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Prediction of the Weight of Alaskan Pollock Using
Image Analysis
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Abstract: Determining the size and quality attributes of fish by machine vision is gaining acceptance and increasing use
in the seafood industry. Objectivity, speed, and record keeping are advantages in using this method. The objective of this
work was to develop the mathematical correlations to predict the weight of whole Alaskan Pollock (Theragra chalcogramma)
based on its view area from a camera. One hundred and sixty whole Pollock were obtained fresh, within 2 d after catch
from a Kodiak, Alaska, processing plant. The fish were first weighed, then placed in a light box equipped with a Nikon
D200 digital camera. A reference square of known surface area was placed by the fish. The obtained image was analyzed
to calculate the view area of each fish. The following equations were used to fit the view area (X) compared with weight
(Y) data: linear, power, and 2nd-order polynomial. The power fit (Y = A · XB) gave the highest R2 for the fit (0.99).
The effect of fins and tail on the accuracy of the weight prediction using view area were evaluated. Removing fins and
tails did not improve prediction accuracy. Machine vision can accurately predict the weight of whole Pollock.
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Practical Application: The weight of Alaskan Pollock can be predicted automatically by taking the image of the fish and
using it in one of the correlations developed in this study. The removal of the fins or the fins and the tail did not increase
the prediction accuracy of the method. Therefore, intact fish images should be used.

Introduction
In 2008, Pollock (Theragra chalcogramma) represented 28% of U.S.

domestic landings by weight (1.04 million tons) as the largest single
species captured in the United States (NMFS 2008). Since 2001,
the average Pollock catch has been above 1.33 million tons ($329
million), despite its slight decrease in 2008 (−5% 2007 to 2008).
The majority of U.S. Pollock is caught in the Eastern Bering
Sea, Alaska (Lanelli and others 2009), with some fishery in the
Gulf of Alaska (Dorn and others 2009). It is sold and exported in
different forms: whole fish, fillets, surimi, and other products.

Automation of processing operations including sorting brings
standardization of quality and objectivity to the process. Increased
demands for objectivity, consistency, and efficiency have ne-
cessitated the introduction of computer-based image processing
techniques. Machine vision (MV) can be used in a number of
these operations with a high level of repeatability and flexibility
(Gunasekaran 1996). Image-processing techniques have been ap-
plied increasingly for food quality evaluation. In the food industry,
some quality evaluation is still performed manually by trained
inspectors. Computer vision employing image-processing tech-
niques can quantitatively characterize complex size, shape, color,
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and texture properties of foods (Du and Sun 2004). MV systems
are being used increasingly in food and agricultural industries for
quality assurance purposes.

The correlation of view area to weight using MV was tested
and demonstrated for different foods such as produce (Eifert and
others 2006) and seafood products, for example, shrimp (Bala-
ban and others 1994), Alaska salmon (Balaban and others 2010),
oysters (Damar and others 2006), Atlantic Salmon (Salmo salar)
fillet shape and size (Misimi and others 2008a, 2008b), and the
sorting of 3 species of fish (Zion and others 1999). Fish species
have also been sorted according to shape, length, and orientation
in a processing line (Strachan and others 1990; Strachan 1993).
Prawns have been automatically graded by size and packaged in
one layer with uniform orientation by combining computer vi-
sion and robotics (Kassler and others 1993). Herring roe has been
graded using “intelligent machines” (Croft and others 1996). In
addition, MV can also evaluate color, shape, species, and visual de-
fects. The combination of these evaluation steps with size sorting
would integrate many operations into one efficient step. It is pos-
sible that size-sorting Alaska Pollock using MV would make the
process more objective and efficient. Using view area to predict
weight overcomes many of the potential difficulties of using other
criteria such as length, since view area is rotation-, curvature-, and
side-independent. A simple count of the number of pixels in the
object is sufficient. Development and evaluation of equations to
predict weight using view area is a 1st step toward automation of
this process. Balaban and others (2010) mentioned the possibility
of improving the accuracy of weight predictions using view area, if
the fins and/or the tail of the fish were excluded from the analysis,
since they bring variability and uncertainty to the process. This
type of analysis has not been performed before.
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Pollock weight by image analysis . . .

The objective of this study was to develop weight compared
with view area correlations for Alaska Pollock as a 1st step toward
automation of sorting by size, and to evaluate if exclusion of fins
and tail has an effect on the accuracy of weight prediction.

Material and Methods

Fish samples
One hundred and sixty whole Alaska Pollock (T. chalcogramma)

were used for this study. They were obtained fresh, within 2 d after
catch, from a Kodiak processing plant in February 2010. They were
selected randomly by the plant staff from the process line, in order
to have a wide spectrum of different size fish. They were analyzed
immediately, using the procedures described below.

Weighing and imaging
A scale (Mettler Toledo PB 3002-S, Columbus, Ohio, U.S.A.)

with a maximum capacity of 3100 g, and an accuracy of 0.1 g
was used to weigh the fish. Each fish was placed on a tared plastic
tray, weighed and then its picture was taken. A light box, designed
and built by the researchers (Luzuriaga and others 1997), with
the dimensions 124.5-cm high, 66-cm deep, and 86-cm wide was
placed in the pilot plant (Figure 1). Fluorescent bulbs providing
D65 illumination were used behind a translucent Polycast acrylic
(No. 2447, Polycast Technology Corp., Stanford, Conn., U.S.A.)
6.35-mm thick with 51% light transmission. The door of the light
box was closed during picture taking to eliminate interference from

Figure 1–Light box and digital camera used to capture images. The fish
and the reference square are also shown.

ambient light. Each fish was placed in the light box, under a Nikon
D200 SLR digital camera (Nikon Corp., Tokyo, Japan) with a
Nikon AF-S 18-200 mm F/3.5-5.6G ED-IF AF DX VR lens. All
adjustments of the camera were set to “manual” for repeatability of
pictures (Table 1). The Nikon WT-3 wireless accessory was used
to control the camera remotely from a laptop computer, and to
transfer the images to the computer immediately after acquisition
using the Nikon Camera Control Pro software (Nikon Corp.).
The camera was mounted on a Bogen-Manfrotto Maxi Repro
Stand Lite assembly (Bogen Imaging, Inc., Ramsey, N.J., U.S.A.)
with the lens looking downward. This setup was placed inside
the light box. A reference square of 5 × 5 cm2 was cut from a
dark matte carton. This square was used as a reference for size,
to calibrate image properties during analysis, and was included in
every picture by placing it inside the light box (Figure 2).

Image analysis
The JPEG images of the side views of the fish from the Nikon

camera were entered into the Corel PhotoPaint (Corel Corp.,
Ottawa, Ontario, Canada) to reduce the size of the images from
1936 × 1296 to 800 × 536 pixels. From previous experience, it
was known that images of higher resolution do not improve accu-
racy, and significantly increase image-processing time. Then, the
format of the pictures was changed from JPEG to bmp (bitmap),
since image analysis software required bmp files for input. Since
the background was gray, and the belly of the fish was mostly
grayish, automatic segmentation based on color was not possible.

Table 1–Settings of Nikon D200 camera.

Setting Specification

Device Nikon D 200
Lens VR-18-200 mm F 3.5-5.6 G
Sensitivity ISO 200
Optimized images Custom
High ISO NR Off
Exposure mode manual
Metering mode Multipattern
Shutter speed and aperture 1.3 s and f/10
Exposure compensation (in camera) 0 EV
Focus mode AF-S
Long exposure NR Off
Exposure compensation (by capture NX) 0 EV
Sharpening None
Tone compensation Normal
Color mode Mode I
Saturation Normal
Hue adjustment 0
White balance Direct sunlight

Figure 2–Alaskan Pollock picture taken in the light box, example of side
view.
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Therefore, the pictures were cleaned to eliminate the background,
then to erase the fins, and finally to erase both the fins and the
tails by hand (Figure 3). Fins and tail have much less weight per
unit area compared to, for example, the middle of the fish. The
area of the fish would increase disproportionately if the fins were
erect, compared to when the fins were not erect. This would also
apply to the tail, whether it is fanned out, or compressed. The
LensEye software (Engineering & Cyber Solutions, Gainesville,
Fla., U.S.A.) was used to analyze the images. The number of pix-
els of the fish, and that of the reference square were counted by
the software, and the view area of the fish was calculated by con-
verting the number of pixels to cm2. Since the surface area of the
reference square was 25 cm2:

Fish view area (cm2) = Fish pixels/reference square pixels × 25
(1)

Regression analysis
The following correlations were tried, based on previous expe-

rience with other fish: linear, power, and 2nd-order polynomial:

Linear : Y = A + BX (2)

Figure 3–Example of intact Pollock, Pollock without fins, and Pollock with-
out fins and tail.

Power : Y = AXB (3)

Polynomial : Y = C0 + C1 X + C2 X2 (4)

In the equations above, Y = weight (kg), X = view area (cm2),
A, B, Ci are coefficients. These equations were chosen, since
they have shown good results during the analysis of other seafood
(Balaban and others 1994; Zion and others 1999; Balaban and
others 2010). The R2 for the fit was calculated for each fit.

Results and Discussion
Table 2 summarizes the results of equation fits to the weight

compared with view area data for whole, no fins, and no fins no
tail images. In general, the power (Eq. 3) fit had the highest R2

value compared with the linear (Eq. 2) and the polynomial (Eq. 4)
fits. This is expected, since the weight (which is related to volume,
assuming the density of the fish is constant) and the view area (a
surface) are bound with a dimensional relation such as (Balaban
and others 2010):

Volume dimension = (Area dimension)3/2 (5)

Whole fish
For whole fish, it was observed that the power (Eq. 3) fit had

the highest R2 value (0.993). However, when all equation fits were
compared, it was seen that all R2 values were very close, 0.987 for
the linear (Eq. 2) and 0.985 for the 2nd-order polynomial (Eq. 4).

The plot of linear, power, and 2nd-order polynomial curves fits
for intact (whole) fish are shown in Figure 4, with the experimental
weight data displayed to compare with the predicted weights. The
R2 values for power (0.993) and 2nd-order polynomial fits (0.985)
were close, and their curves were almost superposed, at least for
the lower weight region. The experimental weight, represented
by markers on the plot, was distributed closely around the power
and 2nd-order polynomial curves. Some fish deviated much from
the predicted weight. An example is given in Figure 5 for fish (A)
that has a difference of predicted weight from experimental data
as −13%, and fish (B), with a 0.2% difference. It is apparent that
fish (A) has a “fuller” belly, and all fins erect, while fish (B) is
“slimmer” and with fins leveled. This difference among the fish
can be attributed both to the normal variation between the fish,
and to the “state” of the fins and tail when the picture was taken.
It should be noticed that for smaller fish the prediction of weight
is better. As the fish get bigger, there is more scatter, possibly due
to the females carrying roes at this time of the season.

Table 2–Equation fit results for the weight compared with view area. Y = weight (g), X = view area (cm2), A, B, Ci are coefficients

Intact No fins No fins, no tail

Equation Value CI Value CI Value CI

Y = A + BX A −248.80 22.72 −273.08 23.98 −268.40 23.33
B 3.58 0.08 3.91 0.09 4.24 0.10
R2 0.987 0.978 0.980

Y = A · XB Value CI Value CI Value CI
A 0.18 1.11 0.16 1.12 0.18 1.12
B 1.47 0.02 1.51 0.02 1.51 0.02
R2 0.993 0.993 0.993

Y = C0 + C1X + C2X2 C0 −94.08 −69.30 −81.19
C1 2.16 1.92 2.25
C2 2.83 × 10−3 4.27 × 10−3 4.62 × 10−3

R2 0.985 0.987 0.986

CI = 95% confidence interval.
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Impact of fish fins and tail on the predicted weight
Since there was a possibility that fins and tail could cause devia-

tions in the predicted weight, the fins were manually erased from
the images, regression analyses were performed, and then the tail
was also erased before the regressions were repeated (Figure 3).

For the power equation in Table 2, R2 values for the intact, no
fins, and no fins no tail images are the same: 0.993. For the other
2 equations, R2 values were also close: the 2nd-order polynomial
fit had R2 values of 0.985, 0.987, and 0.986 for intact, no fins, and
no fins no tail forms, respectively.

The 95% confidence intervals for the A values for the linear fits
for all 3 forms, shown in Table 2, overlapped. This suggests that
there is no significant difference in the A value (intercept) for the
linear fits. However, the 95% confidence intervals of the B values
of the linear fit (slope) do not overlap. There is increasing slope
values going from the intact form, to the no fins, and to no fins no
tail forms. This is expected, since for the same weight of the fish
(Y), the intact image has the largest view area (X), and requires the
smallest slope (3.58), and the no fins no tails form has the smallest
view area (X), and requires the largest slope (4.24).

Figure 6 shows the plot of power fits for intact, no fins and no
tail fish images, since this equation best predicts the weight from
view area. It was observed that curves followed similar trajectories,
and that R2 values were the same (0.993) for all forms of images.
Therefore, at least for the Pollock pictures used in this study, the
removal of the fins and tail did not improve the weight prediction
accuracy of the correlations used for the view area.

Figure 4–The weight prediction for intact fish (all equations).

Figure 5–Example of two fish: (A) fish with −13% difference between pre-
dicted (power curve) and experimental weight, (B) fish with 0.2% difference
between predicted (power curve) and experimental weight.

Figure 6–Comparison between intact (A), no fins (B), no fins no tail (C)
Pollock pictures for the power fit (Y = A · XB).

Conclusion
This study demonstrated that it is possible to predict the

weight of whole Pollock from its view area, using analysis of
its image from MV. The best equation to use was the power
equation.

When fish images are analyzed without fins and without fins
and tail, compared to whole fish images, there was no significant
improvement in the R2 for the fits. Therefore, it would be possible
to use all image types to predict the weight of fish, without loss
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of accuracy. Since the removal of fins and tail would require extra
work and computing time, the use of whole images is recom-
mended.

The prediction of weight of Alaska Pollock with MV is possible.
It would be desirable to investigate if the weight and/or view area
correlations can be used to determine the sex of fish. Separation of
the females carrying roe from the males would be desirable, since
roe is a valuable product. This would increase the efficiency of the
operations.
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Balaban MO, Ünal-Şengör GF, Gil-Soriano M, Guillén-Ruiz E. 2010. Using image analy-

sis to predict the weight of Alaskan salmon of different species. J Food Sci 75(3):E157–
162.

Croft EA, de Silva CW, Kurnianto S. 1996. Sensor Technology integration in an intelligent
machine for Herring Roe Grading. IEEE/ASME TransMechatron 1(3):204–15.

Damar S, Yagiz Y, Balaban MO, Ural S, Oliveira ACM, Crapo CA. 2006. Prediction of oyster
volume and weight using machine vision. J Aquat Food Prod Technol 15(4):5–17.

Dorn M, Aydin K, Barbeaux S, Guttormsen M, Megrey B, Spalinger K, Wilkins M. 2009.
Assessment of the Walleye Pollock Stock in the Gulf of Alaska. North Pacific Groundfish
Stock Assessment and Fishery Evaluation Reports for 2010. 2009. 61-164 p. Available from:
http://www.afsc.noaa.gov/refm/docs/2009/GOApollock.pdf. Accessed May 17, 2010.

Du C-J, Sun D-W. 2004. Recent developments in the applications of image processing tech-
niques for food quality evaluation. Trends Food Sci Tech 15:230–49.

Eifert JD, Sanglay GC, Lee D-J, Sumner SS, Pierson MD. 2006. Prediction of raw produce
surface area from weight measurement. J Food Eng 74(4):552–6.

Gunasekaran S. 1996. Computer vision technology for food quality assurance. Trends Food Sci
Tech 7(8):245–56.

Kassler M, Corke P, Wong P. 1993. Automatic grading and packing of prawns. Comput Electron
Agric 9:319–33.

Lanelli JN, Barbeaux S, Honkalehto T, Kotwicki S, Aydin K, Williamson N. 2009. Assess-
ment of the walleye pollock stock in the Eastern Bering Sea. North Pacific Groundfish
Stock Assessment and Fishery Evaluation Reports, 2010. 2009. 49-148 p. Available from:
http://www.afsc.noaa.gov/refm/docs/2009/EBSpollock.pdf. Accessed May 17, 2010.

Luzuriaga D, Balaban MO, Yeralan S. 1997. Analysis of visual quality attributes of white shrimp
by machine vision. J Food Sci 62(1):1–7.

Misimi E, Erikson U, Skavhaug A. 2008a. Quality grading of Atlantic salmon (Salmo salar) by
computer vision. J Food Sci 73(5):E211–7.

Misimi E, Erikson U, Dirge H, Skavhaug A, Mathiassen JR. 2008b. Computer vision based
evaluation of pre and postrigor changes in size and shape of Atlantic cod (Gadus morhua) and
Atlantic salmon (Salmo salar) fillets during rigor mortis and ice storage: effects of perimortem
handling stress. J Food Sci 73(2):E57–68.

National Marine Fisheries Service (NMFS). 2008. Fisheries of the United States 2008. Silver
Spring, Md.: U.S. Dept. of Commerce.

Strachan NJC, Nesvabda P, Allen AR. 1990. Fish species recognition by shape analysis of images.
Pattern Recog 25:539–44.

Strachan NJC. 1993. Length measurements of fish by computer vision. Comput Electron Agric
8:93–104.

Zion B, Shklyar A, Karplus I. 1999. Sorting fish by computer vision. Comput Electron Agric
23:175–87.

E556 Journal of Food Science � Vol. 75, Nr. 8, 2010


