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We have fabricated a pentacene based phototransistor by employing a modified nanostructured SiO, gate
dielectric. The photosensing properties of the pentacene thin film transistor fabricated on n-Si substrate
with nanostructured SiO, as gate dielectric have been investigated. The photocurrent of the transistor
increases with an increase in illumination intensity. This suggests that the pentacene thin film transistor
behaves as a phototransistor with p-channel characteristics. The photosensitivity and responsivity values
of the transistor are 630.4 and 0.10 A/W, respectively at the off state under AM 1.5 light illumination. The
field effect mobility of the pentacene phototransistor was also found to be 2.96 cm?/Vs. The nanostruc-
tured surface of the gate possibly is the cause of the high-mobility value of the phototransistor due to
light scattering from the increased surface area.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Sputtering and thermal chemical vapor deposition (CVD), are
common techniques to create a smooth insulating gate films for
normal organic and inorganic field-effect transistors. Light-trap-
ping plays a key role for crystalline Si thin film solar cells and pho-
totransistors. The application of textured glass substrates instead
of planar glass substrates is an attractive way to implement light
trapping [1,2]. Several techniques are used to fabricate textured
rough surface on transparent conductive oxide (TCO) glasses for
solar cell applications. A simple chemical etching step in diluted
acid, yields a textured surface which can be adjusted to give opti-
mal light scattering over a wide wavelength range. Rech et al.
showed that ZnO:Al films prepared by magnetron sputtering and
post deposition wet chemical etching demonstrate an effective
light trapping and the textured surface reduces reflection losses
at the ZnO:Al/Si-interface with excellent light scattering properties
for silicon thin film solar cells and modules [3,4]. Grained polycrys-
talline silicon (poly-Si) films were prepared on nano-textured glass
substrates by epitaxial thickening of seed layers formed by the alu-
minum-induced layer exchange (ALILE) process [5,6] for poly-Si
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thin film solar cell application with 8% efficiencies with improved
material quality [7-10].

The insulating film which plays the role of the gate in a photo-
transistor needs to combine high capacitance for low level leakage
and an adequate surface texture to introduce light scattering and
subsequent light trapping to increase photo sensitivity by increas-
ing the number of excited photo carriers. For efficient light trap-
ping, the substrate textures should be in the order of the
incoming light wavelength.

The sol-gel method for the synthesis of inorganic nanoparticles
such as ZnO, TiO, and SiO, [11-15] has become one of the most
popular chemical procedures. The reason of this popularity stems
from the fact that sol-gel synthesis is easy and it is carried out at
ambient or slightly elevated temperature. Indeed, the sol-gel
method has led to the synthesis of a great variety of materials,
the range of which is continuously expanding. A typical sol-gel
route for making silicon oxide matrices and thin films is followed
by hydrolysis of alkoxides, for example, alkoxysilanes. However,
a review of the recent literature reveals an increasing interest in
another sol-gel route based on organic acid solvolysis of alkoxides
[16-18]. As it has been earlier found by Pope and Mackenzie [19]
and later verified by others [20], organic (for example, acetic) acid
solvolysis proceeds by a two step mechanism which involves inter-
mediate ester formation. Simplified reaction schemes showing gel
formation either by hydrolysis or organic acid solvolysis are
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presented by the following reactions. (in the following reactions
only one of the four alkoxy groups is taken into account for reasons
of simplicity, while acetic acid (AcOH) is chosen to represent or-
ganic acids in organic acid solvolysis):

Hydrolysis Si—OR + H,0 — Si—OH + ROH (1)
Acetic acid solvolysis Si—OR + AcOH — Si—OAc + ROH (2a)
ROH + AcOH — ROAc + H,0 (2b)
Si—OAc + ROH — ROAc + SiOH (2¢)
Si—OR + Si—0Ac — ROAc + Si—0—Si (2d)

R is a short alkyl chain (for example, methyl, ethyl or isopro-
pyl). Hydrolysis (1) produces highly reactive hydroxide species
Si-OH, which, by inorganic polymerization, produce oxide, i.e.
Si-O-Si that is the end product of the sol-gel process. More com-
plicated is acetic acid solvolysis (2) where several different possi-
bilities may define different intermediate routes to obtain oxide.
Reaction (2a) is a prerequisite of the remaining three reactions.
Occurrence of reaction (2b) would mean that gel formation would
proceed by an intermediate hydrolysis caused by water created
through (2b). Reaction (2c) would create highly reactive Si-OH
which would form oxide, while reaction (2d) directly leads to
oxide formation. The sol-gel precursor used in the present work
is not a simple alkoxide but a hybrid precursor that consists of
a polyether chain with two triethoxysilane end groups covalently
bound by urea bridges (ureasil), as can be seen in Scheme 1. This
material was used because it helps to make very uniform nano-
crystalline films on silicon wafers even after calcinations at high
temperature to remove any of the organic material producing
pure SiO, which was finally the insulating material for the gate
of the phototransistor.

Besides, optical response of pentacene in the UV and visible
region is promising for use in phototransistor applications
[21,22]. Combination of light detection and signal amplification
in a single device without any noise problems [23-25] gives
superior performance to pentacene based organic thin film tran-
sistors (OTFTs) for photo sensor applications [26]. As a conse-
quence, organic field-effect phototransistors play an interesting
role in the electronic devices technology, since they can be used
for light induced switches, light triggered amplification, detection
circuits and, in photOFET arrays for highly sensitive image sen-
sors [27].

In this work, we present the fabrication of a high-mobility
pentacene phototransistor (2.96 cm?/Vs), employing nanostruc-
tured SiO, gate dielectric which was synthesized by sol-gel meth-
od, to investigate the photosensing characteristics of the device
under visible light illumination.

2. Experimental

A top contact thin film transistor (OTFT) has been fabricated
with a p-channel organic semiconductor pentacene with 98% pur-
ity, purchased from Sigma-Aldrich. An n-type (N/Phos) single crys-
tal silicon wafer pre-polished on one side with <10 0> surface
orientation, thickness of 530 pm, diameter of 100 mm and
2.00 Q cm resistivity was purchased from Si-Mat Silicon Wafers

EtO o

EtO CHy

I I
EtO—Si(C HZ)S—NH—C—NH—CH—CHZ—[OCHZC‘:H]n—NH—C—NH—(CHZ)SSK—OEt
OEt

Company, and used as a substrate. The Si-wafer was covered with
a thin SiO, layer with thickness 200 nm which was prepared by the
sol-gel technique. All chemicals used in the sol-gel method have
been purchased from Aldrich.

The hybrid organic/inorganic precursor used in the prepara-
tion of SiO, thin films is presented in Scheme 1 and it was syn-
thesized as following: Two different unhydrolyzed alkoxysilane-
polyether precursors were prepared as in previous publications
[18,27].

Poly(propylene glycol)bis(2-aminopropylether) of molecular
weight 230 and 3-isocyanatopropyltriethoxysilane (ICS) (molar ra-
tio [ICS]/[diamine]=2) were mixed in tetrahydrofuran (THF) under
reflux (64 °C) for 6 h. The isocyanate group of ICS reacts with the
amino groups of poly(propylene glycol)bis(2-aminopropylether)
(acylation reaction) producing urea connecting groups between
the polymer units and the inorganic part. After evaporation of
THF under vacuum, a viscous precursor was obtained, which is sta-
ble at room temperature for several months. The abbreviated name
of the thus prepared precursor used in the present work is ICS-
PPG230.

2.1. Sol-gel synthesis and film deposition

Two grams of the ICS-PPG230 precursor was mixed with 2 g of
ethanol. After stirring for 5 min, acetic acid (AcOH) was added and
the mixture was stirred for about 5 h. Finally, thin films of compos-
ite organic-inorganic materials were formed on silicon wafers of
desired size with spin-coating technique at a speed of 3000 rpm.
The Si substrates were previously cleaned with sonication consec-
utively in a bath of ethanol and acetone. A thin and optically uni-
form film of SiO, was obtained after calcination at 500 °C in a
furnace, suggested that all organic content was eliminated. The
furnace temperature was incremented at a ramp rate of
15 °C min~!; this temperature was held for 15 min and then silicon
wafers were cooled to room temperature. The film thickness of
SiO, film was approximately 200 nm according to SEM cross-sec-
tional images.

A 200 nm thick pentacene film was deposited on the SiO, layer
under vacuum after thermal evaporation and it was used as the ac-
tive layer in the organic thin film transistor. A gold thin film (pur-
ity, 99.95%) with a thickness of 200 nm was thermally evaporated
from a tungsten filament under 6 x 10~® Torr vacuum. Gold top
contacts on the n-Si/SiO,/pentacene structure were formed having
a channel length of 30 um and channel width of 300 um using a
shadow mask. The schematic structure of n-Si/nano-SiO,/penta-
cene/Au OTFT device is shown in Fig. 1. The current-voltage char-
acteristics (Igs—Vas and Iqs—Vs) of the OTFT were measured with a
KEITHLEY 2400 Source meter and a KEITHLEY 6517 Electrometer.
Photovoltaic measurements were employed using a 200 W halogen
lamp.

The morphology of the pentacene thin film as deposited on the
nano-SiO, dielectric surface was examined with a Solver P47H
Atomic Force Microscope (NT-MTD) operating in tapping mode in
air at room temperature. Diamond-like carbon (DLC) coated
NSGO1-DLC silicon cantilevers (from NT-MTD) with a 2 nm tip
apex curvature were used at its resonance frequency of 150 kHz.

o OEt

CHs;

Scheme 1. Chemical structure of ureasil precursor (ICS-PPG230 and n ~ 3).
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Fig. 1. Schematic structure of n-Si/nano-SiO,/pentacene/Au OTFT device.

The Nova 914 software package was used to control the SPM sys-
tem and for the analysis of the AFM images.

3. Results and discussion

In order to improve the working properties of pentacene thin
film transistor, we modified the surface properties of the SiO,
dielectric layer using SiO, nanoparticles formed by sol-gel fabrica-
tion technique. For the surface morphology of the dielectric layer,
the two-dimensional and three-dimensional atomic force micros-
copy (AFM) images of SiO, dielectric surface formed with sol-gel
method and pentacene film deposited on the SiO, were obtained
by AFM as they are shown in Fig. 2a and b. The AFM image shows
a homogeneous pentacene film surface with the root-mean-square
(rms) roughness of 7.5 nm. As seen from Fig. 2a, the pentacene
grains on SiO, form ellipsoidal particle shapes with aspect ratio
of 70 nm/90 nm. The grain size may be attributed to the wetting
properties of the dielectric layer. The surface roughness of the
SiO, gate dielectric have an important effect on the performance
of the organic phototransistor, since the charge carrier transport
in the active layer is affected by the dielectric layer morphology
due to light scattering mechanism. Table 1 shows the AFM data ob-
tained from the surface analysis of n-Si covered with/without the
nanostructured dielectric film (SiO,) and the organic semiconduc-
tor (pentacene) film. The surface roughness of nanostructured SiO,
surface on n-Si substrate has relatively increased compared to
thermally oxidized SiO, surface. Hence, the light scattering and
trapping inside the nanostructured gate are improved. This might
be one of the reasons for higher photocurrent and mobility value
for pentacene OTFT with a nanostructured SiO,insulating gate.

The drain current-voltage characteristics of the pentacene thin
film transistor under different gate voltages are shown in Fig. 3. As
seen in Fig. 3, the drain source current of the transistor increases
with negative gate voltages. This suggests that the thin film tran-
sistor indicates a clear p-channel transistor behavior. At lower volt-
ages, the drain current-voltage curves exhibit good linearity of
response. This confirms that a good ohmic contact was established
between the pentacene and gold contacts.

The drain current in the linear region can be expressed by:

w %
Ids = T'MCI |:(Vg — Vth)Vd — Td:| (3)
where I is the drain source current, W is the width of channel, L is
the channel length, G is the capacitance of the oxide layer, V; is the
gate voltage, u is the mobility and Vi, is the threshold voltage [28].

On the other hand, the drain current in the saturation region can be
expressed by: [28]

w
Igs = ﬂ,uci(vc Vi) (4)

The oxide layer capacitance for the transistor was determined
from capacitance-voltage curve under 100 kHz and was found to
be 7.45 nF/cm?. The field effect mobility and threshold voltage of
OTFT from I}/>—V, plot were found to be 2.96 cm?/Vs and 3.4V,
respectively.

With the presence of nanostructured SiO,, the mobility of
pentacene OTFT was reached to be 2.96 cm?/Vs. Therefore, penta-
cene based OTFT performance is determined by the quality of
SiO; layer. The mobility of the studied transistor is higher than that
of another transistor structured also with pentacene [29]. We eval-
uated that the nanostructure of SiO, gate dielectric contributes to
the high performance of pentacene field-effect transistor. The high-
er mobility of the transistor can be attributed to the morphology of
pentacene film on the nanostructured gate material and the dielec-
tric/surface properties of transistor. As seen in AFM images, the
transistor in our studies appears a relatively smooth surface with
small roughness. This suggests that the mobility is improved by
surface roughness elimination. The effective mobility in polycrys-
talline materials depends on phonon scattering, impurity scatter-
ing, interface roughness scattering, defect scattering, and grain
boundary scattering mechanisms [30,31]. The roughness of the
studied transistor is lower than that of pentacene phototransistors
referred in literature [29,32] and thus, the higher mobility of the
transistor depends on the surface roughness of the SiO,, as the
mobility is improved by reduction in surface scattering mecha-
nisms taken place in the presence of a smoother interface.

The threshold voltage for the transistor can be defined as fol-
lows [33-35],

n
Ve =12 (5)

where q is the electronic charge, n, is the density of majority carri-
ers and d is the thickness of the organic semiconductor. The density
of majority carriers for the transistor was determined using Eq. (3)
and was found to be 1.64 x 10'® cm—3.

The inverse sub-threshold slope for the transistor is expressed
as follows: [35],

S=V%MT]

. ()

The S value for the transistor was determined from Fig. 4 and
was found to be 3.98 V/dec. This value is a measure of the turn-
on speed of the transistor and it indicates the presence of trap
behavior and interface quality between the dielectric and active
layer [35]. The S value of the present transistor is higher than that
pentacene transistor proposed in literature [29]. We finally evalu-
ate that the studied transistor give a higher mobility with a smaller
S value, which exhibits better performance.

R=F%@fq9 @)
kT/q q

The interface trap density for the transistor can be calculated by the
following relation [36,37]:

where k is the Boltzmann constant, T is the temperature, q is the
electronic charge and GC; is 7.45 nF/cmz. With C; and S values, the
Di; was calculated to be 3.02 x 10'2 cm 2 eV~!. The Dj; value of
the studied transistor is in agreement with that obtained for an-
other pentacene transistor [29]. Fig. 5 shows the drain current
curves of the pentacene thin film transistor under various illumi-
nation conditions. As seen in Fig. 5, the drain-source current of




638 S. Okur et al./ Microelectronic Engineering 87 (2010) 635-640

1.0 2.0 3.0 4.0
pm
o
0
R
o
w
f=]
-
S
[2r]
(=)
o~
o
=]

Fig. 2. Atomic force microscopy (AFM) images of SiO, dielectric surface formed with the sol-gel method with 4x4 um scan size (a) AFM images of pentacene film on the
nanostructured SiO, layer with 1x1 um scan size (b).

Table 1

AFM data obtained from surface analysis of n-Si covered with/without the 100“ N EE ML A B N UL N R T
nanostructured dielectric film (SiO,) and the organic semiconductor (pentacene) film. 1 1
Film surface Max Average  Average Root-mean- g 1
height  height surface square surface g 4
(nm) (nm) roughness roughness (nm) ] 1
(nm)
n-Si/Si0, 2.13 1.22 0.26 0.31 1 1
thermally
oxidized 4 E
(50 nm) film
n-Si/Si0, 15.49 7.93 1.53 1.93
nanoparticle
film < 1 O“ - -
n-Si/Si0,/ 6509 2666 523 7.14 = 1 ]
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Fig. 4. Plot of log Igs—V,; under Vg4 =—-20V.
2.0x10°

the transistor increases with illumination due to the flow of mobile
carriers in the channel layer of the transistor via source-drain volt-
Ves(V) age. This confirms that the pentacene thin film transistor is a pho-

totransistor. The photosensitivity (Ipn/ldark) at 29 V was measured

Fig. 3. Plot of I4—Vys under various gate voltages. as 630.4 at an illumination intensity of 100 mW/cm? under

0.0x10°
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Fig. 5. Plot of I4s—Vy4s under various illumination light intensities.

Vg = 0. The photosensitivity of the studied transistor is also higher
than that of polymer thin film transistors based on poly(2-meth-
oxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene), a common
conductive polymer used in OTFT technology [38]. This suggests
that the photosensing behavior of the studied transistor depends
on the photo properties of pentacene and nanostructure of SiO,
dielectric layer. SiO, nanoparticles synthesized with sol-gel tech-
nique used in the gate insulating layer performs excellent light
scattering behavior as a result of the increased surface area and fi-
nally to enhance photosensitivity due to the photocurrent created
between source and drain of the pentacene OTFT.

For phototransistors, another important parameter is photore-
sponsivity and it is expressed by the following relation [39]:

Ion (It — Tgark)
TPA ®)

*= P
where I, is the drain source photocurrent, Py is the incident opti-
cal power, P is the power of the incident light per unit area, I is the
drain source current under illumination, Iy, is the drain source
current under dark and A is the effective device area. The R value
for the transistor was found to be 100 mA/W. This value is several
orders of magnitude higher than that reported (0.7 mA/W) for thin
film organic polymer phototransistors [40,41].

From all the above, it is obvious that the morphology of the
pentacene thin film (as it was deposited on the present nano-
SiO, dielectric surface) was improved in relation to other
structures proposed in literature. In combination with the light
scattering properties due to nano-textured surfaces, our photo-
transistor with SiO, nanoparticle dielectric insulating layer
exhibits improved photoelectrical characteristics.

4. Conclusions

The photosensing properties of the pentacene thin film transis-
tor fabricated on n-Si substrate with nanostructured SiO, as gate
dielectric have been investigated. The phototransistor shows p-
channel characteristics. The photosensitivity (Ipn/lqark) of the tran-
sistor is 630.4 under 100 mW/cm? light illumination intensity at
the off state. The nanosized SiO, particles synthesized with sol-
gel technique used in the gate insulating layer performs excellent
light scattering behavior as a result of increased surface area at
the SiO, film to enhance photosensitivity due to the photocurrent
created between source and drain of the pentacene OTFT. Besides

the roughness of the SiO, and SiO,/pentacene film was found to
be small that is an important factor for the high electrical perfor-
mance of the OTFT. The light scattering properties of the nano-
structured film can be simply controlled over a wide range by
simply varying the SiO, nanoparticle size. Finally, the field effect
mobility of OTFT was found to be 2.96 cm?/V s.
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