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Department of Mathematics, İzmir Institute of Technology

Assoc. Prof. Dr. Noyan Fevzi ER
Department of Mathematics, Dokuz Eylül University

27 July 2016

Assoc. Prof. Dr. Başak AY SAYLAM
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ABSTRACT

KRULL-SCHMIDT PROPERTIES OVER RINGS OF FINITE
CHARACTER

The main purpose of this thesis is to investigate the notion of Krull-Schmidt

properties over rings of finite character. In accordance with this aim, we give a survey of

necessary and sufficient conditions on an h-local domain for certain Krull-Schmidt prop-

erties hold for direct sums of ideals, direct sums of indecomposable submodules of finitely

generated free modules and direct sums of rank one torsion-free modules. By using ob-

tained characterizations, some useful results for Krull-Schmidt properties of modules over

Noetherian and Prüfer domains are proven. Besides, the characterizations of Noetherian

UDI domains are given.
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ÖZET

SONLU KARAKTER HALKALARI ÜZERİNDE KRULL-SCHMIDT
ÖZELLİKLERİ

Bu tezde sonlu karakter halkaları üzerinde Krull-Schmidt özellikleri incelen-

miştir. Bu amaç doğrultusunda, ideallerin dik toplamları, sonlu üretilmiş serbest mod-

üllerin parçalanamaz alt modüllerinin dik toplamları ve bir boyutlu burulmasız modül-

lerin dik toplamları için Krull-Schmidt özelliklerinin versiyonlarının h-local tamlık böl-

gelerinde ne zaman geçerli olduğu üzerine inceleme yapıldı. Elde edilen karakterizasyon-

ları kullanarak Noether ve Prüfer tamlık bölgeleri üzerindeki moduller için bazı kullanışlı

sonuçlar ispatlanmıştır. Bunların yanı sıra, Noether UDI tamlık bölgelerinin karakteriza-

syonları verilmiştir.
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CHAPTER 1

INTRODUCTION

Let R be a commutative integral domain and C a class of R-modules. The Krull-

Schmidt property holds for C if, whenever

G1 ⊕G2 ⊕ · · ·Gn � H1 ⊕ H2 ⊕ · · ·Hm

for Gi,H j ∈ C, then n = m and, possibly after a reindexing, Gi � Hi for all i ≤ n. We say

a domain R has unique decomposition into ideals, UDI, if the class of ideals of R has the

Krull-Schmidt property.

In Chapter 2 we give the definitions of some basic tools about commutative alge-

bra and their properties which are useful for our further studies.

In Chapter 3 we present two submonoids of R, and then define their connection

with h-locality. After giving some properties related with these submonoids, we give a

characterization of an h-local integral domains that is very useful for our work.

In Chapter 4 we introduce some types of the Krull-Schmidt property. We ex-

amine when the versions of the Krull-Schmidt property hold for direct sums of ideals,

direct sums of indecomposable submodules of finitely generated free modules and direct

sums of rank one torsion-free modules. In this chapter, we mostly use the notion of the

Picard group which is an abelian group consisting of the invertible fractional ideals mod-

ulo the principal fractional ideals. P.Goeters and B.Olberding characterized the forms of

Krull-Schmidt property for h-local integral domains and this leads to some new results

for Krull-Schmidt properties of modules over Noetherian and Prüfer domains.

In Chapter 5 we deal with Noetherian integral domains and give the characteriza-

tions of Noetherian UDI domains. Specifically, a Noetherian integral domain R has UDI

if and only if R is a PID or R has exactly one nonprincipal maximal ideal M such that RM

has UDI (Goeters & Olberding, 2001). Moreover, P. Goeters and B. Olberding give an

explicit description of local UDI domains which is given by Theorem 5.2.

In Chapter 6 we assume that the ring R is of finite character, that is, every non-

zero element is contained in only finitely many maximal ideals of R; equivalently, every

non-zero ideal is contained in only finitely many maximal ideals of R. We state some new
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results without giving their proofs and realize that these consequences are useful to obtain

new characterizations of domains with finite character which the Krull-Schmidt property

holds for some classes of R-modules.

In Conclusion we summarize the main results obtained in this thesis.
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CHAPTER 2

PRELIMINARIES

This chapter consists of some basic tools about commutative algebra that are used

in this thesis. All rings mentioned below are commutative with identity.

Definition 2.1 Let φ : R→ S be a ring homomorphism.

• If I is an ideal in R, then extension Ie of I to S is the ideal φ(I)S of S generated by

the image of I.

• If J is an ideal of S , then the contraction Jc in R of J is the ideal φ−1(J).

In the special case where R is a subring of S and φ is the natural injection, the

extension of I ⊆ R is the ideal IS in S and the contraction of J ⊆ S is the ideal J∩R of R.

It is immediate from the definition that

• I ⊆ IS ∩ R, more generally, I is contained in the contraction of its extension to S ,

and

• (J ∩ R)S ⊆ J, more generally, J contains the extension of its contraction in R.

Definition 2.2 Let φ : R → S be a ring homomorphism. An ideal I of R is called

contracted ideal if Iec = I and an ideal J of S is called extended ideal if Jce = J.

If Q is a prime ideal in S , then its contraction is prime in R. (Although the con-

traction of a maximal ideal need not be maximal). On the other hand, if P is a prime ideal

in R, its extension need not be prime (or even proper) in S ; moreover, it is not generally

true that P is the contraction of a prime ideal of S .

2.1. Rings and Modules of Fractions

The formation of rings of fractions and the associated process of localization are

the most important technical tools in commutative algebra. This section gives the defini-

tions and basic properties of the formulation of fractions.
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Let S be a submonoid of R∗ (i.e., a multiplicatively closed subset such that 0< S

and 1∈ S ). The set RS of equivalence classes of pairs (r, s), r ∈ R, s ∈ S , under the

equivalence relation

(r, s) ∼ (r′, s′) if and only if rs′ = r′s

becomes a ring. If the equivalence class of (r, s) is denoted by r
s , then the ring operations

are
r1

s1
+

r2

s2
=

r1s2 + r2s1

s1s2
and

r1

s1
· r2

s2
=

r1r2

s1s2

where ri ∈ R, si ∈ S . RS is called the localization of R at S or the quotient ring of R with

respect to S . The notation S −1R is an alternative for RS .

We may think of the canonical embedding r 7→ r
1 , r ∈ R of R in S −1R as the

inclusion map. Thereby R becomes a subring of S −1R which is in turn a subring of the

quotient field Q of R. Thus localizations are overrings (the converse is not true in general).

Example 2.1 If S consists of all the non-zero elements of R, S −1R coincides with Q.

Example 2.2 For an ideal P of R, R \P is a monoid if and only if P is prime. In this case,

the quotient ring of R with respect to R \ P is universally notated by RP. It is called the

localization of R at P.

Proposition 2.1 ( (Atiyah & Macdonald, 1969), Proposition 3.11)

(i) Every ideal in S −1R is an extended ideal.

(ii) If I is an ideal of R, then Ie =< 1 > if and only if I ∩ S , ∅.

(iii) The prime ideals of S −1R are in one-to-one correspondence (P 7→ S −1P) with the

prime ideals of R such that P ∩ S = ∅.

2.1.1. Modules of quotients and localizations

Let M be an R-module. Form the pairs (m, s) where m ∈ M and s ∈ S , and view

(m, s) and (m′, s′) equivalent if there exists a t ∈ S such that

t(s′m − sm′) = 0.

4



The equivalence class containing (m, s) is denoted by m
s . The R-module S −1M(MS ) con-

sisting of the equivalence classes is called the module of quotients of M with respect to

S , or the localization of M at S . It becomes an S −1R-module by setting

r
t
· m

s
=

rm
ts
, (r ∈ R, s, t ∈ S ,m ∈ M).

The canonical homomorphism ϕ : M → S −1M which sends m into m/1 ∈ S −1M,

need not be monic.

As for localization of domains, MP will stand for the module of quotients of M

with respect to the complement of a prime ideal P in R. The canonical homomorphism

M → MP is denoted by ϕP rather than ϕR\P.

Proposition 2.2 Let M be an R-module. Then S −1R modules S −1M and S −1R ⊗ M are

isomorphic; more precisely, there exists a unique isomorphism f : S −1R ⊗ M → S −1M

for which

f ((r/s ⊗ m)) = rm/s

for all r ∈ R, m ∈ M and s ∈ S .

Several useful conclusions may be drawn for the localization:

(a) A homomorphism of R-modules ψ : M → N is injective (respectively, surjective)

if and only if ψP : MP → NP is injective (respectively, surjective) for all maximal

ideals P of R.

(b) If 0 → N → M → M/N → 0 is an exact sequence of R-modules, then 0 → NS →
MS → (M/N)S → 0 is an exact sequence of RS modules. In particular,

MS /NS � (M/N)S .

(c) Localization of modules commutes with finite intersections and arbitrary sums.

(d) AnnRMS = (AnnRM)S provided M is a finitely generated R-module.

5



(e) For every R-module M, there is a canonical embedding

ϕ : M →
∏

P∈MaxR

MP,

acting as ϕ(x) = (. . . , ϕP(x), . . .). Consequently, M = 0 if and only if MP = 0 for all

maximal ideals P of R.

2.2. Fractional Ideals

Definition 2.3 Let R be an integral domain with quotient field Q. A fractional ideal of an

integral domain R is an R-submodule J of Q such that rJ ≤ R for some non-zero r ∈ R.

Remark 2.1 The following can be seen easily.

1. An R-submodule of Q is a fractional ideal if and only if it is isomorphic to an ideal

of R.

2. The ideals of R are clearly fractional ideals.

3. A finitely generated submodule of Q is a fractional ideal.

For R-submodules I and J of Q, we have a binary operation which is called the

product:

IJ = {
n∑

i=1

aibi|ai ∈ I, bi ∈ J, n < ω}

Definition 2.4 A fractional ideal I is said to be invertible if there exists a fractional ideal

J of R such that IJ = R.

Remark 2.2 Every non-zero ideal is invertible if and only if every non-zero fractional

ideal is invertible.

Definition 2.5 A ring R is said to be semilocal if R has only finitely many maximal ideals.

Proposition 2.3 ( (Fuchs & Salce, 2001), Proposition I.2.5) Let I be an invertible frac-

tional ideal of a domain R. Then:

(i) I−1 = [R : I];

6



(ii) I is finitely generated;

(iii) If R is semilocal, then I is a principal ideal; moreover; if R is local, every generating

set of I contains an element generating I;

(iv) If I is an ideal and there is an a ∈ I contained in only finitely many maximal ideals,

then I = aR + bR for some b ∈ R.

Proposition 2.4 ( (Fuchs & Salce, 2001), Proposition I.2.7) A finitely generated ideal I

of an integral domain R is invertible if and only if RM is invertible for all maximal ideals

M of R.

2.3. Integral Dependence

Definition 2.6 Let B be a ring, A a subring of B. An element x of B is said to be integral

over A if x is a root of a monic polynomial with coefficients in A, that is if x satisfies an

equation of the form

xn + a1xn−1 + . . . + an = 0

where the ai are elements of A. Clearly every element of A is integral over A.

Proposition 2.5 (Atiyah & Macdonald, 1969) The following are equivalent:

(i) x ∈ B is integral over A;

(ii) A[x] is a finitely generated A-module;

(iii) A[x] is contained in a subring C of B such that C is a finitely generated A-module;

(iv) there exists a faithful A[x]-module M which is finitely generated as an A-module.

Definition 2.7 An integral domain is said to be integrally closed if it is integrally closed

in its field of fractions.

Corollary 2.1 ( (Atiyah & Macdonald, 1969), Corollary 5.8) Let A ⊆ B be rings, B

integral over A; let Q be a prime ideal of B and let P = Qc = Q ∩ A. Then Q is maximal

if and only if P is maximal.

Theorem 2.1 ( (Atiyah & Macdonald, 1969), Theorem 5.10) Let A ⊆ B be rings, B inte-

gral over A; let P be a prime ideal of A. Then there exists a prime ideal Q of B such that

Q ∩ A = P.

7



Proposition 2.6 ( (Atiyah & Macdonald, 1969), Proposition 5.13) Let A be an integral

domain. Then the following are equivalent:

(i) A is integrally closed;

(ii) AP is integrally closed for each prime ideal P;

(iii) AM is integrally closed for each maximal ideal M.

2.4. Valuation Rings and Dedekind Domains

Definition 2.8 A domain R is a valuation ring if it is not a field and for any x ∈ Q, x ∈ R

or x−1 ∈ R.

Lemma 2.1 If I and J are ideals in a valuation ring R, then either I ⊂ J or J ⊂ I. In

particular, R is local.

Proof Let x ∈ I and x < J. For y , 0 in J, x/y < R, hence y/x ∈ R and y = (y/x)x ∈ I. �

Lemma 2.2 ( (Fuchs & Salce, 2001), Lemma 1.3) For a valuation ring R with a unique

maximal ideal P, we have:

(i) finitely generated ideals are principal;

(ii) the only principal ideals that can possibly be primes are P and 0;

(iii)) for a proper ideal I, either In = 0 for some n < ω or the intersection J =
∩

n<ω In is

a prime ideal of R.

Definition 2.9 An R-module M is called uniserial if all submodules of M are totally or-

dered by inclusion, equivalently; for all m1,m2 ∈ M, either m1R ⊆ m2R or m2R ⊆ m1R.

Lemma 2.3 ( (Fuchs & Salce, 2001), Lemma 1.4) If R is a valuation domain, then

(a) its field of quotients Q is a uniserial R-module;

(b) every proper submodule of Q is a fractional ideal of R.

Definition 2.10 An overring of R is a subring of the quotient field Q of R which contains

R.

The next result gives a full characterization of the overrings of a valuation domain.

8



Proposition 2.7 Let R be a valuation domain. A subring S of Q is an overring of R if and

only if S = RL for some prime ideal L of R. It is necessarily a valuation domain.

Definition 2.11 Let R∗ denote the subgroup of units in a ring R. A discrete valuation on

a field K is a function v : K \ {0} → Z that satisfies the following properties:

1. v is surjective,

2. v(xy) = v(x) + v(y),

3. v(x + y) ≥ min{v(x), v(y)}.

The subring {x ∈ K|v(x) ≥ 0} ∪ {0} is called the valuation ring of v.

Definition 2.12 An integral domain R is called a Discrete Valuation Ring (D.V.R) if R is

the valuation ring of a discrete valuation v on the field of fractions of R.

The valuation v is often extended to all of K by defining v(0) = ∞, in which 2nd

and 3rd cases hold for all a, b ∈ K.

Example 2.3 The localization Z<p> of Z at any nonzero prime ideal < p > is a D.V.R.

with respect to the discrete valuation vp on Q defined as follows:

Every element a
b ∈ Q∗ can be written uniquely in the form a

b = pn a1
b1

, where n ∈ Z, a1
b1
∈ Q∗

and both a1 and b1 are relatively prime. Define

vp

(a
b

)
= vp

(
pn a1

b1

)
= n.

Then vp is discrete valuation. The corresponding valuation ring is the set of rational

numbers a
b where b is not divisible by p, which is Z<p>.

Theorem 2.2 The following properties of a ring R are equivalent:

(i) R is a DVR.

(ii) R is a principal ideal domain with a unique maximal ideal P , 0.

(iii) R is a unique factorization domain with a unique (up to associates) irreducible

element t.

(iv) R is a Noetherian integral domain that is also a local ring whose unique maximal

ideal is nonzero and principal.

9



(v) R is a Noetherian, integrally closed, integral domain that is also a local ring of

Krull dimension 1, i.e. R has a unique nonzero prime ideal.

Definition 2.13 An integral domain R is a Dedekind domain if every non-zero ideal of R

is invertible.

Theorem 2.3 The following statements are equivalent for an integral domain R which is

not a field.

(i) Every non-zero ideal of R is invertible.

(ii) R is Noetherian and each localization RP at a prime ideal P is a DVR.

(iii) R is Noetherian, integrally closed, and of Krull dimension 1.

(iv) Every non-zero proper ideal of R is a product of maximal ideals.

(v) Every non-zero proper ideal of R is a product of prime ideals.

Moreover, the product decomposition in (4) is then unique.

2.5. Prüfer Domains

An integral domain R is a Prüfer domain if all its localizations at maximal ideals

are valuation domains; thus, Prüfer domains are those domains which are locally valuation

domains. Clearly, if R is a Prüfer domain and L is a non-zero prime ideal of R, then RL is

a valuation domain.

Theorem 2.4 ( (Fuchs & Salce, 2001), Theorem 1.1) For a domain R, the following con-

ditions are equivalent:

(a) R is Prüfer domain;

(b) every finitely generated non-zero fractional ideal is invertible;

(c) the lattice of the fractional ideals of R is distributive: for fractional ideals I, J,K of

R,

I ∩ (J + K) = (I ∩ J) + (I ∩ K);

(d) every overring of R is a Prüfer domain.

10



CHAPTER 3

H-LOCAL DOMAINS

First, we introduce two submonoids of R∗, and then we will define their connection

with h-locality. It is an easy matter to verify that, for any domain R, the following two

subsets of R∗ are saturated submonoids, and so is their intersection S 0 = S 1 ∩ S 2 :

S 1 = {r ∈ R∗| r is of finite character}

S 2 = {r ∈ R∗| any prime containing r is contained in only one maximal ideal}.

The term ’of finite character’ is used to indicate that every non-zero element

(equivalently, every non-zero ideal) of R is contained in but a finite number of maximal

ideals.

Definition 3.1 A domain R is h-local domain if S 0 = R∗; equivalently, R is h-local if and

only if the following conditions are satisfied:

(i) every nonzero element of R is contained in only finitely many maximal ideals of R,

and

(ii) each nonzero prime ideal of R is contained in a unique maximal ideal of R.

We observe that (i) means that R/I is semilocal for every ideal I , 0, while (ii) asserts

that R/I is even local if I , 0 is a prime ideal.

Example 3.1 Local domains are h-local.

Example 3.2 If R is a domain of Krull dimension 1, then R is an h-local domain. In fact,

for any nonzero ideal I of R, R/I is Noetherian ring with Krull dimension 0, so R/I is

an Artinian ring. Thus, R/I is semilocal, which yields that I is contained in only finitely

many maximal ideals. Clearly, any nonzero prime ideal of R is maximal ideal. Thus, R

satisfies (i) and (ii).

Example 3.3 Dedekind domains are h-local since every prime ideal of a Dedekind do-

main is maximal and every nonzero ideal is product of prime ideals.

11



Lemma 3.1 A domain R is of finite character if and only if, for maximal ideals P, Pi, i ∈ I,

where Pi’s are distinct, the inclusion 0 ,
∩

i∈I Pi ⊆ P implies that P = Pi for some i.

Proof Suppose R is of finite character and 0 ,
∩

i∈I Pi ⊆ P for maximal ideals P, Pi

i ∈ I. If I is infinite, then the ideal 0 ,
∩

i∈I Pi is contained in infinitely many maximal

ideals of R which contradicts the assumption that R is of finite character. So, I must be a

finite set. Thus, the desired property follows.

For the converse, assume R satisfies the stated condition. Take any a ∈ R∗ and let

{Pi, i ∈ I} be the set of maximal ideals containing a. Set Ai =
∩

j,i P j. Then Ai is an ideal

of R which is not contained in Pi, so
∑

i∈I Ai = R. If
∑

i∈I Ai , R, then
∑

i∈I Ai ⊆ M for

some maximal ideal M of R. By assumption M = Pi for some i ∈ I. So, Ai is contained

in Pi, which is a contradiction. Thus, there must be a finite subset {1, . . . ,m} of I such

that A1 + . . . + Am = R. This shows that R is contained in each P j for j , 1, . . . ,m.

Consequently, no such P j can exist, i.e, I = {1, . . . ,m}. �

Lemma 3.2 (Matlis) A domain R satisfies (ii) if and only if

RP ⊗R RP′ � Q

for any two different maximal ideals P and P′ of R.

Proof We first note that RP ⊗R RP ′ = (RP)P ′ = S −1R where S = (R \ P)(R \ P
′
).

Suppose RP ⊗R RP ′ � Q. Let I be a prime ideal of R such that I is contained in two

different maximal ideals P and P
′
. We know that S −1I is prime in S −1R if and only if

I ∩ S = ∅. Now take x ∈ I ∩ S = I ∩ [(R \ P)(R \ P
′
)]. Then x = ab for some a ∈ R \ P

and b ∈ R \ P
′
. Since x ∈ I and I is a prime ideal we get a contradiction, and so no

such x exists. Hence, I ∩ S = ∅ which shows that S −1I is a prime ideal in S −1R but since

S −1R = Q is a field by assumption, this is impossible. So, any prime ideal of R cannot be

contained in two different maximal ideals.

For the converse, suppose R satisfies (ii). Let I be a prime ideal of R. If I ⊆ P,

then I * P
′

where P and P
′

are the maximal ideals of R. Since I * P
′
, there exists an

element x ∈ I and x < P
′
. So, x ∈ I ∩ [(R \ P)(R \ P

′
)] and so S −1I = S −1R for any prime

ideal I of R which shows S −1R does not have any proper prime ideal. So, S −1R must be a

field. �

It will be illuminating to compare particular properties of S -torsion modules for

submonoids S of the monoid S 1 or S 2. First we consider the submonoids of S 1.

12



Definition 3.2 Let M be an R-module. S -torsion part of M is defined as

S (M) = {x ∈ M| sx = 0 for somes ∈ S }.

A module M is S -torsion if S (M) = M.

Proposition 3.1 For a submonoid S of R∗, the following conditions are equivalent:

(a) S is contained in S 1;

(b) every S -torsion module M canonically embeds in the direct sum
⊕

P MP of its

localizations at maximal ideals P;

(c) there is a canonical embedding

ϕ : RS /R→
⊕

P

(RS /R)P.

Proof (a)⇒ (b) Suppose S ⊆ S 1, and let M be a S -torsion module. We know that there

is a canonical embedding ϕ : M → ∏P∈MaxR MP, via ϕ(x) = (. . . , x
1 , . . .), (x ∈ M). We

show that the Pth coordinate of ϕ(x) vanishes if and only if AnnRx is not contained in P.

In order to see this, assume AnnRx is not contained in P, and take an element y ∈ AnnRx

such that y < P, and see ϕP(x) = 0 for some x. Conversely, suppose the Pth coordinate

of ϕ(x) vanishes, then ϕP(x) = x
1 = 0 which implies xt = 0 for some t ∈ R \ P, so

t ∈ AnnRx. Since M is S -torsion, AnnRx contains some s ∈ S , hence is contained but in a

finite number of maximal ideals of R. Thus almost all the coordinates of ϕ(x) vanish, i.e,

Imϕ ≤
⊕

P∈MaxR MP.

(b)⇒ (c) is trivial since RS /R is S -torsion R-module.

(c) ⇒ (a) If ϕ is an embedding, then for each s ∈ S , the Pth coordinate of ϕ(s−1 + R)

vanishes for almost all P. So, Ann(s−1 +R) is contained but in a finite number of maximal

ideals. Since sR = AnnR(s−1 + R), s is contained in only finitely many maximal ideals

which shows S ⊆ S 1. �

Definition 3.3 For a submonoid S of R∗, an R-module M is said to be S -divisible if sM =

M for all s ∈ S . Clearly, RS and MS (for an R-module) are S -divisible. Furthermore,

M ⊗R N = 0 whenever M is S -divisible and N is S -torsion.

Proposition 3.2 For a submonoid S of R∗, the following conditions are equivalent:
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(a) S is contained in S 2;

(b) for every pair of distinct maximal ideals P and P
′
, the prime ideals contained in

P ∩ P
′

are disjoint from S ;

(c) for every pair of distinct maximal ideals P and P
′
, RP ⊗ RP ′ is S -divisible.

Proof (a) ⇒ (b) Suppose S ⊆ S 2. Let I be a prime ideal of R such that I ⊆ P ∩ P
′

where P and P
′

are maximal ideals of R. Take x ∈ I ∩ S . Since x ∈ S , any prime ideal

containing x is contained in a unique maximal ideal which contradicts with the assumption

I ⊆ P ∩ P
′
. So, such an x cannot exist. Hence I ∩ S = ∅.

(b)⇒ (a) Suppose for every pair of distinct maximal ideals P and P
′
, the prime ideals in

P ∩ P
′

are disjoint from S . If S * S 2, then there exists s ∈ S such that s < S 2. Since

s < S 2, any prime ideal containing s can be contained in more than one maximal ideal. If

I is a prime ideal containing s and I is contained in P and P′ where P and P′ are maximal

ideals of R, then I ⊆ P ∩ P
′
. So, by assumption, I ∩ S = ∅ but s ∈ I ∩ S which is a

contradiction.

(b)⇒ (c) First we observe that RP ⊗ RP ′ = (S ∗)−1R, S ∗ = (R \ P)(R \ P
′
) is S -divisible if

S ⊆ S ∗. Equivalently, if every prime ideal of R disjoint from S ∗ is disjoint from S . But a

prime ideal is disjoint from S ∗ if it is contained in P ∩ P
′
.

(c)⇒ (b) Suppose for every pair of distinct maximal ideals P and P
′
, RP⊗RP ′ = (S ∗)−1R,

S ∗ = (R \ P)(R \ P
′
), is S -divisible. Let I be a prime ideal such that I ⊆ P ∩ P

′
. We

claim that I ∩ S = ∅. Take x ∈ I ∩ S . Since I ⊆ P ∩ P
′
, there exists p ∈ P such that

p < I. Then, p
b ∈ (S ∗)−1R where b ∈ S ∗. We have p

b = x c
d , c ∈ R, d ∈ S ∗ since RP ⊗ RP ′

is S -divisible. Then, pd = bxc implies pd ∈ I, and hence d ∈ I. Since d ∈ S ∗, d = mn,

m ∈ R \ P, n ∈ R \ P
′
. Thus, we have d = mn ∈ I which yields m ∈ I or n ∈ I and this is

not possible. So, d ∈ I is not true which shows I ∩ S = ∅. �

Proposition 3.3 Let S be a submonoid of S 2 and M an S -torsion R-module. The local-

ization map ϕP : M → MP is surjective for every maximal ideal P of R.

Proof The cokernel of the localization map, MP/ImϕP, is isomorphic to (RP/R) ⊗R M.

We show that RP ′ ⊗R (RP/R) ⊗R M = 0 for all maximal ideals P′. If P
′
= P, this is trivial

since RP ⊗P (RP/R) = 0. If P
′
, P, then since RP ′ ⊗R (RP/R) ⊗R M � (RP ⊗ RP ′ )/RP ′ ⊗R

MP ′ = 0 by Proposition (3.2) and the fact that MP ′ is S -torsion. �

Theorem 3.1 Let S be a submonoid of R∗. For every S -torsion module M, there is a

canonical isomorphism

M −→
⊕

P∈MaxR

MP
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if and only if S is contained in S 0 = S 1 ∩ S 2.

Proof Suppose S is contained in S 0 = S 1 ∩ S 2. By Proposition (3.1) and Proposition

(3.3), we conclude that every S -torsion module M is a subdirect sum of its localizations:

M ≤ ⊕P∈MaxRMP. To show that this is not a proper containment, we prove that localiza-

tions of the two sides at any P
′ ∈ MaxR coincide. But this is obvious from the fact that

(MP)P ′ = MP or 0 according as P
′
= P or not. In fact (MP)P′ = M ⊗ RP ⊗ RP ′ = 0 since

M is S -torsion and RP ⊗ RP ′ is S -divisible by Proposition (3.2)(c).

Conversely, by hypothesis, RS /R � ⊕P(RS /R)P holds for the S -torsion module

RS /R. From Proposition (3.1) we obtain the inclusion S ⊆ S 1. Localizing both sides

of the last isomorphism at a maximal ideal P
′
, we deduce that (RS /R)P ⊗R RP ′ = 0 for

P′ , P. Thus RS ⊗R RP ⊗R ⊗RP′ = RP ⊗ RP ′ , so the S -divisibility of RP ⊗R RP ′ is evident.

The inclusion S ⊆ S 2 now follows from Proposition (3.2)(c). �

Theorem 3.2 ( (Matlis)) For a domain R, the following conditions are equivalent:

(a) R is h-local;

(b) every torsion R-module M is canonically isomorphic to
⊕

P∈MaxR MP;

(c) Q/R is canonically isomorphic to
⊕

P∈MaxR(Q/R)P;

(d) R[P] ⊗ RP � Q for every maximal ideal P of R.

Proof (a)⇔ (b) is an immediate consequence of the definition of h-local domains and

Theorem (3.1).

(b)⇒ (c) is trivial since Q/R is torsion R-module.

(a) ⇒ (d) Suppose R is h-local domain and let P be a maximal ideal of R. Let A =∏
N,P(Q/R)N and B =

⊕
N,P(Q/R)N , where N ranges over the maximal ideals of R

different from M. Define φ : Q → A by φ(x) =< x + RN > for x ∈ Q. Now, x = a/b,

where a, b ∈ R and b , 0. Since b is contained in only a finitely many maximal ideals of

R, we have x ∈ RN in only finitely many maximal ideals of R. Hence, we have Imφ ⊂ B.

Since Kerφ = R[P], we have Q/R[P] � Imφ ⊂ B. Thus, we have an exact sequence:

0→ Q/R[P] → B.

Now, if N is a maximal ideal of R different from P, we have by Lemma (4.8) that

RP ⊗ RN � Q. Thus, RP ⊗ (Q/R)N � RP ⊗ (Q/RN) � Q/RP ⊗ RN = 0 which yields

(Q/R)P = 0. Since Q/R[P] ⊂ B, we have R[P] ⊗ RP � Q.
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(d) ⇒ (c) Assume that R[P] ⊗ RP � Q for every maximal ideal P of R. Let M be a

maximal ideal of R, and let A =
∑

N,M R[N], the sum of all of the R[N] for N a maximal

ideal different from M. Then R ⊂ A ⊂ RM, and hence AM = RM. On the other hand, by

assumption, we have AN = Q for all N , M. Thus A =
∩

N,M AN ∩ AM = Q ∩ RM = RM.

Consequently, we have (RM + R[M])N = (A + R[M])N = Q for all maximal ideals N of

R including M. Therefore, RM + R[M] = Q. Since RM ∩ R[M] = R, we have (Q/R)M =

Q/RM = (RM + R[M])/RM � R[M]/(RM ∩ R[M]) = R[M]/R.

Now we have Q = A + R[M] =
∑

N R[N], where the sum ranges over all maximal

ideals N of R including M. If N1, . . . ,Nt is any finite set of maximal ideals of R different

from M, then R ⊂ (
∑t

i=1 R[Ni] ∩ R[M]) ⊂ A ∩ R[M] = R. Thus
∑t

i=1 R[Ni] ∩ R[M] = R. From

these facts it follows that Q/R =
⊕

(R[N]/R), where N ranges over all maximal ideals of

R. Since we have shown that R[N]/R � (Q/R)N , we have Q/R �
⊕

(Q/R)N .

(c)⇒ (a) Suppose Q/R �
⊕

P∈MaxR(Q/R)P. Then (Q/R)P ⊗ RP′ = 0 for maximal ideals

P, P′ such that P , P′. Thus, Q/RP ⊗ RP′ = Q/RP ⊗ RP′ = 0 and so RP ⊗ RP′ � Q.

The property (ii) of h-locality holds by Lemma (4.8), so the property (i) just follows from

Proposition (3.1) taking S = R∗. �

Lemma 3.3 Let R be an h-local domain and P a maximal ideal of R.

(i) If Ai (i ∈ I) are submodules of Q with
∩

i∈I Ai , 0, then

(∩
i∈I

Ai

)
P
=
∩
i∈I

(
Ai

)
P
.

(ii) If B ≤ A are submodules of Q, then

(A : B)P = AP : BP.

Proof (i) Without loss of generality, 1 ∈ ∩i∈I Ai may be assumed. Form the exact

sequence

0 −→
(∩

i∈I
Ai

)
P
−→ Q −→

(
Q/
∩
i∈I

Ai

)
P
−→ 0.

Because of the structure of Q/R and the full invariance of its submodules (Q/∩i∈I)P is just

Q/
∩

i∈I(Ai)P. Hence the claim is evident.

(ii) We start by observing that the claim is obvious if B is singly generated (even if it is

16



finitely generated). The general case follows from (i):

(A : B)P = (A : Σb∈BbR)P = (∩b∈B(A : bR))P = ∩b∈B(AP : bRP)

= (AP : Σb∈BbRP) = (AP : BP)

�
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CHAPTER 4

KRULL-SCHMIDT PROPERTY FOR IDEALS AND

MODULES OVER INTEGRAL DOMAINS

4.1. Krull-Schmidt and Pic(R)

In this chapter Krull-Schmidt properties for certain classes of indecomposable

torsion-free modules over commutative integral domains are examined. All rings men-

tioned below are commutative with identity.

Definition 4.1 Let R be a commutative integral domain and C a class of R-modules. The

Krull-Schmidt property holds for C if, whenever

G1 ⊕G2 ⊕ · · ·Gn � H1 ⊕ H2 ⊕ · · ·Hm

for Gi,H j ∈ C, then n = m and, after a possible reindexing, Gi � Hi for all i ≤ n. If,

instead of Gi � Hi, it is required only that there exists k > 0 such that G(k)
i � H(k)

i for all i,

then we say that the weak Krull-Schmidt property holds for C. (G(k) represents direct sum

of k copies of a module G.)

Definition 4.2 A torsionless module over a domain R is a submodule of a finitely gener-

ated free R-module.

Definition 4.3 An integral domain R has the torsion-free Krull-Schmidt property, TFKS,

,if the class of indecomposable torsionless R-modules has the Krull-Schmidt property; R

has weak TFKS if this class has the weak Krull-Schmidt property.

We also study the uniqueness of decomposition for ideals.

Definition 4.4 A domain R has unique decomposition into ideals, UDI, if the class of

ideals of R has the Krull-Schmidt property. Similarly, R has weak UDI if the class of

ideals of R has the weak Krull-Schmidt property.
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Definition 4.5 Two R-modules G and H are locally isomorphic if GM � HM for all maxi-

mal ideals M of R, and G and H are power isomorphic if n > 0 exists such that G(n) � H(n).

If G is locally isomorphic to H,we write G �l H. If G is power isomorphic to H, we write

G �℘ H.

We use the notion of the Picard group of an integral domain to distinguish between

weak UDI and UDI. If R is an integral domain, the Picard group of R is the abelian group

consisting of the invertible fractional ideals of R modulo the principal fractional ideals

of R. In the following sections we show that the Picard group of a weak UDI domain R

measures how close R is to having UDI. We denote the Picard group of by Pic(R).

For the purpose of proving some technical lemmas, we use the following notion.

Definition 4.6 Let R be a domain and S an overring of R. Then (R, S ) is a weak UDI

pair if every overring T of R such that R ⊆ T ⊆ S has weak UDI. Similarly, (R, S ) is a

weak TFKS pair if every overring of R contained in S has weak TFKS.

Furthermore, we consider Krull-Schmidt for rank one modules, those torsion-free

modules that are isomorphic to submodules of the quotient field.

Definition 4.7 A maximal ideal M of an integral domain R is complemented if every ideal

of R not contained in M is invertible.

Definition 4.8 Two ideals I, J are said to be comaximal (or coprime) if I + J = R.

For comaximal ideals we have IJ = I ∩ J. Clearly, two ideals I, J are comaximal if and

only there exists x ∈ I and y ∈ J such that x + y = 1.

Remark 4.1 Let R be an integral domain and suppose that every prime ideal of R is

invertible. Then R is of Krull dimension 1. In fact, let P be a nonzero prime ideal of

R, then there is a maximal ideal M of R that contains P. Note that M is invertible by

assumption. Consequently M−1P is a fractional ideal of R with M−1P ⊂ M−1M = R, so

M−1P is an ideal in R. Since M(M−1P) = RP = P and P is prime; either M ⊂ P or

M−1P ⊂ P. But if M−1P ⊂ P, then R ⊂ M−1 = M−1R = M−1PP−1 ⊂ PP−1 ⊂ R, so

M−1 = R. Thus R = MM−1 = MR = M, which contradicts the fact that M is maximal.

Therefore M ⊂ P and so M = P. Hence, P is maximal.

Lemma 4.1 ( (Goeters & Olberding, 2002), Lemma 2.1) Let R be an h-local domain with

a complemented maximal ideal M.

(i) If P and Q are comaximal prime ideals, then P or Q is a maximal ideal.

19



(ii) For all maximal ideals N , M of R, then RN is a DVR.

(iii) If S is a fractional overring of R and N , M is a maximal ideal of R, then S N is a

maximal ideal of S .

(iv) Pic(R) = 0 if and only if every maximal ideal of R distinct from M is principal.

Proof (i) Suppose P and Q are comaximal prime ideals, then

P + Q = R.

If P and Q are not maximal, they are contained in some maximal ideal. Since they are

comaximal, they must be contained in different maximal ideals, say P ⊆ N1 and Q ⊆ N2,

N1 , N2. If N1 , M, then P is invertible because R is h-local. Similarly, if N2 , M, then

Q is invertible. Since N1 = N2 is impossible, without loss of generality, we may assume

P is invertible prime ideal and P ⊆ N1 = N, N , M.

Now consider RN . For the reason that every prime ideal of RN is invertible, RN is of

Krull dimension 1 by Remark 4.1. Since PRN is a prime ideal in RN and NRN is the unique

maximal ideal of RN , we get PRN = NRN . Thus we obtain N = NRN ∩ R = PRN ∩ R = P,

and hence P = N. So, P must be maximal.

(ii) By the proof of (i), every ideal of RN , where N , M, is invertible. So RN is a lo-

cal ring such that every ideal of RN is invertible, and so RN is a DVR.

(iii) If N , M is a maximal ideal of R, by (i), RN is a DVR, so since S N is a fractional over-

ring of RN , RN = S N . Then S NN = NN and S N/S NN = RN/NN so S NN is a maximal ideal

of S N . By local verification, we see that S N = S NN∩S . Thus, S N is a maximal ideal of S.

(iv) Suppose Pic(R) = 0. Let N be a maximal ideal distinct from M. Then since N * M,

N is invertible, and by assumption N must be principal.

For the converse, suppose every maximal ideal of R distinct from M is principal.

Let I be an invertible ideal of R. Since I is invertible, there exists a fractional ideal J of

R such that IJ = R. This implies that for some nonzero x ∈ J, xI * M. Since xI � I,

we may assume without loss of generality I * M. Since R is h-local, I is contained in

at most finitely many maximal ideals, say N1, . . . ,Nk. So, for each i ≤ k, RNi is a DVR

which implies

IRNi = N j(i)
i RNi
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for some j(i) > 0. Local verification shows that

I = N j(1)
1 · · ·N j(k)

k

Thus, I is principal. �

Remark 4.2 (Splitting map) Let f : M → N and f ′ : N → M be homomorphisms such

that f f ′ = 1N . Then f is an epimorphism, f ′ is a monomorphism and M = Ker( f ) ⊕
Im( f ′). We say f is split by the map f ′, in this case.

Lemma 4.2 ( (Goeters & Olberding, 2002), Lemma 2.2) Let S be an overring of an

integral domain R. If (R, S ) is a weak UDI pair and I and J are comaximal ideals of S ,

then S = R + I or S = R + J.

Proof If either I = S or J = S , then the claim is clear. If S is quasilocal, then I+ J , S .

So, suppose S is not quasilocal and I, J , S . Observe that

S = I + J ⊆ [R + I : S ] + [R + J : S ].

Since 1∈ S , 1∈ [R+ I : S ]+ [R+ J : S ]. Thus, there exists a ∈ [R+ I : S ], b ∈ [R+ J : S ]

such that a + b = 1. Define a homomorphism

Φ : (R + I) ⊕ (R + S )→ S

by Φ((x, y)) = x + y for all x ∈ R + I, y ∈ R + J. Define a homomorphism

Ψ : S → (R + I) ⊕ (R + S )

by Ψ(s) = (as, bs) for all s ∈ S . Since Φ(Ψ(s)) = Φ((as, bs)) = as + bs = s, Ψ is a

splitting map for Φ. So, by splitting map property we can write

(R + I) ⊕ (R + J) � S ⊕ KerΦ.
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Let T := (R + I) ∩ (R + J), then T is an overring of R such that R ⊂ T ⊂ S . Since T

has weak UDI and S is a fractional ideal of T, S (n) � (R + I)(n) or S (n) � (R + J)(n) for

some n > 0. Taking the nth exterior power of each side with respect to R + I and R + J,

respectively, yields S � R+ I or S � R+ J since R+ I and R+ J are subrings of S . Finally,

isomorphism can be replaced by equality, again since R + I and R + J are rings. �

Lemma 4.3 ( (Goeters & Olberding, 2002), Lemma 2.3) Let R be an integral domain. If

S is an overring of R such that (R, S ) is a weak UDI pair, then S is quasilocal or S = R+N

for some maximal ideal N of S . Furthermore, for each maximal ideal M of R, there are

at most three maximal ideals of S lying over M, and if (R, S ) is a weak TFKS pair, then

there are at most two maximal ideals of S lying over M.

Proof If S has at least two distinct maximal ideals N and N′, then since they are co-

maximal, by Lemma (4.2), S = R + N or S = R + N′. Suppose that there are four distinct

maximal ideals N1,N2,N3,N4 of S lying over a maximal ideal M of R. Define I = N1N2

and J = N3N4. Since I and J are comaximal ideals of S , then again by Lemma (4.2),

without loss of generality we can assume S = R + I. There exists n ∈ N1 such that n < I

since I = N1N2 , N1. By using S = R + I we can write n = r + i for some r ∈ R and

i ∈ I. Since n − i ∈ R and n − i ∈ N1, we have n − i ∈ M because N1 ∩ R = M. Thus,

n ∈ I + M = I, which is a contradiction. So, there cannot be more than three maximal

ideals of S lying over M.

Now assume (R, S ) is a weak TFKS pair and S has three distinct maximal ideals,

N1,N2,N3. Define I1 = N2N3, I2 = N1N3 and I3 = N1N2. Then since S = I1 + I2 + I3 ⊆
[R + I1 : S ] + [R + I2 : S ] + [R + I3 : S ], there exists ui ∈ [R + Ii : S ], i = 1, 2, 3 such that

u1 + u2 + u3 = 1. Define a homomorphism

σ : (R + I1) ⊕ (R + I2) ⊕ (R + I3)→ S

by σ((a, b, c)) = a + b + c. This homomorphism is split by the map

φ : S → (R + I1) ⊕ (R + I2) ⊕ (R + I3)

where φ(s) = (su1, su2, su3) for all s ∈ S . Setting T = (R + I1) ∩ (R + I2) ∩ (R + I3), we

get an overring of R. Since R ⊂ T ⊂ S and (R, S ) is a weak TFKS pair and Ker(σ) is a

torsionless T -module, and the R + I j are fractional ideals of T , it follows that S �℘ R + Ii
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for some i = 1, 2, 3 which implies S = R + Ii. Now, applying a similar argument to the

one above, we get a contradiction which implies S cannot have more than two maximal

ideals lying over M.

�

Lemma 4.4 ( (Goeters & Olberding, 2002), Lemma 2.4) If R has weak UDI, then R has a

complemented maximal ideal M and the Picard group of R is torsion. If R has UDI, then

Pic(R) = 0.

Proof Let I be an invertible ideal of R. Then since I is a projective R-module, it is a

summand of a free R-module. So, I(n) � R(n) for some n > 0. Taking the nth exterior

power of both sides yields In � R. Thus, for every IJ ∈ Pic(R) where I is an invertible

ideal and J is a principal ideal, we can write (In−1)(IJ) � RJ for some n > 0. Since RJ

is also a principal ideal, we conclude that Pic(R) is torsion. If R has UDI, by a similar

consideration, I is principal which implies Pic(R) = 0.

It remains to show that R has a complemented maximal ideal when R has weak

UDI. If R is Dedekind domain, then every ideal of R is invertible, so every maximal ideal

is complemented. If R is quasilocal, then the claim is clear. So, suppose R is not Dedekind

and R is not quasilocal. If I and J are comaximal ideals of R, then since I + J = R, it

follows that I ⊕ J � R ⊕ (I ∩ J). Since R has weak UDI, there exists n > 0 such that

I(n) � R or J(n) � R. Thus, I(n) or J(n) is free R-module which implies I or J is projective

R-module, and hence invertible ideal of R.

Now, let A be the sum of all noninvertible ideals of R. By assumption, R is not

Dedekind, so there is at least one noninvertible ideal. We have showed that I + J = R

implies I or J is invertible. So, A = R is impossible. Thus, it follows that a maximal ideal

M containing A exists. If B is an ideal of R such that B is not contained in M, then B is

not contained in A. Thus, B must be invertible, and M is complemented maximal ideal. �

Lemma 4.5 ( (Goeters & Olberding, 2002), Lemma 2.5) Let R be an h-local domain with

complemented maximal ideal M, and suppose S is an overring of R and (RM, S M) is a

weak UDI pair. If B is an invertible fractional ideal of S , then B = S A for some invertible

fractional ideal A of R.

Proof First, we will show that S M has at most four maximal ideals. If S M is quasilocal,

then the claim is clear, so suppose S M has at least two maximal ideals. If N is a maximal

ideal of S M such that S M = RM +N, then S M/N � RM/(RM ∩N) which shows that RM ∩N

is a maximal ideal of RM. Thus, MRM = RM ∩ N, and so N lies over the maximal ideal M

of R. By Lemma (4.3), there are at most three maximal ideals of S M lying over M. If L is
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a maximal ideal of S M such that S M , RM + L, then by Lemma (4.3), S M = RM + N for

every maximal ideal N of S M distinct from L. Thus, all the maximal ideals of S M except

possibly one contract to maximal ideals of RM. Therefore, S M has at most four maximal

ideals. Since B is an invertible fractional ideal of S , BS M is an invertible fractional ideal

of S M. It follows that BS M = aS M for some a ∈ B because S M is semilocal.

Now let Mα denote the set of all maximal ideals of R such that Mα , M and

S Mα
, Q where Q is the quotient field of R. By Lemma (4.1) (ii), RMα

is a DVR, so

S Mα
= RMα

. So for all α,

BRMα
= aαRMα

.

Define

A = aRM ∩ (∩αaαRMα
) ∩ (∩NRN),

where N ranges over the maximal ideals of R not in {Mα} ∪ {M}. Since R is h-local,

RMα
RN = Q if N is a maximal ideal of R distinct from a particular Mα. Also, since R is

h-local, localizations commute with infinite intersections, so ARM = aRM, ARMα
= aαRMα

for all α and ARN = RN for all maximal ideals N of R not in {Mα} ∪ {M}. Furthermore,

S A = B and A is a locally free R-submodule of Q. In fact, since B is a finitely generated

S -submodule of Q and and every nonzero element of R is contained in at most finitely

many maximal ideals of R, it follows that BRMα
= aαRMα

for all but finitely many α.

This implies that A is a fractional ideal of R. Since R is h-local, A is a finitely generated

fractional ideal ( (Matlis), Theorem 26). Hence A is an invertible fractional ideal of R. �

Lemma 4.6 ( (Goeters & Olberding, 2002), Lemma 2.6) Let R be an h-local domain, and

let X and Y be rank one R-modules such that (R, E(X)) is a weak UDI pair. Then X �℘ Y

if and only if XA = Y for some invertible fractional ideal A of R.

Proof Suppose X(n) � Y (n). Then the canonical homomorphism, X ⊗R HomR(X,Y)→ Y

is surjective, and it follows that X[Y : X] = Y . The existence of a splitting map for the

induced surjection X(n) → Y shows that 1 ∈ [Y : X][X : Y] ⊆ E(X) where E(X) denotes

the R-module [X : X], and E(X) � [X : X]. In particular, [Y : X][X : Y] = E(X),

and it follows that [Y : X] is an invertible fractional ideal of E(X). (Indeed, if q ∈ [X :

Y] ∩ [Y : X], then q[Y : X] ⊆ E(X) and q[X : Y] ⊆ E(X).) Set B := [Y : X] and

S := E(X). By Lemma (4.5), a fractional invertible ideal A of R exists such that S A = B.

Thus XA = XS A = XB = Y .

Conversely, suppose XA = Y for some invertible fractional ideal of R. By Lemma

(4.4), Pic(R) is torsion, so An � R for some n > 0. It follows that A(n) � R(n). Since A and
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R are flat R-modules, it follows that Y (n) � (XA)(n) � (X ⊗R A)(n) � X ⊗R A(n) � X ⊗R R(n) �

(X ⊗R R)(n) � X(n), and the claim is proved. �

Theorem 4.1 ( (Goeters & Olberding, 2002), Theorem 2.7) An h-local integral domain

R has UDI if and only if R has weak UDI and Pic(R) = 0.

Proof Suppose R has weak UDI, Pic(R) = 0 and I1⊕I2⊕In � J1⊕J2⊕Jn for some ideals

I1, I2 . . . In, J1 . . . Jn of R. Since R has weak UDI, after reindexing, we may assume that

Ik �℘ Jk for each k ≤ n. Since E(Ik) is a fractional ideal of R for all k ≤ n, it follows that

(R, E(Ik)) is a weak UDI pair. By Lemma (4.6), Ik = AJk for some invertible fractional

ideal A of R. By assumption, since Pic(R) = 0, A is a principal ideal of R, so Ik � Jk

which implies R has UDI. The converse is clear from Lemma (4.4). �

4.2. Main Reductions

In this section, reduction theorems for the various Krull-Schmidt properties are

proven.

Lemma 4.7 ( (Goeters & Olberding), Proposition 2.8, Theorems 2.11 and 2.13) Let R be

an h-local integral domain and G and H be torsionless R-modules.

(i) If Pic(R) = 0, then G �l H if and only if G ⊕ R � H ⊕ R.

(ii) If Pic(R) = 0, G �l H and G has a summand isomorphic to an ideal of R, then

G � H.

(iii) If Pic(R) is torsion and G �l H, then G �℘ H.

Lemma 4.8 Let R be an h-local domain with a complemented maximal ideal. If G �l H,

then G is indecomposable if and only if H is indecomposable.

Lemma 4.9 Let R be an h-local domain with complemented maximal ideal M. If G :=

G1 ⊕ · · ·Gn and H := H1 ⊕ · · ·Hm are direct sums of torsionless RM-modules such that

G � H, then torsionless R-modules G′ := G′1 ⊕ · · ·G′n and H′ := H′1 ⊕ · · ·H′m exist such

that G′ �l H′ and, for all i ≤ n, j ≤ m, Gi = (G′i)M and H j = (H′j)M.

Proof We may assume that for each for each i ≤ n and j ≤ m, free R-modules exist

such that Gi ⊆ (Ei)M and H j ⊆ (F j)M since Gi and H j are torsionless RM-modules. In fact,

Gi ⊆ R(k(i))
M and H j ⊆ R(t( j))

M for some k(i) > 0, t( j) > 0 and Ei = Rk(i), H j = Rt( j). Define
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G′i = Gi ∩ Ei and H′j = Gi ∩ F j for each i ≤ n and j ≤ m, then G′i and H′j are torsionless

R-modules. Then, for all i, j, Gi = (G′i)M and H j = (H′j)M. By Lemma (4.1)(ii), RN is a

DVR for each maximal ideal N distinct from M. Thus, the torsionless RN-modules are

free of the same rank for all maximal ideals N , M. It follows that G′ �l H′. �

In the proof of the next theorem (v), we use the following terminology from the

theory of torsion-free abelian groups. Two rank one modules are quasi-isomorphic if each

is isomorphic to a submodule of the other. A type τ is the quasi-isomorphism class of a

rank one module. The collection of types is partially ordered by the relation τ1 ≤ τ2

whenever U1 is isomorphic to a submodule of U2 (where τi is the type of the R-module

Ui). If A is a torsion-free module and a ∈ A, then the type of a is the quasi-isomorphism

class of the pure submodule of A generated by a, i.e., the submodule {b ∈ A : rb =

sa for some r, s ∈ R}. Given a type τ, define A(τ) = {a ∈ A : type of a ≥ τ}.

Theorem 4.2 ( (Goeters & Olberding, 2002), Theorem 3.4) Let R be an h-local domain.

The following statements hold for R.

(i) R has weak UDI if and only if Pic(R) is torsion and R has a complemented maximal

ideal M such that RM has UDI.

(ii) R has UDI if and only if Pic(R) = 0 and R has a complemented maximal ideal M

such that RM has UDI.

(iii) R has weak TFKS if and only if Pic(R) is torsion and R has a complemented maximal

ideal M such that RM has weak TFKS.

(vi) R has TFKS if and only if locally isomorphic torsionless modules are isomorphic

and R has a complemented maximal ideal M such that RM has TFKS.

(v) R has the Krull-Schmidt property for rank one modules if and only if Pic(R) = 0

and R has a complemented maximal ideal M such that RM has the Krull-Schmidt

property for rank one modules.

Proof (i) Suppose first that R has weak UDI. By Lemma (4.4), Pic(R) is torsion and a

complemented ideal M exists. Assume that

I1RM ⊕ I2RM ⊕ · · · InRM � J1RM ⊕ J2RM ⊕ · · · JnRM,

where Ii, Jk are ideals of R for i ≤ n, k ≤ m.
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Define G := I1RM⊕ I2RM⊕· · · InRM and H := J1RM⊕ J2RM⊕· · · JnRM. Then G and

H are completely decomposable torsionless RM-modules such that G � H. By Lemma

(4.9), torsionless R-modules G′ = I′1 ⊕ I′2 . . . ⊕ I′n and H′ = H′1 ⊕ H′2 . . . ⊕ H′m exist such

that G′ �l H′ and IiRM = (I′i )M, JiRM = (J′k)M for each i ≤ n, j ≤ m. By the proof of

Lemma (4.9), I′i ’s and J′k’s are chosen as I′i = IiRM ∩ R = Ii, J′k = JkRM ∩ R = Jk. So,

I1 ⊕ I2 ⊕ · · · ⊕ In � J1 ⊕ J2 ⊕ · · · ⊕ Jm. Since R has weak UDI, m = n and after reindexing

I(k)
i � J(k)

i for some k > 0 which implies (IiRM)(k) � (JiRM)(k). Thus, RM has weak UDI

and since RM is local, RM has UDI.

To prove the converse, assume that M is a complemented maximal ideal of R, RM

has UDI and the Picard group of R is torsion. Suppose that

I1 ⊕ I2 ⊕ · · · ⊕ In � J1 ⊕ J2 ⊕ · · · ⊕ Jm,

where Ii, Jk are ideals of R and i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Define G := I1⊕ I2⊕· · ·⊕ In

and H := J1 ⊕ J2 ⊕ · · · ⊕ Jm, then G and H are torsionless R-modules such that G � H.

Since RM has UDI, n = m and after reindexing (I j)M � (J j)M for each j. For each maximal

ideal N distinct from M, RN is a DVR, so (I j)N � (J j)N which implies I j �l J j. By Lemma

(4.7), I j �℘ J j which shows that R has weak UDI.

(ii) Suppose R has UDI, by Lemma (4.4), Pic(R) = 0 and a complemented maximal

ideal M exists. By (i), RM has UDI. Conversely, suppose R has a complemented maximal

ideal M such that RM has UDI and Pic(R) = 0. By (1), R has weak UDI and by Theorem

(4.1) R has UDI.

(iii) Suppose R has weak TFKS. Since ideals of R are torsionless R-modules, R has weak

UDI. By Lemma (4.4), R has a complemented maximal ideal M and the Picard group of

R is torsion. We need to show that RM has weak TFKS. Assume that

G1 ⊕G2 ⊕ · · · ⊕Gn � H1 ⊕ H2 ⊕ · · · ⊕ Hm

where Gi,H j are torsionless RM-modules and i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Let G :=

G1 ⊕ G2 ⊕ · · · ⊕ Gn and H := H1 ⊕ H2 ⊕ · · · ⊕ Hm be direct sum of torsionless RM-

modules. Then since G � H, by Lemma (4.9), there exist torsionless R-modules G′ =

G′1 ⊕ G′2 ⊕ · · · ⊕ G′n and H′ = H′1 ⊕ H′2 ⊕ · · · ⊕ H′m such that G′ �l H′ and (G′i)M = Gi,
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(H′j)M = H j. By Lemma (4.7), G′ �℘ H′. Since R has weak TFKS, we have n = m and

after reindexing, G′i �p H′i for all i. So, (G′i)M �℘ (H′i )M which yields Gi �℘ Hi. Thus, RM

has weak TFKS.

For the converse, suppose R has complemented maximal ideal M, RM has weak

TFKS and the Picard group of R is torsion. Let G1,G2, · · · ,Gn, H1,H2, · · · ,Hm be inde-

composable torsionless R-modules such that G1⊕G2⊕ · · ·Gn � H1⊕H2⊕ · · ·Hm. Passing

to RM, each (Gi)M and (Hi)M remains indecomposable because by Lemma (4.8) if G is an

indecomposable torsionless R-module, then GM is indecomposable. Thus, the assumption

that RM has weak TFKS implies that n = m and after reindexing (Gi)M �℘ (Hi)M for all

i ≤ n. Since R is h-local domain, RN is a DVR for each maximal ideal N , M, (Gi)N and

(Hi)N are free RN-modules of the same rank. Thus, G(k) �l H(k) for some k > 0, and by

Lemma (4.7), Gi �p Hi for all i ≤ n. Hence, R has weak TFKS.

(iv) Suppose R has TFKS and G and H are locally isomorphic R-modules. Since ide-

als of R are torsionless R-modules, R has UDI. By (ii), Pic(R) = 0. So, by Lemma (4.7),

G ⊕ R � H ⊕ R. Since R has TFKS, G � H and we conclude that locally isomorphic

torsionless R-modules are isomorphic. By (ii), R has a complemented maximal ideal M.

Suppose G1⊕G2⊕ · · ·Gn � H1⊕H2⊕ · · ·Hm for indecomposable torsionless RM-modules

Gi and H j. Set G = G1 ⊕ G2 ⊕ · · ·Gn and H = H1 ⊕ H2 ⊕ · · ·Hm. By Lemma (4.9),

torsionless R-modules G′ := G′1 ⊕ · · ·G′n and H′ := H′1 ⊕ · · ·H′m exist such that G′ �l H′

and Gi = (Gi)M and H j = (H′j)M. So, G′1 ⊕G′2 ⊕ · · ·G′n � H′1 ⊕ H′2 ⊕ · · ·H′m. Since R has

TFKS, we have n = m and after reindexing, G′i � H′i for all i ≤ n. Thus, (G′i)M � (H′i )M

which shows Gi � Hi for all i. Hence, RM has TFKS.

Conversely, suppose that locally isomorphic torsionless modules are isomorphic

and R has a complemented maximal ideal M such that RM has TFKS. Let I be an invert-

ible ideal of R. Then there exists a fractional ideal J of R such that IJ = R. There exists

an element x ∈ J such that xI * M. Since xI � I, without loss of generality we may

assume that I * M. So, IRM = RM. Since R is h-local, for every maximal ideal N , M,

IRN � RN . Thus, I �l R and I is principal which yields Pic(R) = 0. By (iii), R has weak

TFKS. It sufficies to check that if G �℘ H for torsionless indecomposable R-modules G

and H, then G � H. By Lemma (4.8), GM and HM are indecomposable RM-modules.

Since RM has TFKS, GM � HM. Moreover, since RN is a DVR for all maximal ideals

N , M, GN � HN . So, G �l H. By assumption, G � H.

(v) If R has the Krull-Schmidt property for rank one modules, then, by Lemma (4.4),
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Pic(R) = 0 and R has a complemented maximal ideal M. Since rank one RM-modules are

rank one R-modules, RM has the Krull-Schmidt property for rank one modules.

Conversely, suppose M is a complemented maximal ideal of R, RM has the Krull-

Schmidt property for rank one modules and Pic(R) = 0. The proof is modeled on a

classical proof of a theorem of Baer for abelian groups as in ( (Goeters & Olberding,

2001), Theorem 4.3). Suppose G := X1 ⊕ · · · ⊕ Xn and H := Y1 ⊕ · · ·Yn are direct sums

rank one R-modules Xi and Y j such that G � H. Since types are preserved under isomor-

phism, G(τ) � H(τ) and G/G(τ) � H/H(τ) for all types τ. Select a type τ that is maximal

with respect to the types of Xi and Y j. Then G(τ) � H(τ) and, without loss of generality,

we may assume X1 ⊕ · · · ⊕ Xk � Y1 ⊕ · · · ⊕ Yk, where k ≤ n and each Xi and Yi has type τ.

After reindexing, we may assume (Xi)M � (Yi)M for all i ≤ k. Moreover, since the Xi and

Yi have the same type and RN is a DVR for all N , M, it follows that (Xi)N � (Yi)N for all

N , M. Thus Xi �l Yi for all i ≤ k and Xi and Yi are quasi-isomorphic rank one modules.

In particular, [Xi : Yi][Yi : Xi] = E(Yi), since localizations commute with brackets of

quasi-isomorphic rank one modules over h-local domains (see (Fuchs & Salce, 2001),

Lemma IV.3.10). Set B = [Xi : Yi] and S = E(Yi). Then B is an invertible fractional ideal

of S , and (RM, S M) is a weak UDI pair, so by Lemma (4.5), B = S A for some invertible

fractional ideal A of R. Since Pic(R) = 0, B is a principal ideal of S , and it follows that

Xi � Yi for all i ≤ k. Since G/G(τ) � H/H(τ), an inductive argument completes the proof

that R has the Krull-Schmidt property for rank one modules. �

4.3. Non-Noetherian case

In this section, we treat the non-Noetherian case of UDI and TFKS, with special

emphasis on the Prüfer case. First, we need to show R is a quasilocal Prüfer domain if and

only if R is a valuation domain. Let R be a quasilocal Prüfer domain and M be its unique

maximal ideal. Taking any two ideals I1, I2 of R, we see that I1RM and I2RM are two

ideals of RM. Since R is Prüfer domain, RM is a valuation domain and so I1RM ⊆ I2RM or

I2RM ⊆ I1RM which implies I1 ⊆ I2 or I2 ⊆ I1. Hence R is a valuation domain. Conversely,

assume R is a valuation domain. Then clearly, R is quasiolocal. Since finitely generated

ideals are principal and hence invertible in a valuation domain, R is a Prüfer domain.

Secondly, we need to show all quasilocal Prüfer domains(=valuation domains) have UDI.

Let R be a valuation domain, and suppose I1 ⊕ I2⊕ · · · ⊕ In � J1 ⊕ J2⊕ · · · ⊕ Jn, where Ii, Jk

are ideals of R. For any ideal of I of R, I is rank one R-module and End(I) = [I : I] is an

overring of R. Since R is a valuation domain, [I : I] = RL for some prime ideal L of R and
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and hence [I : I] is local. So, all ideals of R have local endomorphism rings which yields

R has UDI. Moreover, since the rank one modules of a valuation domain are isomorphic

to ideals, the equivalence of UDI and Krull-Schmidt for rank one modules is immediate.

Definition 4.9 A ring is a Bezout ring if its finitely generated ideals are principal.

Proposition 4.1 The following statements hold for R, an h-local Prüfer domain.

(i) R has UDI if and only if R has the Krull-Schmidt property for rank one modules; if

and only if R is a Bezout domain with complemented maximal ideal.

(ii) R has weak UDI if and only if Pic(R) is torsion and R has a complemented maximal

ideal.

Proof (i) Suppose R has UDI, then R has a complemented maximal ideal by Theorem

(4.2). Let I be a finitely generated ideal of R. Since R is Prüfer domain, I is invertible,

and so I must be principal because Pic(R) = 0. So, R is a Bézout domain. Conversely,

suppose R is a Bézout domain with complemented maximal ideal M. We need to show

that RM has UDI and Pic(R) = 0. Suppose I1⊕· · ·⊕ In � J1⊕ � ⊕Jm where Ii, Jk are ideals

of RM. Since End(I) is an overring of RM and RM is a valuation domain, End(I) is a local

ring for any ideal I of RM. Thus, RM has UDI. Let I be an invertible fractional ideal of R.

Then since R is a Bezout domain, I must be principal. So, Pic(R) = 0. Now, assume that

R has the Krull-Schmidt property for rank one modules. Since ideals are also rank one

modules, R has UDI. For the converse, suppose R has UDI, then R has a complemented

maximal ideal M and Pic(R) = 0 by Theorem (4.2). We need to show that RM has Krull-

Schmidt property for rank one modules which is equivalent to showing that RM has UDI.

By the same consideration, End(I) is local for any ideal of RM which yields RM has UDI.

(ii) By arguments similar to those in the proof of (i) and by Theorem (4.2), the result

follows.

�

Combining the Prüfer description of UDI with results on decompositions of torsion-

free modules, we obtain characterizations of some strong forms of the Krull-Schmidt

property. By way of application, we are interested in some of the following variations

of the Krull-Schmidt property. In order to characterize these properties, we recall several

related notions. A Prüfer domain R satisfies (♯♯) if every prime ideal of R is the radical

of a finitely generated ideal of R (see (Gilmer & Heinzer, 1967),Theorem 3). In par-

ticular, if every nonzero ideal of a Prüfer domain R is contained in at most finitely many

maximal ideals of R, then R satisfies (♯♯). A Prüfer domain R is h-local if and only if R
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satisfies (♯♯) and each nonzero prime ideal of R is contained in a unique maximal ideal of

R ( (Olberding, 1998)).

We also need the notion of an almost maximal ring, that is, a ring for which R/I

is a linearly compact R-module for all nonzero ideals I. A Prüfer domain R is almost

maximal if and only if Q/R is an injective R-module and R is h-local (see (Brandal,

1973)).

Definition 4.10 A D-ring is an integral domain R for which every torsion-free finite rank

R-module decomposes into a direct sum of rank one R-modules.

Proposition 4.2 ( (Goeters & Olberding, 2002), Proposition 5.2) Let R be an integral

domain.

(i) R is an h-local Bezout domain with a complemented maximal ideal if and only if,

for each R-module G := I1 ⊕ · · · In, that is a direct sum of ideals of R, every pure

submodule of G is a summand of G that is isomorphic to a direct sum of the I js.

(ii) R is an almost maximal Bezout domain with complemented maximal ideal if and

only if, for each torsionless R-module G, G � I1 ⊕ · · · In for some ideals I j of R, and

every pure submodule of G is a summand of G that is isomorphic to a direct sum of

the I js.

(iii) R is an almost maximal Bezout domain with complemented maximal ideal if and

only if R is a Prüfer (♯♯) domain such that every torsionless R-module decomposes

uniquely, up to isomorphism, into a direct sum of rank one modules.

(iv) R is a quasilocal D-ring if and only if every torsion-free finite rank R-module de-

composes uniquely, up to isomorphism, into a direct sum of rank one R-modules.

Proof (i) An integral domain R is an h-local Prüfer domain if and only if pure submod-

ules of completely decomposable torsionless R-modules are summands ( (Olberding,

1999), Theorem 3.2). This implies h-local Prüfer domains have the property that pure

submodules of completely decomposable torsionless modules are completely decompos-

able. Thus, the asserted property holds if and only if R is an h-local Prüfer domain with

UDI.

(ii) Suppose R is an almost maximal Bezout domain with complemented maximal ideal.

Let G be a torsionless R-module. Since a Prüfer domain R is almost maximal if and only

if R is h-local and every torsionless R-module is completely decomposable (∗) (Fuchs &
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Salce, 2001), G is completely decomposable. Also, since R is an h-local Bezout domain,

by using (i) the result follows. For the converse, we just use (∗) and (i).

(iii) Assume torsionless R-modules decompose uniquely into a direct sum of rank one

modules and R is a Prüfer (♯♯)domain. R is an almost maximal domain exactly if R is

locally almost maximal and R is h-local. First, we show that R is almost maximal. Let

M be a maximal ideal of R and G a torsionless RM-module. Then there is a free R-

module F such that G ⊆ FM. Define G′ = G ∩ F, then G′ is a torsionless R-module

and (G′)M = G. By assumption G′, hence G, is completely decomposable. Thus, any

torsionless RM-module is completely decomposable which shows RM is almost maximal

valuation domain.

Now, we need to show that R is h-local. Since R satisfies (♯♯), it is enough to

check that each nonzero prime ideal of R is contained in a unique maximal ideal of R.

Suppose P is a prime ideal of R contained in at least two maximal ideals N1 and N2 of

R. Set S = R \ N1 ∪ N2, T = RS , A = (N1)S , B = (N2)S , L = PS . Then LTL = L and

T/L has quotient field TL/L. Since RN1 and RN2 are almost maximal valuation domains,

TA/L and TB/L are independent maximal valuations with common quotient field TL/L.

As such, each must have a divisible value group (see (Vamos), Theorem A). But since

R has UDI, R has a complemented maximal ideal and at least one of A and B is principal.

In particular, the value group of TA/L or TB/L must have a copy of Z as a summand. This

contradiction implies each nonzero prime ideal of R is contained in a unique maximal

ideal of R. Consequently, since R satisfies (♯♯), R is an h-local locally almost maximal

domain; hence R is almost maximal( (Fuchs & Salce, 2001), Theorem IV.3.9). Since R

has UDI, R must be a Bezout domain. This proves the claim. The converse follows from

(ii).

(iv) Assume R is a quasilocal D-ring. Then since every torsion-free finite rank R-module

decomposes into a direct sum of rank one modules, if Krull-Schmidt property for rank one

modules holds, then we are done. Since R is a quasilocal D-ring, the integral closure of R

is a valuation domain (see (Matlis)). We claim that every overring of R is quasilocal. Let

S be an overring of R and S the integral closure of S . Take any x ∈ R, then x is integral

over R and so x is integral over S . So, R ⊂ S . Since R is a valuation domain, S = RL for

some prime ideal L of R which shows S is quasilocal. Now, suppose S has at least two

distinct maximal ideals, say M1 and M2. Since S ⊆ S , there exists prime ideals Q1 and

Q2 of S such that Q1 ∩ S = M1 and Q2 ∩ S = M2. By assumption, Q1 , Q2 but Q1 and
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Q2 are maximal ideals of S which yields Q1 = Q2 and so M1 = M2. Thus, S is quasilocal

too. In particular, rank one modules have quasilocal endomorphism rings because endo-

morphism rings of rank one modules are overrings of R. Thus, Krull-Schmidt property

holds for rank one modules when R is a D-ring.

Conversely, suppose torsion-free finite rank R-modules decompose uniquely into

direct sums of rank one R-modules. Then R is a D-ring with UDI. An integrally closed

D-ring is the intersection of at most 2 maximal valuation domains (Matlis). However,

R has a complemented maximal ideal, so if R has two maximal ideals M and N, one of

these ideals, say N, is principal. In particular, the maximal valuation domain RN has a

nondivisible value group. As in the proof of (iii), this is in contradiction to the fact that

two independent maximal valuation domains having the same quotient field each have

divisible value group. Thus R is quasilocal; hence, R is quasilocal and a D-ring. �

Using the following proposition, one can construct examples of non-Noetherian

UDI domains for which h-locality fails in a strong way.

Proposition 4.3 Let R be an integral domain with a prime ideal P such that PRP = P.

Then the Krull-Schmidt property holds for rank one modules of R if RP is a DVR and the

Krull-Schmidt property holds for rank one modules of R/P.

Proof For each ideal I of R, there is an exact sequence,

HomR(I, P)→ HomR(I,RP)→ HomR(I,RP/P)→ ExtR(I, P).

Now P is a principal ideal of RP, so ExtR(I, P) � ExtRP(IRP, P) = 0. Also, we have that

HomR(I,RP/P) � HomR(I/IP,RP/P), hence HomR(I, P) → Hom(I,RP) is surjective if

and only if I = IP. Note that, if I = IP, then clearly HomR(I/IP,RP/P) = 0. On the other

hand, if HomR(I/IP,RP/P) = 0, then, since RP/P is the quotient field of R/P and I/IP is

a torsion-free R/P-module, it must be the case that I = IP.

Tensoring both sides of I1⊕· · ·⊕In � J1⊕· · · Jn with R/P yields I1/PI1⊕· · · In/PIn �

J1/PJ1 ⊕ · · · Jn/PJn. After reindexing, we may assume that m,m′ ≤ n exist such that

I1/PI1 ⊕ · · · Im/PIm � J1/PJ1 ⊕ · · · Jm′/PJm′ and no Ik/PIk or Jl/PJl is trivial for k ≤ m,

l ≤ m′. The preeceding argument shows that, for all k ≤ m, HomR(Ik, P)→ HomR(Ik,RP)

is not surjective, so Ik is isomorphic to an R-submodule of RP that is not contained in P.

Similarly, for all l ≤ m′, Jl is isomorphic to an R-submodule of RP that is not contained

in P. Thus we assume that Ik, Jl ⊆ RP but Ik, Jl * P for all k ≤ m, l ≤ m′. In particular,

IkRP = JlRP = RP implies IkPRP = JlPRP = PRP = P for all k ≤ m, l ≤ m′. Since
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Ik/P, Jl/P ⊆ RP/P, each Ik/P, Jl/P is a rank one R/P-module. Thus m = m′ and, after

reindexing, we may conclude that Ik/P � Jk/P for each k ≤ m. It follows that a, b ∈ R

exists with b < P such that aIk + P = bJk. If a ∈ P, then aIk ⊆ PIk = P and P =

bJk. However, this implies that RPJk = Jk, hence PJk , P since RP is a DVR. This

contradiction forces a < P. Thus, since P = PIk ⊆ Ik and a−1P = P, we have P ⊆ aIk

proving that, for all k ≤ m, Ik � Jk. If k > m, then IkP = Ik and JkP = Jk. Since RP is a

DVR, Ik and Jk are principal ideals of RP, hence Ik � Jk. It follows that R has UDI.

Finally, observe that if X is a proper submodule of Q, the quotient field of R, then

XP , Q since XP = Q would force Q = XP ⊆ X. Thus X is a fractional ideal of the DVR

RP and since, RP is a fractional ideal of R, X is a fractional ideal of R. It follows that every

proper rank one R-module is a fractional ideal of R. This proves the claim. �

Example 4.1 There exist domains that are not h-local but that satisfy the Krull-Schmidt

property for rank one modules. Define S := Z + XQ[X](X). Then by Proposition (4.3), S

has Krull-Schmidt property for rank one modules. In fact, X + Q[X](X) is a prime ideal of

S such that it is contained in infinitely many maximal ideals of S , which shows S is not

h-local.
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CHAPTER 5

UNIQUE DECOMPOSITONS INTO IDEALS FOR

NOETHERIAN DOMAINS

A ring R is said to be Noetherian if it satisfies the following three equivalent con-

ditions:

• Every non-empty set of ideals in R has a maximal element.

• Every ascending chain of ideals in R is stationary.

• Every ideal in R is finitely generated.

Proposition 5.1 If R is Noetherian and P is a prime ideal of R, then RP is Noetherian.

Remark 5.1 The following characterizations are useful for the proofs of the next theo-

rems.

• (Kaplansky): For a commutative Noetherian ring R, R is a principal ideal ring if

and only if every maximal ideal is principal.

• (Cohen): For a commutative ring R, R is Noetherian if and only if every prime ideal

is finitely generated.

• (Cohen-Kaplansky): A commutative ring R is a principal ideal ring if and only if

every prime ideal is principal.

Throughout this chapter, R always represents a Noetherian integral domain, unless

otherwise is stated, with quotient field Q, and R denotes the integral closure of R in Q.

All of the modules mentioned below are torsion-free and have finite rank, where the rank

of A is defined as the dimension of the Q-vector space Q ⊗R A.

5.1. Reduction to the local case

Lemma 5.1 ( (Goeters & Olberding, 2001), Lemma 2.1) If R has UDI, then at most one

maximal ideal of R is non-principal.
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Proof If R is local, then there is nothing to consider. So, suppose R is not local and M1

and M2 are distinct maximal ideals of R. Then M1 and M2 are comaximal ideals that is

M1 + M2 = R. The exact sequence

0 −→ M1 ∩ M2 −→ M1 ⊕ M2 −→ M1 + M2 −→ 0

splits since R is a projective R-module. Thus, M1 ⊕ M2 � R ⊕ (M1 ∩ M2). Since R has

UDI, M1 � R or M2 � R which shows one of M1 or M2 is principal. Thus, there cannot

be two nonprincipal maximal ideals of R. �

Definition 5.1 If I is any ideal of R, the radical of I is

r(I) = {x ∈ R | xn ∈ I for some n > 0}

Definition 5.2 An ideal Q in a ring R is primary if Q , R and if

xy ∈ Q⇒ either x ∈ Q or yn ∈ Q for some n > 0

Proposition 5.2 ( (Atiyah & Macdonald, 1969), , Proposition 4.1) Let Q be a primary

ideal in a ring R. Then r(Q) is the smallest prime ideal containing Q.

Remark 5.2 Suppose R is Noetherian and each nonzero prime ideal of R is contained in

a unique maximal ideal of R. Then R is of finite character because Noetherian rings have

the property that every ideal can be written as a finite intersection of primary ideals. In

fact, assume R is Noetherian, take any a ∈ R, set the ideal I =< a >. Then I = ∩n
i=1Qi

where Qi are primary ideals for i = 1, 2, . . . n. Suppose r(Qi) ⊆ Mi, i = 1, 2, . . . n, Mi’s are

the maximal ideals of R. Then I ⊆ r(I) = r(∩n
i=1Qi) = ∩n

i=1r(Qi) ⊆ ∩n
i=1Mi ⊆ Mi for every i,

so I ⊆ Mi. Now, suppose I ⊆ M where M is a maximal ideal of R distinct from Mi for each

i. Since I ⊆ M, r(I) ⊆ r(M) = M, and so r(I) = ∩n
i=1r(Qi) ⊆ M implies r(Qi) ⊆ M for

some i which contradicts with assumption that every prime ideal is contained in a unique

maximal. Thus, I is contained in only the maximal ideals M1, . . . , Mn which implies a is

contained in finitely many maximal ideals of R. Hence, R is of finite character.

Lemma 5.2 ( (Goeters & Olberding, 2001), Lemma 2.2) If M is a maximal ideal of R

36



such that every maximal ideal other than M is principal, then R is h-local, and R[M] is a

PID that is also a flat R-module.

Proof If P is a prime ideal contained in a principal maximal ideal N, then N has height

at most one by the Krull Principal theorem which yields P = N. Otherwise, P is contained

in M exclusively, and it follows that R is h-local. R[M] is a flat R-module if and only if

localizations of R[M] at maximal ideals N of R is flat RN module. The localizations of R[M]

at maximal ideals of R are either R[M]RM = Q or R[M]RN = RN where N , M. Since R is

Noetherian, its localizations are also Noetherian. The maximal ideals of R[M] are N ·R[M],

where N is a principal maximal ideal of R, so R[M] is a PID. �

Definition 5.3 Two torsion-free modules G and H are called nearly isomorphic, if for

each ideal I , 0, there is an embedding f : G → H such that J = annCoker f is a

nonzero ideal of R comaximal with I.

Clearly, if G and H are isomorphic torsion-free modules, then G and H are nearly

isomorphic. Also, near isomorphism implies local isomorphism.

Lemma 5.3 ( (Goeters & Olberding, 2001), Lemma 2.3) Suppose R has UDI and that G

and H are finitely generated torsion-free modules. If GM � HM for all maximal ideals M

of R, then G is nearly isomorphic to H.

Proposition 5.3 ( (Goeters & Olberding, 2001), Proposition 2.4) Assume that R has UDI

and that R has exactly one nonprincipal maximal ideal M. Suppose G is a finitely gen-

erated torsion-free module and H is completely decomposable. Then the following state-

ments are equivalent:

1. GM � HM.

2. G and H are nearly isomorphic.

3. G and H are isomorphic.

Corollary 5.1 ( (Goeters & Olberding, 2001), Corollary 2.5) If R has UDI, then RN has

UDI for every maximal ideal N.

Proof Let M be the nonprincipal maximal ideal of R and I′1, . . . , I
′
n, J′1, . . . , J′n be the

ideals of RM such that I′1 ⊕ · · · ⊕ I′n � J′1 ⊕ · · · ⊕ J′n. Set I j = I′j ∩ R and Ji = J′i ∩ R.

Since I j, Ji are ideals of R and R is Noetherian, the modules G =
⊕

j I j and H =
⊕

i Ji

are finitely generated and torsion-free R-modules that satisfy GM � HM. Thus, G and H

are isomorphic and since R has UDI, I j � J j for all j after reindexing. Hence, I′j � J′j for
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all j which proves RM has UDI. If N , M is a maximal ideal of R, NRN is the principal

maximal ideal of Noetherian ring RN . So, RN is a PID and have UDI. �

Lemma 5.4 ( (Goeters&Olberding, 2001), Lemma 2.6) If there exists a maximal ideal M

of R such that every other maximal ideal of R is principal, then every ideal I not contained

in M is principal. In addition, every invertible ideal is principal.

Proof Let I be an ideal not contained in M. Since R is h-local, I is contained in only

finitely many maximal ideals of R, call these ideals as N1, . . .Nk. Then IRNi = aei
i RNi for

some ei ≥ 1 since RNi is a DVR and Ni = aiR. Then IR[M] = aR[M] where a = ae1
1 · · · a

en
n .

By local verification we see that I = aR because (a < M). Now, let J be an invertible

ideal. Consider the exact sequence

0 −→ M
f
↪→ R� R/M −→ 0.

Since J is projective as an R-module, Hom(J,�) is an exact functor. Thus, we get an exact

sequence as

0 −→ Hom(J,M)
g−→ Hom(J,R) −→ Hom(J,R/M) −→ 0,

where f is an embedding from M to R and g = f ◦ h for every h ∈ Hom(J,M). If g is

an epimorphism, then f is an epimorphism which yields a contradiction. So, g cannot be

an epimorphism and there exists a q ∈ Hom(J,R) such that q(J) * M. Thus, q(J) ⊆ R is

principal. �

Lemma 5.5 ( (Ay & Klingler, 2011), Lemma 1.3) Let R be any ring and P be a prime

ideal of R and Q(RP) the total quotient ring of RP. Then QP ⊆ Q(RP).

Proof Let S 1 be the set of all the regular elements of R and S 2 = R \ P. Then QP =

S −1
2 (S −1

1 R) = (S 1S 2)−1R = (S 1)−1(S −1
2 R) = (S 1)−1(RP), where S 1 denotes the image of S 1

in RP. Since regular elements of R remain regular in RP, we get that S 1 is contained in the

set of regular elements of RP, and hence (S 1)−1(RP) ⊆ Q(RP). �

Lemma 5.6 ( (Ay & Klingler, 2011), Lemma 3.1) Let R′ be an overring of R, and let N

be a maximal ideal of R′ which contracts to a principal maximal ideal of R. Then N is

principal.
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Proof Let P = N ∩ R be the principal maximal ideal such that P = xR for some x ∈ P.

Let Q(RP) be the ring of fractions of RP. Since QP ⊆ Q(RP) and R ⊂ R′ ⊂ Q, we get R′P
is an overring of RP. Since P is principal and R is Noetherian, RP is a DVR, so Q(RP) is a

field. Therefore, R′P = RP or R′P = Q(RP). Since N is prime ideal of R′ and disjoint from

R \ P, NP is proper ideal of R′P. Also, P = N ∩ R implies PRP = NRP ∩ RP ⊆ NRP and

since PRP , 0, NRP , O which yields R′P cannot be a field, and hence R′P = RP.

Now, we claim that N = xR′. If M , P is a maximal ideal of R, then since

x < M, it follows that x is a unit in R′M, and so xR′M = R′M. On the other other hand,

x ∈ P ⊆ N implies that R′M = xR′M ⊆ NM ⊆ R′M, and so NM = xR′M. Additionally,

PP = (xR)P = xRP = xR′P ⊆ NP ( R′P, where PP is the maximal ideal of RP = R′P
which yields PP = NP. Therefore, NP = xR′P. Thus, N and xR′ are locally equal at every

maximal ideal of R, and hence they are equal. �

Lemma 5.7 ( (Goeters & Olberding, 2001), Lemma 2.7) Suppose R has a unique non-

principal maximal ideal M. If S is an overring of R and N is a maximal ideal of S lying

over M such that NM is principal, then N is principal.

Theorem 5.1 ( (Goeters & Olberding, 2001), Theorem 2.8) R has UDI if and only if R is

PID, or, there exists a lone nonprincipal maximal ideal M of R and RM has UDI.

Proof One direction is clear from the previous lemmas. For the converse, assume that

R has a unique nonprincipal maximal ideal M and RM has UDI. First; we need to show

that a finitely generated overring S of R has at most one nonprincipal maximal ideal. So,

let S be a finitely generated overring of R and N be a maximal ideal of S . Since S is

finitely generated over R, N ∩ R is a maximal ideal of R. If N ∩ R , M, then N ∩ R is

principal, and so N is principal. Thus, we assume that N ∩ R = M that is N lies over M.

Since RM has UDI and S M is a finitely generated overring of RM, S M has UDI.

Therefore, S M has at most one nonprincipal maximal ideal. If NM is a principal maximal

ideal of S M, then N is a principal ideal of S , so S has at most one nonprincipal maximal

ideal.

Now, suppose I1 ⊕ · · · In � J1 ⊕ · · · Jn where I1, . . . In, J1, . . . , Jn are ideals of R.

After localizing at M and after reindexing, we have (I j)M � (J j)M for each j = 1, . . . , n.

To simplfy notation, fix j ≤ n and set I = I j, J = J j and S = E(J).

Now, we observe that Hom(I, J) is a fractional ideal of S that is locally invertible,

since IN � JN for each maximal ideal N of R. Since S has at most one nonprincipal

maximal ideal, Hom(I, J) must be a principal fractional ideal of S . If Hom(I, J) = g · S ,

then IN � JN for all maximal ideals N and g is an isomorphism. �
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5.2. Local domains with UDI

Remark 5.3 The following facts are used in the proofs.

• If R is a Noetherian ring, then every finitely generated R-module is Noetherian as

an R-module.

• Every finitely generated R-submodule of Q is a fractional ideal and if R is Noethe-

rian these are all the fractional ideals of R.

• M is indecomposable R-module if and only if EndR(M) has no nontrivial idempo-

tents.

Lemma 5.8 ( (Ay & Klingler, 2011), Lemma 1.2) Let R be a ring. If A and B are torsion-

free S -modules, where S is an overring of R, then HomS (A, B) = HomR(A, B).

Proof Take f ∈ HomS (A, B), then f is an S -module homomorphism, and clearly an R-

module homomorphism. Now, take any ϕ ∈ HomR(A, B), we need to show ϕ(sa) = sϕ(a)

for every a ∈ A, s ∈ S . Note that since R ⊆ S ⊆ Q, for any s ∈ S , s = x/y for

some x, y in R and y is not a zero divisor. If a ∈ A, then sa ∈ A since A is an S -

module. Then ysϕ(a) = xϕ(a) = ϕ(xa) = ϕ(ysa) = yϕ(sa), so ysϕ(a) − yϕ(sa) = 0

and y(sϕ(a) − ϕ(sa)) = 0. Since y is not a zero divisor, sϕ(a) − ϕ(sa) = 0 which yields

sϕ(a) = ϕ(sa). Hence, every R-homomorphism is also an S -module homomorphism.

�

Lemma 5.9 ( (Ay & Klingler, 2011), Proposition 3.4) Let R be a ring and S be an over-

ring of R and suppose that S is finitely generated as an R-module. If R has the UDI

property, then so does S .

Proof Assume that I1⊕I2⊕· · · In � J1⊕J2⊕· · · Jm for indecomposable ideals I1, I2, · · · In,

J1, J2, · · · Jm of S . Since S is a finitely generated overring of R, every ideal of S becomes

a finitely generated fractional ideal of R. Since I j is indecomposable as an S -module,

EndS (I j) contains no nontrivial idempotents. And since EndS (I j) = EndR(I j) does not

contain any nontrivial idempotents either which shows I j is indecomposable as an R-

module. Similarly, each Jk remains indecomposable as an R-module. So, since R has

UDI, m = n and after reindexing I j � J j as R-modules for all indices j. But these

isomorphisms are also S -homomorphisms, and hence each I j � J j as S -modules. �
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Lemma 5.10 ( (Goeters & Olberding, 2001), Lemma 3.1) If R is local with UDI, then R

has at most 3 maximal ideals.

Proof Let R be a local domain with unique maximal ideal M. Suppose R has at least

4 distinct maximal ideals. Then there exists a finitely generated overring S of R with

least 4 distinct maximal ideals: Since R is the integral closure of R, for some x ∈ R, x is

integral over R, so R[x] finitely generated R-module. We choose S to be R[x], then we

see that S is finitely generated overring of R. Since contraction of the maximal ideals of

S are maximal in R, S has at least 4 distinct maximal ideals. Call these maximal ideals as

M1,M2,M3 and M4. Then the map

σ : (R + M1M2) ⊕ (R + M3M4)→ S

defined by σ((a, b)) = a + b is split by the map

ϕ : S → (R + M1M2) ⊕ (R + M3M4)

defined by ϕ(t) = (tx, ty) where x ∈ M1M2 and y ∈ M3M4 such that x + y = 1. Such x and

y exist because M1M2 + M3M4 = S . By splitting homomorphism property

Kerσ ⊕ Imϕ = (R + M1M2) ⊕ (R + M3M4)

and ϕ is one-to-one and σ is onto, so Imϕ � S . Thus, we have

Kerσ ⊕ S = (R + M1M2) ⊕ (R + M3M4).

Now, since R has UDI and S is finitely generated as an R-module, S has UDI. So, S �

R + M1M2 or S � R + M3M4, without loss of generality say S � R + M1M2. Since both

objects are rings, we must have S = R+M1M2 but this is impossible because M ⊆ M1M2

implies (R + M1M2)/M1M2 � R/M. This yields M1M2 is prime in S but S/M1M2 is not

an integral domain. Hence, R cannot have more than 3 maximal ideals. �

Theorem 5.2 ( (Goeters & Olberding, 2001), Theorem 3.2) Assume that R is local with
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maximal ideal M. The following are equivalent for R:

(1) R has UDI.

(2) There exists a fractional overring R′ of R with | max(R′) |=| max(R) | such that one

of the following occurs:

(i) R′ is local.

(ii) R′ has exactly 2 distinct maximal ideals M′1,M
′
2 such that M′1 is principal with

M * (M′1)2, and R′/M′1 � R/M.

(iii) R′ = R has exactly 3 distinct maximal ideals M′1,M
′
2,M

′
3; all are principal

and satisfy M * (M′j)
2 and R′/M′j � R/M.

(3) Every fractional overring R′ of R such that | max(R′) |=| max(R) | satisfies (i), (ii)

or (iii) above.

Corollary 5.2 ( (Goeters & Olberding, 2001), Corollary 3.3) Let R be a local ring. If R

has UDI, then one of the three possibilities occurs:

(i) R is quasilocal.

(ii) R has exactly 2 distinct maximal ideals P1, P2 such that P1 is principal, M * P2
1,

and R/P1 � R/M.

(iii) R has exactly 3 distinct maximal ideals P1, P2, P3, that are is principal and satisfy

R/Pi � R/M and M * P2
i for each i.

The converse holds if R is a finite R-module.

Corollary 5.3 ( (Goeters & Olberding, 2001), Corollary 3.4) The following are equiva-

lent:

(1) R has UDI.

(2) R is a PID, or, R has a unique nonprincipal maximal ideal M such that RM satisfies

the conditions of Theorem 5.2.

42



CHAPTER 6

KRULL-SCHMIDT PROPERTIES OVER RINGS OF

FINITE CHARACTER

In this chapter we assume that the ring R is of finite character, that is, every non-

zero element is contained in only finitely many maximal ideals of R; equivalently, every

non-zero ideal is contained in only finitely many maximal ideals of R. We will state some

useful results without giving their proofs.

In Chapter 3 we gave a characterization of h-local domains which the versions of

the Krull-Schmidt property hold for direct sums of ideals, direct sums of indecomposable

submodules of finitely generated free modules and direct sums of rank are torsion-free

modules. While proving this characterization, we mostly used Lemma (4.7). The results

stated below, which are given by Ay and Klingler in an upcoming paper, are some other

versions of this lemma, but the most important detail is that the ring is not necessarily an

h-local domain.

Lemma 6.1 Let R be an integral domain of finite character and F a finitely generated free

module of rank n. If G is a rank n R-submodule of F and H is a torsionless R-module that

is locally isomorphic to G, then there exists a finitely generated projective R-submodule

P of QH such that H ⊆ P and F/G � P/H.

Proposition 6.1 Let R be an integral domain of finite character. Suppose that G and H

are locally isomorphic torsionless R-modules. If G is a finitely generated R-module, and

G has a direct summand isomorphic to a nonzero ideal of R, then G � H.

Proposition 6.2 Let R be an integral domain of finite character. Suppose that G and H

are locally isomorphic torsionless R-modules. If G is finitely generated, then there exists

n > 0 such that G(n) � H(n).

We think that new characterizations of domains with finite character which Krull-

Schmidt property holds for some classes of R-modules may be preved by using Lemma

(6.1), Proposition (6.1) and Proposition (6.2). Since we drop the second condition from

h-locality, it will be worthwile to extend this study.
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CHAPTER 7

CONCLUSION

Let R be a commutative integral domain and C a class of R-modules. The Krull-

Schmidt property holds for C if, whenever

G1 ⊕G2 ⊕ · · ·Gn � H1 ⊕ H2 ⊕ · · ·Hm

for Gi,H j ∈ C, then n = m and, after indexing, Gi � Hi for all i ≤ n. If, instead of Gi � Hi,

it is required only that there exists k > 0 such that G(k)
i � H(k)

i for all i, then we say that

the weak Krull-Schmidt property holds for C. (G(k) represents direct sum of k copies of a

module G.) We say a domain R has unique decompositions into ideals, UDI, if the class

of ideals of R has the Krull-Schmidt property.

We explicitly give a characterization, shown by P. Goeters and B. Olberding, for

an h-local domain when the Krull-Schmidt properties hold:

( (Goeters & Olberding, 2002), Theorem 3.4) Let R be an h-local domain. The follow-

ing statements hold for R.

(i) R has weak UDI if and only if Pic(R) is torsion and R has a complemented maximal

ideal M such that RM has UDI.

(ii) R has UDI if and only if Pic(R) = 0 and R has a complemented maximal ideal M

such that RM has UDI.

(iii) R has weak TFKS if and only if Pic(R) is torsion and R has a complemented maxi-

mal ideal M such that RM has weak TFKS.

(vi) R has TFKS if and only if locally isomorphic torsionless modules are isomorphic

and R has a complemented maximal ideal M such that RM has TFKS.

(v) R has the Krull-Schmidt property for rank one modules if and only if Pic(R) = 0

and R has a complemented maximal ideal M such that RM has the Krull-Schmidt

property for rank one modules.

Moreover, we gave a characterization of Noetherian UDI domains, shown by P.

Goeters and B. Olberding: A Noetherian integral domain R has UDI if and only if R is
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a PID or R has exactly nonprincipal maximal ideal M such that RM has UDI (Goeters

& Olberding, 2001). We also observed that there might be a possibility to extend these

Krull-Schmidt properties for domains of finite character.
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