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a b s t r a c t

A stabilizing sub-gridwhich consists of a single additional node in each rectangular element
is analyzed for solving the convection–diffusion problem, especially in the case of small
diffusion. We provide a simple recipe for spotting the location of the additional node that
contributes a very good stabilizing effect to the overall numericalmethod.We further study
convergence properties of the method under consideration and prove that the standard
Galerkin finite element solution on augmented grid produces a discrete solution that
satisfies the same type of a priori error estimates that are typically obtained with the
SUPG method. Some numerical experiments that confirm the theoretical findings are also
presented.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the exact solution of the convection–diffusion problemmay exhibit very narrow regions where the
solution and its derivatives change sharply. If the standard Galerkin Finite ElementMethod (FEM)with a discretization scale
which is too big to resolve the layers is employed, the numerical method will produce oscillations that pollute the whole
domain. To properly resolve the layers, themesh sizemust be of the same size as the ratio between diffusion and convection.
However, this choice would make the classical FEM impractical for real-world problems.
Several approaches proposed to cure this problem can be found in the literature. One of the most popular approaches,

where the finite dimensional function space in the finite element formulation is enriched with a certain type of bubble
functions in order to gain control on the derivatives of the FEM solution, is known as the Residual-free bubble (RFB)
method [1]. The RFBmethod has been usedwith success to stabilize a certain number of problems, including the convection-
dominated flows [2,3]. The advantage of this approach is not only its generality, but also the fact that its error analysis can be
performed in many cases of interest [4–6]. Further, the RFB method contributes an additional term to the standard Galerkin
formulation,which has a structure identical to themesh-dependent term in the SUPGmethod in the case of piecewise linears
on a triangular discretization [7,1]. This equivalence can be extended to the case of bilinear interpolations on a rectangular
discretization if the flow is not aligned with the diagonals of the element [8].
However, the implementation of the RFBmethod requires the solution of a local boundary value problemwith a vanishing

boundary condition, which is not easier to solve than the original problem except that the problem is posed over an element
domain which is either a triangle or a quadrangle. Sometimes taking the shape of element domain into consideration, it is
desirable to devise a numerical algorithm to obtain a cheap approximate solution to the local problem. To this end, several
researchers dealt with finding an approximate solution having some level of precision to the local problem with the use
of a suitable sub-grid consisting of a few nodes [9–12]. The resulting numerical methods were implemented with success
and they produced approximations consistent with the physical configuration of the problem but they were lacking of a
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rigorous error analysis similar to the ones that we have for the SUPG or the RFB method. More recently, some conditions on
the choice of sub-grid that guarantees the corresponding numerical method satisfies the same type a priori error estimates
as we have for the SUPG method were introduced in [13]. In a couple of subsequent papers, several stabilizing sub-grids
which consist of a single additional node in each triangular element were proposed and it is proved that the corresponding
numerical methods satisfy the same a priori error estimates as the SUPG and the exact RFB method [14,15].
In this work, we consider a decomposition of the domain into rectangles where the sides are parallel to the coordinate

axes. Regarding this special case of decomposition, we propose and analyze a method based on augmenting a given coarse
mesh by adding a suitably located single internal node inside each rectangle and forming a sub-grid by joining the additional
point to a coarse grid points. We then solve the problem on the augmented grid in the framework of the Standard Galerkin
FEM.We further prove that themethodunder consideration satisfies the sameapriori error estimates as the one for the SUPG
method by proving that the numerical method with the present choice of sub-grid satisfies the conditions stated in [13].
The layout of the paper is as follows. In Section 2 we briefly recall the basic ideas of the RFB method and describe

the related numerical method on the augmented grid. In Section 3 we display how to choose the single internal node in
an arbitrary rectangular element and determine its precise location. The corresponding a priori error estimates for the
formulation is proved in Section 4. Finally, we present several numerical experiments to validate the method in Section 5.

2. The RFB method

Consider the following linear elliptic convection–diffusion problem in a bounded polygonal domainΩ in R2:{
Lu = f inΩ,
u = 0 on ∂Ω, (1)

where
Lu = −ε4u+ β · ∇u.

We assume that the diffusion coefficient ε is a positive constant. Let us recall the classical variational formulation of the
problem (1): Find u ∈ H10 (Ω) such that

a(u, v) = (f , v) for all v ∈ H10 (Ω) (2)
where

a(u, v) = ε
∫
Ω

∇u · ∇vdΩ +
∫
Ω

(β · ∇u)vdΩ

is a continuous and coercive bilinear form on the Hilbert space H10 (Ω), and (f , v) denotes the scalar product of f and v in
L2(Ω).
Let τh be a decomposition of Ω and let VP be a finite dimensional subspace of H10 (Ω) whose elements are polynomial

of a certain degree on each K ∈ τh. We further assume that the convection field β and the right-hand side f are piecewise
constants with respect to the decomposition τh. It is well known that the standard finite element method becomes unstable
when the value of ε is small compared to |β|h and various possible approaches to stabilize the numerical algorithm exist in
the literature. The residual-free bubble (RFB) method, whose basic idea consists of enriching the finite dimensional space
VP by the RFB functions, is among the most popular ones and has been receiving considerable attention. Since the bubble
functions vanishes on element boundary, they can be eliminated locally, yielding a formulation in the original discrete space
withmodified operators. To give somemore detail of themethod, let us consider the Galerkin approximation of the problem
(1) in the following space:

Vh = VP ⊕ VB = VP
⊕
K∈τh

BK

where BK , specified below in (6), is a finite dimensional subspace of H10 (K). Thus, for any vh ∈ Vh we can split it into a
polynomial part vP ∈ VP and into a bubble part vB ∈ VB in a uniqueway. Then the variational problem (2) is approximated as
follows:Denoting the restriction of the bubble componentuB ofuh in a typical elementK byuB,K , finduh = uP+uB ∈ VP

⊕
VB

for all vP ∈ VP and vB,K ∈ BK , such that,

a(uP + uB, vP) = (f , vP) (3)
a(uP + uB,K , vB,K )K = (f , vB,K )K (4)

where (., .)K indicates the integrals involved are restricted to the element K . Let us introduce an operator MK : L2(K) →
H10 (K)

⋂
H2(K) such that it takes every right-hand side function g to the unique solution ϕ of

Lϕ = g in K with ϕ = 0 on ∂K . (5)
Observe that the Eq. (4) determines uB,K in terms of f and uP through the relation

uB,K = MK (f − L uP). (6)
Introducing the formal adjoint L∗ of L on K with the property that a(vB, vP)K = (vB, L∗vP)K holds for all vB ∈ VB and VP ∈ VP
and substituting (6) into the Eq. (3), we get a representation for the effect of the residual-free bubbles onto the polynomial
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component of the approximation:

a(uP , vP)+
∑
K∈τh

(MK (f − LuP), L∗vP)K = (f , vP) ∀vP ∈ VP . (7)

If τh is a decomposition ofΩ into triangles and VP is a finite dimensional subspace of H10 (Ω) whose elements are linear
functions on each K ∈ τh, then it can be shown that the effect of the bubbles, which is identified with an additional term in
(7), has an identical structure with the mesh-dependent term in the SUPG method [3]. Further, a priori error estimates of
the RFB method for triangular elements can be proved (see [4]).
Now let us assume τh be a decomposition of Ω into rectangles with the sides parallel to the coordinate axes and VP

be a finite dimensional subspace of H10 (Ω) whose elements are bilinear functions on each K ∈ τh. It can be shown that
the additional term in (7) through the effect of the bubbles is responsible for the stability of the corresponding numerical
method and it is equivalent to the mesh-dependent term in the SUPGmethod in both convection-dominated and diffusion-
dominated cases exceptwhen the direction of the flow is alignedwith the diagonal of the elements [8]: There exist constants
µi, (i = 1, 2) of order O(h) in convection-dominated case and O(h2) in diffusion-dominated case, respectively, such that∑

K∈τh

µ1‖β · ∇vP‖
2
≤ SRFB(vP , vP) ≤

∑
K∈τh

µ2‖β · ∇vP‖
2
∀vP ∈ VP (8)

where

SRFB(uP , vP) =
∑
K∈τh

(
MK (−LuP), L∗vP

)
K .

Thus the resulting numerical scheme is nothing more than a method of streamline diffusion type and the typical a priori
error estimates can be obtained for bilinear elements (see [5]).
However, computer implementation of the stabilizing term SRFB requires the exact solution of a number of boundary

value problems describing the bubble functions inside each element which may be difficult to solve as much as the
original problem. Therefore it is important to obtain a cheap approximate solution to the local bubble problem so that
the corresponding numerical approximation over the original discretization satisfies the same a priori error estimates as
the SUPGmethod. In the case of triangular elements, several numerical methods were proposed to provide an approximate
solution to local bubble problemwith the use of a suitable sub-grid [14,9,10,3]. The common point of these attempts was to
construct a low dimensional sub-grid space BKh in such a way that the solution of the discrete local problem could produce
an approximation bKh to b

K such that∫
K
bKh '

∫
K
bK .

From a different point of view, these methods can be regarded as a standard Galerkin method on an augmented grid (the
original grid plus the sub-grid) for which the finite element space V Ah is a finite dimensional subspace of Vh. It can be proved
that if the sub-grid space is chosen to be BKh = V

A
h
⋂
BK and it satisfies certain sufficient conditions then the solution of the

problem{
Find uAh ∈ V

A
h such that

a(uAh, v
A
h ) = (f , v

A
h ) ∀ v

A
h ∈ V

A
h

(9)

satisfies the same type a priori error bounds as the SUPG method [13]. Explicit examples of sub-grids with this property
were presented and analyzed in [14,15] for triangular discretizations.
In the following section, we are going to display how to choose a suitable sub-grid consisting of a single additional node

per element in a rectangular discretization. Then we show that the present choice of the sub-grid satisfies the sufficient
conditions in [13] and thus, a priori error estimate similar to the one in the SUPG method hold true for the corresponding
numerical method (9).

3. The choice of the sub-grid

Let us assume τh be a decomposition of Ω into rectangles with the sides parallel to the coordinate axes and K be any
rectangle in τh with side of lengths l1 and l2. We assume the standard shape regularity condition, for each K ∈ τh, that there
is a positive constant C1 such that

C1 hK ≤ min(l1, l2) ≤ max(l1, l2) ≤ hK (10)

where hK is the diameter of the element K andmeasured by the length of the diagonal. Since all computations are carried out
in a fixed element, we mostly drop subindex K and use h instead of hK . We further assume that, without loss of generality,
the components of the convection field

−→
β = (β1, β2) are nonnegative. Let us consider a sub-grid that contains just one

additional node P in each rectangular element. We will choose the point P , whose location may differ from element to
element, along one of the diagonals of the rectangle K depending on the direction of the flow. The node P is then joined to
the four vertices splitting the element K into four sub-triangles (see Fig. 1).
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Fig. 1. Sub-grid configuration in a typical cell K.

Take an element K and a local numbering for its vertices Vi = (xi, yi) (i = 1, 2, 3, 4) using the counterclockwise order.
Let us denote basis functions on K by bp, ϕ1, ϕ2, ϕ3 and ϕ4. They are piecewise-linear functions on each sub-triangle Ki with
the following property:

bP(P) = 1, bP(Vi) = 0 i = 1, 2, 3, 4
ϕi(Vi) = 1, ϕi(Vj) = 0 j 6= i, and ϕi(P) = 0.

(11)

Thus the basis function attached to the point P has support contained in K and the other four basis function have value one
at one vertex and zero at P and at the other vertices. We further denote the edge of K adjacent to Vi by li, the length of li by
li, the outward unit normal to li by ni and νi = lini. The position of P along the diagonal from V1 will be determined by the
following condition: Choose P such that

a(ϕ2, bP)K + 2a(ϕ3, bP)K + a(ϕ4, bP)K = 0. (12)

Similar criteria were used in different configurations of the convection–diffusion problem [10,14]. The set of points on the
diagonal connecting V1 to V3 can be described as a function depending on a single parameter t: P = (1− t)V1 + tV3 where
0 < t < 1. Then, denoting the area of K by |K | and using the relationsm = l1 + l2 and z1 = tm together with

∇bP = −li ni/2 |Ki| (13)
|K1| = |K4| = |K | t/2 (14)

|K2| = |K3| = |K | (1− t)/2 (15)

we get

a(ϕ2, bP)K = ε
(
−
(z1, l1)
4|K1|

+
(z3, l2)
4|K2|

)
+
1
6
(β, ν1 + ν2)

a(ϕ3, bP)K = ε
(
−
(z2, l2)
4|K2|

+
(z4, l1)
4|K3|

)
+
1
6
(β, ν2 + ν3)

a(ϕ4, bP)K = ε
(
+
(z3, l1)
4|K3|

−
(z1, l2)
4|K4|

)
+
1
6
(β, ν3 + ν4).

Adding the contributions coming from the diffusion terms and the convection terms separately, using the geometrical
properties ν1 + ν2 + ν3 + ν4 = 0, z2 − z3 = l2, z3 − z4 = l3 = −l1, and then substituting the resulting expressions
into the Eq. (12), we get

ε
h2K

|K | (1− t)
+
1
3
(β, ν2 + ν3) = 0. (16)

Solving the Eq. (16) for t gives

t∗ = 1−
3 ε h2K

|K | (β, ν2 + ν3)
. (17)

It is well known that if ε is not so small, the value provided by (17) could be meaningless [15]. Therefore the actual value of
t that we take ist = t∗ if ε ≤ ε∗ =

|K |(β, ν2 + ν3)

6 h2K
t = 1/2 otherwise.

(18)

Note that t continuously depends on ε and that 1/2 ≤ t ≤ 1.

Remark 1. Another possible way of choosing the position of P was suggested in the context of pseudo-residual-free bubbles
in [14] and further analyzed for triangular elements in [15]: Choose P such that the value of the integral
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J(P) =
∫
K
|−ε4b∗P + β · ∇b

∗

P − 1|dK (19)

is minimum where b∗P = α(P)bP is the unique solution of

a(b∗P , bP)K = (1, bP) ∀ bP . (20)

We note that, although the bubble space BK is spanned by two bubble basis functions for rectangular elements (see [8]), we
consider the dominant one which is described by{

−ε4b1 + β · ∇b1 = 1 in K
b1 = 0 on ∂K . (21)

Indeed the criterion (19) aims to find an approximation b∗P to the bubble basis function b1. Following the lines of presentation
in [15], the implementation of the criterion (19) exposes the value of t:

t∗∗ =


1+

3 ε h2K
2|K | (β, ν1)

= 1−
3 ε h2K

2|K | (β, ν3)
if (β, ν1) ≤ (β, ν4)

1+
3 ε h2K

2|K | (β, ν4)
= 1−

3 ε h2K
2|K | (β, ν2)

otherwise
(22)

which qualitatively has the same structure with t∗. If (β, ν2) = (β, ν3) both criteria (12) and (19) produce the same result
for the location of P and the corresponding numerical methods are identical.

4. Error analysis

Let us return to the error analysis of the method (9) with the present choice of the sub-grid. In [13], Brezzi andMarini set
abstract assumptions on a sub-grid in order to keep the same error performance for the corresponding method as we have
for the SUPGmethod. We first give some definitions to be able to state these assumptions for the present configuration and
then state the main result in a theorem. To this end, to every vAh ∈ V

A
h , let us associate two different elements, in a unique

way, from V Ah , that we call vL and vS by the conditions

vL = vS = v
A
h on

⋃
K∈τh

∂K and vL ∈ VL, vS ∈ VS (23)

where ∂K represents the boundary of K and the subspaces VL and VS defined by

VL = {vL ∈ V Ah such that : a(vL, vB) = 0 ∀ vB ∈ B
K
h } (24)

VS = {vS ∈ V Ah such that : (∇vS,∇vB) = 0 ∀ vB ∈ B
K
h }. (25)

Theorem 1. Assume that the sub-grid is made of a single internal node P in each element and let the sub-grid node P be chosen
according to (18). Assume further that the bubble space satisfies the following two assumptions;

∃C2 : ∀K ∈ τh, ‖bP‖0,K ≤ C2 h
1/2
K ε1/2 |bP |1,K (26)

and

∃C3 : ∀K ∈ τh, ∀vAh ∈ V
A
h , ‖β · ∇vS‖0,K ≤ C3 h

−1/2
K ε1/2‖∇vL‖0,K . (27)

Let u and uh be the solutions of (2) and (9) respectively, and assume that u ∈ Hs(Ω) for some s with 1 < s ≤ 2. Then there exist
a constant C, independent of h, such that

ε|u− uh|21,Ω +
∑
K∈τh

hK‖β · ∇(u− uh)‖20,K ≤ C
∑
K∈τh

(
εh2s−2K + h2s−1K

)
|u|2s,K . (28)

We will prove that the conditions (26) and (27) in Theorem 1 are satisfied for the present choice of P . Thus we will
conclude that standard Galerkin finite element method on the augmented grid produces a discrete solution that satisfies a
priori error estimate (28) by means of Theorem 1.

Lemma 1. Assume that, for every element K ∈ τh, the position of the internal node P is chosen according to (18). Then

|bp|21 =


A2 |K |

2 ε (A |K | − ε h2)
∼ O

(
h
ε

)
if ε ≤ ε∗

2 h2K/|K | ∼ O(1) otherwise

where

A =
β

3
· (l2n2 + l3n3).
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Proof. We use the relations (13)–(15) to obtain

|bp|21 =
∫
K
|∇bP |2 =

4∑
i=1

∫
Ki
|∇bP |2 =

l21 + l
2
2

4

(
1
|K1|
+
1
|K2|

)
=
l21 + l

2
2

2 |K |

(
1
t
+

1
1− t

)
.

Lemma follows by substituting the value of t in (18) into the last expression. �

Now using Lemma 1, we can prove that the first condition (26) is satisfied for the present choice of P .

Proposition 1. Assume that, for every element K ∈ τh, the position of the internal node P is chosen according to (18). Then the
condition (26) is satisfied.

Proof. We need to prove that the supremum

sup
ε>0

‖bP‖0,K
h1/2 ε1/2 |bP |1,K

(29)

is uniformly bounded with respect to element diameter h. Consider the case ε < ε∗ first. Since bp is linear over in each
sub-triangle Ki, we can use the integration formula that uses the midpoints of the edges for computing the integral of its
square and get∫

K
b2p =

|K |
6
. (30)

On the other hand, the shape regularity condition (10) implies that

A =
β

3
· (l2n2 + l3n3) ≥

β

3
· (n2 + n3)min{l1, l2} ≥

β

3
· (n2 + n3) C1h (31)

and the inequality ab ≤ (a2 + b2)/2 leads to

|K | ≤
h2

2
. (32)

Using (29) together with (30), (31) and (32), respectively, we get

‖bP‖ 20,K
h ε |bP |21,K

=
|K |
3 A h
−
ε h
3 A2
≤
|K |
3 A h

≤
|K |

β · (n2 + n3) C1h2
≤

1
2 β · (n2 + n3) C1

which is independent of h and ε. Secondly, when ε ≥ ε∗, use (29), ε∗ = |K |(β,ν2+ν3)
6 h2

and (30)–(32), respectively, to get

‖bP‖ 20,K
h ε |bP |21,K

≤
|K |2

12 ε h3
≤
|K |2

12 ε∗ h3
≤

|K |
2 β · (ν2 + ν3) h

≤
|K |

2 β · (n2 + n3) C1 h2
≤

1
4 β · (n2 + n3) C1

which is again independent of h and ε and the result follows. �

To prove that the second condition (27) holds true with the present choice of the sub-grid, we need the following
preliminary results.

Lemma 2. For an arbitrary vAh ∈ V
A
h , let vL and vS be defined as in (24) and (25), respectively. Then

‖∇vL‖
2
0 = ‖∇vS‖

2
0 +

1
ε2 ‖∇bP‖20

(∫
K
β · ∇vS bP dK

)2
.

Proof. From (23), we have vL = vS + µ bP , where µ is a scalar to be determined. Now

a(vL, bP)K = a(vS + µbP , bP)K
= ε(∇vS,∇bP)+ (β · ∇vS, bP)+ ε(µ∇bP ,∇bP)+ µ(β · ∇bP , bP)
= (β · ∇vS, bP)+ ε(µ∇bP ,∇bP)

since the expressions ε(∇vS,∇bP) and µ(β · ∇bP , bP) vanish by definition (25) and the integration by parts, respectively.
From the resulting expression and the relation a(vL, bP)K = 0, we can deduce the unique value of µ:

µ = −
(β · ∇vS, bP)
ε‖∇bP‖20



A.I. Nesliturk / Computers and Mathematics with Applications 59 (2010) 3687–3699 3693

with which, the function vL becomes

vL = vS −
(β · ∇vS, bP)
ε‖∇bP‖20

bP . (33)

The result follows from (33) and using the orthogonality of vS and bP with respect to the product (∇·,∇·):

‖∇vL‖
2
0 = (∇vL,∇vL)

=

(
∇vS −

(β · ∇vS, bP)
ε‖∇bP‖20

∇bP , ∇vS −
(β · ∇vS, bP)
ε‖∇bP‖20

∇bP

)
= (∇vS,∇vS)− 2

(β · ∇vS, bP)
ε‖∇bP‖20

(∇vS,∇bP)+
(β · ∇vS, bP)2

ε2‖∇bP‖40
(∇bP ,∇bP)

= ‖∇vS‖
2
0 +

(β · ∇vS, bP)2

ε2 ‖∇bP‖20
. �

Now we want to replace the function vS with its a smoother counterpart ϕ for the sake of computational simplicity. In
that context, given the function vS , we define a new function ϕ to be the solution of the following Dirichlet problem{

4ϕ = 0 in K,
ϕ = vS on ∂K . (34)

So the function vS is the standard finite element approximation to the function ϕ which is a bilinear function over K and
they satisfy ‖∇(ϕ−vS)‖ ≤ C h; C being a generic constant.We note that vS and ϕ are close enough to each other tomake an
interchange between them. Hence we will deal with the term (β · ∇ϕ, bP) instead of (β · ∇vS, bP). Having this replacement
done, we can easily reveal the dependence of the integral

∫
K β · ∇ϕ bP dK to the sub-grid node P in an explicit manner:

Lemma 3. Let ϕ be an arbitrary bilinear function on K . Then we have∫
K
β · ∇ϕ bP dK =

∫
K

(
1
3
β · ∇ϕ(xK )+

1
12
βT · (xP − xK ) ϕxy

)
dK (35)

where βT = (β2, β1).
Proof. Let xK be the barycenter of K . Since ϕ is a bilinear function on K , the representation

β · ∇ϕ = β · ∇ϕ(xK )+ βT · (x− xK ) ϕxy (36)

holds true. Multiplying both sides of (36) by bP and integrating over K , we have∫
K
β · ∇ϕ bP dK = β · ∇ϕ(xK )

∫
K
bP dK + ϕxy|K

∫
K
βT · (x− xK ) bP dK

= β · ∇ϕ(xK )
|K |
3
+ ϕxy|K

∫
K
βT · (x− xK ) bP dK

=
1
3

∫
K
β · ∇ϕ(xK ) dK + ϕxy|K

∫
K
βT · (x− xK ) bP dK . (37)

Next we calculate the second integral on the right-hand side of (37). Since bP is linear in each sub-triangle Ki, βT · (x−xK ) bP
is a quadratic function on Ki whose integral can be computed exactly by using the midpoint rule: Define

xij =
xi + xj
2

xiP =
xi + xP
2

i, j = 1, 2, 3, 4

yij =
yi + yj
2

yiP =
yi + yP
2

i, j = 1, 2, 3, 4

and use the geometrical properties

x12 − xK = x34 − xK = 0
y23 − yK = y41 − yK = 0
x23 − xK = xK − x41 = l1/2
y34 − yK = yK − y12 = l2/2
|K1| − |K3| = l1(yP − yK )
|K4| − |K2| = l2(xP − xK )

to evaluate the second integral on the right-hand side of (37):
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K
βT · (x− xK ) bP dK =

4∑
i=1

∫
Ki
βT · (x− xK ) bP dK

=
|K1|
3

[
βT · (x1P − xK , y1P − yK )

1
2
+ βT · (x2P − xK , y2P − yK )

1
2

]
+
|K2|
3

[
βT · (x2P − xK , y2P − yK )

1
2
+ βT · (x3P − xK , y3P − yK )

1
2

]
+
|K3|
3

[
βT · (x3P − xK , y3P − yK )

1
2
+ βT · (x4P − xK , y4P − yK )

1
2

]
+
|K4|
3

[
βT · (x4P − xK , y4P − yK )

1
2
+ βT · (x1P − xK , y1P − yK )

1
2

]
=
|K1|
6
[β2(x1P + x2P − 2 xK )+ β1(y1P + y2P − 2 yK )] +

|K2|
6
[β2(x2P + x3P − 2 xK )+ β1(y2P + y3P − 2 yK )]

+
|K3|
6
[β2(x3P + x4P − 2 xK )+ β1(y3P + y4P − 2 yK )] +

|K4|
6
[β2(x4P + x1P − 2 xK )+ β1(y4P + y1P − 2 yK )]

=
|K1|
6
[β2(x12 + xP − 2 xK )+ β1(y12 + yP − 2 yK )] +

|K2|
6
[β2(x23 + xP − 2 xK )+ β1(y23 + yP − 2 yK )]

+
|K3|
6
[β2(x34 + xP − 2 xK )+ β1(y34 + yP − 2 yK )] +

|K4|
6
[β2(x41 + xP − 2 xK )+ β1(y41 + yP − 2 yK )]

=
|K1|
6

[
β2(xP − xK )+ β1

(
−
l2
2
+ yP − yK

)]
+
|K2|
6

[
β2

(
l1
2
+ xP − xK

)
+ β1(yP − yK )

]
+
|K3|
6

[
β2(xP − xK )+ β1

(
l2
2
+ yP − yK

)]
+
|K4|
6

[
β2

(
−
l1
2
+ xP − xK

)
+ β1(yP − yK )

]
=
|K |
6
βT · (xP − xK )+

|K1|
6
β1

(
−
l2
2

)
+
|K2|
6
β2

(
l1
2

)
+
|K3|
6
β1

(
l2
2

)
+
|K4|
6
β2

(
−
l1
2

)
=
|K |
6
βT · (xP − xK )−

β1l2l1
12

(yP − yK )−
β2l1l2
12

(xP − xK )

=
|K |
6
βT · (xP − xK )−

|K |
12
βT · (xP − xK )

=
|K |
12
βT · (xP − xK ).

Thus, starting from (37), we get∫
K
β · ∇ϕ bP dK =

1
3

∫
K
β · ∇ϕ(xK ) dK + ϕxy|K

∫
K
βT · (x− xK ) bP dK

=
1
3

∫
K
β · ∇ϕ(xK ) dK + ϕxy|K

|K |
12
βT · (xP − xK )

=
1
3

∫
K
β · ∇ϕ(xK ) dK +

1
12

∫
K
βT · (xP − xK ) ϕxy dK

which is the desired result. �

Now we are ready to prove that the second condition (27) holds with the present choice of P .

Proposition 2. Assume that, for every K ∈ τh, the position of the internal node is chosen according to (18). Then the
condition (27) holds true.

Proof. We need to prove that the supremum

sup
ε>0

h ‖β · ∇ϕ‖20,K
ε ‖∇vL‖

2
0,K

(38)
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is uniformly bounded with respect to element diameter h. The expression (38) can be rewritten more precisely by using
Lemma 2;

sup
ε>0

h ‖β · ∇ϕ‖20,K
ε ‖∇ϕ‖20 +

1
ε ‖∇bP‖20

(
∫
K β · ∇ϕ bP dK)

2
(39)

and we will prove that it exists when ε < ε∗. The case when ε > ε∗ is similar but easier. Now, by using the decomposition
(36), let us observe that a direct calculation of the double integral over the region K gives

‖β · ∇ϕ‖20 =

∫
K

(
β · ∇ϕ(xK )+ βT · (x− xK ) ϕxy

)2
dK

=

∫
K
(β · ∇ϕ(xK ))2 dK +

∫
K

β22 l
2
1 + β

2
1 l
2
2

12
ϕ2xy dK . (40)

On the other hand, from Lemma 3, we have∫
K
β · ∇ϕ bP dK =

∫
K

(
1
3
β · ∇ϕ(xK )+

1
12
βT · (xP − xK ) ϕxy

)
dK . (41)

Since 0 ≤ |xP − xK | ≤ h/2, the last term in (41) is of order h. That implies if
∫
K β · ∇ϕ bP dK = 0 then β · ∇ϕ = 0 in the

interesting casewhere a layer structure exist and, thus, the assumption (27) is satisfied. Now suppose that
∫
K β ·∇ϕ bP dK 6=

0. Again, since the last terms in (40) and (41) are of order h2 and h, respectively, we may assume that there exist a positive
constant C4, independent of h and ε, such that

C4 h2 ‖β · ∇ϕ‖20 ≤
(∫
K
β · ∇ϕ bP dK

)2
(42)

holds true in the interesting case where a layer structure exist. Now recall that, Lemma 1 ensures that there exist a constant
C5, depending only on β and the shape regularity condition of K , such that

‖∇bP‖20 ≤ C5
h
ε

(43)

is satisfied. Finally, using (42), the fact that ‖β · ∇ϕ‖ ≤ 2βmax ‖∇ϕ‖, with βmax = max{|β1|, |β2|}, and the inequality (43),
respectively, we get

h ‖β · ∇ϕ‖20,K
ε ‖∇vL‖

2
0,K
≤

h ‖β · ∇ϕ‖20,K

ε ‖∇ϕ‖20 +
C4 h2 ‖β·∇ϕ‖20
ε ‖∇bP‖20

≤
h ‖β · ∇ϕ‖20,K

ε ‖β·∇ϕ‖20
4β2max

+
C4 h2 ‖β·∇ϕ‖20
ε ‖∇bP‖20

≤
h

ε

4β2max
+

C4 h2

ε ‖∇bP‖20

≤
h

ε

4β2max
+

C4 h2
ε C5 h/ε

≤
4β2max C5 h

ε C5 + 4β2max C4 h
≤
C5
C4

and the result follows. �

5. Numerical results

In this section, we will present some numerical results showing the stabilizing features of the method under
consideration. We remark that the sub-grid node is chosen according to the criteria (12). We will solve the problem (1)
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Fig. 2. Configuration of the test problem.

Fig. 3. Coarse meshes (1st row) and the corresponding augmented meshes (2nd and 3rd rows).

with f = 0 and a nonzero Dirichlet boundary condition on a computational domainΩ = [0, 1] × [0, 1] described in Fig. 2.
We take a midrange value for ε; ε = 0.001. β = γ /|γ |.
We first present the standard Galerkin solution of the problem on a set of successively refined meshes and compare the

solutions on two classes of augmented meshes. We start by taking a set of coarse meshes which are made of 100, 400 and
1600 uniform rectangular elements. We augment each coarse mesh by adding a single internal node into each element and
then joining the additional point to the grid points of the coarse mesh, thus forming four sub-triangles in each element
of coarse mesh. In the first choice, displayed in the second row in Fig. 3, we take the sub-grid node to be the barycentric
coordinate of the cell K without taking the value of ε into consideration. In the second choice, we locate the sub-grid node
according to (18) and it is displayed in the last row in Fig. 3.
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Fig. 4. Elevation plots of the solutions.

The elevation plots of the standard Galerkin solution on three types of meshes are shown in Fig. 4. Numerical solutions
were obtained by using standard bilinear shape functions over the coarse meshes and standard linear shape functions over
the augmented meshes of triangles. The test problem has an exact solution that exhibits an internal and a boundary layer. It
is clear that the numerical solution obtained by the algorithm introduced herein is able to show the dominant characteristics
of the exact solution at all levels of the mesh employed. Comparing two types of augmented meshes, we can conclude that
the stabilizing effect of the method fairly depends on the enrichment of the grid by means of a suitably chosen sub-grid.
Finally, we note that the numerical solution obtained over the mesh augmented with the stabilizing sub-grid is comparable
with the approximation obtained over the next level refinement of the uniform mesh in the first row (compare solutions
obtained over the meshes C-40 and CAS-20, for example).
Secondly, we want to inspect the numerical method over the mesh augmented with the stabilizing sub-grid when

the streamlines are aligned with the diagonals of the elements, in which case the stabilizing term in the RFB method is
not equivalent to the mesh-dependent stabilizing term in the SUPG method. The elevation plots of the standard Galerkin
solution over the fine meshes augmented with the stabilizing sub-grids are shown in Fig. 5. We can conclude that the
numerical solutions in this exceptional case are still good enough and retain the characteristic features of the exact solution
quite well.

6. Conclusion

A rectangular mesh augmented with a properly chosen sub-grid is proposed and analyzed for solving the convection–
diffusion problem in the framework of the standard Galerkin finite element method. The choice of the additional sub-grid
node in a typical rectangular element is described.We proved that the discrete solution on augmented grid with the present
choice of the sub-grid satisfies the same a priori error estimates that are typically obtainedwith the SUPGmethod. Numerical
experiments presented confirm the theoretical findings.
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Fig. 5. Elevation plots of the solutions when the flow is aligned with the diagonal of the element.
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