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Keywords: Conventional calibration algorithms of trip distribution models assume that the analyst has a whole base
Travel survey year trip matrix. To attain a whole trip matrix, the sample size for travel surveys needed to be as large as
Sample size possible. However, this could be very expensive especially in large cities. Some studies in the past showed
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a small sized sample would be enough to estimate functional parameters of observed trip length fre-
quency distribution. But the performance of a gravity model with small sized samples has never been

addressed. This empirical study has shown that sample sizes as small as 1000 (even smaller for quick
response studies) could be as dependable as large sample surveys using a line search calibration

algorithm.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

It is possible to classify trip distribution models into two broad
categories as aggregate and disaggregate. The disaggregate models
try to explain individuals’ behaviors in selecting the origins and
destinations of their spatial movements while the aggregate mod-
els analyze total number of flows between analysis zones. Since
disaggregate models work at individual level, proponents of such
models claim that the data requirement for calibration of these
types of models may be significantly lower (Ruiter and Ben-Akiva,
1978). The calibrated disaggregate model is later used to estimate
the total inter-zonal movements by aggregation. Disaggregate
models are behavioral, and individual choices are explained by
individual’s characteristics and choice set attributes. While these
models may require fewer travel samples to calibrate, their even-
tual aggregation may require very extensive data at zonal level
such as proportions of the representative individuals in each zones.
Every distinct movement between origin-destination pairs estab-
lishes the choice set of the disaggregate models. As the number
of travel zones increases, the number of the alternatives in a choice
set increases which may lead to decreased estimation sensitivity.
Due to stated bottlenecks, the aggregate models are still frequently
preferred in professional practices and computer packages.

Contrary to the disaggregate models, the aggregate models re-
quire total numbers of trip interchanges between zone pairs and
inevitably need larger sample sizes for model calibration. For a sat-
isfactory aggregate modeling effort, the textbooks’ recommended
sample size for the travel survey is around 10% for small to med-
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ium sized cities, and it is around 4% when the city population ex-
ceeds 1,000,000 (Dickey et al., 1983; Cambridge Systematics,
1996; Ortuzar and Willumsen, 2001). However, increasing budget-
ary constraints for urban areas caused decision makers and trans-
portation professionals to reconsider the expenditures on these
expensive surveys since especially the marginal accuracy of the ur-
ban travel modeling with respect to increased sample size has not
been very well documented. Since then, transportation profession-
als around the world have been trying to develop alternative tech-
niques (such as synthesizing or updating trip matrices using link
counts) with considerably lower costs.

The Travel Survey Manual (TSM) by the US Department of
Transportation (Cambridge Systematics, 1996) states that it is pos-
sible to calibrate aggregate trip distribution models with a sample
size as small as 1000 for each trip purpose based on a study con-
ducted by Pearson et al. (1974). Using 20 different travel surveys
conducted by the Texas Highway Department, Pearson et al. dem-
onstrated that the trip length distribution (TLD) of urban travel sta-
tistically showed best fit to the Gamma distribution among other
similarly shaped distributions: (i) Poisson; (ii) Chi-Square; (iii)
Pearson Type III; and (iv) Wiebull. They also concluded that
approximately 1000 trip observations for each trip purpose would
be enough to estimate the best fitting parameters of the underlying
Gamma distribution.

However, we cannot easily use the probability distribution
function directly in our trip distribution models. Instead, during
calibration, we generally search for the parameter(s) of an aggre-
gate trip distribution model (i.e. a singly or doubly constrained
gravity model) that replicates the observed trip length frequency
distribution (OTLD). Thus, enough sample size for estimating a sta-
tistical distribution’s parameters does not necessarily mean that
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this sample size would automatically be sufficient for the gravity
model performance to replicate the OTLD. However trivial it is, this
issue stands as a valid research question and further investigation
on this subject might be interesting. It is the intention of this paper
to search for a minimum sample size empirically for an aggregate
trip distribution model using the Household Travel Survey Data of
Istanbul Metropolitan Area conducted in 2006.

The issues concerning calibration algorithms are discussed in
the next section. Data used in this study and description of study
area are explained in Section 3. Section 4 is devoted to the method-
ology and the empirical findings, and the last section concludes the
study.

2. Trip distribution and calibration

Even though there have been many alternative formulations for
the aggregate trip distribution models (namely, Growth Factor,
Fratar, Intervening Opportunities, Gravity or Regression Models),
the gravity model is the most preferred one over the years despite
all of its drawbacks. A typical doubly constrained gravity model,
which is also used in this research, is expressed as follows:

Ty = A Bj + O; + Dy « f(cy) W
where
1
A= BTG X
1
B =S Aofc) B

0; = total trip production by zone i,

D; = total trip attraction to the zone j,

A; = balancing factor assuring ;T = O;,

B; = balancing factor assuring }_;T; = Dj,

flcy) = friction function between zone i and zone j.

There are well known functional forms of the friction in the lit-
erature. These are exponential function, e-*<; power function, Gy b,
and Tanner (or Gamma) function, a « e~*“) x c;” (Rose, 1975). If TLD
shows a Gamma distribution (i.e. TLD increases for the first inter-
vals, and decreases for later), then usage of a Tanner function is rec-
ommended in the model. If TLD has a negative exponential
distribution (i.e. TLD is highest in the first interval(s) and continu-
ously decreases later), then usage of an exponential or a power
function is preferred. Certain issues may have important effects
on the performance of the gravity model: (i) choice of spatial sepa-
ration measure, (ii) choice of travel mode, (iii) choice of matrix type
(i.e. production-attraction (PA) or origin-destination (OD) matrix,
(iv) choice of functional form of the spatial separation, (v) choice
of time of day, and (vi) choice of model type (i.e. person or vehicle).
Even if these issues were decided conveniently, there are still
important discussions about calibration algorithms, convergence
criteria and acceptable sample size for trip distribution modeling.

To calibrate a gravity model, a modeler needs a good represen-
tation of the base year trip matrix implying a very large sample
size. This need is not a theoretical requirement but rather a math-
ematical property of the calibration algorithms which were mostly
been developed during 1970s. One of the early algorithms is the
maximum likelihood estimator minimizing the difference between
the observed and estimated trips (Wilson, 1970). However, the
computational burden for this analytic procedure is extensive. Sev-
eral numerical computational procedures were also suggested by
different scholars (Hyman, 1969; Evans, 1971; Williams, 1976;
Openshaw, 1976; Easa, 1993). Among them, Hyman'’s calibration
algorithm was found to be reasonably efficient (Williams, 1976).

Hyman'’s algorithm uses a Furness’ Bi-Proportional Balancing Pro-
cedure and the mean travel time as convergence criteria to obtain
the calibration (see Williams, 1976 for details). These algorithms
were the pioneering studies on the subject, established profes-
sional conventions and they are still used in calibration procedures
of many computer packages, either in the form of continuous
deterrence function or BPR discrete friction factor (Easa, 1993).

A common assumption of cited algorithms was that a complete
base year matrix is present (Dickey et al., 1983; Ortuzar and Wil-
lumsen, 2001) otherwise a partially observed matrix may produce
unstable balancing factors leading to inconsistent rows and col-
umns totals (Ortuzar and Willumsen, 2001, pp. 187-188). One
alternative suggestion to work under incomplete information is
that “the analyst need not worry too much if he wants to do a cal-
ibration when there is information missing about some inter-zonal
transfers. He may omit completely from his calibration all cells for
which information is missing, and the rest assured that had the
missing data conformed to his (calibrated) model, the trips he syn-
thesizes for the partial matrix would be the same as those he
would have obtained by synthesizing the whole matrix”. However,
this premise comes with certain assumptions (Kirby, 1979, p. 423)
Satisfying these assumptions, on the other hand, may also be prob-
lematic (see Kirby, 1979 for details).

Regardless of the sample size, a planner always has to work
with partial or incomplete trip matrices as an inevitable practical
situation. Then the task of a planner should be estimating or syn-
thesizing the base year trip matrix with the smallest sample size
possible. To avoid the above mentioned algorithms’ bottlenecks,
a line search algorithm with a “Furness’ Bi-Proportional Balancing
Procedure” is used in this research. This algorithm, rather than
searching the parameter iteratively that may end up a local opti-
mum, gives the opportunity to see the model performance for each
specific parameter in a given interval according to various converg-
ing criteria.

A computer code using SAS-IML was developed to conduct the
analysis. Exponential and power functional forms are tried in the
analysis for two different convergence criteria: “mean travel time”
and “root mean squared error (RMSE) between the observed and
estimated TLDs”. The algorithm used in the study can be summa-
rized as follows:

) Estimate normalized OTLD and observed mean travel time,

) Determine the search interval and divide it by 0.01,

) Take the next parameter value in the line,

) Distribute zonal total productions and attractions using the

parameter,

(5) Normalize estimated TLD and estimate RMSE with normal-
ized OTLD of step 1,

(6) Print estimated RMSE and mean travel time,

(7) Terminate the iteration if all values of interval are
exhausted, go to step 3 otherwise

(8) Choose the best fitting parameters in the interval.

(1
(2
3
(4

The literature on convergence criteria (Pearson et al., 1974;
Rose, 1975) and our empirical research, as will be explained
shortly, demonstrated that the parameters replicating the mean
travel time and the OTLD could be different due to smoothness be-
tween observed and estimated TLD. As the mean and variance of
travel time increase, the probability that those two parameters dif-
fer would increase, which was one of the findings of present re-
search as well.

3. Description of study area and data

Geographically, Istanbul is located on both sides of the Bospho-
rus, the natural strait connecting the Marmara and Black Seas, and
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separating the two continents: Asia and Europe. The city was the
capital of Ottoman Empire for a very long time. Even though the
capital moved to Ankara after the Turkish Independence War and
the abolition of the Ottoman Monarchy in 1923, the city has re-
mained as the focus of all leading economic activities as well as
the primary destination of internal migration after the 1950s.
The population of the city in 2005 was around 10.5 million while
it was around 1 million in 1950. Istanbul has a divided mono-cen-
tric central business as shown in the circled area in Fig. 1. In this
figure, the darker areas show the forests and environmental assets
around the city, light colored areas are the valuable agricultural
lands, and the shaded areas are occupied by urban uses. The main
destination of morning commuting is toward the CBD, and in the
evenings towards the fringes. This situation is the main cause of
traffic congestion like in many other metropolitan areas of the
world. There are two suspension bridges connecting the conti-
nents, and these bridges are very congested towards the west in
the morning and the east in the evening.

According to the 2006 Household Travel Survey, there are
approximately 21 million daily trips in the metropolitan area and
6% of them cross the Bosphorus between Asia and Europe. Approx-
imately 300,000 of the continent crossing trips are carried by fer-
ries while the remaining 1,000,000 trips use bridges. This
continent crossing traffic is the major source of congestion not only
for continent crossing but also for intra-continent traffic. The
expressways serving the bridges are also the major arterials of
the highway network of the city that carry intra-continent traffic.
Thus, any congestion taking place over these expressways also
hampers intra-continent circulations.

The leading transportation mode is walking (49%) and it can be
said that Istanbul is a pedestrian oriented city. Private car usage is
only around 14%, and public transit is around 36%. The backbone of
the public transit system is rubber-tired public transit. Only 2.3% is
rail transit due to a very short rail network, and 1% ferries due to a
poorly integrated transit system. At the moment, there are 113 km
of rail transit network in Istanbul. As well, there are some 68 km of
rail transit lines under construction with different combinations of
rail technologies, and some 116 km in the phase of sub-contract-
ing. When all are completed the rail transit network is expected
to total 297 km by the year 2012.

Data used in this study comes from the 2006 Household Travel
Survey conducted by the Transportation Department of the Metro-
politan Municipality of Istanbul. The sample size in this study in-
cluded 90,000 households and sampling rate was approximately

3%. Surveyed households were determined as two-stage random
cluster sampling. At the first stage, approximately 4000 primary
sampling units (PSUs) were drawn from the latest household list
of the municipality. At the second stage, 90 households around
these PSUs were recorded as the secondary sampling units (SSUs)
and at most 30 households out of 90 SSU were surveyed randomly
in 451 travel analysis zones (TAZs) throughout the metro area.
Fig. 2 presents the TAZ of Istanbul. The surveying technique was
face to face. Sample replacement was strictly forbidden to avoid
non-sampling errors. Every household member older than six
was surveyed for their previous week-day travels as well as the
household and personal information. Since sample replacement
was not allowed, on average three visits were paid to each house-
hold to catch every eligible member at home or to convince the
household to participate in the survey. At the end of the field work,
a remarkable overall response rate of 80% was achieved.

With this response rate, 264,000 people in 72,000 households
were surveyed. A total of 356,000 trips were recorded between
451 OD pairs making 203,401 distinct movements. 127,000 of
these trips were home-based-work (HBW); 94,000 trips were
home-based-school (HBS); 115,000 were home-based-other; and
20,000 were non-home-based (NHB) trips.

4. Methodology and empirical findings

This empirical study was structured in three steps. In the first
step, using the whole data set (i.e. 356,000 trips) a best fitting mod-
el was estimated for each trip purpose (HBW, HBS, HBO, and NHB).
In the second step, 15 random subsets from the original data were
drawn with the sample sizes ranging from 200 to 3000 increasing
by 200, and the model parameters of each subsample were esti-
mated and compared with the original models. At the third step,
for the suggested sample size (i.e. 1000), 30 separate random sam-
ples were drawn from the original data, and the model parameters,
parameters’ means, standard deviations, and standard errors of the
means were estimated to confirm the sufficiency of the suggested
sample size.

Instead of a vehicle model, a person trip model was preferred
since it was not possible to know future mode split. For the spatial
friction, it was not possible to use survey stated times since it was
not possible to catch trips between each OD pair and for each travel
mode in the survey. For this reason, a system produced car travel
time matrix was used in the models. To obtain the travel time ma-
trix, an initial set of models with free flow speed travel time were

Fig. 1. Land use in the Istanbul Metropolitan Area.
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Fig. 2. Traffic analysis zones and highway network of Istanbul Metropolitan Area.
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Fig. 3. Observed trip length frequency distributions by trip purposes.

estimated, and with observed percentages of mode choices, these
initial travel matrices were assigned to the highway network.
These steps were repeated three times until a reasonable conver-
gence for the congested travel times were obtained, and this resul-
tant travel time matrix is used in the study.

For original calibration, the previously described line search
algorithm was employed. The search intervals were —4 to 0 for
the inverse power and —1 to 0 for the exponential models. The
OTLD classified into 31 and 5 minute bins. OTLDs for each trip pur-
pose are presented in Fig. 3. Each trip purpose is modeled with
both exponential and inverse power functional forms according
to two convergence criteria: RMSE (for TLDs) and mean travel
times. The best fitting parameters were presented in Table 1. In
this way, for each trip purpose, four different models were
estimated.

To determine the best fitting set of the models to the ground
counts at the screen lines was the next task of the first step.
Fig. 4 shows the screen lines of Istanbul Metro area. Using each
model, a base year’s trip matrices were synthesized and summed
at the screen lines, and these sums were compared with the
ground counts. The results are presented in Table 2. It was con-
cluded that the best fitting set of models was an inverse power
model using the TLD RMSE as the convergence criterion (Table 2).

During this study, even though it was not the initial intention,
an interesting behavior of the gravity model with exponential or
power function was witnessed. Previously, it had been stated that
when the OTLD shows a negative exponential distribution, usage of
exponential or power function is recommended expecting that
these functions would produce a TLD showing a negative exponen-
tial distribution. This statement was confirmed for the most of the
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Table 1

Estimated models’ parameters.
Observed mean travel time Observed SD Power model parameters Exponential model parameters
Mean travel time TLD RMSE Mean travel time TLD RMSE
HBW 21.13 23.57 —2.05 -1.77 —-0.105 -0.19
HBS 8.24 143 -2.98 -2.90 -0.28 —-0.64
HBO 11.89 18.43 -2.39 -2.41 -0.18 -0.48
NHB 17.46 21.52 -1.74 -1.63 —-0.09 -0.29
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Fig. 4. Screen lines of Istanbul Metropolitan Area.

Table 2
Screen line ground counts and model produced crossings at the screen lines in persons.

BOP BP4 BP3 BP2 DP1 DP2 Total RMSE
Ground counts 1,244,419 2,030,433 808,797 255,451 394,284 1,156,505
Power mean travel time 1,122,783 1,773,959 830,851 309,716 361,865 1,014,254 629,099
Power RMSE 1,324,858 2,029,227 943,140 352,191 392,584 1,135,339 335,594
Expo mean travel time 668,351 1,703,056 652,828 177,534 363,593 1,137,980 1,186,547
Expo RMSE 674,800 787,870 351,962 88,874 189,596 564,326 3,232,461
Table 3 drawn from the survey data, and the gravity model parameter

Bf . . f . l 3 . . 3
ifurcation points for trip purposes and models was re-calibrated with each subsample. The estimated parameters

Trip purposes Exponential function Power function and their respective percentage errors for each trip purpose are gi-

HBW _027 _1.05 ven in Tables 4-7.

HBS -0.25 -1.05 Looking at the tables, it is possible to say that independent of

HBO —0.24 —1.00 sample size, each subsample was able to capture the respective

i —019 085 parametric magnitude. Table 8 shows the average parameter esti-
mate of 15 subsamples for HWB trips was —1.76 with a standard

deviation (SD) of 0.040 and its original parameter estimate was
—1.77 and —2.88 with a SD of 0.067 for HBS trips and its original
parameter was —2.90 and —2.42 with a SD of 0.038 for HBO trips
and the original estimate was 2.41 and —1.62 with a SD of 0.032
for NHB trips while the original parameter was 1.63. In each case,
average parameter estimates were very close to the originally esti-
mated parameters with very small variances. Percent errors of
TLDs reported in the last columns of the tables confirmed this fact
as well. The mean percent error of 15 subsamples for HBW was
0.77 with a SD of 1.40; 1.28 with a SD 0.91 for HBS; 1.08 with a
SD of 0.80 for HBO; and 0.97 with a SD of 0.97. Tables 4-7 reveal
that only at four cases out of 60 had a percent error of more than
2, and the rest were around or below 2%. Error fluctuations with re-
spect to sample sizes and trip purposes are presented in Fig. 6.

parameter values. However, it was discovered that there is a bifur-
cation point for these functions, after which the model produced
TLDs demonstrate a Gamma shaped distribution. Table 3 presents
the values of these bifurcation points for trip purposes. For exam-
ple, from negative infinity to —1.05, the power model produced
TLD shows a negative exponential type of distribution. After that
point towards 0, the TLD becomes a Gamma shaped distribution.
Behavior of the HBW Power Model for certain parameters are pre-
sented as an example in Fig. 5.

In the second step of this study, in order to determine a mini-
mum sample size that could produce approximately the same
parameters estimated with full data, 15 subsamples (starting from
200 up to 3000 with an equal interval of 200) were randomly
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Fig. 5. HBW Power Model TLD for certain parameters.

Table 4 Table 6
HBW model parameters and errors for different sample sizes. HBO model parameters and errors for different sample sizes.
Sample sizes Sample mean travel time RMSE parameter % Error Sample sizes Sample mean travel time RMSE parameter % Error
200 21.71 -1.75 0.62 200 12.18 —2.47 1.96
400 23.11 -1.63 4.30 400 10.86 -2.41 0.00
600 19.65 -1.73 1.24 600 11.78 -2.47 1.96
800 2143 -1.81 1.25 800 10.71 —2.47 1.96
1000 20.97 -1.75 0.62 1000 11.93 -2.43 0.66
1200 20.70 -1.77 0.00 1200 11.26 -2.37 1.34
1400 20.41 -1.78 0.31 1400 12.02 -241 0.00
1600 21.57 -1.77 0.00 1600 10.79 -2.49 2.60
1800 20.89 -1.79 0.62 1800 12.48 -2.37 1.34
2000 21.00 -1.79 0.62 2000 12.95 -2.39 0.67
2200 21.00 -1.76 0.31 2200 11.84 —2.40 0.33
2400 21.06 -1.79 0.62 2400 11.78 -2.41 0.00
2600 20.95 -1.76 0.31 2600 11.89 -2.38 1.00
2800 21.73 -1.76 0.31 2800 11.39 —2.46 1.64
3000 21.00 -1.78 0.31 3000 11.98 -2.43 0.66
127,598 21.13 -1.77 3.12 114,921 11.89 -2.41 1.19
Table 5 Table 7
HBS model parameters and errors for different sample sizes. NHB model parameters and errors for different sample sizes.
Sample sizes Sample mean travel time RMSE parameter % Error Sample sizes Sample mean travel time RMSE parameter % Error
200 9.85 -2.82 1.82 200 16.75 -1.64 0.40
400 6.67 -3.01 2.32 400 15.61 -1.65 0.80
600 9.28 —2.74 3.77 600 17.75 -1.61 0.79
800 7.69 -2.92 0.44 800 17.79 -1.58 1.97
1000 7.89 -2.99 1.91 1000 16.94 -1.65 0.80
1200 7.75 —2.89 0.22 1200 17.05 -1.63 0.00
1400 8.64 —-2.83 1.59 1400 17.64 -1.58 1.97
1600 8.74 -2.83 1.59 1600 18.66 -1.53 3.92
1800 8.49 -2.92 0.44 1800 17.90 -1.61 0.79
2000 8.47 —2.87 0.67 2000 17.86 -1.61 0.79
2200 7.90 —-2.86 0.90 2200 17.31 -1.62 0.40
2400 8.27 -2.85 113 2400 17.94 -1.63 0.00
2600 8.41 -2.92 044 2600 17.58 —1.66 1.19
2800 8.23 -2.84 1.36 2800 17.46 -1.62 0.40
3000 7.86 -2.93 0.65 3000 17.33 -1.62 0.40
94,052 8.24 -2.90 1.02 20,109 17.46 -1.63 2.62
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Table 8 Table 9
Test and descriptive statistics for subsample group with sample size less than 3000. Test and descriptive statistics for subsample group with sample size less than 2000.
N=15 B Mean B SD t Statistics Mean error Error SD N=10 B Mean B SD t Statistics Mean error Error SD
HBW 1.77 1.76 0.040 —0.966 0.77 131 HBW 1.77 1.75 0.047 —1.346 0.96 1.40
HBS 2.90 2.88 0.067 -1.154 1.28 0.91 HBS 2.90 2.88 0.078 -0.813 1.48 1.03
HBO 241 242 0.038 1.009 1.08 0.80 HBO 241 242 0.042 0.748 1.25 0.84
NHB 1.63 1.62 0.032 -1.694 0.97 0.97 NHB 1.63 1.61 0.035 —1.807 1.22 1.07
To gain a more analytical insight for our findings, we classified Table 10
our subsamples into three arbitrary groups estimated mean and Test and descriptive statistics for subsample group with sample size less than 1000.
standard deviation of parameter estimates, and conducted a stu- N=5 B MeanB  SD t Statistics ~ Mean error  Error SD
den_t t.test. The first group included all §ubsample§ and their test HBW 177 173 0.059 1529 1.60 138
statistics were presented in Table 8. In this table, using all the subs- HBS 290 2.89 0.105 —0.213 2.05 1.14
amples’ means and standard deviations, t statistics of estimated HBO 241 245 0.025 3.535 1.31 0.57
NHB 1.63 1.62 0.027 —0.822 0.79 0.56

parameters were estimated. All t tests were lower than the critical
table value of 2145 (at 0.025 error range with a d.f. 14) indicating
that the average parameter estimate of these 15 subsamples is not
significantly different than the originally estimated model param-
eters for all each purposes.

The same analysis was conducted for the groups with sample
sizes less than 2000 and 1000 to find the minimum threshold of
the sample size. As it can be seen in Table 9, t statistics were lower
than the critical table value of 2.262 (at 0.025 error range with a
d.f. 9) again indicating that none of the mean parameter values
of 10 subsamples is significantly different from the originally esti-
mated parameter values for all trip purposes.

For the subsamples including a sample size of less than 1000
(see Table 10), the analysis has revealed that sample sizes around
1000 would approximately produce a parameter that is not signif-
icantly different from the originally estimated parameter for the
HBW, HBS, and NHB trips. Their t statistics are lower than the crit-
ical table value of 2.776 (at 0.025 error range with a d.f. 4). How-
ever, to be able to confident about the parameter estimate of
HBO, the sample size should be increased a little bit. But this in-
crease should not be too much since it is still not significantly dif-
ferent from the 0.010 critical table value (which is 3.747) at this

threshold, and we have shown that we could be confident with a
sample size of less than 2000 for HBO trips.

The experiment so far has shown that a sample size of about
1000 would be enough to estimate the parameters that are not sig-
nificantly different from the original parameter. In the third step of
the study, 30 separate subsamples with a sample size of 1000 were
drawn from the whole data set, and parameters were estimated for
each subsample and each trip purpose. The results are included in
Table 11. The average parametric value for HBW is 1.78 with a
standard error of 0.008. The confidence level for the mean is 98%
meaning that with a sample size of 1000, 98 times out of every
100, the parameter estimate would be between 1772 and 1788.
Considering our original parameter value is 1.77 for HBW, this re-
sult confirmed that the sample size of 1000 would produce a para-
metric value that is not significantly different than larger size
samples. Actually this result is also confirmed for all the trip pur-
poses. The mean is 2.89 with a standard error of 0.015 and 97%
confidence level for HBS; 2.41 with a standard error of 0.007 and
99% confidence level for HBO and 1.62 with a standard error of
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Fig. 6. Model's percent error change for different sample sizes and trip purposes.
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Table 11
Descriptive statistics of 30 subsamples of sample size 1000.

HBW HBS HBO NHB
Original 1.77 2.90 241 1.63
Mean 1.78 2.89 241 1.62
Standard deviation 0.043 0.082 0.040 0.035
Standard error of mean 0.008 0.015 0.007 0.006
Confidence of mean 0.02 0.03 0.01 0.01
N 30 30 30 30

0.006 and 99% confidence level for NHB. In all cases, the original
parametric values remained in the interval bounded with the stan-
dard errors of the means.

5. Conclusion

Our analysis has confirmed the premise that a sample size
around 1000 for each trip purpose would produce approximately
the same parameter estimate as the gravity model with larger sam-
ple sizes, beyond estimating the TLD statistical distribution param-
eter as stated by Travel Survey Manuel (Cambridge Systematics,
1996). The analysis also reveals that as the sample size increases,
the parameter and error variances decrease but this decrease
makes only a marginal contribution to the model accuracy imply-
ing an unnecessary, wasted investment in acquiring a larger
sample.

The findings of this study can be generalized as long as three ba-
sic assumptions are satisfied. (i) The urban area has one distinct
TLD: if the TLD within an urban area differs from region to region,
then each region’s parameters should be estimated separately as
long as these regions can be identified and separated into sub-
matrices. In our case, only the Bosphorus crossing showed a
slightly different TLD. However, since the share of the Bosphorus
crossings were relatively low (i.e. 6%), the TLD was not distorted
overall. (ii) The TLD shows a negative exponential distribution:
the OTLD in the present study shows a negative exponential distri-
bution. If the spatial separation function is a Tanner function, then
two different parameters need to be determined simultaneously. In
this case, the line search algorithm can no longer be used. One
alternative could be a grid search algorithm, and this new algo-
rithm may need larger sample sizes. (iii) The sample selection is
perfectly random, and no non-response and sample replacement
bias is present: it is a well known fact that travel sensitivities of
different socio-economic groups can be very different. If the sam-
ple is not chosen randomly or a high rate of non-response is pres-
ent, then the bias may distort TLD significantly leading to an
incorrect parameter estimate. An in-depth discussion of the sam-
pling issues goes well beyond the present paper, and readers are
referred to Kish (1965) and Stopher and Jones (2003).

The findings of this paper may have some professionally impor-
tant implications. First of all, it reinstates the position of traditional
trip distribution models (with respect to alternative OD matrix
estimation techniques) for estimating a base year OD matrix with

considerably smaller budgets in contrast to orthodox belief that
travel surveys may require large budgets. Secondly, with very
small random samples, the prescribed quick response methodol-
ogy can be used in conjunction with the OD matrix estimation
techniques from link counts for the validity of the results.

However, it should be also stated that this result does not nec-
essarily mean that small sample sizes would be sufficient for all
stages of travel demand modeling. Depending on the local and
planning requirements, larger sample sizes may be needed due
to lack of spatially disaggregate travel and socio-economic statis-
tics. For example, the sample size for Istanbul was intentionally
kept large to establish a zonal database and a transportation infor-
mation system beyond modeling purposes.

It would worth trying the same study for smaller sample sizes
than 1000, but that would require an extensive amount of empir-
ical work, and be a task for future research. Also, it will certainly be
a very complementary piece of work to conduct a similar study for
a TLD showing a Gamma distribution. That leads to a future re-
search direction as well.

Acknowledgments

The author wishes to thank to Department of Transportation of
I[stanbul Greater Municipality for making the survey available; to
Prof. Dr. Gokmen Ergun of Bosphorus Uni. and two anonymous ref-
erees for their helpful comments and suggestions.

References

Cambridge Systematics, 1996. Travel Survey Manual. US Department of
Transportation and US Environmental Protection Agency.

Dickey, J. et al., 1983. Metropolitan Transportation Planning. Taylor & Francis,
Bristol, PA.

Easa, S.M., 1993. Urban trip distribution in practice. Journal of Transportation
Engineering 119 (6), 793-815.

Evans, AW., 1971. The calibration of trip distribution models with exponential or
similar cost functions. Transportation Research 5, 15-38.

Hyman, G.M., 1969. The calibration of trip distribution models. Environment and
Planning 1, 105-112.

Kirby, H.R.,, 1979. Partial matrix techniques. Traffic Engineering and Control 20,
422-428.

Kish, L., 1965. Survey Sampling. John Wiley & Sons, New York, NY.

Openshaw, S., 1976. An empirical study of some spatial interaction models.
Environment and Planning A 8, 23-41.

Ortuzar, J.D., Willumsen, L.G., 2001. Modeling Transport, third ed. John Wiley &
Sons, New York, NY.

Pearson, D.F., Stover, V.G., Benson, ].D., 1974. A Procedure for Estimation of Trip
Length Frequency Distributions. Texas Transport Institute, Report No.: TTI-2-
10-74-17-1.

Rose, J.G., 1975. The calibration of trip distribution models - a new philosophy.
Urban Studies 12 (8/9), 335-338.

Ruiter, E.R., Ben-Akiva, M.E., 1978. Disaggregate travel demand models for the San
Francisco area: system structure, component models and application
procedures. Transportation Research Record 673, 121-128.

Stopher, P., Jones, P. (Eds.), 2003. Transport Survey Quality and Innovation.
Pergamon, New York.

Williams, I, 1976. A comparison of some calibration techniques for doubly
constrained models with an exponential cost function. Transportation
Research 10, 91-104.

Wilson, A.G., 1970. Entropy in Urban and Regional Modeling. Pion, London.



	Sample size needed for calibrating trip distribution and behavior of the gravity model
	Introduction
	Trip distribution and calibration
	Description of study area and data
	Methodology and empirical findings
	Conclusion
	Acknowledgments
	References


