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Abstract
In this paper, a discrete extension of the (G′/G)-expansion method is applied
to a relativistic Toda lattice system and a discrete nonlinear Schrödinger
equation in order to obtain discrete traveling wave solutions. Closed form
solutions with more arbitrary parameters, which reduce to solitary and periodic
waves, are exhibited. New rational solutions are also obtained. The method
is straightforward and concise, and its applications in physical sciences are
promising.

PACS numbers: 02.30.Jr, 05.45.Yv, 02.30.Ik

1. Introduction

Since the original work of Fermi et al [1] in the 1950s, there has been an explosion of interest to
the study of wave phenomena arising in nonlinear differential-difference equations (NDDEs)
which are at the very heart of almost any many-particle system. Generally, the dynamics of
a many-particle system can be considered as a discrete analog of certain continuous systems.
Condensed matter physics is a particular research area of physical sciences where discreteness
plays an important role, and the same could also be said of topics in biophysics, chemistry
or mechanical engineering. In the last four decades or so, paying more attention to such
equations, researchers proposed many physically important NDDEs [2–5].

Recently, Wang et al [6] proposed the so-called (G′/G)-expansion method to seek for
exact solutions of nonlinear evolution equations in the form of solitary and periodic waves.
The essential observation about the (G′/G)-expansion method is that it reveals further results
with more arbitrary parameters and is powerful in the sense that it takes full advantage of linear
theory by assuming a second-order linear equation as the ansatz. The solution procedure is
easy, reliable and efficient, as well as does not require a large amount of run-time with the
help of a computer algebra system such as MATHEMATICA. Naturally, the (G′/G)-expansion
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method has been applied to various kinds of nonlinear problems in science and engineering,
and lately more attention is paid to its adaptation and generalization [7–23].

Our objective in this paper is to perform an analytic study on a relativistic Toda lattice
system and a discrete nonlinear Schrödinger equation by using the extended (G′/G)-expansion
method. The rest of this paper is organized as follows. The method of solution is described
in section 2. We analyze two physically important equations in section 3. Finally, some
concluding remarks are given in section 4.

2. The extended (G′/G)-expansion method for NDDEs

Let us consider a system of M polynomial NDDEs in the form

�
(
un+p1

(x), . . . , un+pk
(x), . . . , u′

n+p1
(x), . . . , u′

n+pk
(x), . . . , u(r)

n+p1
(x), . . . , u(r)

n+pk
(x)

) = 0,

(1)

in which the dependent variable un have M components ui,n and so do its shifts, the continuous
variable x has N components xi, the discrete variable n has Q components nj, and the k shift
vectors piZ

Q and u(r)(x) denote the collection of mixed derivative terms of order r.

Step 1. For traveling wave solutions to equation (1), we first make the wave transformation

un+ps
(x) = Un+ps

(ξn), ξn =
Q∑

i=1

dini +
N∑

j=1

cjxj + ζ (s = 1, 2, . . . , k), (2)

where the coefficients c1, c2, . . . , cN , d1, d2, . . . , dQ and the phase ζ are all constants. Then,
equation (1) reduces to

�
(
Un+p1

(ξn), . . . , Un+pk
(ξn), . . . , U′

n+p1
(ξn), . . . , U′

n+pk
(ξn), . . . , U(r)

n+p1
(ξn), . . . ,

U(r)
n+pk

(ξn)
) = 0. (3)

Step 2. We assume that the solution of equation (3) is in the finite series expansion form

Un(ξn) =
m∑

l=−m

al

(
G′(ξn)

G(ξn)

)l

, a2
−m + a2

m �= 0, (4)

where m (a positive integer) and ai’s are constants to be determined, and G(ξn) is the general
solution of the equation

G′′(ξn) + μG(ξn) = 0, (5)

where μ is an arbitrary constant and the prime denotes the derivative with respect to ξn. The
general solution of equation (5) is well known for us. Thus, we have the following cases:

G′(ξn)

G(ξn)
= √−μ

(
C1 cosh(

√−μξn) + C2 sinh(
√−μξn)

C1 sinh(
√−μξn) + C2 cosh(

√−μξn)

)
, μ < 0, (6a)

G′(ξn)

G(ξn)
= √

μ

(−C1 sin(
√

μξn) + C2 cos(
√

μξn)

C1 cos(
√

μξn) + C2 sin(
√

μξn)

)
, μ > 0, (6b)

G′(ξn)

G(ξn)
= C1

C1ξn + C2
, μ = 0, (6c)

where C1 and C2 are arbitrary constants.

Step 3. By a straightforward calculation, we can get the identity

ξn+ps
= ξn + ϕs, ϕs = ps1d1 + ps2d2 + · · · + psQdQ, (7)
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where psj is the j th component of the shift vector ps . Hence, considering the
trigonometric/hyperbolic function identities and using the functions (6a)–(6c) together with
(7), we derive the uniform formulas:

Un+ps
(ξn) =

m∑
l=−m

al

(√−μG′(ξn) − μ tanh(
√−μϕs)G(ξn)√−μG(ξn) + tanh(

√−μϕs)G′(ξn)

)l

, a2
−m + a2

m �= 0, μ < 0,

(8a)

Un+ps
(ξn) =

m∑
l=−m

al

(√
μG′(ξn) − μ tan(

√
μϕs)G(ξn)√

μG(ξn) + tan(
√

μϕs)G′(ξn)

)l

, a2
−m + a2

m �= 0, μ > 0,

(8b)

Un+ps
(ξn) =

m∑
l=−m

al

(
G′(ξn)

G(ξn) + ϕsG′(ξn)

)l

, a2
−m + a2

m �= 0, μ = 0. (8c)

Step 4. By means of the ansatz (4), we define the degree of Un(ξn) as D[Un(ξn)] = m which
gives rise to the degree of other expressions as

D
[
U(r)

n (ξn)
] = m + r, D

[(
U(r)

n (ξn)
)β] = β(m + r),

D
[(

Un(ξn)
)α(

U(r)
n (ξn)

)β] = αm + β(m + r).

Balancing the highest order nonlinear term(s) and the highest order derivative term
in Un(ξn), we can easily determine the degree m of equations (4) and (8a)–(8c) from
equation (3). Since Un+ps

can be interpreted as being of degree zero in (G′(ξn)/G(ξn)),
the leading terms of Un+ps

(ps �= 0) will not have any affect on the balancing procedure.

Step 5. Substituting the ansätze (4) and (8a)–(8c) together with (5) into equation (3),
equating the coefficients of (G′(ξn)/G(ξn))

l(l = 0, 1, 2, . . .) to zero, we obtain a system
of nonlinear algebraic equations from which the undetermined constants al, di , cj and μ can
be explicitly found. Substituting these results into (4), we can derive various kinds of discrete
exact solutions to equation (1).

Note 1. It is worth to mention that there are three improved computational steps in our
algorithm to obtain more wider results in a concise manner. First, the extended method leads
to the solution of the form (4) in which the sum goes from l = −m to l = m instead of
from l = 0 to l = m. Second, the standard method [6, 20] uses the auxiliary equation
G′′ + λG′ + μG = 0 as the ansatz. Without loss of generality, we consider the auxiliary
equation (5) by taking λ = 0. This approach provides equivalent results with the original
method. However, it is more advantageous since it minimizes the number of parameters, see
[24]. Third, contrary to the procedure [20], we consider another case (namely, the case (8c))
for the inclusion of rational solutions.

3. Applications

In this section, we apply the algorithm described in the preceding section to some NDDEs.
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3.1. Relativistic Toda lattice system

One of the most famous models for discrete solitons is the integrable Toda lattice system [25]:{
dun

dt
= (un+1 − vn)vn − (un−1 − vn−1)vn−1,

dvn

dt
= vn(un+1 − un).

(9)

For solving equation (9), we first let

un = Un(ξn), vn = Vn(ξn), ξn = dn + ct + ζ, (10)

where c and d are constants to be determined and ζ denotes the phase shift. Then, equation (9)
can be reduced to{

cU ′
n − (Un+1 − Vn)Vn + (Un−1 − Vn−1)Vn−1 = 0,

cV ′
n − Vn(Un+1 − Un) = 0,

(11)

where Un = Un(ξn), Vn = Vn(ξn) and the prime denotes the derivative with respect to ξn.
We expand the solution of (11) in the frame (4). Balancing the linear term of the highest
order with the highest nonlinear term in (11) yields to m = 1. Thus, we look for solutions of
equation (11) in the form⎧⎪⎨

⎪⎩
Un = a0 + a1

(
G′
G

)
+ a−1

(
G′
G

)−1
, a2

−1 + a2
1 �= 0,

Vn = b0 + b1

(
G′
G

)
+ b−1

(
G′
G

)−1
, b2

−1 + b2
1 �= 0,

(12)

where G = G(ξn) satisfies equation (5), and a0, a1, a−1, b0, b1, b−1 are arbitrary constants to
be specified.

Case 1. When μ < 0, from (8a), we have

Un±1 =
1∑

l=−1

al

(√−μG′ ∓ μ tanh(
√−μϕs)G√−μG ± tanh(

√−μϕs)G′

)l

, (13a)

Vn±1 =
1∑

l=−1

bl

(√−μG′ ∓ μ tanh(
√−μϕs)G√−μG ± tanh(

√−μϕs)G′

)l

. (13b)

Substituting the ansatz (12) and the expressions (13a) and (13b) along with equation (5) into
equation (11), clearing the denominator and equating the coefficients of (G′/G)l(0 � l � 10)

to zero, we obtain a system of nonlinear algebraic equations for a0, a1, a−1, b0, b1, b−1, c, d
and μ. Solving the system (we will omit to display them for simplicity) simultaneously, we
get the following solution sets:

{a0 = c
√−μcoth(d

√−μ), b0 = c
√−μcoth(d

√−μ), a−1 = 0, a1 = c, b−1 = 0, b1 = c},
(14a)

{a0 = 2c
√−μcoth(2d

√−μ), b0 = 2c
√−μcoth(2d

√−μ),

a−1 = −cμ, a1 = c, b−1 = −cμ, b1 = c}, (14b)

and the corresponding discrete hyperbolic function solutions to equation (9) as{
un,1(t) = c

√−μ(wn(t) + coth(d
√−μ)),

vn,1(t) = c
√−μ(wn(t) + coth(d

√−μ)),
(15a)
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⎩

un,2(t) = c
√−μ

(
1

wn(t)
+ wn(t) + 2 coth(2d

√−μ)
)

,

vn,2(t) = c
√−μ

(
1

wn(t)
+ wn(t) + 2 coth(2d

√−μ)
)

,
(15b)

where

wn(t) = C1cosh(
√−μ(dn + ct + ζ )) + C2sinh(

√−μ(dn + ct + ζ ))

C1sinh(
√−μ(dn + ct + ζ )) + C2cosh(

√−μ(dn + ct + ζ ))
, (16)

in which μ < 0, d, c, ζ , C1, C2 are arbitrary constants.
As a special example, if we let ‘C1 = 0 and C2 �= 0’ or ‘C1 �= 0 and C2 = 0’ in (15a)

respectively, then we get formal discrete solitary wave solutions to equation (9) as follows:{
un,3(t) = c

√−μ(tanh(
√−μ(dn + ct + ζ )) + coth(d

√−μ)),

vn,3(t) = c
√−μ(tanh(

√−μ(dn + ct + ζ )) + coth(d
√−μ)),

(17)

{
un,4(t) = c

√−μ(coth(
√−μ(dn + ct + ζ )) + coth(d

√−μ)),

vn,4(t) = c
√−μ(coth(

√−μ(dn + ct + ζ )) + coth(d
√−μ)),

(18)

where μ < 0, d, c and ζ are arbitrary constants.

Case 2. When μ > 0, from (8b), we have

Un±1 =
1∑

l=−1

al

(√
μG′ ∓ μ tan(

√
μϕs)G√

μG ± tan(
√

μϕs)G′

)l

, (19a)

Vn±1 =
1∑

l=−1

bl

(√
μG′ ∓ μ tan(

√
μϕs)G√

μG ± tan(
√

μϕs)G′

)l

. (19b)

Substituting the ansatz (12) and the expressions (19a), (19b) along with equation (5) into
equation (11), clearing the denominator and equating the coefficients of (G′/G)l(0 � l � 10)

to zero, we obtain a system of nonlinear algebraic equations for a0, a1, a−1, b0, b1, b−1, c, d
and μ. Solving the system simultaneously, we get the following solution sets:

{a0 = c
√

μcot(d
√

μ), b0 = c
√

μcot(d
√

μ), a−1 = 0, a1 = c, b−1 = 0, b1 = c}, (20a)

{a0 = 2c
√

μcot(2d
√

μ), b0 = 2c
√

μcot(2d
√

μ), a−1 = −cμ, a1 = c, b−1 = −cμ, b1 = c},
(20b)

and the corresponding discrete trigonometric function solutions to equation (9) as{
un,5(t) = c

√
μ(wn(t) + cot(d

√
μ)),

vn,5(t) = c
√

μ(wn(t) + cot(d
√

μ)),
(21a)

⎧⎨
⎩

un,6(t) = c
√

μ
(
− 1

wn(t)
+ wn(t) + 2 cot(2d

√
μ)

)
,

vn,6(t) = c
√

μ
(
− 1

wn(t)
+ wn(t) + 2 cot(2d

√
μ)

)
,

(21b)

where

wn(t) = C2cos(
√

μ(dn + ct + ζ )) − C1sin(
√

μ(dn + ct + ζ ))

C1cos(
√

μ(dn + ct + ζ )) + C2 sin(
√

μ(dn + ct + ζ ))
, (22)

5
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in which μ > 0, d, c, ζ , C1 and C2 are arbitrary constants.
As a special example, if we take ‘C1 = 0 and C2 �= 0’ or ‘C1 �= 0 and C2 = 0’ in

the expression (21a) respectively, then we get formal discrete periodic wave solutions to
equation (9) as follows:{

un,7(t) = c
√

μ(cot(
√

μ(dn + ct + ζ )) + cot(d
√

μ)),

vn,7(t) = c
√

μ(cot(
√

μ(dn + ct + ζ )) + cot(d
√

μ)),
(23)

{
un,8(t) = c

√
μ(− tan(

√
μ(dn + ct + ζ )) + cot(d

√
μ)),

vn,8(t) = c
√

μ(− tan(
√

μ(dn + ct + ζ )) + cot(d
√

μ)),
(24)

where μ > 0, d, c and ζ are arbitrary constants.

Case 3. When μ = 0, from (8c), we have

Un±1 =
1∑

l=−1

al

(
G′

G ± ϕsG′

)l

, (25a)

Vn±1 =
1∑

l=−1

bl

(
G′

G ± ϕsG′

)l

. (25b)

Substituting the ansatz (12) and the expressions (25a) and (25b) along with equation (5)
into equation (11), clearing the denominator and equating the coefficients of
(G′/G)l(0 � l � 10) to zero, we obtain a system of nonlinear algebraic equations for a0,
a1, a−1, b0, b1, b−1, c and d. Solving the system simultaneously, we get the following solution
set: {

a0 = c

d
, a1 = c, b1 = c, b0 = c

d
, a−1 = 0, b−1 = 0

}
(26)

and the corresponding discrete rational function solution to equation (9) as⎧⎪⎨
⎪⎩

un,9(t) = c
(

1
d

+ C1
C1(dn+ct+ζ )+C2

)
,

vn,9(t) = c
(

1
d

+ C1
C1(dn+ct+ζ )+C2

)
,

(27)

where c, d, ζ , C1 and C2 are arbitrary constants.

Note 2. We observe that our solution (17) coincides with the solution of Baldwin et al [25]
while our other solutions do not appear there. To the best of our knowledge, our rational
solution (27) is presented here for the first time.

3.2. The discrete nonlinear Schrödinger equation

We now consider the integrable discrete nonlinear Schrödinger equation [26]

i
dun(t)

dt
+ α(un+1(t) − 2un(t) + un−1(t)) + β|un(t)|2(un+1(t) + un−1(t)) = 0, (28)

where un(t) = u(n, t) denotes the displacement of the nth particle from the equilibrium
position, i = √−1, and α, and β are nonzero real constants.

For solving equation (28), we first make the traveling wave transformation

un = eiθnφn(ξn), θn = d1n + c1t + ζ1, ξn = d2n + c2t + ζ2, (29)

6
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and

un+1 = eiθn eid1φn+1(ξn), un−1 = eiθn e−id1φn−1(ξn), (30)

where φn = φn(ξn) is a real-valued function, d1 and c1 are the wave number of the carrier
wave and the frequency, c2 and d2 are related to the group velocity and the pulse width, ζ 1

and ζ 2 denote the initial phases. Now, using the Euler formula e±id1 = cos d1 ± i sin d1,
equation (28) can be reduced to the system{−c1φn + cos(d1)

(
α + βφ2

n

)
(φn+1 + φn−1) − 2αφn = 0,

c2φ
′
n + sin(d1)

(
α + βφ2

n

)
(φn+1 − φn−1) = 0,

(31)

where the prime denotes the derivative with respect to ξn. We expand the solution of (31) in
the form of (4). Balancing the linear term of the highest order with the highest nonlinear term
in (31) leads to m = 1. Thus, for the traveling wave solutions of (31), we assume the ansatz

φn = a0 + a1

(
G′

G

)
+ a−1

(
G′

G

)−1

, a2
−1 + a2

1 �= 0, (32)

where G = G(ξn) satisfies equation (5), and a0, a1, and a−1 are arbitrary constants to be
determined. Because the procedure is similar to the scheme used in section 3.1, we will omit
most of the details here.

Case 1. μ < 0.
In this case, we first derive the expressions φn±1 in accordance with (8a) and substitute

them along with (32) into equation (31). Then, clearing the denominator and setting the
coefficients of (G′/G)l(0 � l � 8) to zero, we derive a system of nonlinear algebraic equations
for a0, a1, a−1, d1, d2, c1, c2 and μ. Solving the system, we get the following solution set:⎧⎨
⎩

c1 = 2α(−1 + cos(d1)sech2(
√−μd2)), c2 = −2α sin(d1)tanh(

√−μd2)/
√−μ,

a0 = 0, a−1 = 0
a1 = ∓√−α/βtanh(

√−μd2)/
√−μ

⎫⎬
⎭ (33)

and the corresponding discrete hyperbolic function solution to equation (28) as

u∓
n,1(t) = ∓

√−αtanh(
√−μd2)√
β

(
C1cosh(

√−μξn) + C2sinh(
√−μξn)

C1sinh(
√−μξn) + C2cosh(

√−μξn)

)

× exp(i(d1n + 2α(−1 + cos(d1)sech2(
√−μd2))t + ζ1)),

α

β
< 0, (34)

where ξn = d2n− 2α sin(d1)tanh(
√−μd2)√−μ

t +ζ2, and μ < 0, d1, d2, ζ1, ζ2, C1 andC2 remain arbitrary.
As a particular example, if we let ‘C1 = 0 and C2 �= 0’ or ‘C1 �= 0 and C2 = 0’ in (34)

respectively, then we get formal discrete solitary wave solutions to equation (28) as follows:

u∓
n,2(t) = ∓

√−αtanh(
√−μd2)√
β

tanh

(√−μ

(
d2n − 2α sin(d1)tanh(

√−μd2)√−μ
t + ζ2

))

× exp(i(d1n + 2α(−1 + cos(d1)sech2(
√−μd2))t + ζ1)),

α

β
< 0, (35)

u∓
n,3(t) = ∓

√−αtanh(
√−μd2)√
β

coth

(√−μ

(
d2n − 2α sin(d1)tanh(

√−μd2)√−μ
t + ζ2

))

× exp(i(d1n + 2α(−1 + cos(d1)sech2(
√−μd2))t + ζ1)),

α

β
< 0, (36)

where μ < 0, d1, d2, ζ1 and ζ2 are arbitrary constants.

Case 2. μ > 0.

7
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In this case, we first derive the expressions φn±1 in accordance with (8b) and substitute
them along with (32) into equation (31). Then, clearing the denominator and setting the
coefficients of (G′/G)l(0 � l � 8) to zero, we derive a system of nonlinear algebraic equations
for a0, a1, a−1, d1, d2, c1, c2 and μ. Solving the system, we get the following solution set:⎧⎨
⎩

c1 = 2α(−1 + cos(d1)sec2(
√

μd2)), c2 = −2α sin(d1)tan(
√

μd2)/
√

μ,

a0 = 0, a−1 = 0,

a1 = ∓√−α/βtan(
√

μd2)/
√

μ

⎫⎬
⎭ (37)

and the corresponding discrete trigonometric function solution to equation (28) as

u∓
n,4(t) = ∓

√−αtan(
√

μd2)√
β

(−C1sin(
√

μξn) + C2cos(
√

μξn)

C1cos(
√

μξn) + C2sin(
√

μξn)

)

× exp(i(d1n + 2α(−1 + cos(d1)sec2(
√

μd2))t + ζ1)),
α

β
< 0, (38)

where ξn = d2n − 2α sin(d1)tan(
√

μd2)√
μ

t + ζ2, and μ > 0, d1, d2, ζ1, ζ2, C1 and C2 remain arbitrary.
As a particular example, if we take ‘C1 = 0 and C2 �= 0’ or ‘C1 �= 0 and C2 = 0’

in the expression (38) respectively, then we get formal discrete periodic wave solutions to
equation (28) as follows:

u∓
n,5(t) = ∓

√−αtan(
√

μd2)√
β

cot

(√
μ

(
d2n − 2α sin(d1)tan(

√
μd2)√

μ
t + ζ2

))

× exp(i(d1n + 2α(−1 + cos(d1)sec2(
√

μd2))t + ζ1)),
α

β
< 0, (39)

u∓
n,6(t) = ±

√−αtan(
√

μd2)√
β

tan

(√
μ

(
d2n − 2α sin(d1)tan(

√
μd2)√

μ
t + ζ2

))

× exp(i(d1n + 2α(−1 + cos(d1)sec2(
√

μd2))t + ζ1)),
α

β
< 0, (40)

where μ > 0, d1, d2, ζ1 and ζ2 are arbitrary constants.

Case 3. μ = 0.
In this case, we first derive the expressions φn±1 in accordance with (8c) and substitute

them along with (32) into equation (31). Then, clearing the denominator and setting the
coefficients of (G′/G)l(0 � l � 7) to zero, we derive a system of nonlinear algebraic equations
for a0, a1, a−1, d1, d2, c1 and c2. Solving the system, we get the following solution set:{

c2 = −2αd2 sin(d1), c1 = 2(−α + α cos(d1)), a1 = ∓
√−αd2√

γ
, a0 = 0, a−1 = 0

}
(41)

and the corresponding discrete rational function solution to equation (28) as

u∓
n,7(t) = ∓

√−αd2√
β

(
C1

C1(d2n − 2αd2 sin(d1)t + ζ2) + C2

)

× exp(i(d1n + 2(−α + α cos(d1))t + ζ1)),
α

β
< 0, (42)

where d1, d2, ζ1, ζ2, C1 and C2 remain arbitrary.

Note 3. We observe that our solution (35) matches the solution (45) of Huang and Liu [27].
However, our rational solution (42) is not presented in there and derived here for the first time.

Note 4. It is an important fact that one should be aware of the limitations of each of the
existing methods. There is no guarantee that they will succeed for a specialized nonlinear
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problem. Any of them can have some advantages and disadvantages. If treated rigorously, the
(G′/G)-expansion method provides exact traveling wave solutions in a neat form from which
one can construct solitary and periodic waves, as well as rational ones. One of the pitfalls of the
(G′/G)-expansion method, by assuming the solution of the equation in the polynomial form
with many parameters, is that it sometimes leads to inconsistent nonlinear algebraic systems.
Another one is that it is entirely algorithmic and involves a large amount of tedious calculations
which can become virtually unmanageable if attempted manually. We have encountered no
difficulty while working on the relativistic Toda lattice system (9). However, we could not
get results for the constraint α/β > 0 while working on the discrete nonlinear Schrödinger
equation (28).

4. Conclusion

We systematically illustrated the solution procedure of the extended (G′/G)-expansion method
for NDDEs. We obtained a rich variety of discrete traveling wave solutions to a relativistic
Toda lattice system and a discrete nonlinear Schrödinger equation. Using a single method,
three types of exact solutions are observed: hyperbolic function solutions, trigonometric
function solutions and rational function solutions. These obtained solutions with arbitrary
parameters may be important to explain some physical phenomena. We would like to point
out here that the rational solutions (27) and (42) cannot be obtained by other methods.
To the best of our knowledge, these solutions with arbitrary parameters are new; this fact
illustrates that our algorithm is effective and more powerful for NDDEs. All solutions are
derived here with less algebraic expansion computations with the help of MATHEMATICA.
We assured the correctness of our solutions by putting them back into the original equation.
More applications of the extended (G′/G)-expansion method to other types of NDDEs deserve
further investigation.
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[14] Aslan İ 2009 Exact and explicit solutions to some nonlinear evolution equations by utilizing the (G′/G)-
expansion method Appl. Math. Comput. 215 857–63

[15] Zhang J, Wei X and Lu Y 2008 A generalized (G′/G)-expansion method and its applications Phys. Lett.
A 372 3653–8

[16] Zhang S, Wang W and Tong J 2009 A generalized (G′/G)-expansion method and its application to the (2+1)-
dimensional Broer–Kaup equations Appl. Math. Comput. 209 399–404

[17] Zhang S, Tong J L and Wang W 2008 A generalized (G′/G)-expansion method for the mKdV equation with
variable coefficients Phys. Lett. A 372 2254–7

[18] Yu-Bin Z and Chao L 2009 Application of modified (G′/G)-expansion method to traveling wave solutions for
Whitham Broer Kaup-Like equations Commun. Theor. Phys. 51 664–70

[19] Zhang H 2009 New application of the (G′/G)-expansion method Commun. Nonlinear Sci. Numer.
Simul. 14 3220–5

[20] Zhang S, Dong L, Ba J and Sun Y 2009 The (G′/G)-expansion method for nonlinear differential-difference
equations Phys. Lett. A 373 905–10
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