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Efficient calculation of electrostatic interactions in colloidal systems is becoming more important with
the advent of such probing techniques as atomic force microscopy. Such practice requires solving the
nonlinear Poisson-Boltzmann equation (PBE). Unfortunately, explicit analytical solutions are available
only for the weakly charged surfaces. Analysis of arbitrarily charged surfaces is possible only through
cumbersome numerical computations. A compact analytical solution of the one-dimensional PBE is pre-

{er Wordsl; i sented for two plates interacting in symmetrical electrolytes. The plates can have arbitrary surface poten-
Czll?Z?;a_l oltzmann tials at infinite separation as long they have the same sign. Such a condition covers a majority of the

colloidal systems encountered. The solution leads to a simple relationship which permits determination
of surface potentials, surface charge densities, and electrostatic pressures as a function of plate separation
H for different charging scenarios. An analytical expression is also presented for the potential profile
between the plates for a given separation. Comparison of these potential profiles with those obtained
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by numerical analysis shows the validity of the proposed solution.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The long-range electrostatic interactions between colloidal sur-
faces play an important role in numerous physicochemical systems
in mineral, ceramics, environmental, and biological sciences. Accu-
rate analysis of this interaction requires solving the one-dimen-
sional nonlinear Poisson-Boltzmann equation (PBE) to determine
the potential profile (x) within the electrical double layer (EDL)
as a function of distance x from the interacting surfaces. Though ex-
plicit relations have been developed for the potential profile ys(x) in
the vicinity of a single plate [1,2], obtaining analytical solutions for
two interacting plates is only possible for the linearized versions of
the PBE for weakly charged systems [3-6], and analysis of highly
charged asymmetrical surfaces is only possible by the use of un-
wieldy complex elliptic integrals or numerical methods [7-10].

In this paper, an analytical solution of the one-dimensional non-
linear PBE is developed for two plates of arbitrary surface poten-
tials interacting in symmetrical electrolyte solutions with the
condition that potentials at infinite separation have the same sign
(i.e, Yoo = Yauo = 0 OF Y1, < Yoo < 0). A majority of physico-
chemical systems falls within these boundary conditions. The solu-
tion yields a compact analytical expression for the potential profile
Y(x) within EDL and also allows calculation of surface potentials,
surface charge densities, and electrostatic pressures as a function
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of plate separation for different charging scenarios such as con-
stant-potential and constant-charge surfaces without any need
for tedious computational techniques.

2. Background

The one-dimensional Poisson equation relates the solution
charge density p(x) to the potential y(x) within the double layer
between two surfaces in electrolyte solutions:

d*y(x)
v (1)

The solution charge density follows a Boltzmann-type distribu-
tion of the concentration of the ions in the EDL:

ZFu(x)
T

p(X) = ZziFCo,,-e’ R

p(x) = —¢&&

(2)

Combining Egs. (1) and (2), assuming a z:z symmetrical electro-
lyte, and using dirznensionless quantities Y =zF/(x)/RT and X = kx
2 .
such that x? = 2% give the PBE:
0
2

% =sinh Y (3)

This nonlinear differential equation in one dimension is an
expression of how the potential Y varies with distance X between
two plates separated by a gap H (Fig. 1). Though it is the basis of
any quantitative study on the interactions between two such sur-
faces, Eq. (3) does not lend itself to a simple analytical solution.
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Nomenclature

Co electrolyte concentration in the solution

€ relative permittivity of water (78.5)

& permittivity of vacuum (8.854 x 10712 C?/J m)

¢ integration constant; varies with plate separation H;
¢ =S —2cosh(Y;) = S3 — cosh(Y>)

F Faraday constant (9.64845 x 10* C/mol)

F,

s osmotic component of the force acting on the plates (N/

m?)

Fo electrostatic (Maxwell) component of the force acting
on the plates (N/m?)

Pos osmotic component of the overall pressure between
plates (N/m?)

p overall pressure between plates (N/m?)

P overall dimensionless electrostatic pressure between
plates; P =p/2RTC,

h distance between plates (m)

H dimensionless distance between plates; H = kh

K reciprocal thickness of the double layer or Debye-Hiic-
kel parameter (m™!)

R gas constant (8.31441 J/mol K)

Aa, ) a function]related to a specific length between plates
Ma,¢) = [y NTTE

p(x) charge density in solution at a point x between the
plates (C/m?)

01 suzrface charge density on first plate at separation h (C/
m-)

03 surface charge density on second plate at separation h
(C/m?)

Si dimensionless surface charge density on Plate 1 at sep-

aration H; S? = 2 /2e6yRTCy

S, dimensionless surface charge density on Plate 2 at sep-
aration H; S3 = 62/2¢&RTCy

S1oo dimensionless surface charge density on Plate 1 at infi-
nite separation; S2_ = 2 cosh Y;,, — 2

Soe dimensionless surface charge density on Plate 2 at infi-
nite separation; S5 = 2 cosh Yo, — 2

T absolute temperature (K)

X distance into the solution from Plate 1 located at x = 0 (m)

X dimensionless distance into solution from Plate 1 lo-
cated at X=0; X = kx

X12 dimensionless locations X; and X in the diffuse layer
with potential Y

X the distance of the point where the Y =Y, from Plate 1

X, the distance of the point where the Y =Y, from Plate 2

W(x) potential in solution at a point X between the plates (V)

/A surface potential on Plate 1 at separation h (V)

vy surface potential on Plate 2 at separation h (V)

V1o surface potential on Plate 1 at infinite separation (V)

Vaso surface potential on Plate 2 at infinite separation (V)

Y dimensionless potential in solution at a point X between
the plates

Y: dimensionless surface potential on Plate 1 at separation
H; Y{ = zFy /RT

Y, dimensionless surface potential on Plate 2 at separation
H; Y, = zFy, /RT

Yie dimensionless surface potential on Plate 1 at infinite
separation; Yi., = zF\./RT

Yoo dimensionless surface potential on Plate 2 at infinite
separation; Y, = zF\,. /RT

Y real or imaginary potential at point X, where dY/dX =0

z valence of symmetrical electrolyte

Recognizing that g%’ =11(4)? the first integration yields

2
(%) =sign(Y)(2cosh Y + ¢) (4)

Eq. (4) is valid for surfaces with potentials of any magnitude and
sign interacting through symmetrical electrolyte solutions. The first
integration constant ¢ varies as H changes. The sign(Y) takes into ac-
count that integral of sinh(—Y) = —cosh Y.

The charge density, g, on any one of the plates is equal in mag-
nitude but opposite in sign to the net excess charge in solution:

o= —/Ow p(x)dx (5)
Plate 1 Plate 2
Yy
Y
Y
X=0 X X=H

Fig. 1. Change of potential Y as a function of X between two plates.

Combining with the Poisson equation gives
o 32
o= 880/ d l//(zx) dx (6)
o dx

Integrating once, applying the boundary conditions in Fig. 1,
and expressing in terms of dimensionless quantities yield

oo @ o
dX x=0 V 2e6RTCy (7)
(Y
dX sy V2EERTCy

Combining these definitions with Eq. (4) and evaluating at
infinite separation where dY/dX =0 and Y =0 is satisfied for each
plate demonstrate that ¢ = —2 when the plates are not interact-
ing (at infinite separation). Since the potentials and charge den-
sities on the plates satisfy Y; =Y., Y2 =Ya,., S; =S, and
S, =S5, under such conditions, it can be seen from Eqs. (4)
and (7) that

S7_ =2coshYy, -2

8
S5 =2cosh Yy, —2 ®)

The surface potentials or charge densities at infinite separation
can be estimated experimentally using such techniques as zeta po-
tential measurements or colloidal titration procedures.

Evaluation of Eq. (4) on the solid/solution interface on both
plates (X=0 and X =H) shows that a general relationship can be
obtained for the first integration constant ¢ in terms of surface
potentials and surface charge densities:



180 M. Polat, H. Polat/Journal of Colloid and Interface Science 341 (2010) 178-185

¢ =S —2coshY, =S; —2cosh Y, 9)

Note that Eq. (9) holds at all separations but the magnitude of ¢
will be different for different plate separations.

Though Y, Y5, S, and S, have specific values at a given plate
separation, they will change in relation to each other as H changes
depending on the charging mechanism of the surfaces. For exam-
ple, for constant-potential surfaces Y; and Y, will be equal to the
surface potentials at infinite separation (Y;., and Y,.) for all H
whereas S; and S, must adjust as the planes approach. Conversely,
S1 and S, will always be equal to the surface charge densities at
infinite separation (S;,, and S,.) for constant-charge surfaces
while Y; and Y, will have to vary during the approach.

Charging of the surfaces leads to a pressure force experienced
by the interacting plates as they approach each other. The analysis
of this force has been done by Werwey and Overbeek and was
shown to be due to osmotic and electrostatic effects [11]. The os-
motic pressure force acting on a volume element of liquid (per unit
volume) along the x-axis can be given as

Fo = — dgf (10)

If the volume element is within a potential field, it will also

experience an electrostatic force called the Maxwell stress. The x-
component of this force is equal to

Fo=—p(x) (‘%) (11)

At equilibrium, overall force balance on the volume element
along the x-direction will require that

dp,s dy _

Pos 1 o) <a) 0 (12)
Substituting p(x) from Eq. (1) gives

dpys Y\ (dp) _

Py _ 880< ) (@) ~o 13)
Recognizing that (%) (Z—f) =11 (‘%)2 yields

dpos &&o d d‘/’ 2 _

dx ‘7&(&) =0 (14)
which gives

ggo (dy\? 3
os (ﬁ) = constant = p (15)

It can be seen from Eq. (15) that the difference between osmotic
pressure and the Maxwell stress is always equal to a constant pres-
sure at a given separation of the plates.

The osmotic pressure component can be evaluated further by
rewriting Eq. (12) such that

dpos + p(X)dyy = 0 (16)

If p(x) is substituted using Eq. (2) for a z:z electrolyte, the result-
ing expression is in the form:

dp,, = —zFCy (e*% - e%> dys (17)
dp,, — 22;FCo sinh (ZF gT(X)>d¢ (18)

The excess osmotic pressure between the plates can be found
by setting the osmotic pressure in the bulk liquid (where there
are no electrostatic effects; i = 0) to zero and integrating Eq. (18)
between a point in bulk and any point between the plates with
pressure p,s and potential Y(x):

Pes = 2RTC, [cosh (ZF I‘é’;”) - 1} (19)

Combining Egs. (15) and (19) gives

_ ZFy(x) g0 (dY(x))?
p = 2RTCy {cosh ( T ) 1| - 5 "y (20a)
In terms of dimensionless quantities, it becomes
_p C1_os(dYY’
P= 2RTC; [coshY —1]-0.5 (dX) (20b)

Eq. (20) gives the net pressure force between the two plates as a
function distance from each plate. Since the two pressures must
balance each other, the net pressure between the two plates must
always be equal to a constant value, P for a given plate separation
H.

Since the pressure will be constant at any point within the li-
quid separating the plates, its evaluation at one of the plates is suf-
ficient. Doing so for Plate 2 and expressing in terms of
dimensionless quantities gives the magnitude of the double layer
pressure at a given separation of the plates:

52
P = [cosh Yz—l}—jz (21)

It should be noted that the pressure value obtained from Eq.
(21) is meaningful only if it is paired to the distance H between
the two plates.

Based on this background, a solution of the nonlinear PBE will
be developed in the following paragraphs for two flat plates which
carry arbitrary surface potentials at infinite separation. The plates
are assumed to be interacting in symmetrical electrolyte solutions
and to carry potentials of the same sign at infinite separation. It
will be shown that this solution yields compact analytical expres-
sions which explicitly relate:

(i) the surface potentials and surface charge densities to the
distance between the two plates; this information can then
be directly used to obtain the electrostatic pressure at each
separation;

(ii) the potential Y to location X within the EDL for any plate sep-
aration H.

3. Analytical solution of the PBE for plates of arbitrary
potentials and same sign

For the solution which will be developed in this paper, the dou-
ble layer convention presented in Fig. 1 will be used. The coordi-
nate system is selected such that the first surface (Plate 1) has an
arbitrary potential Y; and located at X=0. The second surface
(Plate 2) has a potential Y; and situated at X = H. The only condition
employed on the potentials is that they have the same sign at infi-
nite separation, that is, Y;.. = Y2, = 0. Such a condition has the
practical outcome that the sign(Y) in Eq. (4) can be dropped. Note
that reversing the signs on both surfaces (Y1, < Y2, < 0) simulta-
neously or switching the positions of the plates (Y, is at X=0 and
Y; is at X = H) does not make a difference in the analysis.

Then, one can write the inverse of Eq. (4) as

dx\* 1
(W) ~2coshY + ¢ (22)

By a substitution of ¢ = /2 cosh Y + ¢, the above equation can
be transformed to give

(f%)z N m (23)
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Integration of Eq. (23) yields a solution in terms of elliptic func-
tions of the first kind, Ellipticg, as

X=¢¢ZJ(2+¢)< M)( )

(@*—¢)* -4

. . 2 2
Elliptic;, <sm ]’/</>(i2;$+2> (24)

The second integration constant @ is related to some specific
distance in the double layer and varies with H. The plus/minus sign
which is due to the square term on the left-hand side of Eq. (23)
has an important physical meaning as it will be clear shortly.

Assigning ;”Tzz =1, and ;%22 = 19, and simplifying, Eq. (24) can be
reduced to
L -
X=d+2, = \/_Elllptlcm <sm Vo > (25)

Appell functions are a class of generalized hypergeometric func-
tions which appear in many areas of science. Among these func-
tions, Appell hypergeometric function of the first kind, Appell, is
employed in evaluation of integrals and solution of partial differen-
tial equations. In its general form, Appellr, can be expressed in dou-

ble integral form such that
TN (BT (Y = By = Ba)

Appellg; (o; B1, B2, 7301, 92) =
)""ﬂl’ﬂZ’]
du dv (26)

/ /1 v o1 b1 ‘1 u—
] —ud — 1/792)

where I'(a) is the gamma function of argument a. For R(a) > 0 and
R(y - o) > 0, Appellg; is in the real axis and can be expressed in terms
of a simpler single integral form as [12]

Appellg, (05 By, By, V301, 92) = %ﬂf/)*a)

1 o1 BT
y / L 27)
Jo (1 —ut) (1 —uwy)™

Moreover, for o= 0.5, $; =0.5, 8> =0.5, and y = 1.5, Appellr, has
an equivalent counterpart in terms of Ellipticg; such that [13]

Appelly, (0.5;0.5,0.5,1.5; vy, vy)

)

1 .. .1 Uz)
= ——Ellipticg, | sin” /01;—= 28
\/U—l p Fl( 1 U1 ( )
Then, combining Eqgs. (25) and (28) gives
X=9+2, /%AppellF1 (0.5; 0.5, 0.5, 1.5;v4, 0y) (29)

and applying the equality given in Eq. (27) yields:

u 05
X=o+, |- / _du (30)
¢+2 (1- Ll191 1 — uﬁz)

Eq. (30) can be further simplified to
X=0+ (g, 9) 31

where

1
_ ®
io.0) = [ —

The function A(¢, ¢) corresponds to some characteristic length
between the interacting plates. It is a summation only for the
parameter u within real limits 0 < u < 1 and can be evaluated eas-
ily as a built-in function. All the commercial mathematical soft-
ware in the market (such as MathCad, Matlab, and Mathematica)
or even a general scientific calculator with numerical integration

(32)

capability can handle the integral in Eq. (32) easily. Since it repre-
sents physical distance, (¢, ¢) should be treated as a real number,
omitting the imaginary parts of any complex numbers which may
arise due to the presence of square root term.

Eq. (31) has physical significance only between the two plates
(i.e.,, 0 < X < H, where Y(0) = Y; and Y(H) = Y»). However, it is math-
ematically valid at a wider interval 0 < X < b such that b > H with
Y(b) > Y,. Then, there always exists a point X;;, on the x-axis where
the potential profile has a minimum Y = Y,,. For example, X, will
always be placed between 0 and H for symmetrical plates or at
large separations (see Fig. 2a), but it may lay beyond H for highly
asymmetrical plates or at very close separations (see Fig. 2b).

Evaluating Eq. (31) on Plate 1 (X=0, S;=—dY/dX and Y=Y;)
gives the value of X,;:

¥ S e

Similarly, when evaluated on Plate 2 (X=H, S,=dY/dX and
Y=Y>), Eq. (31) gives

2 du=i(5.¢ (33)

/ = (S.9) (34)
Szu —¢)* —4u

which leads to

H=Xn+X,

H = 4(1,9) + (S2.9) 5

The term X, is simply the distance between X, and Plate 2 (see
Fig. 2). It can be seen from the figure that X;,, > 0 always whereas
X;, <0 when Y,, develops beyond Plate 2. For identical plates
where Y; = Y, the potential profile Y is symmetrical on both sides
of X, and Eq. (31) simplifies to H = 2X;,, = 24(51, ¢) .

Plate 1 Plate 2 (a)

X0 X

Plate 1 Plate 2 (b)
X=0 X=H
Yy

Fig. 2. Physical significance of parameters X,, and X,.
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It should be emphasized that X, and X, depend only on (S;, Y1)
and (S,, Y»), respectively, since ¢ = S? —2cosh Y; = S2 — 2 cosh Y,
from Eq. (9). Hence, Eq. (35) is extremely important since it explic-
itly relates the surface potentials and surface charge densities on
both plates to the plate separation H in an easily calculable way
without any need for linearization or cumbersome computational
procedures. As explained above, Y; and Y, will always be constant
and equal to Y;., and Y for all H for constant-potential surfaces.
Expressing S; in terms of S, as S* = S2 — 2 cosh Y, + 2 cosh Y;.,
leaves only S, and H as unknowns in Eq. (35). Then, for any phys-
ically meaningful value of S,, the equation will yield a correspond-
ing H value. The S, values should be between the surface charge
density at infinite separation and an arbitrary large negative sur-
face charge density which would develop on Plate 2 at very close
distances.

Similarly, for constant-charge surfaces, the S;., and S,.. values
will remain constant for all H. Remember from Eq. (8) that the
surface charge densities at infinite separation can be obtained
from the surface potentials at that separation. Also, Y; can be ex-

. ~1(S?_-S2_+2cosh Y,
pressed in terms of Y, such that Y; = cosh (%)
This leaves only Y, and H as unknowns in Eq. (35). Again, for
any meaningful Y, value entered, a corresponding H value will
result. In this case, the Y, values should be selected between
the surface potential at infinite separation (Y>.,) and an arbitrary
large positive surface potential which would develop at very
close distances.

Evaluating Eq. (4) at X;,, shows that ¢ = —2 cosh Y,,. Also, from
Eq. (9), it can be seen that Y, = cosh’l(cosh Y — 0.55%). Remem-

bering that ¢ = \/2coshY + ¢ and inserting ¢ = —2cosh Y, in

Eq. (30) will show immediately that & = X, and will result in the
expression

Xz =Xm £ 4@, ) (36)
or more clearly

X1 =4(51,¢) — (@, ¢)
Xa=A(S1,¢) + 4@, )

Eq. (36) relates potential Y to location X in the EDL in an easily
calculable way. The physical reason for the presence of the plus-
minus double calculation in the above equation is the fact that
the same potential Y will develop on the left and right arms of
the potentials profile (on locations X; and X3) on either sides of Xj,,.

In the following section, illustrative examples will be presented
for surface potential, surface charge density, and electrostatic pres-
sure calculations as a function of H for constant-potential and con-
stant-charge scenarios for arbitrarily charged systems. The results
of the calculations of the EDL potential profile Y as a function of X
will also be presented and will be compared with numerical solu-
tions of the PBE.

37)

4. Evaluation of the analytical expressions for different
charging scenarios

Before presenting the example calculations and comparison of
the above analytical equations with numerical computations, a ta-
ble is presented in Appendix A to illustrate the ease of their use in
calculating H and F, for a selected charging condition as well as X
vs. potential Y within the EDL.

Y /Y,=5/5 5/0
w 0
z
% -10
A
5
S 3/3 3/0
g 10
[t
5
2

-10
LL@
L 5/5
Z 10
E 33
g 0
s
n
S -10
3
M 20

0 1 2 0 1 2 0

Plate Separation, H

Fig. 3. Surface charge densities and electrostatic pressures as a function of plate separation for constant-potential surfaces for various surface potentials at infinite separation
(Y1/Y200 = 5/5, 5/3, 5/0, 3/3, 3/1, and 3/0 (calculated analytically using Eqs. (21) and (35)).
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Fig. 3 gives the surface charge densities (the top two row
graphs) from Eq. (35) and electrostatic pressures (the bottom
row graphs) from Eq. (21) as a function of plate separation for con-
stant-potential surfaces for various surface potentials at infinite
separation (Y1../Y2- =5/5, 5/3, 5/0, 3/3, 3/1, and 3/0). The surface
potentials at infinite separation which remain constant during
the approach of the plates are given in each graph. The surface
charge densities on both plates (S; and S,), on the other hand,
change with the separation between the plates. It can be seen that
the charges on both plates vary identically for symmetrically
charged plates (Y;../Y2. = 5/5 and 3/3 cases). However, for asym-
metrical plates (Yi../Y2. =5/3 and 5/0, 3/1, and 3/0 cases), even
though both plates start off with positive surface charges, the
charge on the second plate reverses at close approach. The effect
of this reversal can be seen in the bottom figures where electro-
static pressures are plotted as a function of plate separation. The
electrostatic force is almost always repulsive for symmetrically
charged plates. But, it becomes strongly attractive for asymmetri-
cally charged plates due to the charge reversal taking place at close
separations.

Fig. 4 presents the surface potentials (top two row graphs from
Eq. (35) and electrostatic pressures (the bottom row graphs from
Eq. (21) as a function of plate separation for constant-charge sur-
faces for the same surface potentials at infinite separation in
Fig. 3. Under these surface conditions, the surface charge densities
at infinite separation remain constant during the approach (given
in the boxes in each graph) while the surface potentials
change. It can be seen that potentials asymptotically approach

the Yi./Y2. values at large separations. However, they become
very large as separation between the plates decreases. Since the
surface charge densities on both plates remain positive for all sep-
arations, the electrostatic force of interaction is repulsive for all ini-
tial conditions and for all separations.

Fig. 5 gives the potential profile Y as a function of X for plate
separations of H=4 and H = 1 for the same surface conditions used
in Figs. 3 and 4 (Y1./Y2- = 5/5,5/3, 5/0, 3/3, 3/1, and 3/0 cases). The
lines in these graphs are obtained by Eq. (36). The same conditions
were also used in the numerical analysis by a shooting method and
the results are presented as filled circles in the same graphs (see
Appendix B for the core Mathematica code for this procedure).
The figure demonstrates the validity of the analytical expressions
developed in this paper for plates of arbitrary potentials with the
sole constraint that plate potentials at infinite separation have
the same sign.

Once the potential profile is known between the two plates,
one can calculate the osmotic and Maxwell pressure components
using Eq. (20b). This has been done for the Y;/Y,=15/3 case for
the plate separation of H=1 using the potential values obtained
from Eq. (36) (see Fig. 5) and the results are presented in Fig. 6.
It can be seen that the Maxwell pressure becomes almost negli-
gible away from the plates where the electrostatic effect is least
felt and the pressure at this point is mainly due to the osmotic
component. Fig. 6 also shows that the overall pressure between
the plates is always constant at all X which is why calculating
the pressure on any one of the plates is sufficient as stated by
Eq. (21).

YiAY,

N

[\

Surface Potential, Y

€

[as
§ 40
5]
&3O Rs
0
s 20 573
S
E 10 3/3 3
B 0
0 1 2 0 2

Plate Separation, H

Fig. 4. Surface potentials and electrostatic pressures as a function of plate separation for constant-charge surfaces for various surface potentials at infinite separation (Y;../

Y>.. =5/5, 5/3, 5/0, 3/3, 3/1, and 3/0 (calculated analytically using Eqs. (21) and (35)).
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5¢ 9

Eq. 36
©  Numerical

Y(X)

Y(X)

Fig. 5. Potential profiles for H =4 and H = 1 for surface potentials of Y;/Y, = 5/5, 5/3, 5/0, 3/3, 3/1, and 3/0. The lines are calculated from Eq. (36) whereas the open circles are

computed numerically using the shooting procedure for 20 points for each data set.

5. Summary

A compact analytical solution of the one-dimensional nonlinear
Poisson-Boltzmann equation is presented for asymmetrically
charged plates of arbitrary potentials interacting in symmetrical
electrolyte solutions with the constraints that the plate potentials
at infinite separation have the same sign.

The analytical expressions developed allow the calculation of

e surface potentials, surface charge densities, and electrostatic
pressures as a function of plate separation (Eq. (35)) and

e potential profile in the EDL for a given plate separation (Eq. (36))

e osmotic and Maxwell pressures in the EDL (Eq. (20))

for different charging scenarios without any need for cumber-
some numerical computations. Comparison of the potential pro-

100
————— Osmotic
-—ecamee  Total
Maxwell

[aW
e
2 10 << >
70} \\ ’/
5] ~< -
Qs: o o oo . o TV EEE— — TR ¢ e o ¢ o o P=60

0.00 0.25 0.50

X

0.75 1.00

Fig. 6. Variation of osmotic and Maxwell pressure components within electrical
double layer and the constancy of the overall pressure between the two plates. The
lines were calculated using Eq. (20) from the analytical potential profile Y,/Y, =5/3
and H =1 (see Fig. 5).

files obtained from the analytical expressions with those
computed by numerical analysis demonstrates clearly the ease
of use and the validity of the solution method developed in this

paper.

Appendix A

[llustration of the use of analytical equations for an example
double layer system assuming constant surface potentials of
Y1 =5 and Y, = 3 (constant-potential surfaces).

(a) Calculation of interplate distance H and electrostatic pressure F, at
that H
(i) Enter an arbitrary surface charge density for Plate 2:

S>;=4
(ii) Calculate from ¢ = Sg —2coshY,, and S; from
$2 — cosh Yy, + ¢ for S, = 4:
¢=-4135; §; =12.012

(iii) Calculate H from H = X + X,

/ — du
52u — ¢ —4u

-

Xm =1458; X,, =1.160; H = 2.618
(iv) Calculate F, on Plate 2 at H = 2.618:

52
F. =cosh Yyoo—1-=2

2
=1.068

me/L51,

X 527
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(v) Repeat steps (i)-(iv) for a range of S values to obtain Sy, S, and
F, as a function of H.
(b) Calculation of X vs. Y within the EDL at the calculated H = 2.618

(i) Enter an arbitrary potential Y between 0 and Y;,, within the EDL

Y=2

(ii) Calculate ¢ from ¢ = \/2coshY + ¢ for Y=2 and ¢ = —4.135
o =1.841

(iii) Calculate the locations X; and X, where potential Y = 2 develops
for X, = 1.458

1
X1z = A(St, @) £ A, $) = Xm & /0

@ du
Vu(@2u — ¢)? — 4u
Ao, d) = 0.795
X;:=0663; X, =2253

(iv) Repeat (i)-(iii) for a range of Y values to obtain graphs of Y vs. X
for different H

Appendix B

The core Mathematica algorithm for numerical evaluation of
the one-dimensional nonlinear Poisson-Boltzmann equation to
calculate the potential profile between two plates.

Line1 H=1;81=-3.¢Su=-7;3i=(Su-81)/50//N;

Defines separation as H=1 and the “shooting” range for dY/dX
on Plate 1 between S;=-3 and S,=-7 using increment Si. The
initial values of the S; and S,, must be estimated with care since
the “shooting” procedure goes out of bounds of conditions

on Plate 2.

fpend[S_]:=f[H]/.NDSolve[{f’’ [Y] sinh[f[Y]],
f[0] 3.0,f> [0] S},f,{Y,0,H}]

Starts “shooting” by numerically solving the differential
equation Z;—Y = Sinh Y for S values between S; and Su for

a surface potential of Y=3.0 on the first plate. It stores the

Y value obtained on the second plate for each S
Table[{S,fpend[S]},{S,91,8u,Si}]

Pairs the S estimates and the corresponding solutions together
in a range

fpS=Interpolation[%];fpS[S]

Obtains and interpolation of the above range and assigns

it to a function
1st2={-20,-20,-14,-10,-8,-5.7,-4,-2.8,-2,-1.4,-1,
-.8,-.57,-.4,-.28,-.2,-.14,-.1,-.08,-.057,-.04,-.028,
-.02,-.014,-.01,0,.01,.014,.02,.028,.04,.057,.08,.1,
.14,.2,.28,.4,.57,.8,1,1.4,2,2.8,4,5.7,8,10,14,20,20}
Interpolation range for Y

Line 2

Line 3

Line 4

Line 5

Line5 FindRoot[fpS[S] 1.0,{S,{S1,Su}}]
{5—{-4.229,-4.229}}

For Y>=1.0 determines the actual slope from the range in
Line 5 by interpolation. The output which is -4.229 for this
case is the charge density S for Y;=3 and Y>=1.0
NDSolve[{f’’ [Y] Sinh[f[Y]],f[O] 3.0,
£2[0]-4.229 ¢},f,{Y,0,H}]

This is the actual numerical solution line for potential
value of Y;=3 and the surface charge S;=4.229 determined
by the shooting in order to obtain the potentials profile.
Plot[Evaluate[f[Y]/.%],{Y,0,H},PlotRange—All]

Line 6

Line 7

Plots the potential profile as a function of X for given H.
Y;, Y5, S; and S, values determined from this plot can be
employed to calculate electrostatic pressure at that H.
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