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Abstract—Communicating Sequential Processes (CSP) is a 

process algebra, designed for modeling and analyzing the 

behavior of concurrent systems.  Several security protocols are 

modeled with CSP and verified using model-checking or 

theorem proving techniques successfully. Unlike other 

authentication protocols modeled using CSP, each of the 

Efficient Multi-chained Stream Signature (EMSS) protocol 

messages are linked to the previous messages, forming hash 

chains, which introduces difficulties for modeling and 

verification. In this paper; we model the EMSS stream 

authentication protocol using CSP and verify its authentication 

properties with model checking, by building an infinite state 

model of the protocol which is reduced into a finite state model.  

Keywords—communicating sequential processes, model 

checking, security protocol verification  

I.  INTRODUCTION & RELATED WORK 

Concurrency theory aims to model parallel systems by 

means of transition, net, graph or algebraic formalisms. CSP 

is an example of algebraic formalisms, which is designed 

specifically for the description of communication patterns of 

concurrent system components that interact through 

message passing. It is introduced by Hoare in 1978 [1] and 

further developed to its modern form as process algebra in 

1984 [2]. 

Since Lowe’s analysis [3] of Needham – Schroeder 

Authentication protocol with CSP using the model checker 

Failures - Divergences Refinement (FDR), many different 

security protocols [4] with different security properties 

[5][6] have been modeled and verified, including their 

authentication and secrecy specifications [7].  
In this paper, we model Efficient Multi-chained Stream 

Signature (EMSS) [8] stream authentication protocol using 
CSP, which has been proved to be a useful formalism for 
modeling, specifying and verifying security protocols.  

Unlike standard authentication protocols that have been 
modeled and verified using CSP [9]; sender in EMSS 
protocol broadcasts continuous stream of data along with 
hashes of previous messages. The recipient can check for 
authenticity of received messages after the reception of a 
signed message. Thus the hash chaining mechanism forms an 
important part of the protocol. 

The study in [10] verifies the EMSS protocol with Team 
Automata, using compositional proof rules. Another study is 

presented in [8], which expresses the hash chain with a graph 
and reduces authentication problem into a reachability 
problem on the graph. For other stream authentication 
protocols, the verification processes are generally based on 
theorem proving techniques. An outstanding counter-
example is [11], in which Timed Efficient Stream Loss-
tolerant Authentication Protocol (TESLA) is verified using 
CSP and model checking techniques along with data-
independence techniques based on [12][13].  

We use a similar approach with [11], by first building an 
infinite state model of EMSS protocol. Then, we justify why 
this model is not suitable for verification using model 
checking and reduce it to a finite state model, by observing 
several properties of hashing. Finally we validate and verify 
our model using FDR. 

The rest of the paper is structured as follows: In section 
2, we briefly introduce the basic concepts of CSP and the 
model checker, Failures-Divergences Refinement (FDR). In 
section 3, we describe the EMSS protocol along with the 
hash chaining mechanism involved. In section 4, we present 
our infinite state model of the protocol, including the 
network model, symbolic cryptographic operations, the 
honest agents and the intruder process. Section 5 describes 
modeling of hash chains for the infinite state model. In 
section 6, we discuss why it is not feasible to verify this 
model and the changes necessary to express the same model 
using finite number of states. Section 6 is devoted to 
conclusion and future work.   

II. COMMUNICATING SEQUENTIAL PROCESSES (CSP) 

In CSP, systems are described in terms of processes 

which are composed of instantaneous and atomic discrete 

events. The relations between processes and operations on 

processes are formalized with operational semantics of the 

algebra. Using the operational semantics, every CSP process 

can be converted to an equivalent labeled transition system 

(LTS). 
For a thorough reference of CSP, see [1][2][14][15].  

A. Notation 

The processes 𝑃 and 𝑄 can be defined as: 

 𝑃, 𝑄 ∷= 𝑆𝑇𝑂𝑃 | 𝑎 →  𝑃 | 𝑃 □ 𝑄   𝑃 ⊓ 𝑄    

𝑎: 𝐴 → 𝑃 𝑎    𝑃 \ 𝐴   𝑃 ||
𝐴

 𝑄 | ||𝐴𝑃
𝑃 | 𝑃 ||| 𝑄 | 𝜇 𝑋 ∙ 𝐹(𝑋)   
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In addition to these operations, more operations on 
processes and their inter-relationships are defined within 
algebraic semantics of CSP.  

 𝑆𝑇𝑂𝑃: Represents a deadlocked process. 

 𝑎 → 𝑃  (Prefixing): The process will communicate 
the event 𝑎 and then behave as process 𝑃. 

 𝑃 □ 𝑄  (Deterministic Choice): This process can 
behave either as 𝑃 or 𝑄, but the environment decides 
on which process to run. 

 𝑃 ⊓ 𝑄  (Nondeterministic Choice): Similar to 
deterministic choice. The main difference is, 
environment cannot decide on which process to run 
but the selection is performed nondeterministically. 

 𝑎: 𝐴 → 𝑃 𝑎  (Prefix Choice):  This represents a 
deterministic choice between the events of the set 𝐴 
which may be finite or infinite. This notation allows 
representing input and output from channels. The 
input 𝑐? 𝑥 ∶ 𝐴 → 𝑃(𝑥) can accept any input 𝑥 of type 
𝐴  along channel  𝑐 , following which it behaves as 
𝑃(𝑥). Its first event will be any event of the form c. a 
where a ∈ A.  The output 𝑐! 𝑣 → 𝑃 is initially able to 
perform only the output of v on channel c, then it 
behaves as 𝑃. 

 𝑃 \ 𝐴 (Hiding): This process is similar to process 𝑃 
but the environment will not see the members of the 
event set 𝐴 . The hidden events will occur 
immediately, as the environment is not able to see 
these events and synchronize with them.  

 𝑃 ||
𝐴

 𝑄  (Parallel Composition): Let 𝐴  be a set of 

events, then the process behaves as 𝑃 and 𝑄 acting 
concurrently, with synchronizing on any event in the 
synchronization set 𝐴 . Events not in 𝐴  may be 
performed by either of the processes independent of 
the other.  

 ||𝐴𝑃
𝑃 (Indexed Parallel): Defines a process which is 

composed of 𝑃  processes with a set of respective 
interfaces 𝐴𝑃 .  

 𝑃 ||| 𝑄  (Interleaving): Similar with parallel 
composition but the two components do not interact 
on any events. This is achieved by synchronizing on 

nothing, so 𝑃 ||| 𝑄 = 𝑃 ||
∅

 𝑄 . 

 𝜇 𝑋 ∙ 𝐹(𝑋) (Recursion): Represents a process which 
behaves like 𝐹(𝑋) but with every free occurrence of 
𝑋  in 𝑃  (recursively) replaced by 𝜇 𝑋 ∙ 𝐹 𝑋 ; where 
the variable 𝑋  here usually appears freely 
within 𝐹(𝑋).  

B. Denotational Semantics and Traces Model 

Denotational semantics of CSP provide models for 
capturing and comparing the behavior of processes. Unlike 
the operational semantics, which is more directly interested 
in the processes within the system, behavioral models are 
related with processes at a more abstract level.  

Different behaviors of the system are captured with 
different models, so they represent the system in different 
levels of detail. What they have in common is that each of 
the models provides an abstract way of representing a 

process as a set of behaviors it can have in one or more 
categories. 

There are three widely used models in CSP, that 
represent the most commonly used behaviors, namely Traces 
(𝒯 ), Stable Failures (ℱ ) and Failures / Divergences (𝒩 ) 
models.  

In Traces model [14], only the actions which are visible 
to the environment are recorded. The sequence of all events 
that a process has communicated by some point in its 
execution forms the trace of the process. This model is only 
involved in finite traces of processes. 

The traces model is useful for building the safety 
specifications of processes which define the behavior that the 
system should perform. Other models can be used to capture 
further properties of systems (e.g. liveness) by recording 
more detailed behavior of systems.  

In this paper, only traces model will be considered, as we 
are interested in the safety properties of the protocols. 

C. Refinement 

Let 𝑃  and 𝑅  be processes such that, 𝑃 ⊓ 𝑅 = 𝑅 , which 
indicates  𝑃 ⊓ 𝑅 can be used anywhere instead of 𝑅. In other 
words, every behavior of 𝑃 should also be a behavior of 𝑅. 
Hence, for such processes, we can say that 𝑃  refines 𝑅  or 
𝑅 ⊑ 𝑃 (i.e. 𝑅 is a refinement of 𝑃).  

The refinement relation is reflexive, anti-symmetric and 
transitive, thus it forms a partial ordering between processes. 
In traces model, 𝑆𝑇𝑂𝑃 is the most refined process, because 
for any 𝑃, 𝑡𝑟𝑎𝑐𝑒𝑠 𝑃 ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠 𝑆𝑇𝑂𝑃 . The least refined 
process is 𝑅𝑈𝑁Σ , for any process 𝑃 with an alphabet of Σ, 
𝑡𝑟𝑎𝑐𝑒𝑠(𝑅𝑈𝑁Σ) ⊇ 𝑡𝑟𝑎𝑐𝑒𝑠(𝑃).  

Having defined the refinement relation, it is 
straightforward to apply it on  𝒯 , ℱ  and 𝒩 ; however it is 
beyond the scope of this paper. 

D. Tool: Failures-Divergences Refinement (FDR) 

FDR [16] is a model checker, designed to establish 
verification results for systems, which are modeled and 
specified as 𝐶𝑆𝑃𝑀(Machine Readable CSP) scripts [17].  In 
addition to refinement checking, FDR can also perform 
determinism and deadlock checks on processes. 

To verify a system for correctness, we construct a 
process representing the system (i.e. the implementation 
process) and a specification process. FDR checks whether 
every behavior of the specification process is also a behavior 
of the implementation process, (i.e. refinement check) by 
performing an exhaustive search on the generated state space 
and it can generate counter-example traces, like other model 
checking tools.  

FDR translates processes into a corresponding finite LTS 
according to operational semantics through compilation. In 
compilation, a two-level approach is used for calculating 
operational semantics: The low level is fully general but 
relatively inefficient, whereas the high level is restricted (e.g. 
it cannot handle recursion) but much more efficient in space 
and time.  

Like other model checking tools, FDR suffers from state 
space explosion problem. Compression techniques can be 
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applied on processes and scripts can explicitly specify which 
technique to apply on each process.  

III. THE EFFICIENT MULTI-CHAINED STREAM SIGNATURE 

PROTOCOL 

EMSS (Efficient Multi-chained Stream Signature) [8] is a 
stream authentication protocol, based on signing a small 
number of special packets in a data stream. Each packet is 
linked to a signed packet via multiple hash chains. This is 
achieved by appending the hash of each packet (including 
possible appended hashes of previous packets) to a number 
of subsequent packets. Hence the protocol claims to amortize 
the cost of signing each packet, and achieve one-way 
authentication, even in lossy channels. 

In [8] several schemes are defined with probabilities of 
successful verification of each packet, however, (1, 2) 
scheme will be used as our protocol. 

The protocol can formally be described as follows: 
1. 𝐴 → 𝐵 ∶ 𝑃0 , 𝑃0 = 𝑑0   
2.  𝐴 → 𝐵 ∶ 𝑃1 , 𝑃1 = 𝑑1, 𝑕(𝑃0) 
i. 𝐴 → 𝐵 ∶ 𝑃𝑖 , 𝑃𝑖 = 𝑑𝑖 , 𝑕 𝑃𝑖−1 , 𝑕(𝑃𝑖−2) 
…  … … 
n. 𝐴 → 𝐵 ∶ 𝑃𝑛 , 𝑃𝑛 = {𝑕 𝑃𝑛−1 , 𝑕 𝑃𝑛−2 }𝑠𝑘(𝐴)  

where, 𝑕 is the hash function and 𝑑 represents the data. 
  

 
 

 
In first message, only 𝑑0  is sent to the receiver. In the 

second message, 𝑑1  is sent to the receiver along with the 
hash of 𝑑0 . Next message consists of 𝑑2  and hashes of 𝑑1 
and 𝑑0 . Thus, data 𝑑0  may be authenticated even if the 

message 𝑃1 is lost or unauthenticated. Likewise, the message 
Pi contains the hashes of messages Pi−1  and Pi−2  where 
2 < 𝑖 < 𝑛. The last message consists of the hashes of  Pn−1 
and Pn−2 , encrypted with 𝑠𝑘(𝑠)  - the private key of the 
sender (i.e. the signature message). This hash chanining 
mechanism of EMSS is illustrated in Fig. 1. 

The signature message is repeated periodically for every 
𝑛 messages. Clearly, the receiver must buffer messages until 
a signature message arrives, for authenticity verification.  

Receiver can only check for the authenticity of the 
previous messages; if and only if the signature in the last 
message is correct and there is a chain of hashes that reaches 
to one of the signed hashes. 

The EMSS protocol aims to authenticate sender to 
multiple receivers; providing one-way authentication 
between agents. Additionally the sender cannot claim that 
the authenticated messages are not sent by it, so the protocol 
claims to provide nonrepudiation properties. However, the 
protocol does not make any secrecy claims; contents of the 
messages are readable by everyone.  

In this paper, we assume that sender already knows the 
identities of receivers which run the protocol. We further 
assume that the receivers know the public key of the sender.  

IV. MODELLING EMSS PROTOCOL USING CSP 

In this section we present a finite state model of EMSS 
protocol and the concepts and assumptions used in the 
modeling process. 

A. Modeling Assumptions 

We assume that the agents show no behavior other than 
the behavior described in the protocol. Also, agents know 
their own secret keys, and the public key of the sender agent 
is already known by the receiver. We also assume that the 
intruder has the capabilities of the Dolev - Yao intruder 
model [18] which can eavesdrop, replay, modify or inject 
messages. 

Additionally, we assume to have a perfect cryptosystem 
in order to focus our analysis on the protocol, which means 
that nobody can decrypt the messages unless they know the 
secret keys, a ciphertext {𝑚}𝐾  can be generated by principal 
possessing 𝑚  and 𝐾 . For hashing, we assume that the 
contents of hashed messages cannot be retrieved by any 
agent and hashes of different messages are always different. 

B. Symbolic Data Types 

We represent protocol messages and its contents (e.g. 
agent identities, cryptographic items, etc...) in a structured 
way. Messages and their compound subcomponents are 
constructed from simpler data items by concatenation. This 
means that a communication of a compound message is 
equivalent to the communication of all of its atomic 
subcomponents. 

Hence we define a data type 𝑓𝑎𝑐𝑡 to represent atomic 
data items such as agent identities, keys, encrypted and 
hashed messages and compound data items that are built 
using atomic data items: 
 𝑓𝑎𝑐𝑡 ∶= 𝑆𝑞.  𝑓𝑎𝑐𝑡  | 𝐺𝑎𝑟𝑏𝑎𝑔𝑒 |  
  𝑝𝑘. 𝐴𝑔𝑒𝑛𝑡   𝑠𝑘. 𝐴𝑔𝑒𝑛𝑡     

Figure 1. The relation between packets in EMSS protocol  

𝑑0 

𝑑1 𝑑2 

𝑑3 𝑑4 

𝑑𝑛−1 𝑑𝑛  

sign message 

“the hash of A 

is appended to 

B”  

B A 
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  𝑘𝑒𝑦.  𝐴𝑔𝑒𝑛𝑡, 𝐴𝑔𝑒𝑛𝑡  |  
  𝑃𝑘.  𝑃𝐾𝑒𝑦,  𝑓𝑎𝑐𝑡   |  
  𝐸𝑛𝑐𝑟𝑦𝑝𝑡.  𝑆𝐾𝑒𝑦,  𝑓𝑎𝑐𝑡   |  
  𝐻𝑎𝑠𝑕.   𝑓𝑎𝑐𝑡    

The set 𝐴𝑔𝑒𝑛𝑡 is the set of agent labels. The identity of 
an agent is represented by its label 𝐴, where 𝐴 ∈ 𝐴𝑔𝑒𝑛𝑡.  

Sequencing construct is defined as 𝑆𝑞.  𝑓𝑎𝑐𝑡0 , 𝑓𝑎𝑐𝑡1,
… , 𝑓𝑎𝑐𝑡𝑛  , which represent a sequence of facts; 𝑓𝑎𝑐𝑡0  to 
𝑓𝑎𝑐𝑡𝑛 , where 𝑛  is an arbitrary number. Using sequencing 
allows us to create and use compound messages. 

Invalid or lost messages are symbolized as 𝐺𝑎𝑟𝑏𝑎𝑔𝑒. It 
can be viewed as a placeholder for such messages. 

Public and secret keys of agents are represented 
respectively as 𝑝𝑘. 𝐴𝑔𝑒𝑛𝑡 and 𝑠𝑘. 𝐴𝑔𝑒𝑛𝑡. Hence, a key pair 
for an agent 𝐴 becomes 𝑝𝑘. 𝐴 and 𝑠𝑘. 𝐴; which are the dual 
of each other. Similarly, symmetric keys are represented with 
𝑘𝑒𝑦. (𝐴𝑔𝑒𝑛𝑡, 𝐴𝑔𝑒𝑛𝑡). A session key between 𝐴 and 𝐵, 𝑘𝐴𝐵 , 
is represented as 𝑘𝑒𝑦. (𝐴, 𝐵). We also define sets 𝑃𝐾𝑒𝑦 and 
𝑆𝐾𝑒𝑦, which are the sets of all private and public keys and 
all symmetric keys, respectively. 

Encrypted messages using public key and symmetric 
cryptosystems share the same representation; which is  
𝑡𝑎𝑔. (𝑘𝑒𝑦,  𝑓𝑎𝑐𝑡 ) , where 𝑡𝑎𝑔  represents the encryption 
type and 𝑘𝑒𝑦 and  𝑓𝑎𝑐𝑡  symbolizes the key and the clear 
text message respectively.  

The tag 𝑃𝑘 symbolizes that the public key encryption is 
used. Thus, an encrypted protocol message using public keys 
has the form 𝑘. (𝑃𝐾𝑒𝑦,  𝑓𝑎𝑐𝑡 . A protocol message   𝐴 𝑝𝑘  𝐴  

is represented as 𝑃𝑘. (𝑝𝑘. 𝐴,  𝐴 ). 
Similarly, the tag 𝐸𝑛𝑐𝑟𝑦𝑝𝑡  symbolizes that symmetric 

key encryption is used. Such a message has the form 
𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑆𝑘𝑒𝑦,  𝑓𝑎𝑐𝑡 ) . A protocol message  𝐴 𝑘𝐴𝐵  is 
represented by 𝐸𝑛𝑐𝑟𝑦𝑝𝑡. (𝑘𝑒𝑦.  𝐴, 𝐵 ,  𝐴 ). 

Additionally, the data type 𝑓𝑎𝑐𝑡 is defined recursively to 
allow the use of nested encryption, nested hashing and 
sequencing inside an encryption.  

C. Cryptographic Operations 

In the analysis, the main focus of interest is finding the 
attacks which are mounted on the behavior of protocol 
participants, not on the cryptosystems used in the protocol. 
Furthermore, CSP is not a suitable formalism to represent 
and verify cryptosystems. Hence, we use symbolic 
cryptographic operations; which are abstracted away from 
the underlying cryptographic mechanism.  

Symbolic operations build data from atomic data items, 
by marking these data items with suitable tags. Encryption, 
decryption and hashing can be represented symbolically in 
this manner. 

1) Symbolic Encryption & Decryption 
Symbolic encryption with a key and a plaintext involves 

tagging these data types as encrypted. 
The use of symbolic decryption can be explicit or 

implicit. An agent process might synchronize with an 
encrypted message communicated through a channel. Since 
synchronization will mean that all fields within the tag 
should be the same; then that process would implicitly 
decrypt the message; without using additional mechanisms.  

In intruder process, decryption and encryption operations 
are defined as deductions. Intruder is able to encrypt a 
message if any key and the message are in its knowledge 
base. However, it may not know the contents of the message 
until it possesses the right key (i.e. the decryption operation). 

2) Symbolic Hashing 
Symbolic hashing involves tagging the data to indicate 

hashing. This representation adheres to the properties of 
hashing operation and our modeling assumptions because of 
several reasons: 

 Symbolic hashing does not explicitly prevent other 
processes from reading the contents of the hashed 
messages. However, our processes (including 
intruder process) don’t access the contents of the 
hashed messages. 

 Two hashed messages cannot have two equivalent 
values with symbolic hashing. Clearly, 𝐻𝑎𝑠𝑕.  𝐴 ≠
𝐻𝑎𝑠𝑕. (𝐵) when 𝐴 ≠ 𝐵. 

Being simple and elegant for most cases, this standard 
representation causes problems in hash chaining, which is 
covered next section.  

D. Honest Agents 

The honest agents are the agents that are known to be 
running the process as in protocol specification. In our 
model, 𝑆𝑒𝑛𝑑  and 𝑅𝑒𝑐𝑣  processes are honest agents where 
the parameter 𝑖𝑑 symbolizes the identity of an agent. 

1) Sender Agent 
We define the sender process in three sub processes: First 

process is responsible for sending 1
st
 and 2

nd
 protocol 

messages; which have a different format than 𝑖𝑡𝑕  message. 

Second process sends 𝑖𝑡𝑕  message and the last process sends 
the signature message. 

 The first part chooses a receiver to communicate with, 
receives the data from 𝐷𝑎𝑡𝑎𝑆𝑡𝑟𝑒𝑎𝑚 process and forms and 
transmits protocol messages using the 𝑠𝑒𝑛𝑑 channel. 

After sending initial protocol messages, the identity of 
the receiver agent is passed to the following process along 
with the hashes of the previous messages.  

Note that, 𝑃0 = 𝑑0 and 𝑃1 =  𝑑1 , 𝑕𝑎𝑠𝑕 𝑑0  . 
𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •   

 𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑0 → 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑0 →  

  𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑1 →  

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞.  𝑑1, 𝑕𝑎𝑠𝑕 𝑑0  →  

   𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 𝑕𝑎𝑠𝑕(𝑃0), 𝑕𝑎𝑠𝑕 𝑃1     
The second part requests for another data item, hashes 

the old data items and sends the 𝑖𝑡𝑕  protocol message. 

Alternatively; it may choose to send the signature message; 

which is resolved nondeterministically:  

 𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏, 𝑕1 , 𝑕2  =  𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 𝑕1 , 𝑕2  ⊓ 

 (𝑔𝑒𝑡𝐷𝑎𝑡𝑎. 𝑖𝑑? 𝑑𝑖 → 

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞.  𝑑𝑖 , 𝑕1, 𝑕2 → 

  𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏, 𝑕2 , 𝑕𝑎𝑠𝑕 𝑃𝑖    

The final part of the sender agent involves sending the 

signature message. After sending the signature message; we 

might start over with a new run of the protocol: 

𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏, 𝑕1 , 𝑕2 =  
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 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞.  𝑕1 , 𝑕2 ) →  
  𝑆𝑒𝑛𝑑0(𝑖𝑑)  

Note that in a new run; old hash and data values are 
assumed to be forgotten by the sender; hence the processed 
data and the hash items are not sent as parameters to the new 
protocol run.  

2) Receiver Agent  
Similar to the sender, the receiver is modeled using three 

sub processes, each having similar roles with their 𝑆𝑒𝑛𝑑𝑒𝑟 
counter parts.  

However, unlike the sender process, the receiver should 
also check the authenticity of the received protocol messages 
after the reception of a signature message. We just buffer 
them until a signature message arrives in the set 𝑅𝑒𝑐𝑣𝑑: 

𝑅𝑒𝑐𝑣0 𝑖𝑑  = □ 𝑎: 𝐴𝑔𝑒𝑛𝑡, 𝑑𝑟0: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •  
 𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑑𝑟0 →  
  □ 𝑕𝑟0: 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑑𝑟1: 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •  
  𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞.  𝑑𝑟1, 𝑕𝑟0 →  
  𝑅𝑒𝑠𝑝𝑖(𝑖𝑑, 𝑎, { 𝑑𝑟0 ,  𝑑𝑟1 , 𝑕𝑟0 })  
The second process is responsible for collecting any 𝑖𝑡𝑕  

message sent by the sender. The sender might choose to send 
the signature message after 2

nd
 message; so this part should 

be prepared to receive a signature message. 

𝑅𝑒𝑐𝑣𝑖(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑)  =  𝑅𝑒𝑐𝑣𝑛(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑) □ (   
□ 𝑕𝑟1, 𝑕𝑟2 ∶  𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠, 𝑑𝑟 ∶ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 •   
𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑆𝑞.  𝑑𝑟 , 𝑕𝑟1 , 𝑕𝑟2 →  

  𝑅𝑒𝑐𝑣𝑖+1(𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 ∪   𝑑𝑟 , 𝑕𝑟1 , 𝑕𝑟2  ))  
The final process is responsible for the reception of the 

signature message.  

𝑅𝑒𝑐𝑣𝑛 𝑖𝑑, 𝑎, 𝑅𝑒𝑐𝑣𝑑 =  □ 𝑕𝑟0 , 𝑕𝑟1 ∶  𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 •  
𝑟𝑒𝑐𝑣. 𝑎. 𝑖𝑑. 𝑃𝑘.  𝑠𝑘. 𝑎, 𝑆𝑞.  𝑕𝑟0 , 𝑕𝑟1  → 

𝐶𝑕𝑒𝑐𝑘(𝑅𝑒𝑐𝑣𝑑,   𝑕𝑟0 , 𝑕𝑟1  , 𝑛)  
3) Check Process 

EMSS protocol does not explicitly specify a method for 
checking the authenticity of received messages, allowing us 
to make assumptions about the behavior of an agent. This 
makes the model of EMSS protocol more interesting than 
other protocol models, in which all behavior of agents are 
specified in the protocol. 

After the arrival of the signature message, we should 
check the buffer for (possibly) authentic messages. 

We pass the buffer of received packets (i.e. 𝑅𝑒𝑐𝑣𝑑 set), 
set of validated messages (i.e. initially the hashes in the 
signature message) and the total number of received packets 
𝑛 as parameters to checker process. 

Basically, 𝐶𝑕𝑒𝑐𝑘  process begins from the (𝑛 − 1)𝑡𝑕  
message and for each message 𝑃𝑖 , it checks that, whether any 
of the messages 𝑃𝑖+1  and 𝑃𝑖+2  are in validated set. We 
cannot verify a message, if there is not a link to at least one 
validated message. We also check if the hash values in the 
validated messages are equal to this message’s hash.  

If a message meets these conditions, it is considered as an 
authentic and sent via 𝑝𝑢𝑡𝐷𝑎𝑡𝑎  channel. Moreover, that 
message is added to the verified set 𝑉 and removed from the 
message buffer set 𝑅. 
𝐶𝑕𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =  
 𝑖𝑓 𝑖 < 0 𝑡𝑕𝑒𝑛 
  𝑅𝑒𝑐𝑣0(𝑖𝑑) 

  𝑒𝑙𝑠𝑒 

 𝑖𝑓   𝑃𝑖+1 ∈ 𝑉  𝑎𝑛𝑑 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝1(𝑃𝑖+1 )  

 𝑜𝑟   𝑃𝑖+2 ∈ 𝑉 𝑎𝑛𝑑 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝑝2 𝑃𝑖+2     
 𝑡𝑕𝑒𝑛  
   𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 → 
      𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1) 
 𝑒𝑙𝑠𝑒 
  𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1) 

On the other hand, if a message fails these conditions, it 
is considered as non-authentic, and the message is removed 
from set 𝑅.  

The helper functions 𝑕𝑝1(𝑃𝑖) and 𝑕𝑝2(𝑃𝑖), which appear 
in 𝐶𝑕𝑒𝑐𝑘  process, return first or second hash value in 𝑃𝑖 , 
respectively. That is, 𝑕𝑝1 𝑃𝑖 = 𝑕𝑖−1  and 𝑕𝑝2 𝑃𝑖 = 𝑕𝑖−2  if 
𝑃𝑖 = 𝑆𝑞.  𝑑𝑖 , 𝑕𝑖−1, 𝑕𝑖−2 . The function 𝑑𝑎𝑡𝑎 𝑃𝑖  returns the 
data part of the message 𝑃𝑖 .  

Note that, if more than two consecutive messages cannot 
be verified, then the second 𝑖𝑓  condition will never be 
satisfied by subsequent recursions, which matches with our 
expectation.  

E. The Intruder 

The intruder process obeys the Dolev - Yao model with 
perfect cryptography assumption. It can intercept or overhear 
messages, add them to its knowledge base and forge fake 
messages using its knowledge base. 

To generate messages from a set of known messages; 
intruder uses a 𝐷𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 set. Deductions are composed of 
pairs (𝑚, 𝑆); where 𝑆 is a set of facts and 𝑚 is the message 
that can be deduced using all of the facts in 𝑆. 

Intruder initially knows all public facts and the private 
facts about an agent that it can impersonate. 

The knowledge base of the intruder is not stored as a set; 
rather it is modeled as a network of two state processes, for 
performance issues stated in [19]. For each fact, reachable by 
intruder, 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓) represents an unknown fact 𝑓 and 
𝑘𝑛𝑜𝑤𝑛(𝑓) represents a known fact 𝑓. These processes can 
carry out 𝑖𝑛𝑓𝑒𝑟 actions, which uses deductions to figure out 
unknown information from known facts.  

𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛 process does not make any inferences, but 
generates already known messages to be sent to the receiving 
agent. The 𝑐𝑕𝑎𝑠𝑒() function is a compression function to be 
used by FDR, which instructs the model checker to apply 
partial-order reduction on the selected process. 

Overall intruder process is (without irrelevant details):  
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 =   
  𝑐𝑕𝑎𝑠𝑒(||𝑓: 𝐿𝑒𝑎𝑟𝑛𝑎𝑏𝑙𝑒𝐹𝑎𝑐𝑡𝑠 𝑖𝑔𝑛𝑜𝑟𝑎𝑛𝑡𝑜𝑓(𝑓))\{𝑖𝑛𝑓𝑒𝑟}  

  ||| 𝑆𝑎𝑦𝐾𝑛𝑜𝑤𝑛 
For details about the intruder, see [19], as we use it with 

slight changes and it is a general intruder model which is 
applicable for most protocol models. 

F. The Network 

We use a similar network model with [11], which is 
depicted in Fig. 2. This model is also appropriate as our 
model with simple changes because we also use Dolev-Yao 
intruder model. We define 𝑆𝑒𝑛𝑑 = 𝑆𝑒𝑛𝑑0(𝐴𝑙𝑖𝑐𝑒), 𝑅𝑒𝑐𝑣 =
𝑅𝑒𝑐𝑣0(𝐵𝑜𝑏), and 𝐴𝑙𝑖𝑐𝑒, 𝐵𝑜𝑏, 𝑀𝑎𝑙𝑙𝑜𝑟𝑦 ∈ 𝐴𝑔𝑒𝑛𝑡. 
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𝑆𝑒𝑛𝑑  and 𝑅𝑒𝑐𝑣  processes can only communicate with 
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟, thus, the 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 process models the medium. 

𝑆𝑦𝑠𝑡𝑒𝑚 = (𝑆𝑒𝑛𝑑 ||| 𝑅𝑒𝑐𝑣 ) || 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 
As obvious from protocol definition; 𝑆𝑒𝑛𝑑 process only 

sends but does not receive any data and 𝑅𝑒𝑐𝑣 process does 
not send any data. However the 𝑟𝑒𝑐𝑣 channel between 𝑆𝑒𝑛𝑑 
and 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟  and the 𝑠𝑒𝑛𝑑  channel between  𝑅𝑒𝑐𝑣  and 
𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟  are included in the model for the sake of 
generality.  

 

 
Different from other authentication protocols, we have to 

send data within the messages in EMSS protocol. We 

assume that the data is retrieved using 𝑔𝑒𝑡𝐷𝑎𝑡𝑎  channel 

from some other process. The receiver buffers messages 

until the signature message arrives and 𝐶𝑕𝑒𝑐𝑘 process uses 

𝑝𝑢𝑡𝐷𝑎𝑡𝑎  channel to send validated data items on this 

channel. 

V. MODELING THE HASH CHAIN IN EMSS PROTOCOL 

This section discusses the problems that we encountered 
during the modeling of EMSS protocol and proposes a 
method to overcome these problems. First we explain the 
straightforward approach and state the problems. Then, we 
present our fixed size hashed message approach for hash 
chain modeling. 

A. The Straightforward Approach 

For protocol models that do not use hash chaining, 
tagging data with 𝐻𝑎𝑠𝑕. ( )  is enough. However; with the 
tagged representation, the size of the hash increases with the 
size of the message. The use of hash chains can create 
arbitrarily long hash representations; as in the EMSS 

protocol. Using this method, 𝑖𝑡𝑕   message would be 
represented as: 
𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞.  𝑑𝑖 , 

𝐻𝑎𝑠𝑕.  𝑆𝑞.  𝑑𝑖−1 , 𝐻𝑎𝑠𝑕.  𝑆𝑞.  𝑑𝑖−2 …    , 
𝐻𝑎𝑠𝑕.  𝑆𝑞.  𝑑𝑖−2 , 𝐻𝑎𝑠𝑕.  𝑆𝑞.  𝑑𝑖−3 …    , 

   
where 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 represents the identities of 𝑆𝑒𝑛𝑑𝑒𝑟 and 
𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟 processes, respectively. 

Another issue is the types of 𝑠𝑒𝑛𝑑 and 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 channels. 
In CSP; it is possible to define channels with arbitrary type; 
however for model-checking purposes; the types of channels 
should be defined explicitly. Clearly, definition of channels 
that accepts messages with arbitrary number of nested hashes 
would be a problem while expressing the protocol for model-
checking tools.  

Because of these reasons, we cannot model hash chaining 
in the EMSS protocol using a tagged representation.  

B. Proposed Approach 

In our approach, the size of a hashed message is aimed to 
be fixed, whatever the message length is. So, we want to 

represent 𝑖𝑡𝑕  protocol message with: 
𝑠𝑒𝑛𝑑. 𝐴𝑙𝑖𝑐𝑒. 𝐵𝑜𝑏. 𝑆𝑞.  𝑑𝑖 , 𝑕𝑖−1, 𝑕𝑖−2  

where 𝑕𝑖−1 and 𝑕𝑖−2  represent the hash values of previous 
two messages.   

Representing the protocol messages in such a manner 
requires a relationship between the hash values and the 
protocol messages to be hashed. We provide this relationship 
by using a mapping set𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, which contains all the 
possible messages assigned to a unique hash value. 
Afterwards, we can use this set to obtain the hash value of a 
protocol message. 

We define 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set, which represent all possible data 
values in the protocol: 

𝐴𝑙𝑙𝐷𝑎𝑡𝑎 =  𝑑𝑖    𝑖 ∈  0. . 𝑚  }  
where 𝑚 represents the upper bound on data values.  

Likewise, the 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 set represents all hashes on the 
system, with an upper bound of 𝑛: 

𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 =  𝑕𝑖    𝑖 ∈  0. . 𝑛  } 
Now, we create a map of hash values to corresponding 

contents of hashed messages. The map is a set of tuples 
which associate each hash value with a respective data value. 
We need to define different tuples for each of the possible 
protocol messages: 

 𝑖 = 1: (𝑕𝑖 ,  𝑑𝑥 ) 

 𝑖 = 2: (𝑕𝑖 ,  𝑑𝑥 , 𝑕𝑦  ) 

 𝑖 < 𝑛 : (𝑕𝑖 ,  𝑑𝑥 , 𝑕𝑦 , 𝑕𝑧 ) 

where 𝑕𝑖  represents unique hash value of protocol messages 
 𝑑𝑥  ,    𝑑𝑥 , 𝑕𝑦   and   𝑑𝑥 , 𝑕𝑦 , 𝑕𝑧 ; where 𝑕𝑖 , 𝑕𝑦 , 𝑕𝑧 ∈
𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 and 𝑑𝑥 ∈ 𝐴𝑙𝑙𝐷𝑎𝑡𝑎. 

For 1
st
 and 2

nd
 messages, this set is defined as: 

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1 =    𝑕𝑖 ,  𝑑𝑖     𝑖 ∈ {0. . 𝑚} }   
𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕2 = {  𝑕𝑖 ,  𝑑𝑥 , 𝑕𝑦    | 0 ≤ 𝑥 < 𝑚,  
 0 ≤ 𝑦 < 𝑚, 𝑖 =  𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕1  𝑥 + 1 + 𝑦 }  

and for 𝑖𝑡𝑕  message: 

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 =    𝑕𝑖  ,  𝑑𝑥 , 𝑕𝑦 , 𝑕𝑧       
 0 ≤ 𝑥 < 𝑚,  
 0 ≤ 𝑦, 𝑧 < 𝑘,   
 𝑖 = 𝑘 𝑥 + 1  𝑦 + 1 + 𝑧 }  

where 𝑘 =  |𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑐 |𝑖−1
𝑐=1   

The 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕  set with a maximum length of 𝑛  is 
composed of union of all sets and represents all possible hash 
values of protocol messages: 

𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 =   𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖
𝑛
𝑖=1   

The 𝑕𝑎𝑠𝑕  𝑑𝑠   function is defined to return the unique 
𝑕𝑖  value assigned to a particular 𝑑𝑠: 

𝑕𝑎𝑠𝑕 𝑑𝑠 =  𝑕′    𝑕′ , 𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, 𝑠 = 𝑑𝑠}  
This hashing scheme obeys our modeling assumptions 

about hashes; we cannot retrieve the contents of the message 
by using only the hash value and all hashes in the system are 
distinct.  

VI. VERIFICATION OF THE MODEL 

In previous sections, we described the EMSS protocol 
using CSP and modeled the hash chaining mechanism, by 

Figure 2. Overview of the network model showing processes and channels 

𝑟𝑒𝑐𝑣 𝑟𝑒𝑐𝑣 

𝑠𝑒𝑛𝑑 𝑠𝑒𝑛𝑑 

𝑆𝑒𝑛𝑑 𝑅𝑒𝑐𝑣 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟 

𝑔𝑒𝑡𝐷𝑎𝑡𝑎 

𝑝𝑢𝑡𝐷𝑎𝑡𝑎 
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assigning each possible protocol message a unique hash 
value. While this approach can model the protocol, problems 
arise when we want to perform verification using model 
checking.  

The first problem is the infamous state-space explosion 
problem. When a model checking tool tries to construct the 
state space of the system, a new state is generated for each 
distinct item in the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set. However, the cardinality 
of 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set can be quite high, even if a small 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 
set is used. For example, if we assume that  𝐴𝑙𝑙𝐷𝑎𝑡𝑎 = 2, 
there will be around 150  million different ways of 
constructing 4

th
 protocol message, as given in Table 1. 

TABLE I.  THE SIZE OF DATA HASH  SET  

𝑖 0 1 2 3 4 

|𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕𝑖 | 2 4 72 12168   ~150 𝑀  

 
This exponential rise of the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set makes model 

checking infeasible beyond 3 messages, even if we limit 
ourselves with 2 distinct data values. 

Another problem is the time complexity of the 𝑕𝑎𝑠𝑕 
function. As the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 set grows bigger, it would take 
more time to select the correct hash value from the set, 
assuming we could hold all the required states in memory. 

We need to refine the model, by abstracting unnecessary 
details away from the proposed model. To begin with, we 
analyze and improve our hash chain model and then we carry 
our optimizations to the processes in the network. 

1) Revising the Data Model 
As we discussed in previous sections, the data values are 

assumed to be taken from the 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 set. This set contains 
𝑚 different data values, which symbolizes all the data values 
in the system.  

However, we are also not interested in the actual contents 
of the data transferred but we’re interested in the source of 
the data, for specification purposes. Thus we drop 𝐴𝑙𝑙𝐷𝑎𝑡𝑎 
set and represent the data sent by agents as 𝐷𝑎𝑡𝑎. 𝐴𝑔𝑒𝑛𝑡, 
which belongs to the data type 𝑓𝑎𝑐𝑡. 

Note that, this revision also means that we do not need 
another external process inputting data on the 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 
channel. Hence, this revision reduces the state space by 
removing a parallel composition from the system. 

2) Bounding the Size of Hash Sets 
In our hashing mechanism, we explicitly calculated the 

correct hash value of a given protocol message using the 
𝑕𝑎𝑠𝑕  function, which maps each protocol message to a 
single correct hash value. All other hash values would be 
incorrect, as there is one correct hash value. 

This observation means that, while we are building the 
state space of the system, we use one state for representing 
the correct hash and all the remaining states for representing 
the incorrect hash value. We reduce the state space greatly, 
since we represent all incorrect hash values using a single 
symbolic value. 

Thus, we declare two symbolic facts; 𝑕𝐶 , representing a 
correct hash value and 𝑕𝐼 , representing an incorrect hash 
value, with respect to the corresponding previous message. 
In this case, message 𝑃𝑖 =  𝑑𝑎𝑡𝑎. 𝐴𝑙𝑖𝑐𝑒, 𝑕𝐶 , 𝑕𝐼  represents a 

message, carrying data from agent 𝐴𝑙𝑖𝑐𝑒  and correct hash 
value for 𝑃𝑖−1 and an incorrect hash value for 𝑃𝑖−2. As we 
use one symbolic value for all of the incorrect hash values 
(and we are not interested in exactly which incorrect value 
has arrived) this approach greatly reduces the state space of 
the system and makes model checking possible, without 
losing any attacks. 

Next, we need to redefine 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠  and 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 
sets. The new symbolic hash values 𝑕𝐶  and 𝑕𝐼  will become 
members of 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠  such that 𝐴𝑙𝑙𝐻𝑎𝑠𝑕𝑒𝑠 = {𝑕𝐶 , 𝑕𝐼} . 
Also, the 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕  set no longer needs to contain all 
possible mappings of hashes and messages. We redefine 
𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕  such that it contains only the messages whose 
hashes are correct: 
𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕 = { 𝑑𝑎𝑡𝑎. 𝐴 ,  𝑑𝑎𝑡𝑎. 𝐴, 𝑕𝐶 ,  𝑑𝑎𝑡𝑎. 𝐴, 𝑕𝐶 , 𝑕𝐶   } 

The receiver needs to calculate the hashes of incoming 
messages, so we use a simplified hash function: 

𝑕𝑎𝑠𝑕 𝑑𝑠 = 𝑖𝑓  𝑕 = ∅  𝑡𝑕𝑒𝑛 𝑕𝐼 𝑒𝑙𝑠𝑒 𝑕𝐶   
where  𝑕 = { 𝑕 | 𝑑𝑠 ∈ 𝐷𝑎𝑡𝑎𝐻𝑎𝑠𝑕, 𝑑𝑠 = 𝑠 }. 

Having defined a new hashing mechanism, we need to 
show that this mechanism is compatible with our hashing 
assumptions: 

 Model satisfies our first assumption, because we 
have no mechanism to deduce the input from hash 
values 𝑕𝐼 and 𝑕𝐶 . 

 As we map all incorrect hash values to a single 
symbolic value 𝑕𝐼, different input messages can have 
the same hash value. However, hash 𝑕𝐶  and 𝑕𝐼  are 
only symbolic values denoting the correct or 
incorrect hash of a message. We are not interested in 
the exact hash value but rather we are interested 
whether the value is right or wrong. In this sense, we 
can say that the model satisfies this condition 

3) Revisions on the Agent Processes 
We remove 𝑔𝑒𝑡𝐷𝑎𝑡𝑎 channel from the 𝑆𝑒𝑛𝑑 process and 

also, there’s no need to send hash values of previous 
messages to processes, we assume that sender always 
calculates and sends the correct hash value. Additionally we 
define the process 𝐿𝑎𝑠𝑡  to be used for validation and 
verification, which defines the behavior of the system after 
the protocol run. 

𝑆𝑒𝑛𝑑0 𝑖𝑑 = ⊓ 𝑏: 𝐴𝑔𝑒𝑛𝑡 •   
 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑑𝑎𝑡𝑎. 𝑖𝑑 →  

  𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞.  𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝑕𝐶 →  

   𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏    
𝑆𝑒𝑛𝑑𝑖 𝑖𝑑, 𝑏  =  𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏  ⊓   

(𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑆𝑞.  𝑑𝑎𝑡𝑎. 𝑖𝑑, 𝑕𝐶 , 𝑕𝐶 → 

  𝑆𝑒𝑛𝑑𝑖+1 𝑖𝑑, 𝑏 )  
𝑆𝑒𝑛𝑑𝑛 𝑖𝑑, 𝑏 =  

 𝑠𝑒𝑛𝑑. 𝑖𝑑. 𝑏. 𝑃𝑘. (𝑠𝑘. 𝑖𝑑, 𝑆𝑞.  𝑕𝐶 , 𝑕𝐶 ) →  
  𝐿𝑎𝑠𝑡  

Similarly, the 𝑅𝑒𝑐𝑣 process has slight changes, such as 
removing 𝐴𝑙𝑙𝐷𝑎𝑡𝑎, so we do not rewrite 𝑅𝑒𝑐𝑣 process here. 

In the 𝐶𝑕𝑒𝑐𝑘  process, we do not need to compare the 
hash of current message with the hash values in previous 
messages. We assume that, if any of previous messages have 
been verified, then they contain the right hash value for the 
current message. Thus, we only need to check whether any 
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of the previous messages are in checked set. Also, we do not 
want to start a new process run after the check is finished, so 
we replace 𝑅𝑒𝑐𝑣0with 𝐿𝑎𝑠𝑡 process. 
𝐶𝑕𝑒𝑐𝑘 𝑅, 𝑉, 𝑖 =  
 𝑖𝑓 𝑖 < 0 𝑡𝑕𝑒𝑛 
  𝐿𝑎𝑠𝑡 
  𝑒𝑙𝑠𝑒 
 𝑖𝑓 𝑕𝑎𝑠𝑕 𝑃𝑖 = 𝑕𝐶  𝑎𝑛𝑑  

  𝑃𝑖+1 ∈ 𝑉  𝑜𝑟  𝑃𝑖+2 ∈ 𝑉    
 𝑡𝑕𝑒𝑛  
   𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝑑𝑎𝑡𝑎 𝑃𝑖 → 
      𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉 ∪ 𝑃𝑖 , 𝑖 − 1) 
 𝑒𝑙𝑠𝑒 
  𝐶𝑕𝑒𝑐𝑘(𝑅 − 𝑃𝑖 , 𝑉, 𝑖 − 1) 

4) Validation of the CSP Model 
We want to make sure that we built the right model i.e. 

validating the model, by building a test specification. For 
validation, we define 𝐿𝑎𝑠𝑡 process such that 𝐿𝑎𝑠𝑡 =
𝑡𝑒𝑠𝑡. 𝑜𝑘 → 𝑆𝑇𝑂𝑃. We assume that the model is correct, if a 
state where two agents can synchronize on 𝑡𝑒𝑠𝑡. 𝑜𝑘  is 
reachable. That is actually hiding all other events within the 
system and checking if any 𝑡𝑒𝑠𝑡. 𝑜𝑘 event occurs in traces: 

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚 \ {Σ − {𝑡𝑒𝑠𝑡}} 
This property is checked by FDR and it is not satisfied. 

FDR returns traces in which the 𝑡𝑒𝑠𝑡. 𝑜𝑘  event occurs, 
meaning that such a state is reachable and our model is valid. 

5) Verification of CSP Model 
EMSS protocol claims to authenticate the sender to 

receiver agent, which means that the receiver should only 
accept data items that it believes to be sent by the correct 
sender. To verify this property, we must check whether a 
state exits in which receiver agent accepts a data that has not 
been sent by the stated sender: 

𝑆𝑇𝑂𝑃 ⊑𝑇 𝑆𝑦𝑠𝑡𝑒𝑚 \ {Σ − {𝑝𝑢𝑡𝐷𝑎𝑡𝑎. 𝐴𝑙𝑖𝑐𝑒}} 
This property is checked by FDR and satisfied, indicating 

that the EMSS protocol fulfils its authentication claims. 

VII. CONCLUSIONS & FUTURE WORK 

In this paper, we discussed the challenges that were 
encountered during the modeling of the EMSS protocol 
using CSP. The main challenge was the modeling of the hash 
chain mechanism; which was not possible using the 
straightforward approach. We overcame this problem by 
using a fixed sized hashed message approach.  

Then, we tried to convert the infinite state model of the 
protocol into a finite state model, using fixed sized hashed 
messages. We used symbolic hash values to represent the 
correct and incorrect hashes of messages, which enable us to 
validate and verify our model using the model checker FDR, 
without losing any attacks. 

Although [11] uses data independence techniques to 
build the finite state model, we do not think that they are 
necessary to apply to our model of the EMSS protocol. This 
is mainly because of the protocol uses data items in its 
definition and we are not interested in the values of the data 
items. Additionally, the 𝑕𝑎𝑠𝑕 function is available to agents 
and the intruder so the recycling of hash and data items is 
unnecessary. 

From the definition of the EMSS protocol given in [8], 
we cannot determine how the protocol behaves using 
multiple parallel sessions of protocol runs, so we assumed 
that each run is performed involving one sender and one 
receiver.  

This work may be extended to include the checking of 
both authentication and nonrepudiation properties involving 
unbounded number of receivers, which is not considered in 
this paper.  
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