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İzmir Institute of Technology, Faculty of Science, Department of Chemistry, 35430 Gülbahçe, Urla, İzmir, Turkey
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a b s t r a c t

Genetic algorithm based multivariate calibration models were generated for infrared spectroscopic deter-
mination of aluminum rolling oil additives and contaminants such as gear and hydraulic oils. Two different
additives and six different suspected contaminants were investigated in the base oil lubricant. Routine
analysis samples from 9 different aluminum rolling systems were collected in a period of 2 months
in an aluminum rolling plant and gas chromatography (GC) is used as the reference method. Infrared
absorbance spectra of the samples were then collected and the reference values obtained with GC were
used together with these spectra for model building. Inverse least squares method was optimized with a
as chromatography
ultivariate calibration
enetic algorithms
luminum rolling oils

genetic algorithm by selecting the most contributing regions of the infrared spectra for each component.
The R2 values between GC and multivariate spectroscopic determinations were around 0.99 indicating
a good correlation between the two methods. Performance of genetic algorithm based multivariate cal-
ibration models were also compared with partial least squares (PLS) method. The study showed that
infrared spectroscopy coupled with multivariate calibration can be used for continuous monitoring of
additives and contaminants in aluminum rolling oil. By this way, analysis time is significantly reduced

inati
and simultaneous determ

. Introduction

Common machinery oils for lubricating hydraulic systems, gear
ox or bearings of sheet and foil mills are composed of min-
ral or synthetic oils with a number of additives such as extreme
ressure additives, friction modifiers, corrosion inhibitors, oxida-
ion inhibitors, viscosity modifiers, pour point depressants, foam
ecomposers, etc. The additives are very important in order to

mprove the performance of machinery oils in operation. The con-
entration of the additives may vary significantly from 1–2% to 30%,
epending on the requirement [1]. These oils and additives must
e non-staining and complied with food codex as the aluminum
oils produced in foil mills were consumed in many food packaging
pplications without any further cleaning other than heat treat-
ent of the aluminum plates and foils in order to remove residues

f rolling oils and additives. On the other hand, the lubrication and
ooling oil mixture were sprayed as fine droplets to the rolling mills

nd unavoidably these oils were contaminated to some extent with
ear and hydraulic fluids of the rolling machines since the solubility
f these fluids were quite high in rolling oils. The chemical charac-
eristics of the contaminants are very much different from rolling
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E-mail address: durmusozdemir@iyte.edu.tr (D. Özdemir).

924-2031/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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on of all the components can be accomplished.
© 2010 Elsevier B.V. All rights reserved.

oils and often have higher boiling points and this causes serious
staining problems that can not be removed with heat treatment
of the finished products resulting in significant profit loses for the
industry. In addition, undesired mixing of gear and hydraulic flu-
ids with rolling oils change the lubricating performance of the oil
mixtures resulting in mechanical deformations on the rolled sheets
and foils [2].

Several analytical methods were proposed in the literature for
analysis of complex industrial oil blends. High performance liquid
chromatography (HPLC) was used to determine contamination of
cold rolling oils with hydraulic fluids and gear oils [1]. In a compar-
ative study, synthetic esters that are used in aluminum hot rolling
lubricants were determined using chromatographic and titrimet-
ric methods and results were compared based on the acid number
and hydroxyl number [3]. Bernabei et al. [4] described two gas
chromatography (GC) based methods for the determination of addi-
tives that are found in lubricating oils used in gas turbine engines.
In another study, identification and quantitative determination of
contaminants in lubricating and hydraulic fluids were reported by
using gas chromatography weight-spectrometry [5]. Haveng and

Rohwer [6] reported the application of capillary gas chromatogra-
phy to rapid screening of rolling mill oils.

However these chromatographic techniques suffer from long
analysis times and if several rolling mills are to be monitored
continuously these techniques are not very practical for routine

dx.doi.org/10.1016/j.vibspec.2010.05.002
http://www.sciencedirect.com/science/journal/09242031
http://www.elsevier.com/locate/vibspec
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nalysis. Spectroscopic analysis is an alternative to chromato-
raphic methods in terms of rapid analysis and relatively cheap
peration costs along with on-line monitoring advantages. For
xample, Paschoal and et al. [7] had used near infrared spectroscopy
oupled with a multivariate partial least squares calibration (PLS)
ethod for their analysis of contaminants in lubricating oils. Gaso-

ine, ethylene glycol and water contamination in automotive engine
ubricating oils were determined using attenuated total reflectance
ATR) mid infrared spectroscopy and PLS [8]. Fluorescence spec-
roscopy was used to determine tramp oil contaminations in hot
olling oil emulsions [9]. Synchronous fluorescence measurements
ere made with a fluorescence tracer in order to enhance the con-

aminant signal and distinguish it from rolling oil signal. Fourier
ransform infrared (FTIR) spectroscopy combined with multivari-
te calibration was used to monitor lubricating oil degradation and
nalysis of possible contaminants in aluminum cold rolling sys-
ems [10–12]. A recent study focused on different modes of FTIR
pectroscopy for the determination of organic monolayers of lubri-
ating oil residues on the surface of rolled aluminum sheets after
eat treatment [13]. The authors proposed a surface enhanced

nfrared spectroscopic method for the effective determination of
hin organic films on the surfaces of aluminum sheets.

Multivariate calibration methods make it possible to relate
nstrument responses that consist of several predictor variables to
chemical or physical property of a sample. Several classical mul-

ivariate calibration methods have been developed in last couple of
ecades [14–16] for the analysis of complex chemical mixtures, and
he choice of the most suitable calibration method is very important
n order to generate calibration models with high predictive abil-
ty for future samples. In some cases, conventional methods may
ot offer a satisfactory solution to a given problem due to the com-
lexity of the data, and it may be necessary to apply some sort of
ariable selection. There have been many mathematical methods
f variable selection and genetic algorithm is one of them offer-
ng a fast and effective solution for large scale problems [17–20].
nverse least squares (ILS) is based on the inverse of Beer’s Law,

here concentrations of an analyte are modeled as a function of
bsorbance measurements. Genetic inverse least squares (GILS) is
modified versions of original ILS method in which a small set

f wavelengths are selected from a full spectral data matrix and
volved to an optimum solution using a genetic algorithm (GA),
nd has been applied to a number of wavelength selection prob-
ems. The detailed description of the GILS algorithm has been given
n number of recent studies [21–23].

In this study, the determination of additives and possible con-
aminants, such as gear and hydraulic oils in aluminum rolling oils
s presented with the aim of developing a fast and reliable FTIR
pectroscopic method for the routine analysis of industrial alu-
inum rolling systems. The conventional analysis method that is in

ractice in the particular industrial aluminum sheet and foil plant
s based on a capillary column GC and suffers form long analysis
imes. As a result, it becomes too late to act on the contamina-
ion prevention resulting in unacceptable product and loss of profit.
he proposed FTIR based spectroscopic method is much faster for
etermination of the concentrations of the additives and possi-
le contaminants in the aluminum rolling oils. The GILS method
as used as the multivariate calibration and wavelength selec-

ion method for each component of the lubricating oil mixtures.
n addition to GILS, partial least squares (PLS) is also used to build
alibration models in order to determine possible improvements
ffered by genetic algorithm based approach.
.1. Genetic inverse least squares

The major drawback of the classical least squares (CLS) method
s that all of the interfering species must be known and their con-
troscopy 54 (2010) 10–20 11

centrations included in the model. This need can be eliminated by
using the inverse least squares (ILS) method which uses the inverse
of Beer’s Law. In the ILS method, concentration of a component is
modeled as a function of absorbance measurements. Because mod-
ern spectroscopic instruments are very stable and provide excellent
signal-to-noise (S/N) ratios, it is believed that the majority of errors
lie in the reference values of the calibration sample, not in the mea-
surement of their spectra. In fact, in many cases the concentration
data of calibration set is generated from another analytical tech-
nique that already has inherent errors which might be higher than
those of the spectrometer (for example, Kjeldahl protein analysis
used to calibrate NIR spectra).

The ILS model for m calibration samples with n wavelengths for
each spectrum is described by:

C = AP + EC (1)

where C is the m × l matrix of the component concentrations, A is
the m × n matrix of the calibration spectra, P is the n × l matrix of the
unknown calibration coefficients relating l component concentra-
tions to the spectral intensities and EC is the m × l matrix of errors in
the concentrations not fit by the model. In the calibration step, ILS
minimizes the squared sum of the residuals in the concentrations.
The biggest advantage of ILS is that Eq. (1) can be reduced for the
analysis of single component at a time since analysis is based on
an ILS model is invariant with respect to the number of chemical
components included in the analysis. The reduced model is given
as:

c = Ap + ec (2)

where c is the m × 1 vector of concentrations for the component
that is being analyzed, p is n × 1 vector of calibration coefficients
and ec is the m × 1 vector of concentration residuals not fit by the
model. During the calibration step, the least-squares estimate of p
is:

p̂ = (A′A)−1A′ · c (3)

where p̂ are the estimated calibration coefficients. Once p̂ is calcu-
lated, the concentration of the analyte of interest can be predicted
with the equation below.

ĉ = a′ · p̂ (4)

where ĉ is the scalar estimated concentration and a is the spectrum
of the unknown sample. The ability to predict one component at a
time without knowing the concentrations of interfering species has
made ILS one of the most frequently used calibration methods.

The major disadvantage of Eq. (3) is that the number of wave-
lengths in the calibration spectra should not be more than the
number of calibration samples. This is a big restriction since the
number of wavelengths in a spectrum will generally be much more
than the number of calibration samples and the selection of wave-
lengths that provide the best fit for the model is not a trivial process.
Several wavelength selection strategies, such as stepwise wave-
length selection and all possible combination searches are available
to build a model which fits the data best.

Genetic Algorithms (GA) are global search and optimization
methods based upon the principles of natural evolution and selec-
tion as developed by Darwin. Computationally, the implementation
of a typical GA is quite simple and consists of five basic steps includ-
ing initialization of a gene population, evaluation of the population,
selection of the parent genes for breeding and mating, crossover

and mutation, and replacing parents with their offspring. These
steps have taken their names from the biological foundation of the
algorithm.

Genetic inverse least squares (GILS) is an implementation of
a GA for selecting wavelengths to build multivariate calibration
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odels with reduced data set. GILS follows the same basic ini-
ialize/breed/mutate/evaluate algorithm as other GA’s to select a
ubset of wavelengths but is unique in the way it encodes genes.

gene is a potential solution to a given problem and the exact
orm may vary from application to application. Here, the term gene
s used to describe the collection of instrumental response at the

avelength range given in the data set. The term ‘population’ is
sed to describe the collection of individual genes in the current
eneration.

In the initialization step, the first generation of genes is created
andomly with a fixed population size. Although random initializa-
ion helps to minimize bias and maximize the number of possible
ecombinations, GILS is designed to select initial genes in a some-
hat biased random fashion in order to start with genes better

uited to the problem than those that would be randomly selected.
iasing is done with a correlation coefficient by plotting the pre-
icted results of initial population against the actual component
oncentrations. The size of the gene pool is a user defined even
umber in order to allow breeding of each gene in the population.

t is important to note that the larger the population size, the longer
he computation time. The number of instrumental responses in a
ene is determined randomly between a fixed low limit and high
imit. The lower limit was set to 2 in order to allow single point
rossover whereas the higher limit was set to eliminate over fitting
roblems and reduce the computation time. Once the initial gene
opulation is created, the next step is to evaluate and rank the genes
sing a fitness function, which is the inverse of the standard error
f prediction from cross validation (SEPCV).

The third step is where the basic principle of natural evolution is
ut to work for GILS. This step involves the selection of the parent
enes from the current population for breeding using a roulette
heel selection method according to their fitness values. The goal

s to give a higher chance to those genes with high fitness so that
nly the best performing members of the population will survive in
he long run and will be able to pass their information to the next
enerations. Because of the random nature of the roulette wheel
election method, however, genes with low fitness values will also
ave some chance to be selected. Also, there will be genes that
re selected multiple times and some genes will not be selected
t all and will be thrown out of the gene pool. After the selection
rocedure is completed, the selected genes are allowed to mate
op-down in pairs whereby the first gene mates with the second
ene and the third one with the fourth one and so on as illustrated
n the following example:

Parents

1 = (A1147, A951, #A2179, A2218) (5)

2 = (A1225, A1478, #A1343, A950, A1451, A2358, A931, A1158) (6)

The points where the genes are cut for mating are indicated by
.

Offspring

3 = (A1147, A951, A1343, A950, A1451, A2358, A931, A1158) (7)

4 = (A2179, A2218, A1225, A1478) (8)

here A1147 represents the instrument response at the wave-
ength given in subscript, S1 and S2 represent the first and second

arent genes and S3 and S4 are the corresponding genes for the off-
pring. Here the first part of S1 is combined with the second part of
he S2 to give the S3, likewise the second part of the S1 is combined
ith the first part of the S2 to give S4. This process is called the single
oint crossover and is common in GILS. Single point crossover will
troscopy 54 (2010) 10–20

not provide different offspring if both parent genes are identical,
which may happen in roulette wheel selection, when both genes
are broken at the same point. Also note that mating can increase
or decrease the number of instrument responses in the offspring
genes. After crossover, the parent genes are replaced by their off-
spring and the offspring are evaluated. The ranking process is based
on their fitness values following the evaluation step. Then the selec-
tion for breeding/mating starts all over again. This is repeated until
a predefined number of iterations are reached.

Mutation which introduces random deviations into the popu-
lation was also introduced into the GILS during the mating step at
a rate of 1% as is typical in GA’s. This is usually done by replacing
one of the responses in an existing gene with a randomly selected
new one. Mutation allows the GILS to explore the search space and
incorporate new material into the genetic population. It helps keep
the search moving and can eject GILS from a local minimum on the
response surface. However, it is important not to set the mutation
rate too high since it may keep the GA from being able to exploit the
existing population. Also, the GILS method is an iterative algorithm
and therefore there is a high possibility that the method may easily
over fit the calibration data so that the predictions for independent
sets might be poor. To eliminate possible over fitting problems,
cross validation is used in which one spectrum is left out of the cal-
ibration set and the model is constructed with m − 1 sample. Then
this model is used to predict the concentration of left out sample.
This process is continued until all samples are left out al least once
in each iteration. As long as the number of spectra in the calibration
set is not too large, cross validation is an effective method of elimi-
nating over fitting. If the number of calibration spectra is very large,
then the GILS method has the option of half validation approach in
which the half of the spectra in the calibration set is used to validate
the model in each iteration.

In the end, the gene with the lowest SEPCV (highest fitness) is
selected for the model building and this model is used to predict
the concentrations of component being analyzed in the prediction
(test) sets. The success of the model in the prediction of the test
sets is evaluated using standard error of prediction (SEP). Because
random processes are heavily involved in GILS as in all the GA’s, the
program has been set to run several times for each component in
this study. The best run (i.e. the one generating the lowest SEPCV
for the calibration set) is subsequently selected for evaluation and
further analysis. The termination of the algorithm can be done in
many ways. The easiest way is to set a predefined iteration number
for the number of breeding/mating cycles.

GILS is relatively simple in terms of the mathematics involved
in the model building and prediction steps, but at the same time
it has the advantages of the multivariate calibration methods with
a reduced data set since it uses the full spectrum to extract genes.
By selecting a subset of instrument responses it is able to minimize
nonlinearities that might be present in the full spectral region.

2. Experimental

2.1. Materials

Aluminum rolling oil, additives, hydraulic oils and gear oils were
purchased from different suppliers. The rolling base oil named as
Linpar 13–14 which is linear paraffinic oil with 13–14 carbon chain
length was obtained from Sasol (Sasol Italy S.p.A. Milano, Italy). The
additive Nafol 1214S is a blend of linear alcohols with 10–16 car-

bon chain length and used as antioxidant and wetting agent. It is
also supplied by Sasol, Italy. Another additive that was used in this
study is Cindolube SR 99 AP which is purchased from Houghton
(Houghton Italia S.p.A, Genova, Italy). Cindolube SR is a perfor-
mance additive lubricant used as antioxidant and wetting agent.
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0 min.

ydrotex Alu 16 and 46 (Belgin Madeni Yağlar Ticaret Ve Sanayi
.Ş., Kocaeli, Turkey) were used in the aluminum rolling mills as

he hydraulic oils. A number of gear oils were also investigated in
his study as the possible source of contaminations in aluminum
olling lubricating oils. Among them, Recompound Alu 100, 220,
20 and 460 that are also purchased from Belgin, were used in this
tudy.

.2. Chromatographic analysis

A Shimadzu GC 17A gas chromatography system (Shimadzu,
yoto, Japan) equipped with a flame ionization detector was used
or the reference analysis of real samples taken from the aluminum
olling mills. A fused silica capillary column (Phase bonded, poly 5%
iphenyl, 95% dimethylsiloxane) was selected for the analysis of the
dditives and the hydraulic and gear oils. A gradient temperature
rogram with split mode (1/30) starting from 100 ◦C with an incre-
. (a) Complete chromatograms, (b) between 10 and 20 min, and (c) between 20 and

ment of 5 ◦C per minute up to 300 ◦C in the oven for the column were
applied in order to separate several peaks for all the components in
the chromatograms. Injection port and detector temperatures were
set to 280 and 320 ◦C, respectively. Standard calibration curves
were developed for each component in the oil mixture system and
reference analysis of the real samples was performed with these
calibration models. The reference errors of chromatographic anal-
ysis of the components were 0.01% for Nafol, 0.04% for Alu 16, 0.06%
for Total Alu and 0.14% for Cindolube by mass (w/w%).

2.3. Spectroscopic analysis
A PerkinElmer Spectrum 100 model FTIR spectrometer
(PerkinElmer Inc., MA, USA) were used to collect sample spectra
between 4000 and 400 cm−1. This spectrometer was equipped with
a KBr beam splitter and fast recovery deuterated triglycine sulfate
detector. Samples were measured using rectangular KBr sealed cell,
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Fig. 2. Standard calibration curves of (a) Cindolube, (b) N

ith a path length of 0.2 mm and the spectra were collected in
bsorbance mode by taking Linpar as the background.

.4. Sample preparation

In order to generate multivariate calibration models, 136 sam-
les of rolling oil samples were collected during a period of 2
onths at 9 different rolling systems in the particular aluminum

olling plant. The GC and FTIR analysis of the samples were per-
ormed whenever they are collected from different rolling systems
n this 2 months period. The rolling systems labeled as C1, C3, FH1,
H2, FH3, and FH4 were designed to be cooled with the base oil
inpar that contained Nafol as the additive and the base oil used
n C2, C4, and SH1 rolling systems contained Cindolube as addi-
ive. The concentration range of Nafol in the rolling oil ranged from
.40% to 0.80% by weight whereas the percent concentration of Cin-
olube was between 4.0% and 8.0% by weight depending on the
ystem. Half of the collected samples contained Nafol as additive
nd the rest of the samples had Cindolube as additive in the rolling
il.

.5. Data analysis

Standard GC calibration models were generated on GC instru-

ent described above. Spectra of real samples were then

ransferred to another computer where all data processing was
arried out. The genetic inverse least squares (GILS) method was
ritten in MATLAB programming language using Matlab 5.3 (Math-
orks Inc., Natick, MA). As a reference multivariate calibration
c) Alu 16, and (d) Total Alu for chromatographic analysis.

method, partial least squares (PLS) (Minitab Inc., State College, PA)
method was used to compare the performance of GILS.

3. Results and discussion

The additive Nafol 1214S was added to the base oil Linpar up to
0.80% by weight in all the rolling systems in the current aluminum
plant where as the percent content of other additive Cindolube SR
ranged between 4.0% and 8.0% by weight. Before this study was
started, the level of hydraulic and gear oil contaminations were not
known quantitatively to the technical staff of the aluminum plant
but from the finished products, the existence of residues from these
heavier oils were noticed from time to time. This was thought to be
the result of contamination of rolling oil as a result of unexpected
leaking and dissolving of these heavier oils by base oil. The technical
staff have been adding decreased amount of the hydraulic and gear
oils to the systems from time to time and dilute rolling oil with fresh
base oil as to decrease the contamination effect on the surface of the
finished aluminum products. A total of 9 different production lines
labeled as C1, C3, FH1, FH2, FH3 and FH4 in which Nafol was the
additive in base oil and C2, C4, and SH1 which contained Cindolube
as additive in base oil were investigated in this study.

The base oil Linpar was the dominating component in the
samples with a percent concentration around 90% and remaining

additives and possible contaminants were around 10% maximum.
From the initial investigation of chromatograms for the real sam-
ples it was seen that Hydrotex Alu and Recompound Alu series gave
very low intensity peaks and therefore no further sample dilution
was applied prior to GC analysis. The resulting chromatograms con-
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ig. 3. GC chromatograms of real samples taken from C2, C3, FH2 and FH3 rolling sy
0 min.

ained very large and saturated Linpar peaks around 14 and 16 min
s shown in Fig. 1. The additives and possible contaminants gave
everal narrow and small peaks following Linpar peaks. In order to
istinguish the chromatographic elution profiles of each additive
nd possible contaminant, standard calibration samples of these
omponents were prepared in Linpar as weight percent base. As
een from the chromatograms, there is a shift in the intensity scale
f each chromatogram which was artificially made by adding a
radually increasing constant (e.g. an offset of 1000 was added to
econd and 2000 for the third one and so on) to each chromatogram.
ecause the full chromatogram takes 40 min and contains closely
paced several peaks, the regions where the additives and possible
ontaminants gave peaks were enlarged in two separate graphs one
etween 10 and 20 min and other between 20 and 30 min. The two
eaks around 17.35 min belong to additives Cindolube and Nafol.
ere the larger one was resulted from Cindolube as its standard
oncentration is almost 10 times when compared with the standard

f Nafol in Linpar. These peaks are used to quantify Cindolube and
afol in real samples. Note that the additives Nafol and Cindolube
ave very similar chromatograms and there was no distinguishable
eak for Nafol from Cindolube whereas Cindolube had a number of
ther unique peaks after 19th minute. Since the real sample did not
. (a) Complete chromatograms, (b) between 10 and 20 min, and (c) between 20 and

contain Nafol and Cindolube at the same time in the real samples,
it was still possible to analyze these components for the different
aluminum rolling systems.

When compared with other Alu components, it was possible to
separate hydrotex Alu 16. As seen from the middle chromatogram
in which the retention times between 10 and 20 min are shown,
the Alu 16 gave a unique peak around 19.50 min. Also the peak
around 21.50 min belongs to the Alu 16 shown in the bottom chro-
matogram. Both of these peaks are used to develop calibration
models for Alu 16 and the one that is observed at 21.50 min were
used for the quantification of this component in the real samples.
On the other hand, retention times between 20 and 30 min shown
on the bottom chromatogram indicated several peaks for Hydrotex
A1u 46 and Recompound Alu series (Alu 100, 220, 320 and 460)
and all of these peaks are the same in each of these components.
Several different GC programs were tested with the hope of sep-
arating these components but except the Alu 16, all others gave

almost the same chromatograms in all these trials. As a result, it
was not possible to obtain reference GC analysis for each of these
components. Therefore, determination of total contamination due
to these components (except Alu 16) was carried out by preparing
a mixture stock solution of these standards which contained equal
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mount from each one of them. Among the several peaks observed
or the Alu mixtures, the peak around 22.90 min were used to quan-
ify total Alu in the real samples. Standard calibration solutions
f Cindolube (0.50–10.0%, w/w), Nafol (0.40–1.20%, w/w), Alu 16
0.10–4.0%, w/w), and total Alu (0.20–8.0%, w/w) were prepared in
inpar. Duplicate analysis of these standard were carried out for
ach component in order to make sure that the reproducibility of
he chromatographic analysis is approached and simple calibration

odels were constructed by using the peak areas at the selected
etention times. Fig. 2 shows standard calibration curves for Cin-
olube, Nafol, Hydrotex Alu 16 and total Alu (Alu 46, 100, 220,
20, and 460). The linearity of standard calibration curves for all
he component were quite good as shown in Fig. 2 and they were
sed to determine Cindolube, Nafol, Alu 16 and total Alu in the real
amples collected from Aluminum rolling systems in a period of
months routine sample collection. Duplicate analysis of the real

amples was also performed and average of these determinations
as used as the reference data for further spectroscopic analysis.
epresentative chromatograms of real samples that are taken from
2, C3, FH2 and FH3 production lines are shown in Fig. 3. As indi-
ated before, there were 9 different rolling systems including sheet
nd foil rolling lines but for the sake of clarity only four of them are
isplayed here. As seen from Fig. 3, the small peaks around 19.50
nd 21.50 min indicate that the presence of Hydrotex Alu 16 is very
ow in the real samples. On the other hand, total alu components

ave a number of peaks especially after 20 min retention times. The
eason for the three Nofol system chromatograms that were illus-
rated in this figure is that FH2 and FH3 systems had high amount of
otal Alu contamination relative to any other system investigated
ere. The results of the additives, total Alu components and Alu 16
00 cm−1 wavenumbers. (a) With the real samples and (b) without the real samples.

and other components in real samples will be given later in the
following section as a comparison with multivariate spectroscopic
analysis results.

After completing chromatographic analysis of the standard and
real samples that would be included in the spectroscopic calibra-
tion models, FTIR spectra of the same samples were collected.
Fig. 4 shows the FTIR pure component spectra of the additives
and possible contaminants along with real samples. These spectra
were obtained against pure base oil Linpar background. The upper
graph shows all the pure components with a percent concentration
around 1.0% (w/w) in Linpar and two real samples one from the
Nafol systems (C1) and the other from the Cindolube systems (C2).
The bottom graph is obtained after removing real samples from the
above graph as C1 and especially C2 samples have much intense
peaks that hide the features of the other components. As seen from
bottom graph, the Alu 46 has a very sharp peak around 1740 cm−1

and in fact, none of other components studied here gave a peak at
this wavenumber. Existence of this peak in the real samples can be
clearly seen in the samples from C1 and C2 rolling systems. There-
fore, a preliminary conclusion can be made at this moment for a
possible Alu 46 contamination. In addition to Alu 46 contamina-
tion, the presence of Alu 460 in the real samples is evident form the
upper graph as seen from the enlarged region between 1600 and
1800 cm−1. Here the peak around 1640 cm−1 is clearly due to Alu
460 in real samples.
When the pure component spectra of other Alu series (Alu 16,
Alu 100, 220, and 320) are examined it is seen that they all gave
some peaks around 900 and 1200 cm−1 regions but these peaks are
all overlapped with not only themselves but also with the Nafol
and Cindolube peaks. For this reason it is not easy to state directly
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ig. 5. Reference values obtained from GC analysis vs. GILS predictions based on FT
6, and (d) Total Alu contents.

rom these spectra whether if there is a contamination due to these
omponents or Nafol and Cindolube in the real samples. This would
e answered only after developing multivariate calibration models
or each of these components. However, from the chromatographic
nalysis of these components it was clear that Alu 16 can be sep-
rated from others (Alu 46, Alu 100, 220, 320, and 460). Therefore
hromatographic analysis will eventually let us know if there is
contamination due to Alu 16. On the other hand, as mentioned
efore, the presence of Alu 46, Alu 100, 220, 320 and 460 can only
e reported as total amount due to these components in the real
amples based on chromatographic analysis.

Even though it was possible to generate multivariate calibra-
ion models using synthetically prepared mixtures for the Alu
omponents that were not separated by chromatographic analy-
is, this study was planned to focus on multivariate modeling of
he components that were successfully separated by the GC anal-
sis. Therefore individual spectroscopic modeling of the other Alu
omponents with multivariate calibration is a subject of another
tudy which is currently under investigation. As a result, multivari-
te calibration models that are based on FTIR spectroscopy were

enerated with the 136 real samples mentioned above in the cali-
ration and independent validation sets. As indicated before, half of
hese samples contained Nafol as additive and the rest had Cindol-
be. Therefore 68 of these samples were used to determine Nafol
ontent and the other 68 of them were used to determine Cindol-
ctra for the additives (a) Nafol and (b) Cindolube and for the contaminants (c) Alu

ube content. On the other hand, the contaminants would be the
same in both systems and therefore all of these 136 samples were
used to model Alu 16 and total Alu contents.

In order to generate multivariate calibration models for Alu 16
and total Alu contents, the samples were numbered form 1 to 136
and all the odd numbered samples were taken as calibration set
and the remaining even numbered samples were reserved as an
independent validation set. For the additives Nafol and Cindolube,
68 samples were divided into two subsets as calibration and vali-
dation sets as described above for both components. As indicated
before, GILS is based on an evolutionary iterative variable selection
procedure and if an appropriate precaution is not undertaken it
could possibly generate over fitted calibration models. Therefore it
was set to operate with a leave one out cross validation algorithm
in each iteration step. However in order to have a double check on
the predictive ability of the models an independent validation set
were also used at the end of the GILS algorithms. In all the cali-
bration models described here, GILS were set to run with 30 genes
and 100 iterations. Fig. 5 shows the reference vs. predicted plots
of Nafol, Cindolube, Alu 16 and total Alu which contains Hydrotex

Alu 46, Recompound Alu 100, 220, 320, and 460. The multivari-
ate calibration models that are based on FTIR spectra of process
samples had good predictive ability for the independent validation
samples. The R2 values given on the plots are for the calibration
set samples and they were all around 0.99 except for the Alu 16
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ig. 6. Reference values obtained from GC analysis vs. PLS predictions based on FTIR spec
nd (d) Total Alu contents.

ig. 7. Comparison of the GC vs. GILS predictions of the (a) Nafol, (b) Cindolube, (c) Alu 1
tra for the additives (a) Nafol and (b) Cindolube and for the contaminants (c) Alu 16

6, and (d) Total Alu contents in rolling oils taken from 9 different rolling systems.
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Table 1
The SEPCV and SEP values along with the number of PLS factors selected from leave
one out cross validation for the PLS and GILS models.

Method SEPCV and SEP Nafol Cindolube Alu 16 Total Alu

SEPCV (w/w%) 0.03 0.13 0.09 0.15
PLS SEP (w/w%) 0.07 0.07 0.09 0.18

Number of PC 16 14 3 9
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The fact that the GILS relies heavily on the random processes,
GILS
SEPCV (w/w%) 0.01 0.06 0.03 0.15
SEP (w/w%) 0.03 0.06 0.04 0.18

hich resulted in a R2 value of 0.96. On the other hand, R2 values
or the independent test set would be more informative for the long
erm reliability of the models. However, the R2 values for the inde-
endent test samples were slightly less than the values for Nafol
dditive and Alu 16. The values were 0.93 for Nafol, 0.87 for Alu
6, and 0.99 for both Cindolube and Total Alu. Among the models
eveloped by GILS, Alu 16 results seem to deviate more from the
R reference values. This can be explained when the pure compo-
ent spectrum of Alu 16 is compared with the other components
tudied. As seen from Fig. 4, Alu 16 gave weak peaks for a 1.0%
w/w) standard sample where as maximum Alu 16 concentrations
or the most of the process samples analyzed with GC were around
.5% by weight. As a result of these weak spectral features, rela-
ively poor multivariate calibration model was generated for the
ontaminant Alu 16. Overall, the standard error of prediction from
ross validation (SEPCV) and standard error of prediction (SEP) val-
es were 0.025% and 0.037% by weight, respectively, for calibration
nd independent validation sets.

The fact that Cindolube and Nafol gave much stronger infrared
bsorption than the contaminants Alu series, very good multivari-
te calibration models were constructed for these two additives.
owever, the results of independent validation set for Nafol were
ot as good as that of Cindolube. This could be the result of much
igher concentration of Cindolube in the process samples result-

ng in a much stronger infrared peak. In fact the concentration of
indolube in the process samples was almost 10 times higher than
he concentration of Nafol in the samples. The SEPCV and SEP val-
es for Nafol were 0.012% and 0.034% by weight, respectively. On
he other hand, both SEPCV and SEP values were the same (0.055%,
/w) for Cindolube indicating a very robust and strong model based

n spectroscopic determination.
When the result of Total Alu content was examined in Fig. 5, it

s seen that at least four different degrees of contamination takes
lace in the process samples. However, a single calibration model
as sufficient to model in all these samples and the results for the

ndependent validation set was almost as good as the results for
he calibration set. The SEPCV and the SEP values were 0.15% and
.18% by weight, respectively.

The GILS approach constructs multivariate calibration models
ased on a genetic algorithm through an iterative variable selection
tep, and we compared its prediction ability to that of PLS as the
ost commonly used multivariate calibration method. The same

alibration and independent validation sets were used in order to
irectly compare the predictive performance of GILS and PLS. Fig. 6
hows the predicted vs. reference concentration plots for Nafol, Cin-
olube, Alu 16 and total Alu using the PLS calibration method. When
ompared with the GILS results in Fig. 5, the PLS calibration model
enerated for total Alu yielded results comparable to those of GILS
ith a R2 value of 0.99. However, the PLS result for Alu 16 was poor
ith a R2 value of 0.52 whereas the calibration model generated
ith GILS for Alu 16 gave a R2 value of 0.96. In addition, PLS cali-
ration models for Nafol and Cindolube gave R2 values around 0.96
ompared to R2 values near 0.99 based upon the GILS models for
he same components. The SEPCV and SEP values along with the
umber of PLS factors selected from leave one out cross validation
Fig. 8. Distribution of selected wavenumbers along with corresponding pure com-
ponent spectrum (a) Alu 16, (b) Total Alu, (c) Cindolube, and (d) Nafol.

are given in Table 1 for both the PLS and GILS models. Selection
of optimum number of PLS factors was done with prediction error
sum of squares (PRESS) from leave one out cross validation. Note
that GILS is not a factor based calibration method. As seen in Table 1,
calibration models built with PLS required relatively large number
of PLS factors for Nafol and Cindolube whereas model for total Alu
required 9 PLS factors. The poor results obtained with PLS for Alu
16 may be a result of the fact that the optimal number of PLS factors
used to construct the model is only 3 for this analyte. When more
PLS factors were used to generate calibration models for Alu 16, the
SEPCV was dramatically increased suggesting that PLS was unable
build a robust calibration model.

In order to illustrate the contents of the additives and the con-
taminants in each particular process samples investigated in this
study, a bar graph is given in Fig. 7 which compares GC result with
GILS results. The fact that there were a large number of samples
from each rolling system, only average determinations was illus-
trated in this plot for each system. As seen from the figure, the
highest total Alu contamination is seen in FH2 (5.50%, w/w) and
FH3 (5.90%, w/w) whereas lowest contamination is observed in C4
(0.68%, w/w) system. For Alu 16 determination, FH1 and SH1 sys-
tems had lowest percent contamination which was around 0.10%
by weight where as C3 and FH3 had about 0.36% Alu 16 contam-
inations. The Nafol and Cindolube contents of the rolling systems
indicate that there is a good agreement between GC and GILS deter-
minations.
it was also set to run 50 times for each component in order to
determine selection frequencies of the most used wavenumbers
(wavelengths) in the multivariate calibration steps. Fig. 8 shows
the selection frequencies of the selected wavenumbers along with
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he pure component spectrum of Alu 16, Nafol, Cindolube and a
ixture of total Alu components that are modeled in this study.
s seen from Fig. 8, selection frequencies for Nafol and Cindolube
ere localized mainly in the regions where most dominating peaks

re observed for these components. On the other hand, the high-
st selection frequencies for Alu 16 and total Alu components are
way from the regions where peaks for Nafol and Cindolube over-
aps especially around 1200 cm−1 even though the Alu components
ad rather more intense and broader peaks around 1200 cm−1. In

act, the most frequently selected wavenumbers for Alu compo-
ents were seen between 1600 and 1700 cm−1 region where weak
eaks are seen for these components. These results showed that
he GILS method was very effective to extract necessary informa-
ion while constructing multivariate calibration models resulting in
robust component specific modeling despite all the overlapping

eatures in the spectra.

. Conclusion

Results had shown that the GILS method is able to model
olling oil additives and contaminant concentrations successfully
sing FTIR spectra of the process samples. Multivariate calibra-
ion models that are generated with GILS was component specific
s observed from selection frequency plots indicating that with
ll the overlapping and complex nature of the FTIR spectra of
he multicomponent mixtures, the GILS algorithm only focuses on
he regions where the most concentration related information is

ontained. Comparison of GILS models with PLS models revealed
hat the same prediction performance was observed for total Alu
hereas GILS generated relatively better calibration models for

ther components studied. Determination of the contaminants
ased on FTIR spectroscopy coupled with multivariate calibration
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offers a much faster analysis that could allow continuous monitor-
ing of the production process.
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