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Department of Mechanical Engineering, Anadolu University

27 June 2016

Assoc. Prof. Dr. Alev Devrim GÜÇLÜ
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Prof. Dr. Ramazan Tuğrul SENGER Prof. Dr. Bilge KARAÇALI
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ABSTRACT

ELECTRONIC, MAGNETIC AND OPTICAL PROPERTIES OF
GRAPHENE NANORIBBONS

In this thesis, electronic, magnetic and optical properties of graphene nanorib-

bons are investigated within mean-field Hubbard model with two different disorder type;

long and short range in finite and cyclic topology. First we investigated combined effect

of electron-electron interaction effects and long range potential fluctuations. In both of

the geometries, electron-electron interaction effects make edge states robust against dis-

orders. Furthermore, surprisingly, strong enough disorder causes system to experience

a phase transition from antiferromagnetically coupled edge states to ferromagnetic cou-

pling in agreement with recent theoretical and experimental studies. Then, the stability

of optical conductance under impurity effects, correlation between optical characteristic

and magnetic phase of ZGNR is investigated, respectively. Similar to edge state density

profile recovery, electronic interaction effects reduce the impurity induced peak around

Fermi level. More importantly, we found distinct optical transitions due to edge-bulk

mixed states around Fermi level that can be used to detect whether ZGNR is in antifer-

romagnetic or ferromagnetic phase. Finally, we investigated the disorder induced metal-

insulator transition. Since, long range impurities protect the sublattice symmetry and

leads to phenomena known as ”absence of backscattering”, there exist minimum con-

ductivity for graphene. On the other hand, in order to model hydrogenation effects, we

used short range impurity potential which breaks the sublattice symmetry. Using a time

dependent tight binding model, we observed Anderson localization induced metal to in-

sulator transition with a nanometer scale localization length for 2% hydrogen coverage.

We found that, Anderson localization is stronger at high energy valence states since those

states are more vulnerable to hydrogenation.
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ÖZET

GRAFEN NANOŞERİTLERİN ELEKTRONİK, MANYETİK VE OPTİK
ÖZELLİKLERİ

Bu tezde, ortalama-alan Hubbard modeli kullanarak zigzag kenarlı grafen nano-

şeritlerin (ZGNŞ) elektronik, manyetik ve optik özelliklerini iki farklı geometride in-

celedik: sonlu ve çembersel. İlk olarak elektron-elektron etkileşiminin ve uzun mesafeli

potansiyel düzensizliklerinin etkisi üzerine çalıştık. İki geometride de elektron-elektron

etkileşiminin kenar durumlarını düzensizliklere karşı güçlü kıldığını ve şasırtıcı şekilde

düzensizlik yeterince güçlü olduğunda antiferromanyetik durumdan ferromanyetik du-

ruma faz geçişini tetiklediğini gördük. Bu sonuçlar, güncel kuramsal ve deneysel çalısma-

larla örtüşmektedir. Daha sonra ZGNŞ’te düzensizliğin optik iletkenliğe etkisini inceledik.

Önceki sonuçlarda olduğu gibi elektron-elektron etkileşiminin düzensizlik etkisini azalttı-

ğını gördük ve daha da önemlisi, Fermi seviyesine yakın bölgede bulunan kenar-yığın

karışımı durumlar arası optik geçişten kaynaklanan soğurma karakteristiğinin sistemin

manyetik fazını belirlemede kullanılabileceğini gösterdik. Son olarak, düzensizliklerin

metal-yalıktan geçişine olan etkisini inceledik. Fakat, uzun mesafeli potansiyel dalgalan-

maları alt-ağ simetrisini koruduğu ve geri saçılmadan yoksunlaştırdığı için, grafende min-

imum iletkenliğe sebep olurlar. Bu durumdan kurtulmak ve hidrojenlenme etkisini mod-

elleyebilmek için, kısa mesafeli düzensizlikler kullandık ve alt-ağ simetrisini kırmayı

başardık. Zamana bağlı sıkı bağlanma modeli kullanarak Anderson lokalizasyonunundan

kaynaklı metal-yalıtkan geçişini nanometre düzeylerinde lokalizasyon uzunluğu olduğunu

%2 hidrojen kapsaması kullanarak gözlemledik. Anderson lokalizasyonun etkisinin yük-

sek enerjili valans bandlarında, düzensizlik durumlarinin bu bölgeye toplanmasından dola-

yı, diğer band bölgelerine göre daha fazla olduğunu gözlemledik.
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CHAPTER 1

INTRODUCTION

Back in 1930s Landau and Peierls questioned the existence of 2D materials by

showing that at any finite temperature oscillations due to thermal excitations exceed the

interatomic distances. Therefore 2D systems should be thermodynamically unstable ex-

cept at 0 K[1, 2]. Later experimental studies verified this result and 2D materials are only

found as an integral part of 3D materials. Without such substrate, 2D crystals were liter-

ally thought to be nonexistence[4]. Contrary to these results, in 2004 graphene, first real

2D material was synthesized for the first time[5]. Following experimental studies showed

that graphene is not perfectly flat, but it is crumpled in 3D. These height differences, so

called ”corrugations” create strain and stabilize the lattice structure[7] in agreement with

viewpoint of Landau and Peierls. From then on, interest on graphene is skyrocketed day

by day. Figure 1.1 shows the number of scholar work those contain ”graphene” keyword

per year between 2000 and 2015.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2000 2002 2004 2006 2008 2010 2012 2014

Sc
ho

la
r O

ut
pu

t

Publication Year

Figure 1.1. Scholar works contain ”graphene” in their title, abstract or keyword be-
tween the years 2000 and 2015. (Data obtained from SCOPUS)
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Long before its discovery, graphene investigated by P. R. Wallace in 1947. There

he showed, using a tight binding approach (TB), interesting properties such as linear

dispersion relation around K and K’ point and semimetallic behaviour[6]. Although there

were other studies as well in last 50 years, graphene was not synthesized decade after its

carbon allotropes successfully fabricated. These structures are shown in Figure 1.2.

Figure 1.2. Nanostructures obtained from graphene. From left to right fullerene, car-
bon nanotube, graphite. Obtained from Reference [10]

One of the most extraordinary features of graphene is due to linear relation be-

tween momentum and energy. To explain the motion of electrons through a graphene

sample Dirac equation may be solved, rather than Schrödinger equation [8–10] where

both of the approaches give the same result around K and K’ points. Having charge carri-

ers similar to Dirac fermions provide unconventional properties to graphene. First one of

these is the half integer quantum hall effect. 2D electron gas on perpendicular magnetic

field is quantized with equally separated levels called ”Landau levels”[11]. Although,

quantum hall effect is observed in graphene at room temperature, quantized levels do not

appear with equal spacing. Rather these states are spaced with half integer multiples of

±2e2/h[12]. Another interesting property due to Dirac fermions is the Klein effect[13],

where tunneling probability of an electron increases with potential height. This effect is

also observed right after the discovery of graphene[14].

Although, it has numerous extraordinary properties, its gapless electronic struc-
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ture prevent graphene to be used as a transistor. Therefore logic applications of it is highly

limited. However, forbidden region in band structure can be introduced by constraining

graphene along a direction [15–17]. Opening of the band gap is both theoretically and

experimentally explained by relation between electronic interaction effects, edge termi-

nation and width of the nanoribbon [18–20]. Although both armchair and zigzag edge

terminated graphene nanoribbons shows a band gap, it has been theoretically proposed

many times[21–24], within Hubbard model zigzag graphene nanoribbons is expected to

have spin polarized edges which should give rise to magnetism in agreement with Lieb’s

theorem [25]. In his work, Lieb showed, in a bipartite lattice, half of the difference be-

tween number of each sublattice corresponds to ground state magnetic moment. Thus

ground state of the perfect zigzag graphene nanoribbons should have antiferromagneti-

cally coupled edges where Sz = 0. This property makes zigzag graphene nanoribbons a

powerful candidate for future spintronic applications. In 2006 Son et al. showed that it is

possible to filter out one spin orientation by applying electric field along finite direction

which enlarges band gap for one spin orientation and reduces gap for the oppsite one.

Therefore system is insulator for a spin orientation, but conductor for other electrons with

opposite one. This phenomena named as half-metallicity. Later, it was shown that spin

injection is possible by introducing single edge disorders those halt the diffusion of one

of the spin states[26]. However, experimentally induced edge magnetization still could

not be observed, probably due to limited control over edge geometry. In March 2016,

a group managed to synthesize narrow, long and disorder free ZGNRs by using poly-

merization and cyclohydrogenation [28]. In addition to that, an indirect observation of

magnetic phase transition is observed by analyzing the relation between energy gap and

width of the ribbon [20]. These recent developments raised hope for potential graphene

based spintronic devices.

Magnetism is mostly believed to be originated from d and f orbitals. However,

earlier studies showed that disorders in graphene may lead to room-temperature mag-

netism even though carbon itself is not magnetic. Source of this magnetism is not directly

related to d and f orbitals. Rather these can be explained by vacancy induced small

zigzag edge domains [29, 32]. These studies created a new research branch in physics:

carbon based magnetism that is superior to metallic magnetism due to long spin relaxation

lengths [30, 31].

The observation of a magnetic phase transition in graphene nanoribbons along

zigzag edges is a surprising result due to the experimental difficulties for fabricating clean

nanostructures with properly passivated and well defined edges[33–37], and free from im-
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perfections in the lattice or in the substrate. A possible source of irregularity in a graphene

structure is the formation of the so-called electron-hole puddles [38–41]. Those highly

inhomogeneous charge distributions were observed by Martin et al[42]. by mapping the

charge neutrality point. Later, Crommie et al. [43] reported that impurities between the

substrate and the graphene sheet induce a distorted electron liquid, which is in agreement

with earlier theoretical works as well[39, 45]. A different study stated that corrugations

are the mechanism behind the formation of charge inhomogeneities [44].

Another fascinating feature is the strong optical absorption of single layer graphene,

even visible under optical microscope. In 2008, it was concluded that fine structure con-

stant e2/~c [46] directly corresponds to absorption of graphene and independent of any

other property[47]. Fine structure constant is one the most fundamental constants of quan-

tum mechanics and probing of it is possible only by using highly specific equipment.

However, optical absorption of graphene enables scientists to measure this quantity by

only using an optical microscope[48].

This thesis is organized as follow. In the next chapter graphene fundamentals are

introduced. First part of this chapter is devoted to fabrication methods of graphene, start-

ing from the first and the most basic technique known as exfoliations, chemical vapor

deposition (CVD) and thermal decomposition of SiC are introduced. After that, the-

oretical tools we have used for this study are introduced and explained in deep starting

from tight binding foundations of graphene, then more realistic spin dependent mean-field

Hubbard Hamiltonian is derived. Since it is impossible to fabricate a perfect graphene,

by its very nature disorders exist in graphene. In the next section sources of these disor-

ders are introduced. First, effect of edge geometry then charged impurities are discussed.

In this section, details about modeling of the two different impurity sources, long range

smooth potentials and hydrogenation of 2pz orbitals are explained in deep. Next sec-

tion is devoted to one of the most intriguing properties of graphene which is minimum

optical conductivity. For both of the finite and cyclic structures the exact same antifer-

romagnetic to ferromagnetic phase transition is observed under impurity effects. Finally,

phenomena known as metal-insulator transition due to impurity effects, known as An-

derson localization is theoretically explained, then calculation details are given. Due to

geometrical constraints, Anderson localization and optical conductivity invesitgation are

only performed for finite system. Final section contains a brief summary of this work.
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CHAPTER 2

GRAPHENE

In this chapter, fabrication techniques, theoretical models used in this work, sources

of disorders, metal insulator transition due to Anderson localization and optical conduc-

tivity on graphene is presented.

2.1. Fabrication Techniques

In section below, several ways to obtain graphene and graphene nanoribbon sam-

ples to use in devices are described. A few large scale production methods are also pre-

sented and a recent ZGNR fabrication method is explained briefly.

Mechanical Exfoliation This is the first and the simplest way of obtaining graphene, as

known as ”Scotch Tape Method”, used by Geim and his group in 2004. In this method, a

few layers of graphene can be extracted by sticking adhesive tape on to graphite crystal.

Sticky force of adhesive tape overwhelms the weak van der Waals forces those bound

graphene layers together. Having peel the tape off, leaves a few layers of graphene. Stick-

ing the tape on to itself couple of times make layers thinner gradually. After that, the tape

should be pressed on a substrate, typically SiO2, then peeled off. There is a possibility

to have single layer graphene islands on substrate which can be distinguished by lighter

and darker regions visible under optical microscope. Although scotch tape method allows

scientist to create samples with high crystal quality, most of the time products get as big

as µm scale which is very small in size for applications except laboratory usage. Control

over the sample size also very limited. Figure 2.1 shows graphene samples under optical

microscope fabricated with this method.

Liquid-phase Exfoliation To exploit graphene in daily life applications large amount

of material should be obtained. One way to achieve this is to use organic solvents like

N-methyl-pyrrolidone whose surface energy matches with exfoliation energy of graphite.

Next, high voltage or high frequency ultrasound is applied to solution. Then, in order

to get rid of thick layers, solution has to centrifuged. Similar to mechanical exfoliation,
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Figure 2.1. Graphene samples under optical microscope. Lighter and darker regions
shows single and a few layers of graphene sheets respectively.(Obtained
from http://www.graphene.ac.rs/exfoliation.html)

although product contains almost no defects or impurities, size is still small for possi-

ble applications. In Figure 2.2 production steps are shown. Similar to preceding ones,

controlled production is not possible with this method.

Figure 2.2. Fabrication steps of liquid-phase exfoliation of graphite.Obtained from [49]

Graphite Oxide Exfoliation Graphite oxide can be solved in liquids due to its several

functional groups. As a result, graphene layers becomes negatively charged and repels

each other. Then similar to liquid-phase exfoliation, by centrifuging the sample one can

obtain graphene oxide. To extract clean graphene, several chemical and thermal processes

should be applied. However, quality of crystal is low because of the oxygen remnants.

6



Compared to preceding methods, extracting graphene from graphite oxide exfoliation

is complicated because of the several production steps. But if the desired product is

graphene oxide, this method might be the most efficient one.

Chemical Vapor Decomposition (CVD) Other well known method is based on cat-

alytic metals such as nickel and iron. When methane is exposed to these metal films under

high temperature, hydrogen evaporates and leaves only carbon atoms. Remnant carbons

diffuses into catalytic metal and upon cooling down in Ar rich atmosphere, graphene layer

grows on metallic surface. Number of layers achieved with this method strictly depends

on thickness of the catalytic metal film that can be controllable. One of the main advan-

tages is, shape of the resultant graphene is the same with metallic film layer. Thus one can

control shape of the product by modifying the catalytic metal. Then, metallic film can be

etched and bare graphene sheet can be transferred to substrate. It is also known that using

different metal layers (Cu instead of Ni), changes the efficiency of the production.

Thermal decomposition of SiC Single or a few layers of graphene can be obtained

by heating SiC wafers. Si releases from the surface when the sample is heated up and

left over carbon atoms form graphene which first showed by Berger and co-workers[50].

In addition to synthesizing a few layers of graphene, they showed Dirac like behavior of

charge carriers with mobility exceeding 25000 cm2 V −1 s−1. Then, Ohta[51] and cowork-

ers revealed linear dispersion relation around K point using angle-resolved photoemission

spectroscopy (ARPES). Up to this point, production was taking place in ultra high vac-

uum that leads to low crystal quality and inhomogeneous graphene distribution. In 2008,

homogeneous graphene is obtained by adding argon to reaction environment which alters

the growth kinetics, reduces the decomposition hence leads to high quality graphene[52].

Upside of using this technique is to ability to tailor structures like nanoribbons and dots

with widespread lithographic methods.

Surface Assisted Polymerization Although top-down approaches to produce disorder

free, long ZGNRs failed until today[15, 17, 20, 53, 54], recently a group managed to

fabricate it by using bottom-up synthesis[28]. This method is based on Au(111) sur-

face assisted polymerization and cyclohydrogenation of U shaped base monomer that is

produced by organic synthesis. As expected, in this work edge states are successfully ob-

served by using scanning tunneling spectroscopy. Fig 2.3(a) shows a long, disorder free

ZGNR produced by this method. On the other hand (b) and (c) compares the observed

and theoretical DFT based edge states.
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Figure 2.3. (a) Fabricated long, disorder-free ZGNR. (b) Edge states observed by scan-
ning tunneling spectroscopy. (c) DFT based edge states. Obtained from
[28]

2.2. Theoretical Foundations

Graphene has been investigated by using several theoretical models such as, tight

binding, Hubbard, mean-field theories density functional theory (DFT) and molecular

dynamics (MD) approaches[34, 40, 45, 55]. In this study we are going to exploit tight

binding and mean-field Hubbard models due to two main reasons. First,although graphene

has four valence electrons, three of which are used to make bonds with neighbor carbon

atoms. Thus, single pz orbital approach is proved to be highly accurate for determining

the electronic properties of graphene. Second, these two model gives us the possibility

to create a very large system with up to ten thousand atoms. While, other methods are

limited about hundred atoms.

2.2.1. Tight-Binding Model

One of the most fundamental yet accurate way of understanding the electronic

structure of materials is called tight binding model where it is assumed there exist local-

ized orbitals at each atomic sites. Thus total electronic wavefunction can be written as
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superposition of these localized orbitals

ψ(~r) =
∑
i

Ciφi(~r − ~ri) (2.1)

Then, problem reduces to finding C ′is. In order to find them, one has to solve

time-independent Schrödinger equation as follows,

Ĥψ(~r) = Eψ(~r) (2.2)

Multiplying from left by 〈φi| and extending in terms of localized orbitals.

〈φi| Ĥ |ψ〉 − E 〈φi|ψ〉 = 0 (2.3)

∑
n

Cn(〈φi| Ĥ |φn〉 − E 〈φi|φn〉) = 0 (2.4)

To simplify the problem, one can limit the interacting by only considering nearest

neighbor atoms. Now summation is limited with only neighbor atoms.

∑
<n,i>

Cn(〈φi| Ĥ |φn〉 − E 〈φi|φn〉) = 0 (2.5)

where < n, i > indicates summation is over nearest neighbor atoms where integrals

〈φi| Ĥ |φn〉 = t, 〈φi|φn〉 = 0, 〈φn|φn〉 = 1 when i 6= n.

If there is translational symmetry one can exploit Bloch theorem to write wave-

function as,

ψk(~r) =
1√
N

∑
i

ei
~k ·~riφ(~r − ~ri) (2.6)

The electronic structure of graphene investigated by P.R Wallace in 1946[6]. In

his paper, titled ”The Band Theory of Graphite” Wallace made two major assumptions.

First, the large spacing between graphene layers compared to inter-carbon distance on

plane, confines electron to move only in the plane.

Carbon atom has 4 valence electrons, where three of these occupy 2s, 2px, 2py

orbitals which forms sp2 bonds with surrounding carbon atoms on plane and responsible

with mechanical properties of graphene sheet. The last electron fills the pz orbital. This

orbital resides perpendicular to surface and forms π bonds. The second assumption is that,
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electronic properties of graphene can be described by only using pz orbital within tight-

binding approximation. Although tight binding model does not take electron-electron

interaction into account, it gives highly accurate results for graphene.

Lattice structure of graphene can be defined by using two sublattices with spacing

between them b = 1.42Å and lattice vectors can be defined as a1,2 = ±a
√

3
2

ı̂, 3a
2

̂

Figure 2.4. Lattice structure of graphene contains two atom labeled with A and B in
its unit cell. Obtained from [87]

One can define total electron wavefunction by superposition of bipartite lattice

wavefunctions.

Ψi(r) = Aiψ
A
i (r) +Biψ

B
i (r) (2.7)

The wavefunction of an electron on A sublattice can be discretized in terms of pz
orbitals.

ψAi (r) =
1√
NA

∑
ra

eikraφ2pz(r − ra) (2.8)

Similarly,

ψBi (r) =
1√
NB

∑
rb

eikrbφ2pz(r − rb) (2.9)

where N is the number of A and B sublattice sites.

To solve the system, one need to plug Eqn. (2.7) into time independent Schrödinger

equation and multiply from the left side both of the pz orbitals.
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〈
ψAi
∣∣ Ĥ |Ψi〉 =

〈
ψAi
∣∣Ψi

〉
(2.10)〈

ψBi
∣∣ Ĥ |Ψi〉 =

〈
ψBi
∣∣Ψi

〉
(2.11)

Since interaction between atoms limited with nearest neighbor sites and on site energies

are neglected, one can have, 〈
ψAi
∣∣ Ĥ ∣∣ψAi 〉 = 0〈

ψBi
∣∣ Ĥ ∣∣ψBi 〉 = 0

(2.12)

However, hopping integral between nearest neighbor terms
〈
ψAi
∣∣ Ĥ ∣∣ψBi 〉 and

〈
ψBi
∣∣ Ĥ ∣∣ψAi 〉

has the following form,

〈
ψAi
∣∣ Ĥ ∣∣ψBi 〉 =

1

N

∑
<rA,rB>

ei
~k · (~rA−~rB)

∫
d~rφ∗2pz(~r−~rB)H(~r−~rB)φ2pz(~r−~rA). (2.13)

By approximating hopping integrals from A to B and B to A are the same and value is

constant t.

t =

∫
d~rφ∗2pz(~r − ~rB)H(~r − ~rB)φ2pz(~r − ~rA), tnn ≈ −2.8 and tnnn = −0.1eV

(2.14)

where tnn and tnnn denotes the first and second nearest neighbor hopping parameters

respectively. Knowing that, three nearest neighbor vectors are ~a1 = a√
3
ı̂ ,~a2 = a√

3
(−1

2
ı̂ +

3
2
̂), ~a3 = a√

3
(−1

2
ı̂− 3

2
̂).

〈
ψAi
∣∣ Ĥ ∣∣ψBi 〉 = t(e

−i~k · a√
3

ı̂
+ e

−i~k · a√
3

(−1
2

ı̂+ 3
2

̂)
+ e

−i~k · a√
3

(−1
2

ı̂− 3
2

̂
))〈

ψBi
∣∣ Ĥ ∣∣ψAi 〉 = t(e

i~k · a√
3

ı̂
+ e

i~k · a√
3

(−1
2

ı̂+ 3
2

̂)
+ e

i~k · a√
3

(−1
2

ı̂− 3
2

̂
))

(2.15)

It is easy to see that, 〈
ψAi
∣∣ Ĥ ∣∣ψBi 〉 =

〈
ψBi
∣∣ Ĥ ∣∣ψAi 〉∗ (2.16)

Now problem is reduced to an eigenvalue, eigenvector problem. Write two equations in

matrix form,

E

[
Ak

Bk

]
=

[
0 tfk

tf ∗k 0

][
Ak

Bk

]
(2.17)
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Solution of this system is,

E = ±|t ~fk| where ~fk = (e
−i~k · a√

3
ı̂
+ e

−i~k · a√
3

(−1
2

ı̂+ 3
2

̂)
+ e

−i~k · a√
3

(−1
2

ı̂− 3
2

̂
)) (2.18)

Equation 2.18 shows that energy is linearly related to momentum which is a property of

massless Dirac fermions. Fig. 2.5 shows the band structure obtained from dispersion

relation above. Moreover pseudospins can be written as,

Figure 2.5. Band structure of graphene. Obtained from [9]

[
Ak

Bk

]
=

1√
2

 1
−f∗(~(k))

f(~k)

 and

[
Ak

Bk

]
=

1√
2

 1
+f∗(~(k))

f(~k)

 (2.19)

Above solution is valid for bulk graphene. However, for finite system one has to employ

a different method to get the electronic structure. First, Hamiltonian matrix whose size is

NxN should be declared where N is the number of atoms. Then, this matrix is filled with

respect to neigboring atoms, whether these atoms are first (tnn), second(tnnn) or distant

neighbors.

2.2.2. Mean-Field Hubbard Model

Although TB model gives pretty accurate results, it has no spin dependence and

electronic correlation effects. Hence gives no information about true filling of the states
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and magnetic properties. One can overcome this by solving many-body problem. How-

ever, without any good approximation, only very basic systems are exactly solvable (1D

Ising model etc.). Therefore many-body problem can be reduced to one body problem by

introducing a ”molecular background field” that is the mean-field created by all particles.

This system only solvable self-consistently.

Now starting from exact many-bond Hamiltonian we are going to derive mean-

field Hubbard Hamiltonian.

H =
∑
pq

tpqc
†
pcq +

1

2

∑
pqrs

(pq|V |rs)c†pc†qcrcs (2.20)

For the first term, where p = iσ, q = jσ′ and σ indicates spin dependence.

tpq = 〈p| t |q〉 = 〈iσ| t |σ′j〉 = 〈i| t |j〉 〈σ|σ′〉︸ ︷︷ ︸
δσσ′

(2.21)

Similarly for interaction term, p = iσ, q = jσ′, r = kσ′′, s = lσ′′′

Vi,j =
1

2

∑
pqrs

(pq|V |rs)c†pc†qcrcs =
1

2

∑
ijkl

〈ij|V |kl〉 c†ic
†
jckcl 〈σ|σ′′′〉︸ ︷︷ ︸

δσσ′′′

〈σ′|σ′′〉︸ ︷︷ ︸
δσ′σ′′

(2.22)

Finally, Eqn. 2.20 can be written as,

H =
∑
ij

tijc
†
iσcjσ +

1

2

∑
ijkl

〈ij|V |kl〉 c†iσc
†
jσ′ckσ′clσ (2.23)

Next, to calculate on-site repulsion term say that

〈ii|V |ii〉 = U and
1

2

∑
ijkl

〈ij|V |kl〉 c†iσc
†
jσ′ckσ′clσ =

1

2

∑
iσσ′

Uc†iσc
†
iσ′ciσ′ciσ (2.24)

After expanding the spin terms and exploiting the second quantization algebra, final on
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site expression becomes,

U

2

∑
i

c†i↑ci↑︸ ︷︷ ︸
ni↑

c†i↓ci↓︸ ︷︷ ︸
ni↓

+c†i↓ci↓c
†
i↑ci↑ = U

∑
i

ni↑ni↓ (2.25)

Likewise for off-site repulsion term,

〈ji|V |ij〉 = Vij and
1

2

∑
i 6=j
σσ′

〈ji|V |ij〉 c†iσc
†
jσ′cjσciσ′ (2.26)

Again using the properties {ciσ, cjσ′} = 0 and {c†jσ′ , ciσ} = δi,jδσσ′

1

2

∑
i 6=j
σσ′

Vijc
†
iσc
†
σ′(−ciσcσ′) =

1

2

∑
i 6=j
σσ′

Vijc
†
iσ(−δσσ′ δij︸︷︷︸

=0
i 6=j

+ciσc
†
jσ′)cjσ′

=
1

2

∑
i 6=j
σσ′

Vijniσnjσ′

=
1

2

∑
ij

Vij(ni↑nj↑ + ni↓nj↓ + ni↑nj↓ + ni↓nj↑)

=
1

2

∑
ij

Vij (ni↑ + ni↓)︸ ︷︷ ︸
ni

(nj↑+nj↓︸ ︷︷ ︸
nj

) =
1

2

∑
i 6=j

Vijninj

(2.27)

Finally Hubbard and extended Hubbard Hamiltonian can be written as summation of all

terms.

H =
∑
ij
σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓

︸ ︷︷ ︸
Hubbard Model

+
1

2

∑
i 6=j

Vijninj

︸ ︷︷ ︸
Extended Hubbard Model

(2.28)

Now exact Hamiltonian is derived, we can begin derivation of mean-field Hubbard Hamil-

tonian by defining,

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉)︸ ︷︷ ︸
∆ni↑

and ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉)︸ ︷︷ ︸
∆ni↓

(2.29)
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niσ = 〈niσ〉+ (niσ − 〈niσ〉)︸ ︷︷ ︸
∆niσ

and njσ = 〈njσ〉+ (njσ − 〈njσ〉)︸ ︷︷ ︸
∆njσ

(2.30)

For on-site term using Eq. 2.29.,

ni↑ni↓ =[〈ni↑〉+ ∆ni↑][〈njσ〉+ ∆ni↓]

〈ni↑〉 〈ni↓〉+ 〈ni↑〉∆ni↓ + ∆ni↑ 〈ni↓〉+ ∆ni↑∆ni↓︸ ︷︷ ︸
≈0

≈ 〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉

(2.31)

By using Eq. 2.30. similar to preceding calculation off-site repulsion term becomes,

ninj ≈ 〈ni〉nj + 〈nj〉ni − 〈ni〉 〈nj〉 (2.32)

Finally Hamiltonian can be approximated by,

H ≈
∑
ijσ

tijc
†
iσcjσ + U

∑
i

〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉

+
1

2

∑
i 6=j

Vij 〈ni〉nj + 〈nj〉ni − 〈ni〉 〈nj〉
(2.33)

Our tij value is calculated within mean-field theory[9], however, tij in Eq. 2.32 is not

related to this model. Thus we need to calculate mean field tij which we will call τij Now

we are going to assume that, system interacts with a constant background charge field and

their values are,

〈ni〉 = 1 and 〈niσ〉 =
1

2
(2.34)

which makes bulk mean field Hamiltonian,

HBulk
MF =

∑
ijσ

tijc
†
iσcjσ −

U

2

∑
i

(ni↑ + ni↓ −
1

2
)− 1

2

∑
ij

Vij(ni + nj − 1) (2.35)

To get the single body mean field Hubbard Hamiltonian, we are going to use
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HMF = HMF −HBulk
MF +HBulk

MF

=

�
��

�
��
�*0∑

ijσ

tijc
†
iσcjσ + U

∑
i

〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉 〈ni↓〉

+
1

2

∑
i 6=j

Vij 〈ni〉nj + 〈nj〉ni − 〈ni〉 〈nj〉

−
��

�
��

��*
0∑

ijσ

tijc
†
iσcjσ −

U

2

∑
i

(ni↑ + ni↓ −
1

2
)− 1

2

∑
ij

Vij(ni + nj − 1)

+
∑
ijσ

tijc
†
iσcjσ +

U

2

∑
i

(ni↑ − ni↓ −
1

2
)− 1

2

∑
ij

Vij(ni + nj − 1)

=
∑
ijσ

tijc
†
iσcjσ +

U

2

∑
i

(ni↑ + ni↓) +
1

2

∑
ij

Vij(ni + nj)︸ ︷︷ ︸∑
〈ijσ〉 τij(c

†
iσcjσ+H.c)

+ U
∑
i

[(〈ni↑〉 −
1

2
)ni↓ + 〈ni↓〉 −

1

2
)ni↑]

+
1

2

∑
ij

Vij[〈ni〉 −
1

2
)nj + 〈nj〉 −

1

2
)ni] +���

��
��:0

Constants

(2.36)

Finally knowing that Vij = Vji, mean field Hamiltonian becomes its last form as follow.

HMFH =
∑
i,j,σ

τij(c
†
i,σcj,σ + h.c) + U

∑
i

(〈ni,↑〉 −
1

2
)ni↓ + (〈ni,↓〉 −

1

2
)ni↑

+
∑
i,j

Vij[(〈ni〉 − 1)nj + (〈nj〉 − 1)ni]
(2.37)

2.3. Sources of Disorder in Graphene

2.3.1. Edge Effects

Creating a graphene nanostructure from a bulk sample generates different kind

of boundaries depending on the cutting axis. There are two major edge patterns; zigzag

and armchair edges. Electronic property of nanostructure highly depend on these edge

terminations. Bulk graphene is a gapless semi-metal which makes it useless for micro-
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electronic device applications. However it is possible to induce energy gap by introducing

edge termination. Although, it is experimentally hard to create disorder free edges, latest

studies showed that both narrow AGNR and ZGNR can be fabricated by polymerization

and subsequent cyclodehydrogenation on Au(111) substrate[27, 28].

Figure 2.6. Two major edge geometry of graphene nanostructures. (Obtained from [69])

Zigzag edges naturally show broken sublattice symmetry. This feature gives zigzag

edges a remarkable feature, lowest energetic conduction bands and highest energetic va-

lence bands are degenerate within k = [π, 2π/3] region. These states are called edge

states(flat bands,zero energy states...) are localized strictly at the zigzag boundaries forms

a sharp DOS peak around Fermi level. Localization can be found analytically by solv-

ing a TB system which is first solved by Nakada et. al.[19] By assigning atomic orbitals

components of a Bloch wavefunction in the form eikn, eik(n−1) where n stands for loca-

tion of site on edge. In nearest neighbor hopping only TB calculation, every column

or row of Hamiltonian should contain three nonzero elements. Thus if we are to solve
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time-independent Schrödinger equation as follow.


. . . . . . . . . . . . . . . . . .
... tm−1,m 0 tm+1,m tm+2,m . . .
...

...
... . . . ... . . .

. . . . . . . . . . . . . . . . . .





...

am−1

am

am+1

am+2

...


= 0

If interested states are edge states, then their energies will be strictly zero. Thus, linear

combination of Bloch wavefunction components should add up to zero.

t(am−1 + am+1 + am+2) = 0 (2.38)

By inserting Bloch wavefunctions to edge sites.

eik(n) + eik(n+1) + an+2 = 0

an+2 = 2cos(k/2)eik(n+1/2)
(2.39)

After applying the same procedure to next inner dimer, it can be found that den-

sity is proportional to [2cos(k/2)]2m, where m is the dimer number. Since zero energetic

states are confined within [π, 2π/3] region, a convergence condition |(−2cos(k/2))| ≤ 1

should be introduced. This give rise to highly localized electron densities along the zigzag

edges. On the other hand, more realistic spin dependent Hubbard model and DFT calcu-

lations predict that sublattice distortion should induce magnetism along the edges. This

magnetism is ferromagnetic along the same edge however antiferromagnetically coupled

with the opposite edge. This situation is in agreement with Lieb’s theorem[25]. However,

due to lack of control over edge geometry direct observation of edge magnetization is still

lacking. Recently, at room temperature an indirect observation of magnetization has been

done by studying the relation between energy gap and width of the ZGNR. In this study,

it was concluded that ZGNR with energy gap corresponds to always antiferromagnetic

(AFM) phase, however gapless structure experience a phase transition to ferromagnetic

(FM) state. Difficulties of producing precise zigzag edges created a controversy among
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scientist about whether it is possible to have these type of edges in real life. Some the-

oretical and experimental studies showed that zigzag edges experiences relaxation and

forms (57) reconstructed edge geometry due to dangling bonds. However, in March 2016

a group successfully managed to fabricate long and narrow ZGNRs[28].

Figure 2.7. a) TB solution of edge states. Obtained from [19].b) Reconstructed (57)
zigzag edges. Obtained from [34]

Armchair edges has protected sublattice symmetry and inverse proportionallity

between energy gap and width. Due to sublattice symmetry, no zero energetic states and

a distinct DOS peak around Fermi level is expected. Contrary to zigzag edges, nanostruc-

tures with armchair edges are more stable due to fabrication during aryl-arly coupling and

produced for a long time [27].

Focus of this study is to investigate zigzag nanoribbons. No calculations are per-

formed with armchair nanostructures.

2.3.2. Charged Impurities

A sheet of fabricated graphene is expected to have some number of foreign atoms

which comes from either substrate or atmosphere. Therefore, even with a perfect hon-

eycomb structure, absorption of different substances like hydrogenation of pz orbitals

can produce local potential hills or holes. It was shown both theoretically and experi-

mentally that transport properties of graphene is highly dependent to these charged scat-

tering sources. One of the most important anomaly induced by charged scatterers are

the formation of inhomogeneous electron distribution so called ”electron-hole puddles”.

19



These highly inhomogeneous charge densities are detected experimentally by mapping

the Fermi level. It was also shown electron hole puddles give rise to minimum conductiv-

ity of graphene due to ballistic transport between doping regions with different chemical

potentials. Hence masks the phenomena known as Anderson localization type metal to

insulator transition.

Modeling of the impurities is carried out with a superposition of Gaussian elec-

trostatic potentials Vimp, which are randomly distributed over the sample.

Vimp(i) =
∑
n

Vn e
− (~ri−~rn)2

2σ2 (2.40)

Vn is the potential peak value (randomly chosen between a minimum and a maximum

value) of the nth impurity located at ~rn, σ is the width of the potential.

To model smooth impurity potential landscape we take width of the impurity po-

tential function as 10 times lattice constant of graphene. Figure 2.9 shows a randomly

generated smooth impurity landscape.

Figure 2.8. An example of randomly generated impurity landscape.
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2.3.3. Adatom & Vacancy

Another charged scattering source is hydrogenated pz orbitals. In their study Bost-

wick et. al. showed that 0.1% hydrogen coverage possibly disturbs transport of electrons

in graphene by using angle-resolved photoemission spectroscopy (ARPES)[81]. Model-

ing of this type of impurities has been done by tuning the width of the impurity potential

which is taken as 1% of the lattice constant. By doing this, we managed to break the sub-

lattice symmetry and create possibility to induce backscattering. If geometric optimiza-

tion due to dangling bonds are neglected, effect of a vacancy is similar hydrogenating of

pz orbital. One can model effect of vacancy by making Gaussian function very narrow

and very high. However, vacancy type disorder is beyond the scope of this study.

Figure 2.9. Hydrogeneation of pz orbitals.

2.4. Anderson Localization

According the quantum mechanics, an eigenfunction of a disorder free system

expands over all region. This property is in agreement with Einstein’s diffusion equation

that states random walk give rise to minimum conductivity[73]. However, in 1958 P. W.

Anderson proposed that diffusion may come to an halt under impurity effects. He stated

randomly distributed disorder within a region, if strong enough, may lead to localized

wavefunctions[74]. These disorders can be charged impurities, filled orbitals, vacancies

or any deviation from perfect crystal lattice. A localized wavefunction can be formulated
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as,

Φ = e−r/λ
∑
i

Aiφi(~r − ~ri) (2.41)

where summation i is over all sites and ri denotes site location. Exponential decay term

gives information about localization length λ which is a finite quantity if the wave is lo-

calized. In non-localized state wavefunction is extended and λ goes to infinity which

corresponds to Bloch wavefunctions. At finite temperatures transport occurs due to ther-

mal excitations and Coulomb repulsion. However, at T = 0K when phonon vibrations

are neglected, only extended states contribute to conductivity. Wavefunctions with fi-

nite λ values are localized. Therefore they do not transport any charge. In his original

work, Anderson proposed that every lattice site has some amount of random impurity

potential. If this value is strong enough at T = 0K conductivity vanishes and system

becomes insulator. This phenomena is called the Anderson Localization[74]. Later, An-

derson’s pure mathematical idea is applied to condensed matter system by Nevill Mott,

John van Vleck and Thouless after introduction of the scaling idea[75, 76]. Inspired by the

Schuster’s paper[77], Anderson, Licciardello, Ramakrishnan and Abrahams applied the

scaling idea to statistical mechanics and showed metal-insulator transition with vanishing

conductivity[78]. Following this paper, effect of spin-orbit coupling, magnetic impurities,

inelastic scattering and effect of magnetic field are investigated [79, 80].

One could formulate this system by defining the following Hamiltonian,

H = −t
∑
<i,j>

(c†icj + c†jci) +
∑
i

Vic
†
ici (2.42)

where first summation is earlier TB and second summation represents on-site impurity

potentials.

On the other hand, discovery of graphene provided a new playground for scientist

who work on Anderson localization[83–86], since graphene is expected to have mini-

mum conductivity. Hydrogen atoms tend to create bonds with pz orbitals of graphene.

From theoretical point of view, hydrogenation directly corresponds to impurity contri-

butions to diagonal terms. This phenomena first showed in graphene by 0.1% hydrogen

coverage[81]. However, experimental evidence of Anderson localization is still lacking.

Because local chemical potential differences lead to ballistic transport between electron-

hole puddles. It was shown that, if the formation of these charge inhomogeneities are

suppressed, resistivity increases rapidly when thermal excitation effects are reduced[82].

One of the other significant property graphene has is the absence of backscattering. If the
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disorder affects long range, then sublatice symmetry is conserved within perturbative lim-

its and leads to intervalley scattering. This symmetry give rise to destructive interference

of scattered waves. Thus transport is always along the incident direction and conductivity

never reaches to zero. On the one hand, hydrogenation of graphene does not conserve the

sublattice symmetry, due to intravalley scattering. So, backscattering should be observed

and if the impurities are strong enough, localized wavefunctions should be observed[87].

2.5. Optical Conductance of Graphene

On the other hand, optical properties of graphene as well can be explained within

Dirac approximation. It was observed that absorption of single layer graphene is strictly

equal to fine structure constant. Hence, it is an intrinsic property without material depen-

dence. Study of Ref. [47] also shown that number of layers of graphene is linearly propor-

tional to absorption of graphene. One of the most important consequence of this property

is that a fundamental quantum mechanical constant can be probed only by shining light

on to graphene sample. Optical conductivity of graphene is dominated by two different

mechanisms; intraband and interband optical transitions, according to interested energy

region. Intraband transitions take place far-infrared region where carriers are mostly free.

Theoretically this region can be explained within Drude model[71]. In near-infrared to ul-

traviolet region however, excitations are dominated by interband transitions which arises

from electron transfer from valence to conduction band. Frequencies higher that far-

infrared region corresponds to optical conductivity of graphene which is proportional to

fine structure constant. It was found that around K and K’ point where linear dispersion

prevails, optical characteristics are frequency independent. Within this model by doping

the sample, it is possible to shift the Fermi level and change the optical characteristics

by exploiting Pauli blocking. In this study we only consider interband transition and ne-

glect transition that can be explained within Drude model. Figure 2.10 shows the pictorial

representation of interband transition and Fermi level shift due to hole doping.

σ(w) = πe2/2h,A(w) = 4πσ(w)/c ≈ 2.3% (2.43)

where α is fine structure constant.

We are going to begin theoretical description first by assuming reflection of graphene

is very small (0.1%) hence it can be neglected.
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Figure 2.10. a) Interband optical transitions.(b) Fermi level shift due to hole doping and
Pauli blockade. Obtained from Ref.[70]

A ≈ 1− T (2.44)

Now within time dependent perturbation theory, interaction of system with electromag-

netic field can be given with Coulomb gauge.

H =
p2

2m
+ eψ(x)

e

m
~A · p (2.45)

where ~A is vector potential which is harmonic and can be written as,

~A(~x, t) = A0ε̂[e
i(~k · ~x−wt) + e−i(

~k · ~x+wt)] (2.46)

where first exponential term corresponds to stimulated emission and later is absorption.

Now by using Fermi’s golden rule[88]

wi,n =
2π

~
(Vi,n)2δ(En − Ei) (2.47)

where

Vi,n = −eA0

m
(ei

~k · ~x~ε · ~p) (2.48)
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Insert this into Fermi golden rule,

wi,n =
2π

~
e2

m2
A2

0 〈n| ei
~k · ~x~ε · ~p |i〉 δ(En − Ei − ~w) (2.49)

Now, absorption cross section can be defined as,

σ =
Energy absorbed in unit time

Energy flux of the field
(2.50)

Using following Maxwell equations,

E =
∂

∂t
~A(~x, t), B = ∇× ~A (2.51)

energy flux can be written as,

U =
w2

2π
A2

0 (2.52)

Thus absorption cross section becomes,

σ =
4π2~
m2w

e2

~c︸︷︷︸
α=1/137

| 〈n| ei~k · ~x~ε · ~p |i〉 |2δ(En − Ei − ~w) (2.53)

Since absorbed the wavelength of electromagnetic wave that cause electron excitation

is more bigger than radius of carbon atom, we can use electric dipole approximation as

follows,

ei
~k · ~x = 1 +���

���:0
ik~x+ . . . (2.54)

and switching from x to p by using,

[x,H0] =
i~~p
m

(2.55)

which gives,

〈n| ~p |i〉 = imwni 〈n|x |i〉 (2.56)

where 〈n| ~x |i〉 dipole moment between i and n sites. Finally absorption cross section
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becomes,

σ(ω) = 4π2αwni| 〈n|x |i〉 |2δ(En − Ei − ~w) (2.57)
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CHAPTER 3

RESULTS AND DISCUSSIONS

Before discussing the results, some calculation details should be given. For all

calculations both for TB and MFH hopping parameters are taken as tnn = −2.8eV for

nearest neighbors and tnnn = −0.1eV for the next-nearest neighbors[9]. On site Coulomb

interaction term U is taken to be 16.522/κ where κ is effective dielectric constant taken to

be as a control parameter. This value of the integral shown in Eq. 2.24. For the long-range

off-site Coulomb interactions Vij are taken as 8.64/κ and 5.53κ for neighbors and 1/dij

for other distant atoms. These values correspond to integral in Eq. 2.26. All interaction

integrals are calculated using Slater πz orbitals [72]. For long range impurity potential

sixteen, for short range about two percent scattering regions are used. MFH problems

are solved self consistently. To find the ground state magnetic phase, all spectrum within

Sz = 0 and Sz = 35 is scanned for not to miss any other magnetic phases. To be certain,

some calculations are repeated beyond that region, although they are not presented in this

work.

3.1. Long Range Disorders

First structure we have investigated is the finite one with no periodic boundary

conditions applied which is 5.83 nm wide, 25.5 nm long and consists around 5800 carbon

atoms. ZGNR with this length give rise to approximately 60 edge states. Figure 3.1(a)

shows the topical structure of this section. Calculations started within TB model then

obtained electron densities and energy spectrum. But, since it has no spin dependence,

TB model gives no information about spin polarized edges and magnetism.

3.1.1. Electronic Properties

Figure 3.2 shows the electron density profile of edge states where first row (second

row) calculated within TB (MFH) model for the impurity configuration in Figure 3.1(b).

Columns, on the other hand, indicate how many states are taken into account for den-

sity profile calculations. There are two conclusions we can make from Figure 3.2. First,
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Figure 3.1. (a) Graphene nanoribbon lattice structure. (b) Randomly generated im-
purity potential landscape. (c) Total electron density showing the forma-
tion of electron-hole puddles (regions denoted by n and p), obtained from
mean-field Hubbard calculations.
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comparing the TB and MFH results, edge densities are more scattered within TB model.

However, including the electronic interaction effects make edge states robust against the

same impurity configuration. Second inference is, clean system edge state contribution

only comes from the most energetic valence states, but introducing the scattering sources

to system breaks this rule. While for clean sample first 30 states contribute to the edge

densities, for disordered system, edge states spreads deep into bulk states. This time high-

est energetic 60 valence states gives contribution edges. By looking at the (b) and (c)

plots of this figure, a question rises. Why electrons do not fill the p regions that can be

seen in Figure 3.1(c) while they accumulated in these regions within Hubbard model? At

the first glance this looks like a discrepancy, however one should remember that Hubbard

calculations give more realistic spin-dependent filling of the states. Magnetic dipole mo-

ments along the edges in disorder system is consistent with earlier theoretical work[38].

Therefore this anomaly can be explained as a shortcoming of TB compared to Hubbard

model.

Figure 3.2. Electronic density profile corresponding to the 30 highest occupied valence
states (top panels), and the 60 highest occupied valence states (bottom
panels), obtained using tight-binding (left panels) and mean-field Hubbard
calculations (right panels). Electron-electron interactions restore the edge
states.

Similar to earlier figure, density of states (DOS) analysis shows more delocalized

states for TB(Figure 3.3) method and there is a considerable amount of difference between

clean and disordered system. But MFH(Figure 3.4) densities are more similar to clean

DOS. Peaks around 0 eV is due to edge states and in agreement with earlier studies [59].

Since there is no spin polarization on TB, single peak appears. However, when spin is
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Figure 3.3. TB DOS of finite ZGNR. Peak around Fermi level is due to edge states.

included two peaks with different spin orientation appear around Fermi level.

3.1.2. Magnetic Properties

Now another question arises, how the magnetic properties of the system affected

by the combined effect of disorder and electron-electron interaction, which we are going

the focus rest of this section. Figure 3.5 shows the band structure the sample for various

impurity strengths. First row is for antiferromagnetic(AFM) phase which has equal num-

ber of up and down electrons. Second row consists belongs to ferromagnetic(FM) phase

where nup − ndown = Number of Edge States. By doing this we managed to create same

spin orientation along the both edges. Columns, on the other hand, plotted with respect

to disorder strength. When there is no scattering sources, ground state configuration is

AFM and a 0.17 eV gap appeared in agreement with previous theoretical and experimen-

tal studies [18, 20, 23, 68]. Introducing the disorder, weak impurity reduces the AFM

energy gap to 0.1 eV. But no phase transition is observed. However by looking at to the

last column of Figure 3.5, doubling the impurity height, causes system to undergo a phase

transition from AFM to FM. At this point the ground state is FM configuration and one

can see that AFM gap is vanished in agreement with [20], where value of the energy gap
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Figure 3.4. MFH DOS of finite ZGNR. Sharp edge state peak at preceding figure is
now spin polarized.

Figure 3.5. Mean-field Hubbard spectra for antiferromagnetic (top panels) and ferro-
magnetic (bottom panels) phases, for various degrees of disorder strengths,
characterized by Vimp. EF spin up and spin down show the spin-dependent
Fermi levels.
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is investigated with respect to width of the ribbon. They found that ZGNR whose width

exceeding the 7 nm are always in FM phase. But in this work, without changing the width

of the ZGNR, we showed that is possible to observe AFM-FM phase transition. Results

of figure 3.2 and 3.5 are for the same impurity locations but with different strengths. In

order to be certain about observation of phase transition, we repeated the same calculation

30 times for different impurity configurations and strengths. Results are reported in fig-

ure 3.6 where (a) subfigure shows the AFM-FM energy difference per atom. A negative

value there indicates AFM phase, otherwise system is FM. For low impurity strength, no

phase transition is observed, but increasing the impurity height leads gradual increase in

transition chance. In the end for very strong impurities, 9 out of 10 samples experienced

AFM-FM phase transition. Subfigure below shows the corresponding AFM energy gaps

of these runs. It can be concluded that, AFM gap vanishes rapidly by increasing the im-

purity strength and becomes negligible for strong disorders. As it was stated above AFM

phase corresponds to Sz = 0 and the FM phase Sz = 32. To be certain about any other

magnetic phases are not missed, we performed calculations with the same impurity con-

figuration but with different Sz values in the range between 0 to 35. Figure 3.7 shows

result of these calculations. Confirming the earlier results, Sz = 32 (FM) phase has the

global minimum energy. It is also clear that no other magnetic phases appeared within this

limit. Thus it was concluded that extended Hubbard model is dominated by two phases;

AFM and FM for ZGNRs.

In our calculations there are three main variables, hopping parameter t, impurity

strength and electronic interaction strength. In all preceding calculations only impurity

strength and configuration is varied. Its beneficial to see the effect of electronic interac-

tion strength on earlier results. One can tune this value by changing dielectric constant κ

whose value directly affects U and Vij terms. To see the correlation between κ and mag-

netism same calculations are performed within 1/κ = [0.3, 0.002] range. Since summing

up the magnetic moments of the electrons gives no information about how magnetism

changes, it is convenient to use staggered magnetism to investigate staggered magnetism

which is defined as
∑

i(−1)x(ni↑ − ni↓)/2 where x is even for A and odd for B sublat-

tices. Figure 3.8 shows the value of the staggered magnetism as a function of 1/κ. For

clean system, as expected, AFM phase is covered in this region but value decreases as

electronic interaction loses its strength (gets closer to TB model). Another confirming

result can be inferred from impurity curve. System is FM between 1/κ = [0.167, 0.04]

however becomes AFM again 1/κ values greater than 0.167. This results are again con-

sistent with ours. As electron-electron interaction strength increases, effect of impurities
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Figure 3.6. (a)Energy difference per atom between the AFM and FM phases and (b)
the antiferromagnetic phase energy gap for 30 different disorder configu-
rations with various degrees of disorder strengths. A strong disorder ef-
fect causes the system to become ferromagnetic. For lower potentials, the
chance of a phase transition reduces.

33



Figure 3.7. Total energy of a nanoribbon as a function of magnetization Sz. For the
clean case, the ground state has Sz = 0, and for the disordered case Sz = 32,
indicating a FM-AFM phase transition without involving other possible
magnetic phases.
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are suppressed thus system becomes AFM. But for smaller κ values, impurities become

dominant and phase transition occurs. For small κ values magnetic properties can be

neglected.

Figure 3.8. Staggered magnetism as a function of dielectric constant κ. The clean
system (upper line) shows AFM (solid line) coupled edges for all values
within the 1/κ = [0.33,0.002] range. However, a FM (dashed line) phase
transition occurs between 1/κ = [0.167,0.04] after introducing the impurity
landscape (lower line). For lower κ values, electronic interaction effects
become dominant over the impurities hence the system shows an AFM
phase again.

3.1.3. Optical Properties

So far, correlation between electronic and magnetic properties are covered. In this

part, relation between magnetic and optical properties will be investigated. Through out

this section, incident light will be divided into two perpendicular components, X where

quantum confinement is dominant and Y direction where system shows bulk like behavior.

Discussion begins with polarization along Y-direction where quantum confine-

ment effect is minimum. By comparing the clean and disordered system, it was observed

that tight binding model gives a sharp peak near Fermi level. However, as it confirms the
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earlier results, electronic interaction effects reduces the impurity effects, lowers the peak

and recovers the clean nanoribbon properties.

Figure 3.9. Comparison of pure MFH (solid black), disordered TB(dashed red), dis-
ordered MFH (dotted blue) absorption spectra. Within TB model, a peak
induced.However, electronic interaction effects help system to recover its
pure-like state.

Next, for the X-polarized light whose low energetic absorption characteristics are

mostly determined by quantum confinement and edge effects, clean and impurity com-

parison is shown in Figure 3.9. Similar to Y-polarized result, effect of disorders washed

out by electronic interaction. It is also remarked that, oscillations between 0-5 eV are due

discreteness of energy levels which induced by quantum confinement. Since the impurity

disrupts this feature, energy levels become more bulk like continuous. Bump around 3.0

eV are due to edge states.

Another analyze we will perform is whether there is an optical absorption char-

acteristics difference between AFM and FM phase due to Fermi level shift and Pauli

blocking. For Y polarized light, shown in Figure. 3.10 high energetic transitions are ex-

actly the same. However, around Fermi level a small peak appears in FM phase. The same
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Figure 3.10. Comparison of pure MFH (solid black), disordered TB(dashed red), dis-
ordered MFH (dotted blue) absorption spectra. Within TB model, a peak
induced.However, electronic interaction effects help system to recover its
pure-like state.
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peak appeared for X polarized light as well, but this time with higher value. Since it is

stronger in X-polarized absorption spectrum, we made a deep level investigation. Figure

3.11 shows the absorption between 0-5 eV. As shown in the figure, FM phase peak almost

doubles the AFM peak around Fermi level. Although these two peaks around the same

energy their cause is completely difference. By investigating the which dipole moment

between states causes these peaks, it was determined that interaction between edge states

give rise to AFM peak. On the other hand, FM peak is induced by interaction between two

edge-bulk transition states. Interaction between two opposite edges are small compared

to interaction between bulk and edge since overlap between are neglible. Because of in-

teraction strength, FM phase absoption probability is almost double of the AFM phase

at that energy level.This interactions explains the magnitude difference between peaks as

well. Since electron at an edge site only jump to opposite edge sites which has small

overlap with, absorption probability is 1%. But in FM phase edge and bulk interacts more

easily and resultant peak is double of the AFM peak. The peak height difference between

X & Y polarized light is due to dominance of quantum confinement in the former one.

Figure 3.11. Comparison of pure MFH (solid black), disordered TB(dashed red), dis-
ordered MFH (dotted blue) absorption spectra. Within TB model, a peak
induced.However, electronic interaction effects help system to recover its
pure-like state.

In conclusion, it was proposed that by looking at the absorption characteristics

magnetic phase of the graphene nanoribbon can be determined with a linearly polarized

light. This possible characterization property is observed both in clean and disordered

system. However, since observed peak is located around Fermi level where our mean

field model does not work properly, this behavior should be investigated within models
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those take electron correlation more precisely take into account.

3.1.4. Cyclic Zigzag Graphene Nanoribbon

In this section subject is a nanoribbon in cyclic topology which was constructed by

applying periodic boundary conditions to finite system investigated above. This structure

has 5712 atoms due to topological constraints but has the same number of edge states. It

should also be noted that, same impurity configuration shown in Figure 3.1 is used with

periodic boundary conditions applied.

Figure 3.12. Topology of the cyclic nanoribbon

Figure 3.13 shows the electronic density profile of the cyclic structure. Similar

to finite nanoribbon edge state densities, disorders within TB model disrupts the edge

states and make them localized around the scattering sources. But, electronic interaction

recovers the edge states. In addition to that, spreading of the edge states into deeper states

again visible. However, no correlation have been found between electronic interaction

and magnitude of state spreading. Filling of the n doped regions with electrons also re-

moved by introducing more realistic spin filling system. 2nd column of Figure 3.18 shows

the correct filling of the electrons into p regions. Now, the electronic structure investiga-

tion is finished, it is beneficial to take a close look to correlation between electronic and

magnetic properties. Figure 3.14 shows the AFM and FM(rows) phase band structure of

clean and disordered (columns) cyclic nanoribbons. Similar to finite structure, energy gap

disappears after introducing the strong enough impurity. Also phase transition occurs. It
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Figure 3.13. Similar to finite structure results; while TB mode gives highly localized
edge states, electronic interaction recovers the edge states. Spreading of
the edge states is also visible by comparing the columns.

is also noted that, energy levels are now doubly degenerate which is due to angular mo-

mentum parity. For clean system, ground state is in AFM phase. But disorders cause

system to undergoes phase transition to FM. Scanning between Sz = 0 and Sz = 35 is

also performed. Figure 3.15 gives information about this calculation. Since number of

edge states is the same with the finite sample, ground state of the disordered cyclic system

is Sz = 32 which is FM phase basically.

Our optical absorption model only considers perpendicular incident light. How-

ever, in cyclic case light never does so, since ring form has curved shape. Except, polar-

ized light along finite direction which is always normal to the surface. But, due to same

topology, absorption characteristics along Y-direction for finite and cyclic nanoribbons

are exactly the same thus results do not introduce any new data.

In conclusion, this section is devoted to cyclic graphene nanoribbon. There, we

have showed, similar to finite sample, electronic interaction recovers the disrupted edge

states under potential fluctuations and magnetic phase transition from AFM to FM state

occurred. Main difference between two samples appeared in band structure where cyclic

system showed doubly degenerate level with greater energy gap.

To sum up, by using finite and cyclic nanoribbon we first showed that electronic

interaction effects recover the edge states electronic density profile. Then, by using these

results a magnetic phase transition from AFM to FM state is observed. This observations

has been associated to electronic energy band profile, while AFM state has a band gap, FM

has no such forbidden region. We verified this result by different disorder configurations

and strengths. Finally, a relation between magnetic and optical behavior has been set up
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Figure 3.14. In cyclic topology, mean-field Hubbard spectra for antiferromagnetic (top
panels) and ferromagnetic (bottom panels) phases, for various degrees of
disorder strengths, characterized by Vimp. It must be noted that levels are
doubly degenerate in this type of geometry.
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Figure 3.15. Energy per atom a cyclic nanoribbon as a function of magnetization Sz.
Similar to finite structure, for the clean case, the ground state has Sz = 0,
and for the disordered case Sz = 32. There are no other dominant magnetic
phases could be found.
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where a low energy peak can be used to distinguish FM phase from AFM phase.

3.2. Short Range Disorder

Up to now, impurities are modeled with Gaussian function whose width is 10

lattice constant. However, to investigate the effect short range disorders, width of the

Gaussian is reduced to 1% of the lattice constant to create a Dirac delta like behavior. The

maximum height of the disorder function is increased to 6t. For this part a longer (55.5

nm) and thinner (4.5) structure is generated in order to observe localized electron waves

easily. For all calculations 2% impurity density and the same impurity locations are used.

Figure 3.16 shows the structure and impurity distribution over the sample. Electron waves

started to diffuse through the ribbon from the lead part, where there is no impurity effect

is taken into account.

Figure 3.16. Structure and impurity distribution used for Anderson localization calcu-
lations. Red dots represent hydrogenated pz orbitals.

3.2.1. Time Independent TB Solution

Figure 3.17 compares the clean and disordered DOS for this system. Bump around

-0.5 eV are due to accumulation of impurity states at that region. Since these hydro-

genated orbitals tend to pile up in a domain, not homogeneously dissipate through whole

spectrum, it is convenient to investigate this structure by dividing into four parts. Fig 3.18

shows puddle formation within this four regions. Dotted structure in second region shows

the impurity states accumulated there.
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Figure 3.17. Blue line represents clean and red area shows disordered DOS. Since im-
purities do not homogeneously dispersed, area by area investigation is re-
quired

Figure 3.18. Puddles formation within four regions in Figure 3.10
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3.2.2. Time Dependent TB Solution

In this section we solved time dependent Schrödinger equation to investigate dif-

fuse of the wavefunction through clean and disordered nanoribbons. Starting from time

dependent wavefunction equation,

|Ψ(t)〉 =
∑
n

Cn |ψn〉 e
−iEnt

~ (3.1)

One can obtain Cn by taking t = 0 and by choosing any initial wavefunction Ψ(0).

〈ψn|Ψ(0)〉 = Cn 〈ψn|ψn〉 (3.2)

First region in Figure 3.17 is the deepest valence state that will be considered.

Within this region, some charge inhomogeneities is observed and some impurity states

also included. An incident wave with energy -1.55 eV which corresponds to an eigen-

value within this region, diffuse through ribbon in Figure 3.12. Wave is not localized,

some fraction of it reaches to the right side. Hence, it can be inferred that transport is

not deteriorated in here. In second region of Figure 3.10, impurity states can be found.

Figure 3.19. Clean (left) and disordered (right) time dependent solution of wave func-
tion dispersion within first region with incident particle energy -1.55 eV

Electron-hole puddle distribution shows the electron accumulation around hole regions

where pz orbital is hydrogenated. Once more incident wave with energy -0.77 eV in this

region is solved time dependently within TB model. This time, because of the greater

number of impurity states, the wave is severely localized. Third region in 3.17, where
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Figure 3.20. Clean (left) and disordered (right) time dependent solution of wave func-
tion dispersion within second region with incident particle energy -0.74
eV

zero energetic edge states can be found. Puddle formation shows mostly fractured edge

states with some impurity states and according to the time dependent solution wave diffu-

sive wave does not leave the edge states. This time, energy of the initial wave is 0.22eV.

Similar to the second region, even though it is not severe as that region, wave is localized.

Localization in this region mostly occurs in 1D because motion along zigzag edges can

be considered as an atomic chain. Forth region in Figure 3.10 is the lowest conduction

Figure 3.21. Clean (left) and disordered (right) time dependent solution of wave func-
tion dispersion within third region with incident particle energy 0.22 eV

state where no impurity state can be found. Electron hole puddle formation shows some

localization, but it is mostly homogeneous, which signals that, localization in this region

is weak. Finally time dependent solution with incident energy 1.046 eV shows that wave

is not localized as its valence corresponding part (second region). This is mainly because

of the absence of impurity states within this region.

To get numerical result for localization, a convenient way is to sum the quasista-

tionary density along the longitudinal direction and take the time average to make plot

as smooth as possible. For this part, time it takes to reach quasistationary state is chosen
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Figure 3.22. Clean (left) and disordered (right) time dependent solution of wave func-
tion dispersion within fourth region with incident particle energy 1.05 eV

as t = 106/~ with average is taken in 10 steps around this point. Figure 3.23 shows the

localization length for all four regions. It is a direct evidence that, localization is more se-

vere around the Fermi level and it becomes weaker going into to deep level states. Other

conclusion is that, hydrogenation of graphene mostly disturbs transport within valence

band. Thus localization is more drastic in this region. However, within conduction band,

localization loses its effect and transport in this region is less demanding.

In conclusion, for finite zigzag graphene nanoribbon Anderson localization in-

duced metal-insulator transition is observed by solving time dependent tight binding

model. We found that hydrogenation effect is severe around the Fermi level in agree-

ment with earlier theoretical work[41]. In addition to these we concluded, transport in

valence states are more vulnerable to hydrogenation effects.
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Figure 3.23. Time average solution with quasistationary states. Densities are summed
along y direction and slope of the corresponding fits gives approximate
information about localization length. Anderson localization mostly oc-
curs around Fermi level as expected and loses its strength while going to
deep level states. It is also inferred that, wave are more localized moving
through valence band because of the impurity states.
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CHAPTER 4

CONCLUSIONS

To conclude, we have investigated electronic, magnetic and optical properties of

graphene nanoribbons in finite and cyclic topology. For the both structures, combined

effect of electron-electron interactions and random potential fluctuations on the stabil-

ity of edge states and magnetic phases is studied. The electronic stability of edge states

is found to be surprisingly robust against disorder due to electron-electron interactions.

Moreover, as the disorder potential strength is increased, the system goes through an

antiferromagnetic-to-ferromagnetic phase transition, in agreement with the experimental

results of Ref.[20] Although the possibility of such a transition is well known from pre-

vious calculations for a doped system, here, the nanoribbon is charge neutral. Thus the

magnetic transition is due to local charge doping regions.

Due to topological constraints some of the calculations are only performed in fi-

nite structure. First one of these is determination of optical characteristics under impurity

effects. In this part, interplay between electronic and optical properties are investigated.

It was found that due to quantum confinement effect, light absorption characteristics are

different for diffent polarization orientations. Also, by comparing the TB and MFH re-

sults it was found that electronic interaction effects makes universal optical conductance

robust against disorder and peak around Fermi level in TB calculations always washed out

by including the electronic interaction effects. Since impurities lift the degeneracy, oscil-

lations in optical conductance smoothens by these effects. Spin dependent calculations

are also enabled us to investigate optical absorption for different magnetic phases. We

concluded that, interaction between two bulk-edge mix states in FM phase induce a peak

very next to Fermi level which is absent in AFM phase. We concluded this result, gives a

potential characterization method for to determine the magnetic phase of the nanoribbon.

However, since mean field theory is not accurate around proximity of Fermi level further

studies those take electron-electron interaction effects are needed to verify this result.

Other part constrained by the geometry is the investigation of metal insulator tran-

sition due to impurity effects. We found that impurity states tend to accumulate around

[−0.5, 0eV ] interval. Due to these states, localization length is shorter compared to other

DOS regions. Even though it was earlier known that states around Fermi level are much

more vulnerable to localization, in this study we showed that hydrogenation of graphene

effects mostly hole transport within valence band, compared to conduction.
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• H. U. Özdemir, K. Çakmak, A. Altıntaş, A. D. Güçlü, Observation of Metal-Insulator

Transition on Graphene Nanoribbons, 5th. Condensed Matter Meeting (YMF),Izmir,

April 2016, Poster Presentation.

• H. U. Özdemir, A. Altıntaş, A. D. Güçlü, Electronic Interaction Effects on Graphene

Nanoribbons, Photonics Workshop, ICTP-ECAR, August 2015, Poster Presenta-

tion.

• A. Altıntaş, H. U. Özdemir, A. D. Güçlü, Optical Properties of Graphene Quantum

Dots, 4th. Condensed Matter Meeting (YMF), Izmir, April 2015, Poster Presenta-

tion.
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