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ABSTRACT 
 

Hillslope is the basic unit of a watershed. Typical hillslopes may have a size of 1000 
m long and 500 m wide. For watershed modeling, it is essential to accurately describe the 
hillslope-scale processes of flow, erosion and sediment transport, and solute transport. 
Although these processes are usually considered in experimental studies and theoretical 
subjects, the existing numerical models that are designed to simulate transport processes 
at hillslope scale rarely take microtopographic variations into account. Instead, those 
models assume constant slope, roughness, and infiltration rate for a given basic 
computational unit (i.e., hillslope). As a result, effects of microtopographic features (e.g., 
rills) on the aforementioned processes cannot be reflected in modeling results. However, 
the effects could be important because rill and sheet flows exhibit distinctly different 
dynamics that influence the transport processes. The objective of this chapter is to review 
the numerical studies for investigating the transport processes at hillslope scale. The 
chapter focuses particularly on the modeling efforts with the effects of microtopographic 
features on the dynamics of the transport processes incorporated.  
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Gokmen Tayfur 34

INTRODUCTION 
 
In the past decades, variety of models have been developed to simulate hydrologic and 

hydraulic processes in watersheds with a size of thousands of square kilometers (e.g.,the 
Euphrates river basin in Turkey). These models are usually used for: 1) planning, design, and 
operation of projects to conserve water and soil resources and to protect their quality (e.g., 
planning and designing soil conservation practices, irrigation water management, wetland 
restoration, stream restoration, and water-table management, flood protection projects, 
rehabilitation of aging dams, floodplain management, water-quality evaluation, and water 
supply forecasting); 2) water resources assessment, development, and management (e.g., 
analyzing the quantity and quality of streamflow, reservoir system operations, groundwater 
development and protection, surface water and groundwater conjunctive use management, 
water distribution systems, and water use); 3) assessing impacts of climate change on national 
water resources and agricultural productivity; and 4) quantifying impacts of watershed 
management strategies on environmental and water resources protection (Wurbs 1998; 
Mankin et al. 1999; Rudra et al. 1999; Singh and Woolhiser 2002).  

The use of these watershed models can be greatly facilitated with the available data on 
topography, soil, land use, and hydrography (Engman and Gurney 1991). For example, digital 
imagery provides mapping of spatially varying landscape attributes, while radar is being 
employed for rainfall measurements. Digital elevation models (DEMs), with a typical 
resolution of 30 m by 30 m, can be used to derive basin geometry, stream networks, slope, 
aspect, flow direction (Singh and Woolhiser 2002). The use of a geographic information 
system (GIS) facilitates the: 1) subdivision of a watershed into hydrologically homogeneous 
subareas in both horizontal and vertical domains; 2) determination of soil loss rates; 3) 
identification of potential areas of nonpoint source contaminants; 4) maping of groundwater 
contamination susceptibility; and 5) incorporation of spatial details beyond the existing 
capability of watershed hydrologic models (Singh and Woolhiser 2002).  

Hillsopes form subsections within a watershed. The sizes of the subsections can range 
from 100 to 500,000 m2, and a hillslope usually includes one computational cell or more, 
depending on the cell size. For example, a 900 m by 90 m hillslope consists of 90 numerical 
computational cells with a size of 30 m by 30 m. As a result, a small size hillslope may form 
one single computational cell of a watershed, but a large size hillslope would constitute 
hundreds computational cells. Thus, the dynamics of hydrologic processes at the hillslope 
scale can greatly influence the ones of hydrologic processes at the watershed scale. The 
accurate description of the hillslope-scale dynamics is very important for watershed modeling 
and analysis.  

Conventionally, numerical models for transport processes over hillslope assume a smooth 
surface and do not consider the microtopographic variations on the surface. One justification 
for this simplification is that considering microtopography could noticeably increase the 
complexity of the numerical procedure and mandate extra efforts to obtain high-resolution 
microtopographic data. Zhang and Cundy (1989) and Tayfur et al. (1993) qualitatively 
investigated the flow over varying microtopographic surfaces at the hillslope scale. In a 
separate study, Tayfur and Singh (2004) modeled sediment transport over microtopographic 
surfaces. These studies revealed the importance of varying the infiltration rate, roughness, and 
local slope, for the analysis of hillslope hydrologic dynamics.  
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Numerical Modeling of Transport Processes … 35

Land surfaces, on which transport processes occur, contain irregular microtopography 
and/or rills. Transport over such surfaces occurs in both rill and interrill areas (Figure 3-1). 
Runoff over hillslopes or agricultural watersheds initially starts as sheet flow, and then it 
concentrates into a series of small channels. The flow concentrations depend on either 
topographic irregularities or differences in soil erodibility or both. As runoff continues and 
the erosion progresses, these channels are deepen and widen as a function of slope steepness, 
runoff characteristics, and soil erodibility. Such erosion-formed microchannels are defined as 
rills (Emmett 1978; Li et al. 1980). The importance of rills on flow dynamics and sediment 
transport has been well observed in field and laboratory experimental studies. For example, 
Meyer et al. (1975) studied the influence of rilling in determining the source of eroded soil in 
agricultural plots, and observed that there was a significant increase in sediment loss due to 
the presence of rills. They found that the transport capacity of the rill flow is much greater 
than that of sheet flow over interrill areas; soil loss increases three to five times when rill 
develops on a surface. These results were verified in subsequent independent experiemental 
studies (e.g., Moss and Walker 1978; Abrahams et al. 1989; Abrahams and Parsons 1990; 
Govindaraju and Kavvas 1992). In addition, Kavvas and Govindaraju (1992) and Tayfur and 
Kavvas (1994; and 1998) investigated numerical modeling flow over rilled-surfaces 
employing physically-based flow equations. Tayfur (2007) investigated erosion and sediment 
transport from rilled surfaces using physically-based erosion and sediment transport 
equations. These three studies indicate that rills have a significant effect on the transport 
processes.  

These experimental results provide a good opportunity to improve the existing numerical 
models to reflect the differences in transport capacities of rills and their adjunct interrills. The 
purpose of this chapter is to review the numerical modeling efforts for simulating transport of 
flow and sediment through hillslopes, which take into account effects of local features (e.g., 
microtopographic rills).  

 

 

Figure 3-1. Schematic of a hillslope with rills and interrills. 
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Gokmen Tayfur 36

MODELING OVERLAND FLOW OVER MICROTOPOGRAPHIC SURFACE 
 
Overland flows may cause surface erosion and result in flash response in the stream 

hydrograph. The hydraulics of overland flows is very important in determining flow depth, 
velocity, and its transport capacity of sediment and chemicals (Moore and Foster 1989). In 
addition, overland flows can carry nonpoint source pollutants from agricultural lands into 
receiving water bodies (e.g., channels, natural lakes, and reservoirs). Although numerical 
techniques (e.g., finite difference, finite volume, or finite element) are effective to solve the 
governing equations, the direction solution to the St. Venant equations can incur problems of 
instability and divergence because of the highly nonlinear nature of these equations. 
Alternatively, researchers simplify the St. Venant equations by only considering important 
hydraulic processes for the purpose of solving practical problems, resulting in the commonly 
used kinematic and diffusion wave models.  

The two-dimensional St.Venant equations can be expressed as (Tayfur et al. 1993): 
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where h is the flow depth; u and v are the depth-averaged flow velocities in x- and y-
directions, respectively; r is the rainfall intensity; i is the infiltration rate; Sox and Soy are the 
bed slopes in x- and y- directions, respectively; g is the gravitational acceleration; and Sfx and 
Sfy are the friction slopes in x- and y- directions, respectively, which can be computed using 
Manning’s equation expressed as: 
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where n is the Manning’s roughness coefficient.  

The diffusion wave model neglects the local inertia terms (i.e., the second and third terms 
in Eqs. 2 and 3), whereas, the kinematic model neglects the first three terms in Eqs. (2) and 
(3). Zhang and Cundy (1989) investigated effects of varying slope, roughness, and infiltration 
rate on predicting flows over an artificial domain. Tayfur et al. (1993) used the St. Venant 
equations as well as the kinematic and diffusion wave models to route flow over an 
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Numerical Modeling of Transport Processes … 37

experimental plot (Figure 3-2), and compared the numerical results with the observed 
hydrographs (Figs. 3, 4, 5, and 6). The plot has average slopes in y- and x-directions of 8.6 
and 0.86%, respectively, but the local slopes were computed to be as steep as 15% for the 0.6-
m grid resolution. The depressions and crests on the surface may form nodal locations with 
steep negative slopes, function as storages, and have backwater effects. These physical 
situations invalidate the kinematic wave model because it assumes that the characteristics 
move in the forward direction only. The numerical solutions of the St. Venant equations and 
the diffusion wave model failed to converge even with very small time steps because of the 
rapidly changing flow regime. The regime of flow with highly variable microtopography is 
very different from that of sheet flow as assumed by the St. Venant equations. In order to 
stabilize the solutions, the authors smoothed the surface to obtain a more gradually varying 
topographic profile. In the flow direction, the local slopes were averaged/smoothed within a 
0.6-m window. In contrast, because the local slopes have abrupt changes in the transverse 
direction, the slopes were averaged within a 1.2-m window to get consistent numerical 
results. Thus, while the numerical procedure requires a very fine grid resolution to achieve 
sufficient computational accuracy, the tiny topographic variations have to be smoothed out to 
satisfy the gradually varying assumption of the St. Venant flow equations. 

 

 
 
Figure 3-2. The mircotopography of the study plot S3R2A. (Barfield, B.J. and Storm, D.E., Department 
of Agricultural Engineering at University of Kentucky, Lexington, Kentucky, USA, personal 
communications, 1989). 
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Gokmen Tayfur 38

The results indicate that there are negligible differences between flow hydrographs 
predicted using the average slope (Figure 3-3) and those predicted using varying slopes 
(Figure 3-4). This is probably because the smoothing process removed the partial storage and 
backwater effects of the microtopographic features, as indicated by the near-identical rising 
limbs of the hydrographs shown in Figs. 3-3 and 3-4.  
 

 
 
Figure 3-3.The observed versus simulated flow hydrographs using the average slope. (After Tayfur et 
al. 1993). 
 

 
 
Figure 3-4.The observed versus simulated flow hydrographs using variable slopes. (After Tayfur et al. 
1993). 

 
However, the smoothing process did not remove influences of the microtopography on 

predicting the spatial variations of the local flow depths (Figure 3-5a versus Figure 3-5b) and 
velocities (Figure 3-6a versus Figure 3-6b), as indicated by the distinctly different predicted 
spatial patterns. These differences reflect the effects of the microtopographic features. While 
there is a gradual increase in the flow depth with increasing distance downstream in the x- and 
y-directions, the increase pattern is not smooth. The velocities predicted using the average 
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Numerical Modeling of Transport Processes … 39

slope exhibit a gradual variation both in magnitude and direction (Figure 3-6a), which is 
different from the pattern of the velocities predicted using variable slopes (Figure 3-6b). 
When the microtopography is considered, the predicted velocity magnitude gradually 
increases with slope length, but the velocity direction show great deviations from this pattern 
at the upstream end of the hillslope, where the water depth is shallow. The variations tend to 
become smaller as the increase of water depth towards the downstream. 

 
MODELING OVERLAND FLOW OVER RILLED SURFACE 

 
In order to study dynamics of flow over rilled surface, Tayfur and Kavvas (1994; 1998) 

developed a physically-based model. The model simulates overland flows by combining 
dynamics of rill flow with those of interrill sheet flow at hillslope scale. The model assumes 
the interrill sheet flow to be two-dimensional and considers the natural variability of 
microtopography. On the other hand, the model treats the rill flow to be one-dimensional. A 
rill receives lateral flows from its adjunct interrill areas, with no reverse flows (Figure 3-7).  

 

 
(a) 

Figure 3-5. (Continued) 
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Gokmen Tayfur 40

 
(b) 

Figure 3-5. Contour maps pf the overland flow depth, in cm, predicted using (a) the average slope and 
(b) variable slopes smoothed within a 1.2-m by 0.6-m window. (After Tayfur et al 1993). 

For an infinitesimal interrill area, the two-dimensional sheet flow can be approximated by 
the kinematic wave locally and described by a one-dimensional interrill sheet flow equation 
(Tayfur and Kavvas 1994). The equation uses the flow averaged over the width of the interrill 
area (Figure 3-8; Tayfur and Kavvas 1994), and is expressed as:  
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Numerical Modeling of Transport Processes … 41

 
(a)     (b) 

Figure 3-6. The flow velocities predicted using (a) the average slope and (b) variable slopes. (After 
Tayfur et al. 1993). 

where oh is the averaged interrill sheet flow depth; lq is the averaged net lateral flow (i.e., the 

difference between rainfall and infiltration); xK ′ is the expected value of Kx over the interrill 
area (Figure 3-8).  

Kx and Ky are defined as: 
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where Cz is the Chezy roughness coefficient.  

The advantage gained by this averaging is that it is not necessary to solve the flow in two 
dimensions so that there is no need for a finite-difference mesh. This local averaging 
explicitly yieldes the term representing the water flux from interrill areas into rills, which is 
represented by the last term on the right hand side of Eq (5). This averaging approach is 
extended to transects of a hillslope along the orthogonal direction to the main resultant flow 
(Tayfur and Kavvas 1994) to derive an equation that combines rill flow and interrill sheet 
flow at the scale of the hillsope transect (Figure 3-8). This equation does not separately model 
flows in each rill and over each interrill area because the model parameters are individually 
computed for each hillslope transect.  

However, because this model routes flows from transect to transect, it requires detailed 
geometric data of interrill areas and rills (Tayfur and Kavvas 1994). Thus, applications of this 
model may be limited by the data availability and computational complexity. To overcome 
this shortcoming, Tayfur and Kavvas (1998) suggested to integrate Eq. (5) over the hillslope 
length and to approximate rill flows using an one-dimensional rectangular channel flow (Figs. 
9 and 10) equation expressed as:  
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where hr is the cross-sectionally averaged rill flow depth; wr is the rill width; rxzrr SCK =
; Srx is the rill bed slope; and Czr is the Chezy roughness coefficient for rill sections; and Ky1 
and Ky2 are computed using Eq. (6b) for the local interrill area 1 and the local interrill area 2 
illustrated in Figure 3-7.  

Eq. (7) assumes that flows in the rill and over the adjunct interrill areas follow a sine 
profile and that the rill width at a given location does not change with time. It also assumes 
that there is no overflow from the rill to the interrill areas. The locally areal-averaged interrill 
sheet flow and rill flow equations are expressed as (Tayfur and Kavvas 1998): 
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Figure 3-7. The conceptualization of a rill and its adjunct interrill areas. 

 

Figure 3-8. Schematic of the averaging section of hillslope. 
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where oĥ  and rĥ  are the areal-averaged flow depths over the interrill area and in the rill, 

respectively; lq̂ is the areal-averaged net lateral flow; Kyl = Ky/l; and 
xXLK̂ is the interrill 

areal-averaged Kx at the hillslope bottom; 
Lx

wK
K rLxrLx

R = and 2,1, == i
w
K

K
r

yi
Yi ; KrLx = 

Kr as determined for the bottom of the hillslope; and wrLx is the rill width at the bottom of the 
hillslope.  

Eq. (8) is for modeling flow of an individual interrill area section (Fig.3-9), whereas, Eq. 
(9) is for modeling flows of an individual rill section (Fig.3-9). However, given the large 
number of rill and interrill sections for a hilllsope, it may be ineffective to solve the dynamics 
section by section. Instead, Tayfur and Kavvas (1998) suggested to statistically aggregate 
Eqs. (8) and (9) over a whole hilllsope section (Fig.3-10) using the regular perturbation 
method that considers the first two terms of a Taylor series expansion. The method assumes 
that the randomness of variables is solely inherited from the physical model. The aggregated 
equation for an interrill section is expressed as:  
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The aggregated equation for a rill section is expressed as: 
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where ( )′ ′h ro  and ( )′ ′h rr  are the hillslope areal-averaged interrill sheet flow and rill flow 

depths, respectively; and ′r  is the mean vector of the hillslope vector random variable r  = 
(Cz, Sox , Soy , Sr, wr, l, Lx). 

 
To obtain the complete solution to overland flow at the scale of a hillslope, the large-

scale areal-averaged interrill sheet flow Eq. (10) and the large-scale areal-averaged rill flow 
Eq. (11) are solved conjunctively. Eq.(10) is solved first to obtain the areal-averaged 
discharge flowing into a rill from its adjunct interrill areas as well as the areal-averaged 
discharge into the stream at the hillslope bottom. Sequentially, Eq. (11) is solved to calculate 
the areal-averaged discharge from a rill to the stream. The total discharge into the stream is 
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Numerical Modeling of Transport Processes … 45

the summation of the discharges from all rills of the hillslope after corrected by considering a 
probability of rill occurrence λ (Govindaraju and Kavvas 1992; Kavvas and Govindaraju 
1992). The large-scale areal-averaged rill flow discharge to the stream is multiplied by λ, 
while the large-scale areal-averaged interrill sheet flow discharge to the stream is multiplied 
by (1-λ). These productions are summed up to determine the total discharge into the stream.  
 

 

Figure 3-9. Schematic of a local-scale areal averaging section. 

 

Figure 3-10. Schematic of a hillslope-scale averaging section. 
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Table 3-1. Summary of the inputs into the model as defined by Eqs. (10) and (11)[1] 

 
Variable Value Variable Value Variable Value 
Lx (m) 22 Soy (%) 5.2 Cov (Sox, Soy)[2] 1.02×10-3 
Ly (m) 4.2 l (m) 0.31 Cov (Sox, Soy)[2] 0.0041 
Rill Number 6 wr (m) 0.10 Ch (cm hr-1) 0.65 
R (mm hr-1) 97 λ (%) 13.8 p 0.42 
tr (min) 90 Var (Sox)[2] 3.24×10-4 Ψ (cm) 18 
tp (min) 20 Var (Soy)[2] 0.00112   
Sox (%) 9.1 Var (Ly)[2] 0.095   

r is rainfall intensity; tr is rainfall duration; tp is ponding time; Ch is saturated hydraulic conductivity; p 
is available porosity; Ψ is wetting front capillary pressured head. The other variables are defined in Eqs. 
(10) and (11). Var ( ) is variance and Cov ( ) is covariance. 

 

 

Figure 3-11. Observed versus simulated flow hydrographs at the outlet of the experimental plot S3R2A 
using the hillslope-scale model. The model is defined by Eqs. (10) and (11). (After Tayfur and Kavvas 
1998). 

Figure 3-11 shows the runoff simulation results for the experimental plot S3R2A (Figure 
3-2; Barfield et al. 1983) using the hillslope-scale averaged flow model as defined by Eqs. 
(10) and (11). The model input data are summarized in Table 3-1. The results indicate that 
although the model does not require intensive inputs, it successfully reproduced the observed 
flow hydrograph. In addition, the model was used to simulate the runoff from a hypothetical 
hillslope that has a rill density of about 11% (Tayfur and Kavvas, 1994) and the simulation 
results are shown in Figure 3-12. As expected, the total stream flow was predicted to be 
mainly from the rills. The interrill sheet flows were predicted to account for less than 5% of 
the stream flow. This reveals the importance of considering the effects of hills and interills on 
hydrologic modeling. 
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Numerical Modeling of Transport Processes … 47

 
 
Figure 3-12. Predicted rill flow and interrill sheet flow. (After Tayfur and Kavvas 1994). 

 
 

MODELING SEDIMENTATION OVER  
MICROTOPOGRAPHIC SURFACE 

 
Watershed sediment yield is a direct indication of overland erosion rates and quantities of 

suspended solids that are transported through aquatic systems. Water erosion may incept three 
sequential processes of detachment, transport, and deposition of soil particles. These 
processes are controlled by raindrop energy and runoff transport capacity (Foster 1982). 
Detachment would occur when the erosive force of raindrop or overland flow exceeds the 
resistance of soil to erosion. Detached particles may then be carried downstream by overland 
flow. On the other hand, deposition would occur when the sediment load exceeds the runoff 
transport capacity. Water erosion reduces productivity of cropland and its subsequent 
sedimentation may degrade water quality because of the agricultural chemicals associated 
with the fine sediment particles. Further, deposition in water conveyance structures, such as 
irrigation canals, stream channels, reservoir, estuaries, and harbors, could adversely impact 
their functionalities (Foster 1982).  

Water erosion has been widely studied using laboratory and field experiments (e.g., 
Kilinc and Richardson 1973; Abrahams et al. 1989; and Govindaraju and Kavvas 1992). 
Kilinc and Richardson (1973) did extensive rainfall-runoff simulations over slopes of 5.7 to 
40% to study the mechanics of soil erosion from overland flow. In addition, Mosley (1974) 
examined effects of slope and catchment size and slope on rill morphology, discharge, and 
sediment transport from interrill areas and rills. The author used eight different slopes ranging 
from 3 to 12%. Further, Moss and Walker (1978), Moss (1979) and Moss et al. (1980; 1982) 
conducted rainfall-runoff simulations over slopes of 0.1 to 4.2%, measured total sediment 
concentrations in sheet flow, and examined the formation of rills. Loch and Donnollan 
(1983a, b) and Loch (1984) measured sediment loadings associated with artificial steady-state 
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Gokmen Tayfur 48

runoff over a tilted slope of 4%. Govindaraju et al. (1992) did rainfall-runoff simulations over 
steep slopes of weathered granite to assess the erosion from cuttings and/or fillings.  

Rainfall-induced overland erosion has also been widely studied using physically-based 
mathematical models by many researchers (e.g., Negev 1967; Foster and Meyer 1972; and 
Govindaraju and Kavvas 1991). These studies did not consider the microtopography of 
overland surfaces, which might oversimplify the aforementioned erosion processes. As 
advancement, Tayfur (2001) developed a two-dimensional erosion and sediment transport 
equation and examined typical values of the variables. The equation still approximates the 
highly irregular microtopography using a smooth surface to avoid complications arising in the 
numerical solution and extra efforts in obtaining the grid-scale microtopographic data 
required by the solution. Also, the equation assumes homogeneous soil properties and thus 
does not allow the roughness and infiltration rate to be varied spatially. Moreover, the 
equation uses the kinematic wave approximation, which would become invalid when 
backwater effects are important. As with the previous modeling studies cited above, the 
equation tends to oversimplify the physical processes of soil erosion. As a further 
improvement, Tayfur and Singh (2004) incorporated effects of mircotopography on erosion 
and sediment transport into the equation. 

The improved two-dimensional erosion and sediment transport equation (Tayfur, 2001; 
Tayfur and Singh 2004) can be expressed as: 

 
( ) ( ) ( ) ( )[ ]sc

s
yx qTσαr

ρ
1cq

y
cq

xt
hc

−+=
∂
∂

+
∂
∂

+
∂

∂ β     (12) 

 
where qx and qy are the flow fluxes in the x and y directions, respectively (L2 T-1); 

( )0.52
y

2
xss qqcρq += is the sediment flux (M L-1 T-1); ( ) ( )

1k

ss
0.52

y
2
xc dγγδSSγhηT ⎥⎦

⎤
⎢⎣
⎡ −−+= is the 

flow transport capacity (M L-1 T-1); c is the sediment concentration by volume ( L3 L-3); ρs is 
the sediment particle density (M L-3); α  is the soil detachability coefficient ranging from 
0.00012 to 0.0086 kg m-2 mm-1 (Sharma et al. 1993); β is a constant ranging from 1 to 2; σ is 
the transfer rate coefficient ranging from 3 to 33 m-1 (Foster 1982); η is the soil erodibility 
coefficient ranging from is 0 to 1.0 (Foster 1982); γs is the specific weight of sediment (M L-2 
T-2); γ is the specific weight of water (M L-2 T-2); δs  is a constant of 0.047 (Gessler 1965); d 
is the particle diameter (L); and k1 is an exponent ranging from 1.0 to 2.5 (Foster 1982).  

In Eq. (12), βαr  describes the soil detachment by raindrop, while ( )sc qTσ −  represents the 

soil detachment and deposition by sheet flow. When T qc s> , soil particles would be 

detached. Otherwise, particles will be deposited. This equation is solved conjunctively with 
Eqs. (1) to (3) to determine the parameters of flow and sediment transport. Eqs (1) to (3) are 
first solved for the flow variables (i.e., depth, velocity, and flux), which in turn are used in Eq. 
(12) to determine the parameters for sediment transport. When the water depth and sediment 
concentration at the upper and lower boundaries are near-zero, they are assumed very small 
values of 0.00001 m and 0.0001 t m-3. This will eliminate the singularity problem in the 
numerical solution (Tayfur 2001). The inputs into these equations are summarized in Table 3-
2, and the simulation results for the experimental plot S3R2A (Figure 3-2) are shown in 
Figure 3-13. 
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Numerical Modeling of Transport Processes … 49

 
Figure 3-13. Contour map showing the sediment concentration predicted using variable slopes over the 
experimental plot S3R2A illustrated in Figure 3-2. (After Tayfur and Singh 2004). 
 

Table 3-2. Inputs into Eqs. (1) to (3) and Eq. (12) 
 

Variable Description Value 
n Manning’s roughness coefficient 0.012 
α (kg m-2 mm-1) Soil detachability coefficient 0.0022 
Β Exponent  1.80 
σ (m-1) Transfer rate coefficient 24.0 
k1 Exponent 1.5 
Η Soil erodibility coefficient 0.12 
r (mm h-1) Rainfall intensity 117 
∆t (min) Rainfall duration 20 
i (mm h-1) Constant infiltration rate 7 
d (mm) Particle diameter 1 
ρ (kg m-3) Soil bulk density 1500 

 
Although the plot surface was smoothed using a 1.2-m by 0.6-m window (Tayfur and 

Singh 2004) to stabilize the numerical solution, the predicted sediment concentrations exhibit 
noticeable spatial variations (Figure 3-13), which reflect the effects of microtopographic 
slopes. The similar effects can be resulted from heterogeneities of roughness (Figure 3-14) 
and infiltration rate (Figure 3-15). In this study, the roughness has a mean of 0.0187 and a 
standard deviation of 0.0066, while the infiltration rate has a mean of 13.89 mm h-1 and a 
standard deviation of 7.95 mm h-1. Compared with those of roughness and local slope, the 
effects of infiltration rate may be smaller. Nevertheless, the temporal variation of infiltration 
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Gokmen Tayfur 50

rate, as described by the Green-Ampt equation, can greatly influence the predicted sediment 
loadings (Figure 3-16).  

 

 

Figure 3-14. Contour map showing the sediment concentration predicted using variable roughness.. 
(After Tayfur and Singh 2004). 

 
 

MODELING SEDIMENTATION OVER RILLED SURFACE 
 
As discussed above, microtopographic features such as rills have large effects on 

hydrologic and erosion processes (Govindaraju and Kavvas 1991; Hairsane and Ross 1992a; 
Sander et al. 1996; Lisle et al. 1998; Parlange et al. 1999; Hairsane et al. 1999; and Tayfur 
2001, 2002). Hairsane and Ross (1992b) developed a theoretical steady-state model for one-
dimensional sediment transport from rilled surface. This model assumes that: 1) rills are 
parallel to each other; 2) rills receive sediment and water fluxes at the transverse direction; 3) 
rills occur at a fixed frequency of N rills per unit width measured transverse the slope; 4) 
runoff from an interrill area is directly captured by its adjunct rill and thus the downslope 
delivery of water solely occurs in the rill; 5) rills have an identical volumetric flow rate; and 
6) soils are homogenous. The Water Erosion Prediction Project (WEPP) model also uses a 
one-dimensional steady-state sediment continuity equation to describe the movement of 
sediment on rilled surface (Bulygin et al. 2002). In the WEPP model, the interrill sediment 
delivery is considered to be location independent, and the sediment is conceptualized either to 
be carried off the hillslope by rill flows or deposited in the rill. These two models are based 
on equilibrium sediment transport in a rill section and do not consider the transport processes 
over interrill areas.  
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Figure 3-15. Contour map showing the sediment concentration predicted using variable infiltration rate. 
(After Tayfur and Singh 2004). 

 

Figure 3-16. The predicted sediment loadings by assuming constant versus temporally variable 
infiltration rate. (After Tayfur and Singh 2004). 

 

In contrast, Kavvas and Govindaraju (1992) developed an unsteady-state one-
dimensional model that considers sheet sediment transport processes over rilled surface. This 
model takes into account the flow and sediment processes over interrill areas and in rills, but 
assumes that there is no interaction between these two types of processes. Also, this model 
does not consider the variability in local microtopography and the lateral sediment inputs 
from an interrill area into its adjunct rill. To eliminate these limitations and by integrating Eq. 
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(12) over the length of an interrill area, Tayfur (2007) developed an areal-averaged equation 
for unsteady-state, non-uniform sheet sediment transport. This two-dimensional equation 
considers the interactions between rills and interrill areas and the natural variability of surface 
microtopography. The values for the variables in this equation can be estimated at hillslope 
scale using digital elevation models. This equation is based on the mass and momentum 
conservations at hillslope scale and can be expressed as:  

 
( ) ( ) ( ) o

1.5
o

yl
fodo

s
o

1.5
ox

oo ch
l

K
2.95DD

ρ
1chK

xt
ch

−+=′+
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∂

∂
∂     (13) 

 
where oc is the averaged sediment concentration (L3 L-3) over interrill area; oh is the averaged 

flow depth (L); Ddo  is the averaged soil detachment rate of raindrop on interrill area (M L-2 

T-1); and foD  is the averaged soil detachment/deposition rate of sheet flow over interrill area 

(M L-2 T-1). 
The cross-sectional averaged, one-dimensional rill sediment transport equation (Tayfur 

2007) can be expressed as: 
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( )[ ]r

0.5
rrs

k
crfr hRKcρττηD −−ϕ=     (15) 

 
where cr is the cross-sectional averaged sediment concentration from the rill (L3 L-3); Dfr is 
the cross-sectional averaged soil detachment/deposition rate by rill flow (M L-2 T-1); and 

rr γRτ S= is the cross-sectional averaged rill shear stress (M L-2). 
Eq (14) neglects the soil detachment due to raindrop from rill section because the 

raindrop impact is a dominant factor for the detachment of soil particles on interrill areas but 
in rills detachment and transport by flow are dominant (Foster 1982). The last term on the 
right hand side of this equation represents the local-scale lateral sediment flux into the rill 
from its two adjunct interrill areas illustrated in Figure 3-7.  

In practice, the numerical solution needs to be simplified and extra efforts to collect very 
high-resolution data should be minimized. Eqs. (13) and (14) are integrated over the hillslope 
length (Figs. 3-8 and 3-9) using a local-scale averaging procedure (Tayfur and Kavvas 1998). 
The areal-averaged equations (Tayfur 2007) are expressed as: 
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where ′co and ′cr  are the local-scale areal averaged interrill area and rill sediment 

concentrations (L3 L-3), respectively; oh′  and rh′  are the local-scale areal averaged interrill 

area and rill flow depths (L), respectively; ′Ddo  is the local-scale areal averaged soil 

detachment rate due to raindrop over interrill area (M L-2 T-1); and foD′  and frD′  are the 

local-scale areal averaged soil detachment/deposition rate (M L-2 T-1) by sheet and rill flows, 
respectively; RLx is the hydraulic radius of the section at the downstream end of a rill; and 

xL

0.5
rr

R
LxLx

wK
K = . 

Eqs. (16) and (17) are for modelling the sheet sediment transport over an individual 
interrill area and the sediment transport in an individual rill. These two equations are 
statistically averaged over the whole hillslope (Figure 3-10) using a procedure developed by 
Tayfur and Kavvas (1998). The resulted hillslope-scale sediment transport equations (Tayfur 
2007) are expressed as:  
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where r [ Cz , Sox , Soy , Lx ] is the vector random variable and ′r  is its hillslope-scale mean 
vector; ( )rho ′′  is the hillslope-scale interrill area sheet flow depth computed by Eq. (10); 

( )′ ′co r  is the hillslope-scale interrill area sediment concentration; ( )′ ′Ddo r  is the hillslope-

scale soil detachment rate by raindrop over interrill area; ( )rD fo ′′  is the hillslope-scale soil 

detachment/deposition rate by sheet flow over interrill area; ( )rhr ′′  is the hillslope-scale rill 

flow depth computed by Eq. (11); ( )′ ′cr r  is the hillslope-scale rill sediment concentration; 

( )rD fr ′′  is the hillslope-scale rill soil detachment/deposition rate; and 
xL
Lxx

X

K
K

′
=′ . 

Eqs. (10) and (11) are conjunctively solved first to determine the hillslope-scale averaged 
flow depths and fluxes over interrill areas and in rills. The results are taken as inputs of Eqs. 
(18) and (19), which in turn are conjunctively solved for each time step. Eq. (18) is solved to 
calculate the hillslope-scale averaged sediment loading into rills and Eq. (19) is then solved to 
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calculate the hillslope-scale averaged sediment loading from the rills into the stream located 
at the bottom end of the hillslope. In order to determine the total sediment loading from a 
hillslope into the stream, the probability of rill occurrence λ over the hillslope needs to be 
estimated using a high-resolution (e.g., 10-m) DEM (Govindaraju et al. 1992; Govindaraju 
and Kavvas 1992; and Kavvas and Govindaraju 1992). The hillslope-scale averaged rill 
sediment loading into the stream is multiplied by λ, and the hillslope-scale averaged interrill-
area sediment loading into the stream is multiplied by (1-λ). These products are then summed 
up to get the total sediment loading from the hillslope into the adjunct stream.  

The geometrics of rills and interrill areas can be determined using the DEM. The solution 
of Eqs. (18) and (19) requires that the width of a hillslope be greater than the ergodic length 
scale (i.e., 6 to 8 m) but be smaller than the terrain length scale. Also, the solution assumes 
that the geometry of a rill is fixed throughout a simulation period, but each rill’s geometry 
may be different from the others’. This assumption is usually valid for rainstorms with a 
moderate or smaller intensity.  

 
Table 3-3. Geometrics of the rills over the experimental hillslope in northern 

California[1] 

 
Distance (m) Expected Spatial  

Rill Density (%) 
Mean Rill  
Depth (cm) 

Mean  
Rill Width (cm) 

9.0 0.1 7.0 10.0 
10.5 0.2 8.0 14.0 
12.0 0.2 9.0 16.0 
13.5 25.0 9.5 19.0 
15.0 28.0 11.0 22.0 
16.5 0.3 11.5 22.5 
18.0 33.0 12.0 23.5 

19.5 0.4 12.0 24.0 
21.0 38.0 13.0 25.0 
22.5 0.4 13.0 24.5 
24.0 38.0 13.0 25.5 

 [1] The data are from Govindaraju et al. (1992). 
 
The solution was used to simulate the flows and sediment loadings from a cut bare 

hillslope located near Buckhorn Summit in Northern California in the United States of 
America (USA). The simulation results were compared with the corresponding observed 
values of the rainfall-runoff experiment conducted by Govindaraju et al. (1992) (Figs. 3-17 
and 3-18). The hillslope has an average slope of about 67%. The lower portion of the 
hillslope, which is about 15 m long and 10 m wide, was subjected to intense rainfall of 152 
mm h-1 for a duration period of 10 minutes. The sediment laden flow was collected at the 
downstream along the width of the slope after steady state had been achieved. The sediment 
loading was measured using a Parshall flume. The rill geometrics were surveyed using a tape 
measure and a ruler at 11 locations along the slope spaced at 1.5 m (Table 3-3). Govindaraju 
et al. (1992) determined that the hillslope has a Chezy roughness coefficient of Cz = 16.6 m0.5 
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s-1. A laboratory test using 23 soil samples indicated that the hillslope has a saturated 
hydraulic conductivity of Ks = 37.8 mm h-1. The infiltration rate was estimated using the 
Horton’s formula with a rate constant of k = 0.0014 s-1 and an initial infiltration rate of fo = 
127 mm h-1. The sediment density was measured to be 2662 kg m-3 (Govindaraju et al. 1992). 

The solution successfully predicted both the flows (Figure 3-17) and the sediment 
loadings (Figure 3-18). The good predicted was further indicated by the low absolute errors of 
11.07 L min-1 for flows and 0.382 kg s-1 for sediment loadings. Thus, the solution is judged to 
be capable in simulating the flow and sedimentation processes over rilled hillslopes.  

 

 

Figure 3-17. The observed versus predicted flows from the experimental hillslope near Buckhorn 
Summit in northern California. (After Tayfur 2007). 

 

Figure 3-18. The observed versus predicted sediment loadings from the experimental hillslope near 
Buckhorn Summit in northern California. (After Tayfur 2007). 
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CONCLUSIONS 
 
Understanding the physical processes of flow and sedimentation at hillsope scale is 

essential for watershed modeling. This chapter reviews the improved modeling approaches 
that enable considering the important effects of microtopographic features (e.g., local slope, 
rill, interrill, and variable roughness) on the processes. The results indicate that although the 
hillslope-scale areal averaged equations use easily-available data, they did very good jobs in 
predicting the flows and sediment loadings in the experiment plot S3R2A and the experiment 
hillslope in northern California in USA. The improved modeling approaches are expected to 
increase the analysis accuracy in comparison with the conventional methods that neglect 
microtopographic features.  

 
 

ACKNOWLEDGMENTS 
 
The author is grateful to B.J. Barfield and D.E. Storm of the Department of Agricultural 

Engineering, College of Agriculture, University of Kentucky, for providing observed 
hydrographs and three-dimensional picture of the experiment plot S3R2A. 

 
 

REFERENCES 
 

Abrahams, A.D. and Parsons, A.J. (1990). Determining the mean depth of overland flow in 
field studies of flow hydraulics. Water Resour. Res., 26, 501-503. 

Abrahams, A.D., Parsons, A.J. and Luk, S.-H. (1989). Distribution of depth of overland flow 
on desert hillslopes and its implication for modeling soil erosion. J. Hydrology, 106, 177-
184. 

Barfield, B.J., Barnhisel, R.I., Powell, J.L., Hirschi, M.C. and Moore, I.D. (1983). 
Erodibilities and eroded size distribution of Western Kentucky mine spoil and 
reconstructed topsoil. Institute for Mining and Minerals Research Final Report, Univ. of 
Kentucky, Lexigton, KY. 

Bulygin, S.Y., Nearing, M.A. and Achasov, A.B. (2002). Parameters of interrill erodibility in 
the WEPP model. Eurasian Soil Sci, 35(11), 1237-1242. 

Emmett, W.W. (1978). Overland Flow. In: M.J. Kirkby (ed.) Hillslope Hydrology, John 
Wiley and Sons, New York, N.Y., 145-176. 

Engman, E.T. and Gurney, R.J. (1991). Remote sensing in hydrology, Chapman and Hall, 
London, UK. 

Foster, G.R. (1982). Modelling the erosion process. In : C.T. Haan, H.P. Johnson and D.L. 
Brakensiek (Editors), Hydrologic modelling of small watersheds’. ASAE, 295-380. 

Foster, G.R. and Meyer, L.D. (1972). A closed-form soil erosion equation for upland areas. 
Sedimentation Symposium to Honor Prof. H.A. Einstein, H.W. Shen ed., Fort Collins, 
Colorado, 12.1-12.9. 

Gessler, J. (1965). The beginning of bedload movement of mixtures investigated as natural 
armoring in channels. E.A. Prych, translator, W.M. Keck Laboratory of Hydraulics and 
Water Research, CIT, Pasedana, California. 

Wang, Xixi. Modeling Hydrologic Effects of Microtopographic Features, edited by Xixi Wang, Nova Science Publishers, Inc., 2011. ProQuest Ebook Central, .
Created from iyte on 2017-01-12 00:51:51.

C
op

yr
ig

ht
 ©

 2
01

1.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



Numerical Modeling of Transport Processes … 57

Govindaraju, R.S. and Kavvas, M.L. (1991). Modelling the erosion process over steep slopes: 
approximate analytical solutions. J. of Hydrology, 127, 279-305. 

Govindaraju, R.S. and Kavvas, M.L. (1992). Characterization of the rill geometry over 
straight hillslopes through spatial scales. J. Hydrology, 130, 339-365. 

Govindaraju, R.S., Jones, S.E. and Kavvas, M.L. (1988), On the Diffusion Wave Model for 
Overland Flow, 1, Solution for Steep Slopes. Water Resources Research, 24(5), 734-744. 

Govindaraju, R.S., Kavvas, M.L., Tayfur, G. and Krone, R.B. (1992). Erosion control of 
decomposed granite at Buckhorn Summit. Final Report. California Department of 
Transportation. 

Hairsane, P.B. and Rose, C.W. (1992a). Modelling water erosion due to overland flow using 
physical principles, 1. sheet flow. Water Resour. Res., 28(1), 237-243. 

Hairsane, P.B. and Rose, C.W. (1992b). Modelling water erosion due to overland flow using 
physical principles, 2. rill flow. Water Resour. Res., 28(1), 244-250. 

Hairsane, P.B., Sander, G.C., Rose, C.W., Parlange, J.-Y, Hogarth, W.L., Lisle, I. and 
Rouhipour, H. (1999). Unsteady soil erosion due to rainfall impact: a model of sediment 
sorting on the hillslope. J. Hydrology, 220, 115-128. 

Kavvas, M.L. and Govindaraju, R.S. (1992). Hydrodynamic averaging of overland flow and 
soil erosion over rilled hillslopes. Erosion, Debris Flows and Environment in Mountain 
Regions, Proceedings of the Chengdu Symposium, IAHS Publ: 209. 

Kilinc, M. and Richardson, E.V. (1973). Mechanics of soil erosion from overland flow 
generated by simulated rainfall. Hydrology Papers, Colorado State University, Fort 
Collins, Paper 63. 

Li, R.M., Ponce, V.M. and Simons, D.B. (1980). Modeling rill density. J. Irrig. and Drain. 
Div., ASCE, 106(1), 63-67. 

Lisle, I.G., Rose, C.W., Hogarth, W.L., Hairsine, P.B., Sander, G.C. and Parlange, J.-Y. 
(1998). Stochastic sediment transport in soil erosion. J. Hydrology, 204(1-4), 217-230. 

Loch, R.J. (1984). Field rainfall simulator studies on two clay soils of the Darling Downs, 
Queensland, III, An evaluation of current methods of deriving soil erodibilities (K 
factors). Aust. J. Soil Res., 22, 401-412. 

Loch, R.J. and Donnollan, T.E. (1983a). Field rainfall simulator studies on two clay soils of 
the Darling Downs, Queensland, I, The effects of plot length and tillage orientation on 
erosion processes and runoff erosion rates. Aust. J. Soil Res., 21, 33-46. 

Loch, R.J. and Donnollan, T.E. (1983b). Field rainfall simulator studies on two clay soils of 
the Darling Downs, Queensland, II, Aggregate breakdown, sediment properties and soil 
erodibility. Aust. J. Soil Res., 21, 47-58. 

Mankin, K.R., Koelliker, J.K. and Kalita, P.K. (1999). Watershed and lake water quality 
assessment: An integrated modeling approach. J. Am. Water Resour. Assoc., 35(5), 1069-
1088. 

Meyer, L.D., Foster, G.R. and Romkens, M.J.M. (1975). Source of soil eroded from upland 
slopes. Proc. 1972 Sediment Yield Workshop, U.S. Dept. Agric. Sediment Lab., Oxford, 
Mississippi, ARS-S-40, USDA, 177-189. 

Moore, I.D. and Foster, G.R. (1989). Hydraulics and Overland Flow, Process studies in 
hillslope hydrology, John Wiley&Sons, Sussex, England, UK, 1-34. 

Mosley, M.P. (1974). Experimental study of rill erosion. Trans. Am. Soc. Agric. Eng., 17, 
909-913. 

Wang, Xixi. Modeling Hydrologic Effects of Microtopographic Features, edited by Xixi Wang, Nova Science Publishers, Inc., 2011. ProQuest Ebook Central, .
Created from iyte on 2017-01-12 00:51:51.

C
op

yr
ig

ht
 ©

 2
01

1.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



Gokmen Tayfur 58

Moss, A.J. (1979). Thin flow transportation of solids in arid and non-arid areas: A 
comparison of processes. IAHS-AISH Publ., 128, 435-445. 

Moss, A.J., and Walker, P.H. (1978). Particle transport by continental water flows in relation 
to erosion, deposition, soil and human activities. Sediment, Geology, 20(2), 81-139. 

Moss, A.J., Green, P. and Hutka, J. (1982). Small channels: Their experimental formation, 
nature and significance. Earth Surf. Process. Landforms, 7, 401-415. 

Moss, A.J., Walker, P.H., and Hutka, J. (1980). Movement of loose, sandy detritus by 
shaloow water flows: An experimental study. Sediment. Geol., 25, 43-66. 

Negev, N. (1967). A sediment model on a digital computer. Tech. Rep. No. 76, Stanford 
University, California, 109 pp. 

Parlange, J.-Y., Hogarth, W.L., Rose, C.W., Sander, G.C., Hairsine, P. and Lisle, I. (1999). 
Addendum to unsteady soil erosion model. J. Hydrology, 217(1-2), 149-156. 

Rudra, R.P., Dickinson, W.T., Abedini, N.J. and Wall, G.J. (1999). A multi-tier approach for 
agricultural watershed management. J. Am. Water Resour. Assoc., 35(5), 1059-1070. 

Sander, G.C., Hairsine, P.B., Rose, C.W., Cassidy, D., Parlange, J.-Y., Hogarth, W.L. and 
Lisle, I.G. (1996). Unsteady soil erosion model, analytical solutions and comparison with 
experimental results. J. Hydrology, 178(1-4), 351-367. 

Sharma, P.P., Gupta, S.C. and Foster, G.R. (1993). Predicting soil detachment by raindrops. 
Soil Sci. Soc. Am. Journal, 57, 674-680. 

Singh, V.P. and Woolhiser, D.D. (2002). Mathematical modeling of watershed hydrology. J. 
Hydrologic Engrg. ASCE, 7(4), 270-292. 

Tayfur, G. (2001). Modelling two dimensional erosion process over infiltrating surfaces. J. 
Hydrologic Engrg, ASCE, 6(3), 259-262. 

Tayfur, G. (2002). Applicability of sediment transport capacity models for non-steady state 
erosion from steep slopes.” J. Hydrologic Engrg, ASCE, 7(3), 252-259. 

Tayfur, G. (2007). Modeling sediment transport from bare rilled hillslopes by areally 
averaged transport equations. Catena, 70, 25-38. 

Tayfur, G. and Kavvas, M.L. (1998). “Areal averaged overland flow equations at hillslope 
scale.” Hydrological Sciences J., IAHS, 43(3):361-378. 

Tayfur, G. and Singh, V.P. (2004). Numerical model for sediment transport over non-planar, 
non-homogeneous surfaces. J. Hydrologic Engrg. ASCE , 9(1), 35-41. 

Tayfur, G., and Kavvas, M.L. (1994). Spatially averaged conservation equations for 
interacting rill-interrill area overland flows . J. Hydraulic Engrg, ASCE, 120(12), 1426-
1448. 

Tayfur, G., Kavvas, M.L., Govindaraju, R.S., and Storm, D.E. (1993). Applicability of 
St.Venant equations for two-dimensional overland flows over rough infiltrating surfaces. 
J. Hydraulic Engrg, ASCE, 119(1), 51-63. 

Wurbs, R.A. (1998). Dissemination of generalized water resources models in the United 
States. Water Int., 23, 190-198.  

Zhang, W. and Cundy, T.W. (1989). Modeling of two dimensional overland flow. Water 
Resources Research, 25(9), 2019-2035. 
 

Wang, Xixi. Modeling Hydrologic Effects of Microtopographic Features, edited by Xixi Wang, Nova Science Publishers, Inc., 2011. ProQuest Ebook Central, .
Created from iyte on 2017-01-12 00:51:51.

C
op

yr
ig

ht
 ©

 2
01

1.
 N

ov
a 

S
ci

en
ce

 P
ub

lis
he

rs
, I

nc
.. 

A
ll 

rig
ht

s 
re

se
rv

ed
.


