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a b s t r a c t

In this paper, the Exp-function method is employed to the Zakharov–Kuznetsov equation
as a (2 + 1)-dimensional model for nonlinear Rossby waves. The observation of solitary
wave solutions and periodic wave solutions constructed from the exponential function
solutions reveal that our approach is very effective and convenient. The obtained results
may be useful for better understanding the properties of two-dimensional coherent struc-
tures such as atmospheric blocking events.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Solving nonlinear evolution equations (NLEEs) has become a valuable task in many scientific areas including applied
mathematics as well as the physical sciences and engineering in the last four decades or so. For this purpose, some accurate
techniques have been presented in the open literature; for example, inverse scattering transform method [1], Jacobi elliptic
function method [2], tanh–coth function method [3], sine–cosine function method [4], symmetry method [5], F-expansion
method [6], Hirota’s bilinear method [7], Painlevé expansion method [8], homogeneous balance method [9], Bäcklund trans-
formation method [10], Adomian decomposition method [11], variational iteration method [12], homotopy analysis method
[13], homotopy perturbation method [14] and so on. On the other hand, with the development of computer algebra systems
(they allow us to perform the tedious and complicated algebraic calculations on a computer) in recent years, many direct and
effective methods using symbolic computation are also presented such as the (G0/G)-expansion method [15–19] and the
Exp-function method [20–24].

It is well known that many important dynamics processes can be described by specific nonlinear partial differential equa-
tions. In 1974, Zakharov and Kuznetsov [25] derived an equation which describes weakly nonlinear ion-acoustic waves in a
strongly magnetized lossless plasma composed of cold ions and hot isothermal electrons. The Zakharov–Kuznetsov (ZK)
equation is also known as one of two-dimensional generalizations of the KdV equation, another one being the Kadomt-
sev–Petviashvili (KP) equation for example. In contrast to the KP equation, the ZK equation is non-integrable by the inverse
scattering transform method, though Shivamoggi [26] showed that it posses the Painlevé property by making a Painlevé
analysis of the ZK equation. The ZK equation has also been derived in the context of plasma physics [27,28]. Biswas and
Zerrad [29] considered the ZK equation with dual-power law nonlinearity and obtained 1-soliton solution by using the sol-
itary wave ansatze.

The ZK equation is a very attractive model equation for the study of vortices in geophysical flows since it supports stable
lump solitary waves [30]. Thus, more recently, to study the dynamics of two-dimensional coherent structures in planetary
atmospheres and oceans, Gottwald [31] derived the ZK equation for large scale motion from the barotropic quasigeostrophic
. All rights reserved.
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equation as a two-dimensional model for Rossby waves. The (2 + 1)-dimensional Zakharov–Kuznetsov ((2 + 1)D-ZK) equa-
tion [31] reads
ut þ dux þ auux þ buxxx þ cuxyy ¼ 0; ð1Þ
where d, a, b, and c are nonzero arbitrary constants and u = u(x,y, t). He [32] applied the homotopy perturbation method to
the (2 + 1)D-ZK equation (1) to search for traveling wave solutions. Using a sub-equation method (the elliptic equation is
taken as a transformation), the traveling wave solutions for the (2 + 1)D-ZK equation (1) are also studied by Fu et al. [33].
There has not been much research on this special form (2 + 1)D-ZK equation (1) in the literature. The main goal of our pres-
ent work is to further analyze this less studied form of the ZK equation by using the so-called Exp-function method.

Based on He and Wu’s pioneer work [20] and his followers the Exp-function method has found some popularity in a re-
search community, and there has been a number of papers refining the initial idea [34–39]. The Exp-function ‘‘method” con-
sists of trying rational combinations of exponential functions as an ‘‘ansatz” to find exact solutions of the ODE for traveling
waves of the original equation. The method is powerful for it can take full advantage of computer algebra systems, the solu-
tion procedure is actually almost impossible without using a computer.

2. The Exp-function method based on the symbolic computation

To begin with, suppose that we have a nonlinear partial differential equation for u(x,y, t) in the form
Pðu;ut ;ux;uy;utt ;utx;uty;uxx; uxy; uyy; . . .Þ ¼ 0; ð2Þ
where P is a polynomial in its arguments. We give an algorithmic description of our method as follows:

Step 1. (Reduce NPDE to nonlinear ODE) By taking u(x,y, t) = U(f), f = kx + my + wt, where k, m, and w are arbitrary non-zero
constants, look for traveling wave solutions of Eq. (2), and transform it to the ordinary differential equation
QðU;U0;U00; . . .Þ ¼ 0; ð3Þ

where prime denotes the derivative with respect to f.

Step 2. (Simplify the nonlinear ODE) Integrate Eq. (3), if possible, term by term one or more times. This yields constant(s) of

integration. The integration constant(s) can be set to zero for simplicity.
Step 3. (Make an ansatz) Suppose the solution U(f) of Eq. (3) can be expressed in the form
UðfÞ ¼ ac expðcfÞ þ � � � þ a�d expð�dfÞ
bp expðpfÞ þ � � � þ b�q expð�qfÞ ; ð4Þ

where c, d, p and q are unknown positive integers to be determined, ai and bj are unknown constants.

Step 4. (Determine the parameters) Determine the highest order nonlinear term and the linear term of highest order in Eq.

(3) and express them in terms of (4). Then, in the resulting terms, balance the highest order Exp-function to deter-
mine c and p, and the lowest order Exp-function to determine d and q.

Step 5. (Generate a set of algebraic equations) Substitute (4) into Eq. (3) and equate the coefficients of exp(lg) to zero, obtain
a system of algebraic equations for ai, bj, k, m and w. Then, to determine these constants, solve the system with the
aid of a computer algebra system such as Mathematica.

Step 6. (Obtain exact solutions) Substitute the values solved in Step 5 into expression (4) and find the traveling wave solu-
tions of Eq. (2). Then, ıt is necessary to substitute them into the original Eq. (2) to assure the correctness of the
solutions.
3. Analytic solutions to the (2 + 1)D-ZK equation

To seek for the traveling wave solutions to the (2 + 1)D-ZK equation (1), we make the transformation u(x,y, t) = V(f),
f = kx + my + wt, where k, m and w are constants to be determined later. Then, integrating the resulting ODE once and setting
the constant of integration to zero, we get
ðbk3 þ ckm2ÞV 00 þ ak
2

V2 þ ðdkþwÞV ¼ 0; ð5Þ
where primes denote the derivatives with respect to f. Now, we make an ansatz
VðfÞ ¼ ac expðcfÞ þ � � � þ a�d expð�dfÞ
bp expðpfÞ þ � � � þ b�q expð�qfÞ ð6Þ
for the solution of Eq. (5) and balance the terms V00 and V2. By a simple calculation, we have
V 00 ¼ k1 exp ðc þ 3pÞf½ � þ � � �
k2 exp 4pf½ � þ � � � ð7Þ



_I. Aslan / Applied Mathematics and Computation 217 (2010) 1421–1429 1423
and
V2 ¼ k3 exp 2cf½ � þ � � �
k4 exp 2pf½ � þ � � � ¼

k3 exp 2ðc þ pÞf½ � þ � � �
k4 exp 4pf½ � þ � � � ; ð8Þ
where ki’s are determined coefficients for simplicity. Balancing highest order of Exp-function in Eqs. (7) and (8), we have
c þ 3p ¼ 2ðc þ pÞ; ð9Þ
which leads to the result
p ¼ c: ð10Þ
Similarly, from the ansatz (6), we have
V 00 ¼ � � � þ l1 exp �ðdþ 3qÞf½ �
� � � þ l2 exp �4qf½ � ð11Þ
and
V2 ¼ � � � þ l3 exp �2df½ �
� � � þ l4 exp �2qf½ � ¼

� � � þ l3 exp �2ðdþ qÞf½ �
� � � þ l4 exp �4qf½ � ; ð12Þ
where l0is are determined coefficients for simplicity. Balancing lowest order of Exp-function in Eqs. (11) and (12), we have
�ðdþ 3qÞ ¼ �2ðdþ qÞ; ð13Þ
which leads to the result
q ¼ d: ð14Þ
We can freely choose the values of c and d in general. However, the final solution does not strongly depend on the values of c
and d [20,23].

Case 1: p = c = 1, d = q = 1
In this case, the solution of Eq. (5) can be expressed as
VðfÞ ¼ a1 expðfÞ þ a0 þ a�1 expð�fÞ
b1 expðfÞ þ b0 þ b�1 expð�fÞ : ð15Þ
Substituting (15) into Eq. (5), we have
1
A

C0 þ C1 expðfÞ þ C2 expð2fÞ þ C3 expð3fÞ þ C4 expð4fÞ þ C5 expð5fÞ þ C6 expð6fÞ½ � ¼ 0; ð16Þ
where A = 2(b1exp(2f) + b0exp(f) + b�1)3 and
C0 ¼ kaa2
�1b�1 þ 2wa�1b2

�1 þ 2kda�1b2
�1;

C1 ¼ 2kaa�1a0b�1 þ 2wa0b2
�1 þ 2k3ba0b2

�1 þ 2km2ca0b2
�1 þ 2kda0b2

�1 þ kab0a2
�1 þ 4wa�1b�1b0

� 2k3ba�1b�1b0 � 2km2ca�1b�1b0 þ 4kda�1b�1b0;

C2 ¼ kaa2
0b�1 þ 2kaa�1a1b�1 þ 2wa1b2

�1 þ 8k3ba1b2
�1 þ 8km2ca1b2

�1 þ 2kda1b2
�1 þ 2kaa�1a0b0

þ 4wa0b�1b0 � 2k3ba0b�1b0 � 2km2ca0b�1b0 þ 4kda0b�1b0 þ 2wa�1b2
0 þ 2k3ba�1b2

0

þ 2km2ca�1b2
0 þ 2kda�1b2

0 þ kaa2
�1b1 þ 4wa�1b�1b1 � 8k3ba�1b�1b1 � 8km2ca�1b�1b1

þ 4kda�1b�1b1;

C3 ¼ 2kaa0a1b�1 þ kaa2
0b0 þ 2kaa�1a1b0 þ 4wb�1a1b0 þ 6k3bb�1a1b0 þ 6km2cb�1a1b0 þ 4kdb�1a1b0

þ 2wa0b2
0 þ 2kda0b2

0 þ 2kaa�1a0b1 þ 4wb�1a0b1 � 12k3bb�1a0b1 � 12km2cb�1a0b1 þ 4kdb�1a0b1

þ 4wa�1b0b1 þ 6k3ba�1b0b1 þ 6km2ca�1b0b1 þ 4kda�1b0b1;

C4 ¼ kaa2
1b�1 þ 2kaa0a1b0 þ 2wa1b2

0 þ 2k3ba1b2
0 þ 2km2ca1b2

0 þ 2kda1b2
0 þ kab1a2

0 þ 2kaa�1a1b1

þ 4wb�1a1b1 � 8k3bb�1a1b1 � 8km2cb�1a1b1 þ 4kdb�1a1b1 þ 4wb0a0b1 � 2k3bb0a0b1 � 2km2cb0a0b1

þ 4kdb0a0b1 þ 2wa�1b2
1 þ 8k3ba�1b2

1 þ 8km2ca�1b2
1 þ 2kda�1b2

1;

C5 ¼ kaa2
1b0 þ 2kaa0a1b1 þ 4wa1b0b1 � 2k3ba1b0b1 � 2km2ca1b0b1 þ 4kda1b0b1 þ 2wa0b2

1

þ 2k3ba0b2
1 þ 2km2ca0b2

1 þ 2kda0b2
1;

C6 ¼ kaa2
1b1 þ 2wa1b2

1 þ 2kda1b2
1:
Equating the coefficients of exp(jf) to zero in (16) and solving the resulting nonlinear algebraic system for a1, a0, a�1, b1, b0,
b�1, k, m and w, we have the solution sets:



1424 _I. Aslan / Applied Mathematics and Computation 217 (2010) 1421–1429
a�1 ¼ 0; a0 ¼
6b0 k2bþm2c
� �

a
; a1 ¼ 0; b�1 ¼

b2
0

4b1
;w ¼ �k k2bþm2cþ d

� �8<
:

9=
;; ð17Þ

a�1 ¼
�b2

0 k2bþm2c
� �

2ab1
; a0 ¼

4b0 k2bþm2c
� �

a
; a1 ¼

�2b1 k2bþm2c
� �

a
; b�1 ¼

b2
0

4b1
;w ¼ k k2bþm2c� d

� �8<
:

9=
;: ð18Þ
Now, substituting (17) into (15) yields a more general exponential function solution to Eq. (1) as
u1ðx; y; tÞ ¼
24b0b1 k2bþm2c

� �
exp kxþmy� k k2bþm2cþ d

� �
t

� �

a b0 þ 2b1 exp kxþmy� k k2bþm2cþ d
� �

t
� �� �2 ; ð19Þ
where b1, b0, k and m are non-zero real constants. If we take b0 = ±2b1 in (19), then we get the formal solitary wave solutions
to Eq. (1) as
u2ðx; y; tÞ ¼
3 k2bþm2c
� �

a
sech2 1

2
kxþmy� k k2bþm2cþ d

� �
t

� �� �
; ð20Þ

u3ðx; y; tÞ ¼ �
3 k2bþm2c
� �

a
csch2 1

2
kxþmy� k k2bþm2cþ d

� �
t

� �� �
; ð21Þ
where k and m are non-zero real constants.
Next, substituting (18) into (15) leads to another more general exponential function solution
u4ðx; y; tÞ ¼
2 k2bþm2c
� �

a
�1þ

12b0b1 exp kxþmyþ k k2bþm2c� d
� �

t
� �

b0 þ 2b1 exp kxþmyþ k k2bþm2c� d
� �

t
� �� �2

0
B@

1
CA; ð22Þ
where b1, b0, k and m are non-zero real constants. If we take b0 = ±2b1 in (22), then we have the formal solitary wave solu-
tions to Eq. (1) as
u5ðx; y; tÞ ¼
k2bþm2c
� �

a
ð2� cosh fÞsech2 f

2
; ð23Þ

u6ðx; y; tÞ ¼
� k2bþm2c
� �

a
ð2þ cosh fÞcsch2 f

2
; ð24Þ
where f ¼ kxþmyþ k k2bþm2c� d
� �

t, k and m are non-zero real constants.
When k, m and w are imaginary numbers in the complex variation f = kx + my + wt, then it is possible to convert the ob-

tained solitary solutions into periodic or compact-like solutions. To do so, we write k = iK, m = iM, w = iW and use the
transformations
expðfÞ ¼ exp i KxþMyþWtð Þð Þ ¼ cos KxþMyþWtð Þ þ i sin KxþMyþWtð Þ;
expð�fÞ ¼ exp i �Kx�My�Wtð Þð Þ ¼ cos KxþMyþWtð Þ � i sin KxþMyþWtð Þ:

ð25Þ
Now, plugging (25) into the solitary solution (19) gives
u7ðx;y;tÞ¼
�24b0b1 K2bþM2c

� �

a 4b2
1þb2

0

� �
cos KxþMyþ K3bþKM2c�Kd

� �
t

� �
þ4b0b1þ 4b2

1�b2
0

� �
isin KxþMyþ K3bþKM2c�Kd

� �
t

� �h i :
ð26Þ
If we search for periodic or compact-like solution, then the imaginary part in (26) must be zero and thus we get
b0 ¼ �2b1: ð27Þ
Finally, substituting (27) and (26) yields the periodic solutions to Eq. (1) as
u8;9ðx; y; tÞ ¼
�6 K2bþM2c
� �

a 1� cos KxþMyþ K3bþ KM2c� Kd
� �

t
� �h i ; ð28Þ
where K and M are free real parameters. By a similar approach, from (22) we can obtain compact-like solutions to Eq. (1) in
the form
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u10;11ðx; y; tÞ ¼
2 K2bþM2c
� �

a
1� 3

1� cos KxþMy� K3bþ KM2cþ Kd
� �

t
� �

2
4

3
5; ð29Þ
where K and M are free real parameters.
Case 2: p = c = 2, d = q = 2
Then the trial function (6) becomes
VðfÞ ¼ a2 expð2fÞ þ a1 expðfÞ þ a0 þ a�1 expð�fÞ þ a�2 expð�2fÞ
b2 expð2fÞ þ b1 expðfÞ þ b0 þ b�1 expð�fÞ þ b�2 expð�2fÞ : ð30Þ
There are some free parameters in (30), so we set b2 = 1, b1 = 0, b�1 = 0 for simplicity and thus (30) takes the form
VðfÞ ¼ a2 expð2fÞ þ a1 expðfÞ þ a0 þ a�1 expð�fÞ þ a�2 expð�2fÞ
expð2fÞ þ b0 þ b�2 expð�2fÞ : ð31Þ
Substituting (31) into Eq. (5), we get
1
2

expð4fÞ þ b0 expð2fÞ þ b�2ð Þ�3
X12

j¼0

Cj expðjfÞ ¼ 0: ð32Þ
We omit to display the coefficients Cj explicitly. Then, equating the coefficients of exp(jf) to zero and solving the resulting
nonlinear algebraic system for a2, a1, a0, a�1, a�2, b0, b�2, k, m and w, we have the solution sets:
a�2 ¼ 0; a�1 ¼ 0; a2 ¼ 0; a1 ¼ 0; a0 ¼
24b0 k2bþm2c

� �
a

; b�2 ¼
b2

0

4
;w ¼ �k 4k2bþ 4m2cþ d

� �8<
:

9=
;; ð33Þ

a�2 ¼
� k2bþm2cð Þb2

0

2a ; a�1 ¼ �3
ffiffi
2
p

a i k2bþm2c
� �

b3=2
0 ; a2 ¼

�2 k2bþm2cð Þ
a ; a1 ¼

6
ffiffiffiffiffiffi
2b0

p
a i k2bþm2c

� �
;

a0 ¼
10b0 k2bþm2cð Þ

a ; b�2 ¼ b2
0

4 ;w ¼ k k2bþm2c� d
� �

; i ¼
ffiffiffiffiffiffiffi
�1
p

:

8><
>:

9>=
>;; ð34Þ

a�2 ¼ 0; a�1 ¼ �3
ffiffi
2
p

a i k2bþm2c
� �

b3=2
0 ; a2 ¼ 0; a1 ¼

6
ffiffiffiffiffiffi
2b0

p
a i k2bþm2c

� �
; a0 ¼

12b0 k2bþm2cð Þ
a ;

b�2 ¼ b2
0

4 ;w ¼ �k k2bþm2cþ d
� �

; i ¼
ffiffiffiffiffiffiffi
�1
p

:

8><
>:

9>=
>;; ð35Þ

a�2 ¼
�2b2

0 k2bþm2cð Þ
a ; a�1 ¼ 0; a2 ¼

�8 k2bþm2cð Þ
a ; a1 ¼ 0; a0 ¼

16b0 k2bþm2cð Þ
a ;

b�2 ¼ b2
0

4 ;w ¼ k 4k2bþ 4m2c� d
� �

:

8<
:

9=
;: ð36Þ
Now, substituting (33) into (31) yields more general exponential function solution
u12ðx; y; tÞ ¼
96b0 k2bþm2c

� �
exp 2 kxþmy� k 4k2bþ 4m2cþ d

� �
t

� �� �

a b0 þ 2 exp 2 kxþmy� k 4k2bþ 4m2cþ d
� �

t
� �� �� �2 ; ð37Þ
where b0, k and m are non-zero real numbers. If we take b0 = ±2 in (37), then we have the formal solitary wave solutions to Eq. (1) as
u13ðx; y; tÞ ¼
12 k2bþm2c
� �

a
sech2 kxþmy� k 4k2bþ 4m2cþ d

� �
t

� �
; ð38Þ

u14ðx; y; tÞ ¼
�12 k2bþm2c

� �
a

csch2 kxþmy� k 4k2bþ 4m2cþ d
� �

t
� �

; ð39Þ
where k and m are non-zero real constants.
Next, substituting (34) into (31) leads to the following more general exponential function solution
u15ðx; y; tÞ ¼
2 k2bþm2c
� �

�4 exp 4fð Þ þ 12
ffiffiffiffiffiffiffiffi
2b0

p
i exp 3fð Þ þ 20b0 exp 2fð Þ � 6

ffiffiffiffiffiffiffiffi
2b3

0

q
i exp fð Þ � b2

0

� �

a b0 þ 2 exp 2fð Þð Þ2
; ð40Þ

� �

where f ¼ kxþmyþ k k2bþm2c� d t, i ¼

ffiffiffiffiffiffiffi
�1
p

, b0, k and m are non-zero real numbers. If we take b0 = ±2 in (40), then we
have the formal solitary wave solutions to Eq. (1) as
u16ðx; y; tÞ ¼
k2bþm2c
� �

a
6i tanh fþ 5� cosh 2fð Þsechfð Þsechf; ð41Þ

u17ðx; y; tÞ ¼
k2bþm2c
� �

a
�6 coth f� 5þ cosh 2fð Þcschfð Þcschf; ð42Þ
where f ¼ kxþmyþ k k2bþm2c� d
� �

t, i ¼
ffiffiffiffiffiffiffi
�1
p

, k and m are non-zero real numbers.
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Similarly, substituting (35) into (31) results in another more general exponential function solution which reads
u18ðx; y; tÞ ¼
12 k2bþm2c
� � ffiffiffiffiffi

b0

p
exp fð Þ 2

ffiffiffi
2
p

i exp 2fð Þ þ 4
ffiffiffiffiffi
b0

p
exp fð Þ �

ffiffiffi
2
p

b0i
� �

a b0 þ 2 exp 2fð Þð Þ2
; ð43Þ
where f = kx + my � k(k2b + m2c + d)t, i ¼
ffiffiffiffiffiffiffi
�1
p

, b0, k and m are non-zero real numbers. If we take b0 = ±2 in (43), then we have
the formal solitary wave solutions to Eq. (1) as
u19ðx; y; tÞ ¼
6 k2bþm2c
� �

a
sechfþ i tanh fð Þsechf; ð44Þ

u20ðx; y; tÞ ¼ �
6 k2bþm2c
� �

a
coth fþ cschfð Þcschf; ð45Þ
where f = kx + my � k(k2b + m2c + d)t, i ¼
ffiffiffiffiffiffiffi
�1
p

, k and m are non-zero real numbers.
Finally, substituting (36) into (31) results in more general exponential function solution
u21ðx; y; tÞ ¼
�8 k2bþm2c
� �

a
1�

12b0 exp 2 kxþmyþ k 4k2bþ 4m2c� d
� �

t
� �� �

b0 þ 2 exp 2 kxþmyþ k 4k2bþ 4m2c� d
� �

t
� �� �� �2

0
B@

1
CA; ð46Þ
where b0, k and m are non-zero real numbers. If we take b0 = ±2 in (46), then we have the formal solitary wave solutions to
Eq. (1) as � �
u22ðx; y; tÞ ¼
4 k2bþm2c

a
2� cosh 2fð Þsech2f; ð47Þ

u23ðx; y; tÞ ¼
4 k2bþm2c
� �

a
�2� cosh 2fð Þcsch2f; ð48Þ� �
where f ¼ kxþmyþ k 4k2bþ 4m2c� d t, k and m are non-zero real numbers.
Now, by the same procedure as in the previous case, applying the transformations (25) to the functions (37), (40), (43)

and (46) respectively, we get periodic wave solutions to Eq. (1) as follows:
u24;25ðx; y; tÞ ¼
�24 K2bþM2c

� �

a 1� cos 2 KxþMyþ ð4K3bþ 4KM2c� KdÞt
� �� �h i ; ð49Þ

u26;27ðx; y; tÞ ¼
2 K2bþM2c
� �

a
1� 3

1� sin KxþMy� K3bþ KM2cþ Kd
� �

t
� �

0
@

1
A; ð50Þ

u28;29ðx; y; tÞ ¼
6 K2bþM2c
� �

a 1� sin KxþMyþ K3bþ KM2c� Kd
� �

t
� �� � ; ð51Þ

u30;31ðx; y; tÞ ¼
8 K2bþM2c
� �

a
1� 3

1� cos 2 KxþMy� 4K3bþ 4KM2cþ Kd
� �

t
� �� �

2
4

3
5; ð52Þ
where K and M are free real parameters. For the sake of the brevity, we do not give any further details here.
Case 3: p = c = 3, d = q = 2
Then the trial function (3) becomes
VðfÞ ¼ a3 expð3fÞ þ a2 expð2fÞ þ a1 expðfÞ þ a0 þ a�1 expð�fÞ þ a�2 expð�2fÞ
b3 expð3fÞ þ b2 expð2fÞ þ b1 expðfÞ þ b0 þ b�1 expð�fÞ þ b�2 expð�2fÞ : ð53Þ
There are some free parameters in (53), so we set b3 = 1, b2 = 0, b1 = 0, b�1 = 0 for simplicity and thus (53) takes the form
VðfÞ ¼ a3 expð3fÞ þ a2 expð2fÞ þ a1 expðfÞ þ a0 þ a�1 expð�fÞ þ a�2 expð�2fÞ
expð3fÞ þ b0 þ b�2 expð�2fÞ : ð54Þ
By the same manipulation as illustrated above, we obtain the solution sets:
a�2 ¼
6 2

5ð Þ
2=3

b5=3
0 k2bþm2cð Þ

5a ; a�1 ¼
�36 2

5ð Þ
1=3

b4=3
0 k2bþm2cð Þ
5a ; a0 ¼

62b0 k2bþm2cð Þ
5a ;

a2 ¼
12 2

5ð Þ
1=3

b1=3
0

k2bþm2cð Þ
a ; a3 ¼

�2 k2bþm2cð Þ
a ; a1 ¼

�24 2
5ð Þ

2=3
b2=3

0
k2bþm2cð Þ

a ;

b�2 ¼ � 3
5

2
5

� �2=3b5=3
0 ;w ¼ k k2bþm2c� d

� �

8>>>><
>>>>:

9>>>>=
>>>>;
; ð55Þ
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a�2 ¼ 0; a�1 ¼
�36 2

5ð Þ
1=3

b4=3
0 k2bþm2cð Þ
5a ; a0 ¼

72b0 k2bþm2cð Þ
5a ; a2 ¼

12 2
5ð Þ

1=3
b1=3

0 k2bþm2cð Þ
a ;

a3 ¼ 0; a1 ¼
�24 2

5ð Þ
2=3

b2=3
0

k2bþm2cð Þ
a ; b�2 ¼ � 3

5
2
5

� �2=3b5=3
0 ;w ¼ �k k2bþm2cþ d

� �
8><
>:

9>=
>;: ð56Þ
Now, substituting (55) into (54) yields more general exponential function solution
u32ðx; y; tÞ ¼
2 k2bþm2c
� �

a
�1þ 60

ffiffiffiffiffi
b0

3
p

ffiffiffiffiffiffiffiffiffiffiffiffi
25003
p

exp fð Þ þ 20
ffiffiffiffiffi
b0

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400b2

0
3
q

exp �fð Þ

0
B@

1
CA; ð57Þ
where f = kx + my + k(k2b + m2c � d)t, b0, k and m are non-zero real numbers.
Next, substituting (56) into (54) leads to the following more general exponential function solution
u33ðx; y; tÞ ¼
120 k2bþm2c

� � ffiffiffiffiffi
b0

3
p

a
ffiffiffiffiffiffiffiffiffiffiffiffi
25003
p

expðfÞ þ 20
ffiffiffiffiffi
b0

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400b2

0
3
q

expð�fÞ
� � ; ð58Þ
where f = kx + my � k(k2b + m2c + d)t, b0, k and m are non-zero real numbers.
We note that if we take b0 = 5/2 in (57) and (58), then we observe that the resulting formal solitary wave solutions to

Eq. (1) are the same as (23) and (20), respectively. Similarly, if we apply the transformations (25) to (57) and (58) and take
b0 = 5/2, then we get periodic wave solutions to Eq. (1) which are included in (29) and (28), respectively.

Remark 1. There is no a universal method for nonlinear equations. Each of the existing methods presented in the open
literature for solving nonlinear evolution equations has some advantages and disadvantages. However, there are some
reasons to select the Exp-function method over the others: (i) The Exp-function method provides exponential function
solutions from which we can construct solitary and periodic wave solutions by setting the parameters as special values. (ii)
As mentioned in [40], Jacobi elliptic function method [2] cannot be applied to solve the NLEEs in which the odd and even-
order derivative terms coexist. This observation is also true for tanh–coth function method [3] and F-expansion method [6].
However, in [41], it is shown that the Burgers’ equation in which the odd and even-order derivative terms coexist can be
solved by the Exp-function method. (iii) Being less restrictive, the Exp-function method can be extended to a wide class of
equations such as NLEEs with variable coefficients [42,43], a KdV equation with forcing term [44], and nonlinear differential-
difference equations [45–48]. Furthermore, the Exp-function method is more applicable to discrete NLEEs than hyperbolic
function method. (iv) Instead of involving a sub-equation together with a long list of solutions, it can be applied to other sub-
equations such as Ricatti equations [22], [35], [49–52]. Moreover, it can be combined with other methods such as the
variational iteration method [53].

Remark 2. It is always better not to integrate the original equation and set the resulting constant(s) to zero in order to get
more general form solutions. Otherwise, some types of solutions may be missed. The reason is that an integration constant
which corresponds to a general form of solutions is arbitrary and therefore, if it is set to zero, only a special solution is
derived. The Exp-function method, by assuming the solution of the equation in exponential form with many parameters,
entails the solution of several sets of nonlinear algebraic equations which sometimes constitute inconsistent systems. In
our case, in order the Exp-function method work for us properly, it has become obligatory to reduce the order of the trans-
formed ODE by integration. However, no method is perfect and can promise finding all solutions of a given (integrable or
non-integrable) nonlinear partial differential equation.

Remark 3. The obtained generalized solitary wave solutions with the free parameters b0 and/or b1 might imply some fas-
cinating physical meanings hidden in the (2 + 1)D-ZK equation. Of course, we can set the parameters b0 and b1 equal to other
values, resulting in different solitary wave shapes. These free parameters might be related to the initial and/or the boundary
data for the problem, as well. Nevertheless, we have ensured the correctness of our solutions by putting them back into the
original Eq. (1) with the aid of Mathematica.
4. Conclusion

Using the Exp-function method, we have successfully obtained various kinds of novel exact analytic solutions to a special
form (2 + 1)D-ZK equation, which admits physical significance, derived by Gottwalld [31] recently. Our solutions include
exponential function solutions, solitary wave solutions and periodic wave solutions. As a result, the power of the employed
method is confirmed. Of course, we are unable to give further details for the real physical meaning of our analytic solutions
due to the lack of experimental and theoretical basis related to these solutions. We believe that these solutions will also be of
great importance for numerical simulation in applied mathematics.
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