrer, Y.Zhang, L.Chitkushev and T.Zlateva, "DR BACA: Dynamic Role

Based Access Control for Android," in Proceedings of the 29th Annual Computer

Security Applications Conference, New York, NY, USA, ACM, 2013, pp. 299-308.

[23] T.T.W.Yee and N.Thein, "Leveraging access control mechanism of Android

smartphone using context-related role-based access control model," in Networked

Computing and Advanced Information Management (NCM), 2011 7th

International Conference on, IEEE, 2011, pp. 54-61.

[24] J.H.CHOI, H.JANG and Y.G.I.EOM, "CA-RBAC: Context Aware RBAC Scheme

in Ubiquitous Computing Environments," JOURNAL OF INFORMATION

SCIENCE AND ENGINEERING, vol. 26, no. 5, pp. 1801-1816, 2010.

[25] K. a. S.Park, "Context-Aware Role Based Access Control Using User

Relationship," International Journal of Computer Theory and Engineering, vol. 5,

no. 3, 2013.

[26] Y.Zhang, F. Rohrer, L.Chitkushev and T.Zlateva, "Role Based Access Control For

Android (RBACA)," Boston University, MA USA, 2012.

[27] Android developers, Android Overview, Manifest Permissios, [Online]. Available:

https://developer.android.com/reference/android/Manifest.permission.html

[28] M.Backes, S.Bugiel, S.Gerling and P.S.Rekowsky, "Android Security Framework:

Enabling Generic and Extensible Access," in Proceedings of the 30th Annual

Computer Security Applications Conference, New York, NY, USA, ACM, 2014,

pp. 46-55.

[29] V. Juraj and P. Muska, in Presenting Risks Introduced by Android Application

Permissions in a User-Friendly Way, Tatra Mountains Mathematical Publications,

2015, pp. 85-100.

[30] Mylonas.Alexios, T. Marianthi and Gritzalis.Dimitris, "Assessing Privacy Risks in

Android: A User-Centric Approach," in Risk Assessment and Risk-Driven Testing,

https://developer.android.com/reference/android/Manifest.permission.html

69

Springer International Publishing, 2014, pp. 21-37.

[31] M. Z. Qadir, A. N. Jilani and H. U. Sheikh, "Automatic Feature Extraction,

Categorization and Detection of," International Journal of Information & Network

Security (IJINS), 2014, pp. 12-17.

[32] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and

Evolution," in Security and Privacy (SP), 2012 IEEE Symposium on, Ieeexplore,

2012, pp. 95-109.

[33] D. Barrera, H. G. Kayacik, P. C. van Oorschot and A. Somayaji, "A Methodology

for Empirical Analysis of Permission-based Security Models and Its Application to

Android," in Proceedings of the 17th ACM Conference on Computer and

Communications Security, New York, NY, USA, ACM, 2010, pp. 73-84.

[34] C.Perera, A.Zaslavsky, P.Christen and D.Georgakopoulos, "Context Aware

Computing for The Internet of Things: A Survey," IEEE COMMUNICATIONS

SURVEYS & TUTORIALS, 2013.

[35] G. Abowd, P. B. A. K. Dey, N.Davies, M.Smith and P.Steggles, "Towards a Better

Understanding of Context and Context-Awareness," in Proceedings of the 1st

International Symposium on Handheld and Ubiquitous Computing, London, UK,

UK, Springer-Verlag, 1999, pp. 304-307.

70

APPENDICES

APPENDIX A. NORMAL PERMISSIONS

As of Android Version 6 (API level 23), the following permissions are categorized by

as PROTECTION_NORMAL:

 ACCESS_LOCATION_EXTRA_COMMANDS

 ACCESS_NETWORK_STATE

 ACCESS_NOTIFICATION_POLICY

 ACCESS_WIFI_STATE

 BLUETOOTH

 BLUETOOTH_ADMIN

 BROADCAST_STICKY

 CHANGE_NETWORK_STATE

 CHANGE_WIFI_MULTICAST_STATE

 CHANGE_WIFI_STATE

 DISABLE_KEYGUARD

 EXPAND_STATUS_BAR

 GET_PACKAGE_SIZE

 INSTALL_SHORTCUT

 INTERNET

 KILL_BACKGROUND_PROCESSES

 MODIFY_AUDIO_SETTINGS

 NFC

 READ_SYNC_SETTINGS

 READ_SYNC_STATS

http://developer.android.com/reference/android/content/pm/PermissionInfo.html#PROTECTION_NORMAL
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_LOCATION_EXTRA_COMMANDS
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NOTIFICATION_POLICY
http://developer.android.com/reference/android/Manifest.permission.html#ACCESS_WIFI_STATE
http://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
http://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
http://developer.android.com/reference/android/Manifest.permission.html#BROADCAST_STICKY
http://developer.android.com/reference/android/Manifest.permission.html#CHANGE_NETWORK_STATE
http://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_MULTICAST_STATE
http://developer.android.com/reference/android/Manifest.permission.html#CHANGE_WIFI_STATE
http://developer.android.com/reference/android/Manifest.permission.html#DISABLE_KEYGUARD
http://developer.android.com/reference/android/Manifest.permission.html#EXPAND_STATUS_BAR
http://developer.android.com/reference/android/Manifest.permission.html#GET_PACKAGE_SIZE
http://developer.android.com/reference/android/Manifest.permission.html#INSTALL_SHORTCUT
http://developer.android.com/reference/android/Manifest.permission.html#INTERNET
http://developer.android.com/reference/android/Manifest.permission.html#KILL_BACKGROUND_PROCESSES
http://developer.android.com/reference/android/Manifest.permission.html#MODIFY_AUDIO_SETTINGS
http://developer.android.com/reference/android/Manifest.permission.html#NFC
http://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_SETTINGS
http://developer.android.com/reference/android/Manifest.permission.html#READ_SYNC_STATS

71

 RECEIVE_BOOT_COMPLETED

 REORDER_TASKS

 REQUEST_IGNORE_BATTERY_OPTIMIZATIONS

 REQUEST_INSTALL_PACKAGES

 SET_ALARM

 SET_TIME_ZONE

 SET_WALLPAPER

 SET_WALLPAPER_HINTS

 TRANSMIT_IR

 UNINSTALL_SHORTCUT

 USE_FINGERPRINT

 VIBRATE

 WAKE_LOCK

 WRITE_SYNC_SETTINGS

http://developer.android.com/reference/android/Manifest.permission.html#RECEIVE_BOOT_COMPLETED
http://developer.android.com/reference/android/Manifest.permission.html#REORDER_TASKS
http://developer.android.com/reference/android/Manifest.permission.html#REQUEST_IGNORE_BATTERY_OPTIMIZATIONS
http://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
http://developer.android.com/reference/android/Manifest.permission.html#SET_ALARM
http://developer.android.com/reference/android/Manifest.permission.html#SET_TIME_ZONE
http://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER
http://developer.android.com/reference/android/Manifest.permission.html#SET_WALLPAPER_HINTS
http://developer.android.com/reference/android/Manifest.permission.html#TRANSMIT_IR
http://developer.android.com/reference/android/Manifest.permission.html#UNINSTALL_SHORTCUT
http://developer.android.com/reference/android/Manifest.permission.html#USE_FINGERPRINT
http://developer.android.com/reference/android/Manifest.permission.html#VIBRATE
http://developer.android.com/reference/android/Manifest.permission.html#WAKE_LOCK
http://developer.android.com/reference/android/Manifest.permission.html#WRITE_SYNC_SETTINGS

72

APPENDIX B. DANGEROUS PERMISSIONS

Dangerous Permission Group Name Dangerous Permissions Under the Group

STORAGE

READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

SMS

SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

SENSORS BODY_SENSORS

PHONE

READ_PHONE_STATE

CALL_PHONE

READ_CALL_LOG

WRITE_CALL_LOG

ADD_VOICEMAIL

USE_SIP

PROCESS_OUTGOING_CALLS

MICROPHONE RECORD_AUDIO

LOCATION

ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION

CONTACTS READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

CAMERA CAMERA

CALENDAR READ_CALENDAR

WRITE_CALENDAR

73

APPENDIX C. ANDROID PERMISSION GROUPS

74

