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a b s t r a c t

Assas [Laila M.B. Assas, New exact solutions for the Kawahara equation using Exp-function
method, J. Comput. Appl. Math. 233 (2009) 97–102] found some supposedly new exact
solutions to the Kawahara equation by means of the Exp-function method. Unfortunately,
they are incorrect.We emphasize that the article contains erroneous formulas and resulting
relations. In fact, no numerical method was used.
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In a recent study, Assas [1] implemented the Exp-function method [2] to the Kawahara equation

ut + αuux + βuxxx − γ uxxxxx = 0,

where α, β , and γ are nonzero arbitrary constants. This equation, firstly studied in [3], occurs in the theory of magneto-
acoustic waves in plasmas. Besides, it describes water waves with surface tension. The Kawahara equation (or fifth-order
KdV-type equation) has been the subject of extensive research work during the past four decades or so.
On the other hand, there are some precedents when ‘‘solutions’’ derived by the Exp-function method do not satisfy the

original differential equation, for instance, see [4]. Hence, one must give an extra care to the calculations when applying the
Exp-function method with the aid of a computer algebra system (CAS), see [5] for a nice discussion. When working with
a CAS, it is our belief that we should not blindly trust our computer output, we should always be able to justify why the
computer output is a believable answer. It is unfortunate that Assas [1] made one of the common errors from the list of [6],
Sixth error: Some authors do not check the obtained solutions of nonlinear differential equations. After making a thorough and
detailed analysis of [1], we have found numerous mistakes as stated below.

(1) In the Abstract, the author states that, ‘‘It is shown that the Exp-functionmethod,with the help of symbolic computation,
provides a very effective and powerful (mathematical tools) for discrete nonlinear evolution equations in mathematical
physics’’. However, the author does not study any ‘‘discrete’’ nonlinear equation at all.

(2) In Section 2, the basic idea of the Exp-function method is stated with obvious typographical errors which might
confuse the reader. First, u1 in the expression (1) should be ut . Second, in the transformation (2) and the ansatz (4),
the same constant ‘‘c ’’ is involved. Doing so is not allowed. Moreover, we observe, in Section 3, that the constant ‘‘w’’
is taken into account in the wave variable (2) instead of the constant ‘‘c ’’. Thus, the wave transformation (2) must be
u = u(ξ), ξ = kx+ wt .
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(3) In Section 3, the author considers the Kawahara equation (5) with two errors. The second term in Eq. (5) must be αuux
(the constant ‘‘k’’ should not appear in the coefficient) and the third parameter in Eq. (5) is ‘‘γ ’’, not ‘‘ν’’. We have
additional observations in this section:
(a) For the Case 1 (p = c = 1, d = q = 1), the author obtained the solution (17) which is stated as

u(x, t) =
a−1
b−1
ekx+wt + a−1b0

b−1
+ a−1e−kx−wt

ekx+wt + b0 + b−1e−kx−wt

where w = k
(
−4βk2b−1 + 16γ k4b−1 − αa−1

)
/b−1. By a careful inspection, we observe that this solution can be

simplified to the constant a−1/b−1 as follows:

u(x, t) =
a−1
b−1
ekx+wt + a−1b0

b−1
+ a−1e−kx−wt

ekx+wt + b0 + b−1e−kx−wt

=

a−1
b−1
ekx+wt + a−1b0

b−1
+
a−1b−1
b−1

e−kx−wt

ekx+wt + b0 + b−1e−kx−wt

=

a−1
b−1

(
ekx+wt + b0 + b−1e−kx−wt

)
ekx+wt + b0 + b−1e−kx−wt

=
a−1
b−1

,

which is useless. It is clear that the expressions (18)–(20) derived from (17) have no any values since they are actually
derived from this constant solution. So, Case 1 reveals nothing new.
(b) For the Case 2 (p = c = 2, d = q = 1), the expression (21) is constructed from the ansatz (4). Then, following

the procedure, the solution set (22) is obtained. However, we see that the arbitrary parameters do not match in the
expression (21) and the solution set (22). In the solution set (22), there are two extra arbitrary parameters, namely, a−2
and b−2. This is impossible since these parameters are not assumed in the expression (21). At this point, we would like
to mention that the expression (21) is not written in a correct manner. According to the ansatz (4), it should be

u(ξ) =
a−2 exp(−2ξ)+ a−1 exp(−ξ)+ a0 + a1 exp(ξ)
b−2 exp(−2ξ)+ b−1 exp(−ξ)+ b0 + b1 exp(ξ)

.

Let us, for a while, suppose that this correct expression were substituted into the reduced equation (6). Then we would
get the equation

(b−2 + b−1 exp (ξ)+ b0 exp (2ξ)+ b1 exp (3ξ))−6
17∑
j=1

Cj exp(jξ) = 0.

Equating the coefficients Cj (1 ≤ j ≤ 17) to zero, we obtain a system of nonlinear algebraic equations for
a1, a0, a−1, a−2, b1, b0, b−1, b−2, k, w, α, β , and γ . Since the system is too large, we demonstrate just one of the
equations, corresponding to j = 1, as

kαa−2a−1b4−2 + wa−1b
5
−2 + k

3βa−1b5−2 − k
5γ a−1b5−2 − kαa

2
−2b

3
−2b−1 − wa−2b

4
−2b−1 − k

3βa−2b4−2b−1
+ k5γ a−2b4−2b−1 = 0.

But, the author’s solution set (22) still does not satisfy this correctly derived algebraic equation. As a result, the
expressions (23)–(26) cannot be the solutions of the Kawahara equation (we verified this fact by a direct substitution
with the aid a computer algebra system, as well). Besides, contrary to the author’s belief, the expression (26) is not
periodic. So, Case 2 provides nothing new.
(c) For the Case 3 (p = c = 1, d = q = 2), the expression (27) is constructed from the ansatz (4) with b2 = 1. Then,

following the procedure, the solution set (28) is obtained. It is interesting that the solution set (28) of the nonlinear
algebraic system is free of the Kawahara equation’s parameters α, β , and γ . This situation gives us a clue that something
went wrong here. To be more precise, let us substitute the expression (27) with b2 = 1 into the reduced equation (6).
Then we obtain the equation

(b1 exp (2ξ)+ b−1 + b0 exp (ξ)+ exp (3ξ))−6
17∑
j=1

Cj exp(jξ) = 0.

Equating the coefficients Cj (1 ≤ j ≤ 17) to zero, we obtain a system of nonlinear algebraic equations for
a1, a0, a−1, a2, b1, b0, b−1, k, w, α, β , and γ . Since the system is too large, we illustrate just one of the equations,
corresponding to j = 17, as

−wa1 − k3βa1 + k5γ a1 − kαa1a2 + wa2b1 + k3βa2b1 − k5γ a2b1 + kαa22b1 = 0.
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However, the author’s solution set (28) does not satisfy this correctly derived algebraic equation. As a result, the
expressions (29), (30), and (32) cannot be the solutions of the Kawahara equation (we verified this fact by a direct
substitution with the aid a computer algebra system, as well). Our claim is true for another reason that the expressions
(29), (30), and (32) donot involve the original equation’s parametersα, β , andγ , which is impossible.Moreover, contrary
to the author’s view, the expression (32) is not periodic. So, Case 3 asserts nothing new.

(4) In Section 4, the author compares the expressions (18), (25), and (30) with the previously known exact solution (33)
by using tables. Comparison of exact solutions in this manner seems meaningless. On the other hand, there is no any
evidence for the inclusion of a numericalmethod in the paper. If a numericalmethod is used, then the issue of comparing
exact solutions by such a method is open to dispute. It is a well known fact that a numerical method only provides an
approximate solution. It is clear that the author does not find an approximate solution so that a comparison can bemade
with a previously known exact solution.

(5) In Section 5, the author announces that, ‘‘The Exp-function method was successfully used to obtain the exact solutions
of Kawahara equation. As a result, some new generalized solitary solutions with parameters are obtained. The obtained
solutions are new’’. Obviously, our analysis refutes the author’s argument.

Remark. Onemust be aware of the following equivalent cases when using the Exp-functionmethod, namely, when dealing
with the ansatz (4) as stated in [1]:

(p = c = 2, d = q = 1) ≡ (p = c = 1, d = q = 2) ,
(p = c = 3, d = q = 1) ≡ (p = c = 2, d = q = 2) ≡ (p = c = 1, d = q = 3) ,
(p = c = 4, d = q = 1) ≡ (p = c = 3, d = q = 2) ≡ (p = c = 2, d = q = 3) ≡ (p = c = 1, d = q = 4) ,

and so forth. So, the author [1] discussed one of the Cases 2–3 redundantly.

Conclusion. The effortmade by Assas [1] to obtain some new exact solutions to the Kawahara equation failed. As far aswe can
see, the analytical treatment of the Kawahara equation using the ansatz (4) in [1] is still an open problem, no one achieved
so far, including the author of this paper.
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