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In this paper structural design of parallel manipulators with general constraint one regard-
ing angular and linear-angular conditions are considered. Four known overconstrained
mechanisms with angular and two new designs with linear-angular conditions are pre-
sented. 14 structural groups and end effector chains in subspace k ¼ 5 are examined.
New formulations and definitions of constructing overconstrained manipulators are
described. Using examined structural groups, all architectures of subspace k ¼ 5 parallel
manipulators with revolute joints and single-loop are introduced via structural bonding.

� 2009 Published by Elsevier Ltd.
1. Introduction

Structural synthesis of overconstrained manipulators can be categorized as an important step of the general structural
design study of fundamental mechanism and machine science. Structural design of overconstrained multi-mobility manip-
ulators is a geometrical methodology that is used to generate all related architectures of the dedicated area. In order to widen
the applications of overconstrained manipulators in industry, manipulator motions in subspaces should clearly be
investigated.

Throughout the literature, several 3D overconstrained mechanisms with angular conditions have been discovered. Sarrus
[1] described a special case of planar-hybrid linkage, which has six axes intersecting by pairs of three at distinct points, and
Bennett [2] introduced a spherical hybrid linkage as well as a plano-spherical hybrid linkage with the criteria of intersecting
six axes by pairs at two different points.

Seven different types of mobile 6R linkages with linear-angular conditions were discovered by Bricard [3]. By combining
three Bennett loops with linear and angular conditions, two 6R overconstrained linkages are constructed by Goldberg [4]. As
an inverse of Bricard’s orthogonal 6R linkage, the ‘‘wirbelkette” overconstrained mechanism with equal link lengths and zero
joint offsets was introduced by Franke [5]. Altmann [6] presented a 6R linkage, which is a special case of the Bricard line
symmetric linkage. The general model of the six link mechanism with six skew orthogonal axes and equal link and offset
lengths is described by Harrisberger and Soni [7]. Waldron [8–10] proposed a family of overconstrained hybrid linkages,
where some of them are created by combining Bennett overconstrained linkages. Wohlhart [11,12] combined double Gold-
berg linkages to construct an overconstrained hybrid Bennett-based 6R linkages. Mavroidis and Roth [13] developed a 6R
overconstrained mechanism with two Bennett joints that have no common axis. Dietmeier [14] introduced a new family
of overconstrained 6R linkages.

A special trihedral Bricard linkage was derived by Schatz [15] and new asymmetrical 6R linkage has been obtained with
single degree of mobility. The new RRRS symmetrical overconstrained mechanism with linear and angular conditions, and
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another new overconstrained mechanism with linear and angular conditions in subspace k ¼ 5 are described by Alizade et al.
[16]. Only a few researchers, Baker [17–22], Mavroidis et al. [13,23–26], Karger [27], Shih and Yan [28], Lerbet [29], Jin and
Yang [30], deal with analytical methods. In the studies of Baker [17–23], both the analysis of the overconstrained Altmann’s
linkage by using geometric and algebraic way. Moreover, Dai et al. [31] propose a new approach to mobility analysis based
on the motion decompositions and constraints in screw systems. The traditional mobility rules for a linkage is included and
strengthened with a new equation by Guest and Fowler [32] and applied to the overconstrained mechanisms. Furthermore,
Huang and Sun [33] investigated the finite displacements of all known Bennett-based 6R overconstrained linkages by the
help of numerical simulations and found that every Bennett-based 6R linkage, except for the isomerization of Wohlhart’s
hybrid linkage, relates with the properties of the Bennett mechanism.

A parallel manipulator can be defined as a platform connected to the ground by at least two legs and motors that are dis-
tributed to these legs. One of the investigations about parallel manipulators with two legs is done by Li et al. [34]. The study
is related to the 2 DoF parallel manipulator with spherical output and its work space analysis. The only investigation known
to us about overconstrained parallel manipulators with two legs is done by Gogu [35]. An approach for structural synthesis of
overconstrained parallel wrists with 2 DoF has been proposed in the study. The main property of the designed overcon-
strained mechanism is its spherical output with a singularity free and fully isotropic structure.

In this paper the new formulated recurrent unit vector equations are used for describing the orientation of links in mech-
anisms. The analytic approach helped us to create linear and angular conditions for two kinds of RRRS mechanisms with one-
general constraint. Further the theory of structural groups with one-general constraint is introduced. Later the mobility of
the end effector chains of the rigid body in subspace k ¼ 5 is described. Finally the theory in the design of possible architec-
tures of parallel manipulators with angular or linear-angular conditions are given. All this theory is presented by serial
examples of new overconstrained parallel manipulators in subspace k ¼ 5. These investigations permit to create parallel
manipulators with general constraint one that are composed of single-loop and the link that describes the motion of the
end effector in 3D.
2. Recurrent unit vector equations

Spatial serial or parallel manipulators consist of kinematic chains. In order to describe position and orientation of these
links mathematically, different methods can be applied. The most commonly used orientation coordinates can be given such
as Euler angles, Euler parameters, Rodriguez parameters and direction cosines. Being the part of these methods, recurrent
unit vector equations are described by including link ðdj; hjÞ and kinematic pair ðaj;ajÞ parameters by Denavit and Hartenberg
[36]. Note that recurrent unit vectors are the unit vectors, where their directions are intersected by one another in series. The
unit vector equations are derived to find the direction of the third vector with respect to any reference frame by giving the
directions of two vectors in that reference frame.

As shown in Fig. 1 three independent unit vectors ei; ej; ek describe the joint parameters as dj ¼ aik and hj ¼ aik (Fig. 1a),
and also the link parameters as aj ¼ aik, and aj ¼ aik (Fig. 1b). In any case, two unit vectors ei ¼ ½li;mi;ni�T and
ek ¼ ½lk;mk; nk�T will describe the directions of links for joint parameters and the directions of joints for link parameters.
The directions of joint and link are a unit vector, ej ¼ ½lj;mj;nj�T as shown in Fig. 1a and b respectively. Note that, for revolute
pair, parameters aik is variable while aik is constant, but for prismatic pair, while parameters aik is constant aik is variable
(Fig. 1a).

Now let the directions of two unit vectors ei and ej are known. Knowing the two directions, our problem is to compute the
direction of the third unit vector ek. Throughout the solution of this problem, first we will describe the vector equations of
the three unit vectors as,
ei � ek ¼ ejSinaik; ei � ek ¼ lilk þmimk þ nink ¼ Cosaik; ej � ek ¼ ljlk þmjmk þ njnk ¼ 0 ð1Þ
If the first equation of Eq. (1) is wanted to be introduced in algebraic form, it can be represented as
ðljiþmjjþ njkÞSinaik ¼ ðmink � nimkÞiþ ðnilk � linkÞjþ ðlimk �milkÞk ð2Þ
Fig. 1. Joint and link parameters of a spatial link.
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Expanding Eq. (2) yields,
ljSinaik ¼ 0lk � nimk þmink

mjSinaik ¼ nilk þ 0mk � link

njSinaik ¼ �milk þ limk þ 0nk

9>=
>;

or ejSinaik ¼ Aek; where A ¼
0 �ni mi

ni 0 �li

�mi li 0

2
64

3
75 ð3Þ
If both sides of the Eq. (3) are multiplied by eT
j , the result will be
eT
j ejSinaik ¼ eT

j Aek or Sinaik ¼ eij � ek ð4Þ
where,
eT
j ej ¼ 1; eij ¼ eT

j A; eij ¼ ½lij mij nij�T ; lij ¼ mjni � njmi; mij ¼ njli � ljni; nij ¼ ljmi �mjli
Using Eq. (4), the system of Eq. (1) can be written in the following form,
eij � ek ¼ Sinaik; ei � ek ¼ Cosaik; ej � ek ¼ 0 ð5Þ
Solution of the system of Eq. (5) results in,
gT B ¼ ek ð6Þ
where, g ¼ ½Sinaik Cosaik 0�T ;B ¼ ½eij ei ej�
Finally Eq. (6) gives us the recurrent unit vector equations as;
lk ¼ lijSinaik þ liCosaik; mk ¼ mijSinaik þmiCosaik; nk ¼ nijSinaik þ niCosaik ð7Þ
Recurrent unit vector equations (Eq. (7)) can be used to describe an orientation of a rigid body with respect to reference
frame.

3. New overconstrained RRRS linkage with linear and angular constraints

During the history of mechanisms many overconstrained linkages have been discovered and synthesized by using angular
conditions. However, in the same period, the number of mechanisms designed by using both angular and linear conditions is
relatively scarce and especially they are designed by the combinations of Bennett conditions with other angular constraints.

In the path of a new design of the current study, linear and angular constraints have been created by the analytical ap-
proach for the new RRRS linkage shown in Fig. 2. The hinges 1, 2 and 3 with arbitrary directions e2; e4 and e6 are described by
joint parameters fa13;a13g; fa35;a35g, and fa57;a57g, so that the remaining link parameters will be fa24;a24g; fa46;a46g, and
a68. Note that, the spherical joint S and the first revolute joint are connected to the fixed frame, parameters a13, a35 and a57are
variable and remaining parameters are constant. As shown in Fig. 2 the vector loop-closure equation for the mentioned over-
constrained mechanism can be written as follows:
X7

i¼2

eiai�1;iþ1 ¼ qc; where qc ¼ ½xc; yc; zc�T ; ei ¼ ½li;mi; ni�T ð8Þ
The vector Eq. (8) can also be written in the vector matrix form as,
a½ l m n � ¼ qT ð9Þ
where a ¼ ½ai�1;iþ1�T ; l ¼ ½li�;m ¼ ½mi�;n ¼ ½ni�; q ¼ ½xcyczc�T i ¼ 2; . . . ;7.
The vectors feig7

3 can be calculated by using recurrent unit vector equations (Eq. (7)) with given vectors e1 ¼ ½1;0;0�T and
e2 ¼ ½0;0;1�T as below,
Fig. 2. Parameters for RRRS linkage.
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e3 ¼
C13

S13

0

0
B@

1
CA; e4 ¼

S13S24

�C13S24

C24

0
B@

1
CA; e5 ¼

C13C35 � C24S13S35

S13C35 þ C24C13S35

S24S35

0
B@

1
CA; e6 ¼

C46S13S24 þ ðC24S13C35 þ C13S35ÞS46

S35S13S46 � ðC24S46C35 þ C46S24ÞC13

C24C46 � C35S24S46

0
B@

1
CA;

e7 ¼
C13ðC35C57 � C46S35S57Þ � S13ð�S24S46S57 þ C24ðC57S35 þ C35C46S57ÞÞ
C57ðC35S13 þ C13C24S35Þ þ S57ð�C46S13S35 þ C13ðC35C46C24 � S24S46ÞÞ

C57S24S35 þ S57ðC35S24C46 þ C24S46Þ

0
B@

1
CA ð10Þ
where, Cik and Sik represent the cosine and sine of the angle aik respectively.
Substitution of the elements of the vector values from Eq. (10) into Eq. (9) yields,
pC13 þ qS13 ¼ xc ð11Þ
pS13 � qC13 ¼ yc ð12Þ
r þ a13 ¼ zc ð13Þ
where,
p ¼ a24 þ C35ða46 þ a68C57Þ þ S35ða57S46 � a68C46S57Þ;
q ¼ S24ða35 þ a57C46 þ a68S46S57Þ � C24ðS35ða46 þ a68C57Þ þ C35ða68C46S57 � a57S46ÞÞ;
r ¼ C24ða35 þ a57C46 þ a68S46S57Þ þ S24ðS35ða46 þ a68C57Þ þ C35ða68C46S57 � a57S46ÞÞ
After this point the following operations are carried on the Eqs. [11–13] for the ease of use. First Eqs. (11) and (12) are mul-
tiplied by S13 and C13 respectively and then subtracted from each other. Second the same equations are multiplied by C13 and
S13 respectively and then added to each other. Finally, after rearranging the Eqs. (11)–(13) the results yield,
xcS13 � ycC13 ¼ q ð14Þ
xcC13 þ ycS13 ¼ p ð15Þ
zc � a13 ¼ r ð16Þ
Expanding Eqs. (15) and (16) with respect to C35 and S35, we can get the following equations
p1C35 þ q1S35 ¼ r1 ð17Þ
� q1C35 þ p1S35 ¼ r2 ð18Þ
where p1 ¼ a46 þ a68C57; q1 ¼ a57S46 � a68C16S57; r1 ¼ xcC13 þ ycS13 � a24;
r2 ¼ zc � a13 � C24ða35 þ a57C46 þ a68S46S57Þ
After solving Eqs. (17) and (18), we will find,
C35 ¼ D1D
�1 ¼

r1 q1

r2 p1

����
����

p1 q1

�q1 p1

����
����
�1

; S35 ¼ D2D
�1 ¼

p1 r1

�q1 r2

����
����

p1 q1

�q1 p1

����
����
�1

ð19Þ
By using S35 and C35 values found in Eq. (19), a unique value for a35 ¼ A tan 2ðS35;C35Þ is obtained.
We may consider Sik and Cik as two independent variables and add following trigonometric identities as supplementary

equations of constraint,
S2
35 þ C2

35 ¼ 1; S2
57 þ C2

57 ¼ 1; ðxcS13 � ycC13Þ2 þ ðycS13 þ xcC13Þ2 ¼ x2
c þ y2

c ð20Þ
After summing the squares of Eq. (14)–(16) by taking into account Eq. (20) and substituting Eq. (19) into Eq. (14), we obtain
the following equations with respect to the unknowns C57 and S57 as,
C57 ¼ ½r3 � 2a35S24ðxcS13 � ycC13Þ � 2a24ðycS13 þ xcC13Þ�p�1
2 ð21Þ

S57 ¼ ½r4 þ S24ðxcS13 � ycC13Þ�q�1
2 ð22Þ
where r3 ¼ x2
c þ y2

c þ ðzc � a13Þ2 þ a2
24 þ a2

35 � a2
46 � a2

57 � a2
68 � 2a35ðzc � a13ÞC24; r4 ¼ C24ðzc � a13Þ � a57C46 � a35; p2 ¼ 2a46a68;

and q2 ¼ a68S46.
Eqs. (21) and (22) both represent a unique solution for a57 ¼ A tan 2ðS57;C57Þ. Due to the fact that S57 and C57 are found, by

using the trigonometric identities (Eq. (20)) we can reach the following overconstraint equation,
4a2
46½r4 þ aS24�2 þ S46½r3 � 2a35S24a� 2a24b�2 � 4a2

46a2
68S2

46 ¼ 0 ð23Þ
where a ¼ xcS13 � ycC13; b ¼ xcC13 þ ycS13

Arranging overconstraint Eq. (23), the following polynomial equation can be constructed as,
Aa2 þ Baþ Cbþ Dabþ E ¼ 0 ð24Þ
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where, A ¼ 4a2
46S2

24 þ 4a2
35S2

24S2
46 � 4a2

24S2
46;B ¼ 8a2

46r4S24 þ 4a35r3S24S2
46;C ¼ 4a24r3S2

46;D ¼ 8a24a35S24S2
46; E ¼ 4a2

46r2
4 þ S2

46r2
3�

4a2
46a2

68S2
46 þ ðx2

c þ y2
c Þ4a2

24S2
46.

In the case of mobile mechanism, the functions a ¼ f ða13Þ; b ¼ gða13Þ are not constant, thus coefficients of the polynomial
Eq. (24) must be equal to zero (A = B = C = D = E = 0). As a result, we will get the following linear and angular conditions for
the overconstraint mechanism RRRS as,
Table 1
Structu

Structu
bondin

Angular
a2
46S2

24 þ a2
35S2

24S2
46 � a2

24S2
46 ¼ 0; 2a2

46r4S24 þ a35r3S24S2
46 ¼ 0; a24r3S2

46 ¼ 0; a24a35S24S2
46 ¼ 0;

4a2
46r2

4 þ S2
46r2

3 � 4a2
46a2

68S2
46 þ ðx2

c þ y2
c Þ4a2

24S2
46 ¼ 0 ð25Þ
Now for simplification, let the joint offset parameters a35 be zero. Thus solving Eq. (25) both gives us the linear and angular
constraints and the coordinates of the spherical joint for the overconstrained RRRS mechanism with mobility M = 1.
Fig. 3. New 3D overconstraint RRRS linkage with linear and angular constraint.

ral Bonding of Mechanisms.

ral
g

Structural properties
of joint axes

Geometry of joint axes Structural
bonding

Structural properties of joint axes Geometry of joint axes

Linear-angular

Parallel Skew perpendicular to each other

Intersecting in one point Arbitrary

Coincident
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a46 ¼ a24S46S�1
24 ; zc ¼ a57C46C�1

24 þ a13; x2
c þ y2

c ¼ R2 ¼ a2
46a2

68a�2
24 ; a68 ¼ ða2

24 þ a2
57Tan2a24Þ0:5 ð26Þ
The new overconstrained RRRS linkage with linear and angular constraints as described by Eq. (26) is introduced in Fig. 3.
Overconstrained mechanisms are usually created by using either angular conditions, such as intersecting joint axes in one

point, joints with parallel axes, and joints with coincident axis or linear and angular conditions, such as joints with skew
perpendicular axes and arbitrary axes. The structural bondings of these are illustrated in Table 1.

The common cases of presented analytical approach results are described by four known types of overconstrained RRRS
mechanisms with angular and linear-angular conditions as shown in Table 2.

Two new overconstraint RRRS mechanisms are illustrated in Table 2 by using linear and angular conditions with respect
to Eq. (26). As represented in Table 2. the fifth one introduces the symmetrical overconstrained RRRS mechanism and the
sixth one introduces the asymmetrical RRRS mechanism with linear and angular constraint.
strained RRRS mechanisms with angular and linear-angular conditions.a

animations of two new overconstrained mechanisms can be seen at www.iyte.edu.tr/~erkingezgin/mechanisms.

http://www.iyte.edu.tr/~erkingezgin/mechanisms
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4. Creation of structural groups with general constraint

In classical definition structural groups are the kinematic chains that have zero mobility. As it is the first main step in
structural design of robot manipulators, creation of these groups has vital importance. However, to create such structural
groups related with the current subject, the term general constraint should be clearly defined.

In fact, the general constraint of the manipulators refers to the difference between the maximum possible achievable mo-
tion of their single link that is assumed to be moving freely in general space (k = 6) and the maximum possible achievable
free motion of the same link in the space or subspace ðk ¼ 5;4;3;2Þ, in which the manipulator is actually moving. Note that
this definition only valid for the manipulators, where the general constraint is constant.

throughout the manipulator. Due to the fact that, the maximum possible achievable motion of any single link is equal to
its space or subspace number ðkÞ, the general constraint (d) can be formulated as,
d ¼ 6� k ð27Þ
where in Eq. (27), 6 represents the general space number, as it is always constant for every manipulator, k is the number of
independent scalar equations of closure loop.

Introducing the definition, the general structural mobility formula for the manipulators with general constraint can now
be introduced in the following form,
M ¼ ðd� 6ÞLþ
Xj

i¼1

fi ð28Þ
where M is the mobility of the manipulator, j is the number of joints, fi is the degrees of freedom of the ith joint, and L is the
number of independent loops of the manipulator. As the mobility of any structural group is zero, by using Eq. (28), the objec-
tive function of the structural groups with general constraint can be given as,
Xj

i¼1

fi ¼ ð6� dÞL ð29Þ
If only one DoF pairs to be used in the predesign Eq. (29) will be reduced to
j ¼ ð6� dÞL ð30Þ
Using the objective function given in Eq. (30), for the joints with one degree of freedom any designer can easily create struc-
tural groups for the manipulators with general constraint in the pre-manipulator designs by following the procedure below.

� Determine the moving space or subspace ðkÞ and the number of independent loops (L) of the desired manipulator that will
be designed for the specific task.

� Calculate the general constraint (d) of the manipulator by using Eq. (27).
� Calculate the number of joints ðjÞ by using Eq. (30).
� By using appropriate and desired angular and linear-angular conditions of the selected space or subspace, combine the

joints together with links to create the structural groups.

Note that, as the current study focuses on parallel manipulators with general constraint one, only the angular and linear-
angular conditions for k ¼ 5 will be given in further sections.
5. Creation of structural groups with general constraint one

This section describes the creation of the structural groups with general constraint one as well as the descriptions of
angular and linear-angular conditions for the subspace k ¼ 5.

As the parameters, general constraint and the number of loops, are pre-determined (d = 1, L = 1), the objective function
Eq. (30) for the current task will result in the number of joints equals to five ðj ¼

P
fi ¼ 5Þ. Calculating the number of joints,

the appropriate angular (Table 3) and linear-angular conditions (Table 4) should be considered in order to combine the joints
with links.

Table 3 shows the four possible angular conditions for k ¼ 5. The geometry of the condition (Table 3.1) can be created by
the rotation of two spheres that have the constant distance between each other. The conditions (Table 3.2) and (Table 3.3)
describe the motion of the sphere on the plane or plane on the sphere. And the last condition (Table 3.4) consists of two sets
of parallel axes that give us two planes with constant twist angle.

Table 4 demonstrates the eight possible linear-angular conditions for k ¼ 5. The conditions (Table 4.1) and (Table 4.2)
describe the motion of a plane on an elliptic torus and vice versa. The conditions (Table 4.3) through (Table 4.6) can be
generated by the motion of a sphere on an elliptic torus and vice versa, where the geometry of the elliptic torus differen-
tiates due to the joint and link parameters. Note that, in conditions (Table 4.5) and (Table 4.6) the elliptic torus shifts in to



Table 3
Possible angular conditions for the subspace k ¼ 5.

Table 4
Possible linear-angular conditions for the subspace k ¼ 5.
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torus because of the perpendicular axes. The condition (Table 4.7) is the basis for the motion of an elliptical torus on
an elliptical torus and the last condition (Table 4.8) is similar to the former with one intersection for two of the joint
axes.

Finally, using the conditions that are described above, the calculated joints can be combined in 14 possible different ways
that results in the structural groups with general constraint one (Table 5).

6. Mobility of the end effector chains in space or subspaces

Describing the creation of simple structural groups of robot manipulators with general constraint, an important proce-
dure should be followed to give the desired mobilities to the robot manipulators. In the light of this, creation of the end effec-
tor chains gains great importance.

By adding the joints and the branch loops to the end effector that is freely moving in space or any subspace, different end
effector chains can be formed (Fig. 4). With respect to their pair and branch loop properties, each of these end effector chains
has its own mobility. The formed end effector chains will then be combined appropriately with the zero mobility structural
groups to create robot manipulators with various mobilities.

In general, a single end effector moving free in space or any subspace k has mobility equals to the same space or sub-
space number. However, when connected with pairs and branch loops, mobility of the resultant end effector chain will
become,
Me ¼ ke þ
X

fs þ
Xn

L¼1

ðfL � kLÞ ð31Þ



Table 5
Simple structural groups with general constraint one respect to angular and linear-angular conditions.
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Fig. 4. End effector chain with branch loop.
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where, ke is the space or subspace of the end effector,
P

fs is the total degrees of freedom of the single pairs; that is, the pairs
outside the branch loops, n is the number of branch loops, fL is the total degrees of freedom of the pairs of the Lth branch loop
and kL is the space or subspace of the Lth branch loop. As it is clear that,

P
fs ¼

Pk
i¼1fi �

Pn
L¼1fL the Eq. (31) will be reduced to,
Table 6
End eff

#

1

2

3

Me ¼ ke þ
Xk

i¼1

fi �
Xn

L¼1

kL ð32Þ
where, k is the number of pairs in the end effector chain.
Finally, after the proper connection between the structural group and the end effector chain, the total mobility of the

resultant robot manipulator will become,
M ¼ Me � kþ q� jp ð33Þ
where, k is the space or subspace of the base structural group, jp is the number of passive joints and q is the number of redun-
dant links.

7. Mobility of the end effector chains in subspace k ¼ 5

In order to proceed in the design of parallel manipulators with general constraint one, current study considers only the
simple end effector chains without branch loops in subspace k ¼ 5. As there are no branch loops and the subspace of the end
effector is ke ¼ 5, Eq. (32) will be reduced to,
Me ¼ 5þ
Xk

i¼1

fi ð34Þ
By using Eq. (34), five different end effector chains with various mobilities are created and tabulated to fulfill the design task
of the parallel manipulators with general constraint one (Table 6). However, the end effector chains in Table 6 are figured in
their simple structural form. Before the connection process with the structural groups is started, they should be reconfigured
correctly with respect to the suitable angular or linear-angular conditions of the structural group on which the connection
occurs.
ector chains without branch loops in subspace k ¼ 5.

Structure Rfi Me # Structure Rfi Me

0 5 4 3 8

1 6 5 4 9

2 7 6 5 10
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Although the figure in Table 6.1 is just an end effector, it is added to the table for the clarification of the step by step devel-
opment of the end effector chains. Also note that, the maximum mobility of the end effector chains in Table 6 is limited to the
2k ¼ 10. The reason of the case is the prevention of the redundant motions. Due to the fact that the maximum number of
achievable independent motion in subspace k ¼ 5 is limited to five, 2R3P or 3R2P, after the end effector chains are connected
to the structural groups of subspace k ¼ 5, more than designated mobility 2k will result in the occurrence of the redundant
motions with respect to the Eq. (33).

8. Structural design of the parallel manipulators with general constraint one

The last and the most important part of this study is the procedure of the structural design in the creation of parallel
manipulators with general constraint one by using the results of the previous sections. As the subspace is decided as
k ¼ 5, this procedure can be explained easily by following step by step instructions as,
Table 7
Structural bondings of general constraint one parallel manipulators with angular conditions.
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� Decide the desired mobility (M) of the manipulator that will be constructed
� Chose one of the conditions of subspace k ¼ 5 that the manipulator will possess from the Table 3 or Table 4.
� Select the structural groups from Table 5 with respect to the condition chosen
� Calculate the mobility of the end effector chain ðMeÞ by using Eq. (33).
� Select the end effector chain from Table 6 that corresponds the mobility ðMeÞ calculated.
� Combine the selected structural group and the end effector chain in accordance with the chosen condition.
� Select the ground link of the designed parallel manipulator with general constraint one.

Note that Tables 7 and 8 show 163 structural bondings of all possible one loop parallel manipulators with general con-
straint one that have 92 manipulators with angular and 71 manipulators with linear-angular conditions.

Example: Let us design four overconstrained parallel manipulators with angular and linear-angular conditions.

(A) The first overconstrained manipulators mobility is decided as M = 2 with the condition shown in Table 3.4. The struc-
tural group with respect to the condition is selected from Table 5.4. The mobility of the end effector chain is calculated
as Me ¼ M þ k ¼ 2þ 5 ¼ 7and the end effector chain is selected as Table 6.3. The overconstrained manipulator will
result in the structural bondings of, , as shown in Table 7a for mobility M = 2. Finally the ground link
is selected for construction and the resultant manipulator is shown in Table 9.1.

(B) The second overconstrained manipulators mobility is decided as M = 4 with the condition shown in Table 3.3. The
structural group with respect to the condition is selected from Table 5.3. The mobility of the end effector chain is cal-
culated as Me ¼ M þ k ¼ 4þ 5 ¼ 9 and the end effector chain is selected as Table 6.5. The overconstrained manipulator
will result in the structural bondings as shown in Table 7b for mobility M = 4. Finally the ground link is selected

for construction and the resultant manipulator is shown in Table 9.2.
Table 8
Structural bondings of general constraint one parallel manipulators with linear-angular conditions
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(C) The third overconstrained manipulators mobility is decided as M = 3 with the condition shown in Table 4.7. The struc-
tural group with respect to the condition is selected from Table 5.13. The mobility of the end effector chain is calcu-
lated as Me ¼ M þ k ¼ 3þ 5 ¼ 8 and the end effector chain is selected as Table 6.4. The overconstrained manipulator
will result in the structural bondings as shown in Table 8e for mobility M = 3. Finally the ground link is selected
( ) for construction and the resultant manipulator is shown in Table 9.3.

(D) The fourth overconstrained manipulators mobility is decided as M = 5 with the condition shown in Table 4.3. The
structural group with respect to the condition is selected from Table 5.12. The mobility of the end effector chain is
calculated as Me ¼ M þ k ¼ 5þ 5 ¼ 10and the end effector chain is selected as Table 6.6. The overconstrained manip-
ulator will result in the structural bondings as shown in Table 8d for mobility M = 5. Finally the ground link is selected

for construction and the resultant manipulator is shown in Table 9.4.

9. Conclusions

Throughout the study, structural design of parallel manipulators with general constraint one with respect to the
angular and the linear-angular conditions are described as well as the general procedure of describing the orientation
of rigid body with respect to the reference frame by writing recurrent unit vector equations. Also new formulations
and definitions of constructing overconstrained manipulators are introduced dealing with 14 structural groups with gen-
eral constraint one and end effector chains in subspace k ¼ 5 with various mobilities. As a result of the current study,
new general constraint one RRRS mechanisms that have linear-angular conditions are introduced. Moreover the pro-
posed method was checked on four known overconstrained mechanisms with angular conditions. By using 14 overcon-
strained structural groups, all architectures of parallel manipulators with general constraint one that are composed of
only revolute joints and single-loop are introduced by using structural bonding and four of them are illustrated along
with examples.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.mechmachtheory.2009.06.004.
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