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In this paper it is shown that anE-complemented complete modular latticeL with small radi-

cal is weakly supplemented if and only if it is semilocal.L is a cofinitely weak supplemented

lattice if and only if every maximal element ofL has a weak supplement inL. If a/0 is a

cofinitely weak supplemented (weakly supplemented) sublattice and1/a has no maximal el-

ement (1/a is weakly supplemented anda has a weak supplement inL), thenL is cofinitely

weak supplemented (weakly supplemented).

Key Words: Cofinite element, weak supplement, weakly supplemented lattice, cofinitely
weak supplemented lattice.

1. INTRODUCTION

ThroughoutL denotes an arbitrary complete modular lattice with smallest element 0 and greatest

element 1; by a lattice we will mean a complete modular lattice. An elementa of L is said to be

small in L if a ∨ b 6= 1 holds for everyb 6= 1. It is denoted bya ¿ L. An elementa of L is

called a supplement of an elementb in L if a∨ b = 1 anda is minimal with respect to this property.

Equivalently, an elementa is a supplement ofb in L if and only if a ∨ b = 1 anda ∧ b ¿ a/0.

Reducing the last condition toa ∧ b ¿ L we obtain the definition of weak supplements.L is said

to be supplemented (respectively, weakly supplemented) if every elementa of L has a supplement

(respectively, weak supplement) inL. Many properties of weak supplement submodules hold in

an arbitrary lattice and sometimes the proofs can be obtained by slight modification of those for
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modules. We give examples of lattices showing that not all generalizations are true and give the

proofs of the results for lattices in those situations when the proofs are essentially different from

those in the module case. Some results proved for lattices provide new results or simpler proofs of

known results for modules. An elementa of L is said to be essential ifa ∧ b 6= 0 for every nonzero

elementb in L. It is denoted bya £ L (see [7]). An elementb is called anE-complement of an

elementa of L if a ∧ b = 0 anda ∨ b £ L. A latticeL is calledE-complemented if every element

of L has anE-complement inL (see [8]). If for every elementa of L there is an elementb of L

such thata ∨ b = 1 anda ∧ b = 0, thenL is said to be complemented (see [6]). The radicalrad(L)
of L is the meet of all maximal elements ofL (see [10]). If1/rad(L) is complemented, thenL is

called a semilocal lattice (cf. [4, 17.1]). In Section 2 weakly supplemented lattices are studied. We

prove that anE-complemented latticeL with small radical is weakly supplemented if and only if

it is semilocal. Also we show that anE-complemented weakly supplemented latticeL with zero

radical is complemented.

A sublattice of the formb/a = {x ∈ L | a ≤ x ≤ b} is called a quotient sublattice (see [5]).

An elementa of L is called cofinite inL if the quotient sublattice1/a is compact, that is1 =
∨
i∈I

xi

for some elementsxi ≥ a implies that1 =
∨

i∈F

xi for some finite subsetF of I. If each element of

L is a join of compact elements, thenL is said to be compactly generated (see [10]). In Section 3

we study cofinitely weak supplemented lattices or briefly cws-lattices, that is lattices whose cofinite

elements have weak supplements. It is proved thatL is a cws-lattice if and only if every maximal

element ofL has a weak supplement. We give a condition under which a compactly generated

cofinitely weak supplemented lattice is cofinitely supplemented.

2. WEAKLY SUPPLEMENTEDLATTICES

The following example shows that a homomorphic image of a small element under a lattice mor-

phism need not be small unlike the module case.

Example2.1 — LetA = {1, 2, 3, 6, 12} andB = {1, 2, 3, 6}. Consider the lattices(A, |) and

(B, |) where| is the divides relation:x | y meansx dividesy.

Consider the lattice morphismf : (A, |) → (B, |) defined byf(k) = k for k = 1, 2, 3, 6 and

f(12) = 6. Clearly,2 ¿ A since2 ∨ x 6= 12 for all x 6= 12. But f(2) = 2 6¿ B since2 ∨ 3 = 6
whilst 3 6= 6.

Nevertheless using the following properties of small sublattices we will show that the quotient

sublattices1/a of a weakly supplemented lattice is weakly supplemented. We will writea < b if

a ≤ b anda 6= b.

Lemma2.2 — ([3, Lemma 7.2, Lemma 7.3 and Lemma 7.4]) Leta < b be elements inL.

(1) If a ¿ b/0, thena ∨ c ¿ (b ∨ c)/c for everyc in L.
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(A, |) (B, |)

(2) b ¿ L if and only if a ¿ L andb ¿ 1/a.

(3) If a ¿ b/0, thena ¿ L.

Proposition2.3 — If L is a weakly supplemented lattice, then for every elementa the quotient

sublattice1/a is also weakly supplemented.

PROOF : Let b be an element of1/a. SinceL is weakly supplemented, there is a weak supple-

mentx of b in L, i.e. x ∨ b = 1 andx ∧ b ¿ L = 1/0. Clearly(a ∨ x) ∨ b = 1. By Lemma 2.2(1),

(a ∨ x) ∧ b = (b ∧ x) ∨ a ¿ (1 ∨ a)/a = 1/a. 2

Small cover of a weakly supplemented module is weakly supplemented (see [4, 17.13]). The

same is true for lattices.

Proposition2.4 — If 1/a is a weakly supplemented sublattice ofL for some elementa ¿ L,

thenL is also weakly supplemented.

PROOF : For every elementx in L there exists a weak supplementy of x ∨ a in 1/a, i.e.

y ∨ (x ∨ a) = 1 andy ∧ (x ∨ a) ¿ 1/a. By Lemma 2.2(2),y ∧ (x ∨ a) ¿ L. Thusy ∧ x ≤
y ∧ (x ∨ a) ¿ L. Hencey is a weak supplement ofx in L. 2

Proposition2.5 — (cf. [9, Proposition 2.2(5)], see also [4, 17.13] and [4, 20.3]). Ifa is a

supplement of some element of a weakly supplemented latticeL, then the quotient sublatticea/0 is

also weakly supplemented.

PROOF : Let a be a supplement ofb in L, i.e. a ∨ b = 1 anda ∧ b ¿ a/0. By Proposition

2.3,1/b = (a ∨ b)/b ∼= a/(a ∧ b) is weakly supplemented. Thus by Proposition 2.4,a/0 is weakly
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supplemented. 2

Proposition2.6 — (cf. [1, Proposition 2.7]). Ifb is a weak supplement ofa in L andc ¿ L,

thenb is a weak supplement ofa ∨ c in L.

PROOF : Clearly(a ∨ c) ∨ b = 1. Let d = a ∧ b andu = (a ∨ c) ∧ b. Supposeu ∨ y = 1 for

somey in L. Clearlyu ∨ x = 1 wherex = y ∨ d. Thenb = b ∧ 1 = b ∧ (u ∨ x) = u ∨ (b ∧ x) and

1 = a ∨ b = a ∨ u ∨ (b ∧ x) = a ∨ [(a ∨ c) ∧ b] ∨ (b ∧ x). By modular law,

1 = [(a ∨ c) ∧ (a ∨ b)] ∨ (b ∧ x) = a ∨ c ∨ (b ∧ x).

Sincec ¿ L, 1 = a ∨ (b ∧ x). Thenb = (b ∧ x) ∨ (b ∧ a) = b ∧ x, that isb ≤ x. Now

1 = u ∨ x ≤ b ∨ x ≤ x, sox = 1. Sinced ¿ L, y = 1. Thusb is a weak supplement ofa ∨ c in

L. 2

The proofs of the following two propositions are the same as for modules (see [4, 17.9 (6) and

17.12]).

Proposition2.7 — If a∨ b = 1 for some elementsa, b of a weakly supplemented latticeL, then

a has a weak supplementc in L such thatc ≤ b.

Proposition2.8 — If a1 ∨ a2 = 1 for some elementsa1, a2 of L with a1/0 anda2/0 weakly

supplemented, thenL is weakly supplemented.

The following theorem generalizes [2, Theorem 2.1] to lattices.

Theorem2.9 — If 1/a anda/0 are weakly supplemented anda has a weak supplement inL,

thenL is also weakly supplemented.

PROOF : Let b be a weak supplement ofa in L. Sincea/0 is weakly supplemented,a/(a∧ b) is

weakly supplemented. The quotient sublatticeb/(a ∧ b) is also weakly supplemented sinceb/(a ∧
b) ∼= (a ∨ b)/a ∼= 1/a. Then1/(a ∧ b) = [a/(a ∧ b)] ∨ [b/(a ∧ b)] is weakly supplemented by

Proposition 2.8. ThereforeL is weakly supplemented by Proposition 2.4. 2

An elementc is called a pseudo-complement of an elementb in L if b∧ c = 0 andc is maximal

with respect to this property.L is said to be pseudo-complemented if every element ofL has a

pseudo-complement inL (see [11]). Pseudo-complemented lattices areE-complemented (see [8]).

On the other hand ifL is the lattice of all submodules of a weak supplemented module which is not

supplemented, then the dual latticeL0 is E-complemented but not pseudo-complemented.

It is well known that the lattice of submodules of every module is pseudo-complemented (see

[11]) and thereforeE-complemented. The following example shows that this fact need not be true

in an arbitrary lattice.

Example2.10 — Consider the interval[0, 1] with usual topology. The setC of closed subsets
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of [0, 1] form a complete distributive lattice with respect to the operations:
∧
i∈I

Ci =
⋂
i∈I

Ci and
∨
i∈I

Ci =
⋃
i∈I

Ci (closure of
⋃
i∈I

Ci) for any family {Ci}i∈I from C. Suppose that{0} has anE-

complementA in C, i.e. {0}∩A = φ and{0}∪A£C. SinceA is closed,a = inf A ∈ A, therefore

a > 0. ThenA ⊆ [a, 1] ⊂
[a

2
, 1

]
and({0} ∪ A) ∩

[a

4
,
a

2

]
= φ, that is{0} ∪ A is not essential in

C. This contradiction shows that the latticeC is notE-complemented.

Recall that if every elementa of L is a complement of an element inL, i.e. a ∨ b = 1 and

a ∧ b = 0 for someb in L, thenL is called a complemented lattice (see [6]).

Lemma2.11 — If L is complemented, thena/0 is complemented for every elementa of L.

PROOF : Let x be an element ofa/0. SinceL is complemented, there exists an elementy of

L such thatx ∨ y = 1 andx ∧ y = 0. Clearlya ∧ (x ∧ y) = 0. By modular lawa = a ∧ 1 =
a ∧ (x ∨ y) = x ∨ (a ∧ y). Sox is a complement of(a ∧ y) in a/0. 2

Lemma2.12 — (see [3, Exercise 4.5]) Ifa is essential inL, then for every elementb of L, a∧ b

is essential inb/0.

PROOF : Suppose(a ∧ b) ∧ c = 0 for somec in b/0. Sincea £ L, c = b ∧ c = 0. 2

An elementc of L is called compact, if for every subsetX = {xi | i ∈ I} of L with c ≤ ∨
i∈I

xi

there exists a finite subsetF of I such thatc ≤ ∨
i∈F

xi. A lattice L is said to be compact if 1

is compact and compactly generated (or algebraic) if each of its elements is a join of compact

elements (see [10]). Ifa < b anda ≤ c < b impliesc = a, then we say thata is covered byb (or b

coversa). If 0 is covered bya for some elementa of L, thena is called an atom (see [12]). A lattice

L is called semiatomic if 1 is a join of atoms inL (see [3]).

Proposition2.13 — LetL be anE-complemented lattice anda be an element ofL different

from 0, 1. If the quotient sublattice1/a is complemented, then there are elementsb1, b2 in L such

thatb1 is a complement ofb2, b1/0 is complemented,a £ b2/0 andb2/a is complemented.

If L is compactly generated, then the converse holds.

PROOF : There existsb1 in L such thatb1 ∧ a = 0 andb1 ∨ a £ L. Since1/a is complemented,

there is a complementb2 of b1 ∨ a in 1/a. So1 = (b1 ∨ a) ∨ b2 = b1 ∨ b2 and0 = b1 ∧ a =
b1 ∧ [(b1 ∨ a) ∧ b2] = b1 ∧ [(b1 ∧ b2) ∨ a] = (b1 ∧ b2) ∨ (b1 ∧ a) = b1 ∧ b2. Furthermoreb2/a

and b1/0 = b1/(b1 ∧ a) ∼= (b1 ∨ a)/a are complemented by Lemma 2.11. Sinceb1 ∨ a £ L,

a = (b1 ∧ b2) ∨ a = (b1 ∨ a) ∧ b2 £ b2/0 by Lemma 2.12.

Now suppose thatL is compactly generated and there are elementsb1, b2 satisfying the con-

ditions. Sublattices(b1 ∨ a)/a andb2/a are compactly generated by [3, Exercise 2.7 and Exer-

cise 2.9 (iii)]. Since(b1 ∨ a)/a ∼= b1/(b1 ∧ a) = b1/0, it is complemented. Compactly gen-
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erated complemented lattices(b1 ∨ a)/a and b2/a are semiatomic by [3, Theorem 6.8]. Then

1/a = (b1 ∨ b2)/a = (b1 ∨ a)/a ∨ b2/a is semiatomic and sinceL is compactly generated,1/a is

compactly generated. Therefore1/a is complemented by [3, Theorem 6.8]. 2

Lemma2.14 — LetL be anE-complemented lattice anda be an element ofL different from 0,

1. The quotient sublattice1/a is complemented if and only if for every elementb of L, there exists

an elementc in L such thatb ∨ c = 1 andb ∧ c ≤ a.

PROOF : (⇒) Let b be an element ofL. Sinceb ∨ a is in 1/a, it has a complementc in 1/a.

Then(b ∧ c) ∨ a = (b ∨ a) ∧ c = a, thereforeb ∧ c ≤ a andb ∨ c = (b ∨ a) ∨ c = 1.

(⇐) Let b ∈ 1/a. There is an elementc of L with b ∨ c = 1 andb ∧ c ≤ a. Thenb ∨ (c ∨ a) =
b ∨ c = 1 andb ∧ (c ∨ a) = (b ∧ c) ∨ a = a, that isc ∨ a is a complement ofb in 1/a. So1/a is

complemented. 2

Recall that the meet of all maximal elements (different from 1) inL is called the radical ofL

(see [10]), denoted byrad(L). If a ¿ L andm is a maximal element inL, thenm ∨ a 6= 1,

thereforem ∨ a = m and soa ≤ m. It means that the radical ofL contains all small elements ofL

(see also [10, Proposition 6]). A latticeL is said to be semilocal if the quotient sublattice1/rad(L)
is complemented (cf. [4, 17.1]).

Theorem2.15— If L is anE-complemented weakly supplemented lattice, then it is semilocal

and there are elementsb1, b2 in L such thatb1 is a complement ofb2 with b1/0 complemented and

rad(L) £ b2/0.

PROOF : SinceL is weakly supplemented, for every elementb of L there exists an elementc of

L such thatb ∨ c = 1 andb ∧ c ¿ L, thereforeb ∧ c ≤ rad(L). Then the sufficient condition of

Lemma 2.14 is satisfied if takea = rad(L). Therefore1/rad(L) is complemented. Then the rest

statements of the theorem follows from Proposition 2.13. 2

Corollary 2.16 — LetL be anE-complemented lattice with small radical. Then L is weakly

supplemented if and only if it is semilocal.

PROOF : (⇒) By Theorem 2.15.

(⇐) AssumeL is semilocal, i.e.1/rad(L) is complemented. By Lemma 2.14, for every element

a of L there is an elementb in L such thata ∨ b = 1 anda ∧ b ≤ rad(L) ¿ L. Sob is a weak

supplement ofa in L. 2

Corollary 2.17 — AnE-complemented latticeL with zero radical is weakly supplemented if

and only if it is complemented.

Remark2.18 : Since pseudo-complemented lattices areE-complemented the last five statements

are true for pseudo-complemented lattices as well.
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3. COFINITELY WEAK SUPPLEMENTEDLATTICES

For compactly generated lattices, without loss of generality, weak supplements of cofinite elements

can be regarded as compact elements:

Lemma3.1 — (cf. [1, Lemma 2.1]) LetL be a compactly generated lattice anda be a cofinite

element ofL. If b is a weak supplement ofa in L, thena has a weak supplementc in L such that

c ≤ b andc is compact.

PROOF : SinceL is compactly generated,b =
∨
i∈I

ci where eachci is compact.

Then

1 = a ∨ b = a ∨ (
∨
i∈I

ci) =
∨
i∈I

(a ∨ ci).

Since1/a is compact,1 =
∨

i∈F

(a ∨ ci) = a ∨ (
∨

i∈F

ci) for some finite subsetF of I. But

c =
∨

i∈F

ci is compact by [3, Proposition 2.1]. Clearlyc is a weak supplement ofa. 2

The following example shows that Lemma 3.1 need not be true for lattices that are not compactly

generated.

Example3.2 — LetL = {(x, 0) | x ∈ [0, 1]} ∪ {(0, y) | y ∈ [0, 1]} ⊆ R2 and define the order

¹ on L as follows. (a, b) ¹ (c, d) if either b = d = 0 anda ≤ c; or a = c = 0 andb ≤ d; or

b = c = 0 anda ≤ d. One can easily verify thatL is a complete modular lattice with the largest

element(0, 1) and the smallest element(0, 0). Since the quotient sublattice(0, 1)/(1, 0) is simple,

it is compact. So(1, 0) is a cofinite element ofL. Let a be a real number with0 < a < 1. Clearly

(0, a) ∨ (1, 0) = (0, 1) and(0, a) ∧ (1, 0) = (a, 0) is small inL, so(0, a) is a weak supplement of

(1, 0) in L. On the other hand, there is no compact element inL except for(0, 0), therefore there is

no compact weak supplement(b, c) of (1, 0) with (b, c) ¹ (0, a).

Proposition3.3 — If L is acws-lattice, then for every elementa of L, 1/a is also acws-sublattice

of L.

PROOF : Let b be a cofinite element of1/a. Then1/b is a compact sublattice in1/a, so1/b

is a compact quotient sublattice inL. This means thatb is a cofinite element ofL. SinceL is a

cws-lattice, b has a weak supplementx in L, i.e. x ∨ b = 1 andx ∧ b ¿ L. Sincex ∧ b ¿ L,

(x∨ a)∧ b = (x∧ b)∨ a ¿ (1∨ a)/a = 1/a by Lemma 2.2(1). Sox∨ a is a weak supplement of

b in 1/a. 2

We are going to prove thatL is cws-lattice if and only if every maximal element ofL has a weak

supplement. This result was proved forcws-modules in [1]. The proof of the following lemma for

modules ([1, Lemma 2.15]) is valid for lattices as well.
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Lemma3.4 — Leta andb be elements ofL such thatb is a weak supplement of a maximal

elementm of L. If a ∨ b has a weak supplement inL, thena has a weak supplement inL.

LetΓ be the set of all elementsb of L such thatb is a weak supplement of some maximal element

of L and letcws(L) denote the join of all elements ofΓ.

Theorem3.5— A latticeL is a cws-lattice if and only if every maximal element ofL has a weak

supplement.

PROOF : (⇒) Clear since every maximal element is cofinite.

(⇐) Observing that every nonzero compact lattice has a maximal element by [3, Lemma 2.4],

this part of the proof is analogous to the proof of Theorem 2.16 in [1]. 2

Using this theorem we prove that an arbitrary join ofcws-lattices is acws-lattice (see [1, Propo-

sition 2.12]).

Theorem3.6 — Let {ai/0}i∈I be a collection of cws-sublattices of L with1 =
∨
i∈I

ai. ThenL

is a cws-lattice.

PROOF : Let m be any maximal element ofL. If ai ≤ m for all i ∈ I, then1 =
∨
i∈I

ai ≤ m

which is a contradiction. So there exists aj ∈ I such thataj � m. Then1 = aj ∨ m. Since

aj/(aj ∧m) ∼= (aj ∨m)/m = 1/m, the elementaj ∧m is maximal inaj/0. By hypothesis there

is a weak supplementc of aj ∧ m in aj/0, i.e. (aj ∧ m) ∨ c = aj andaj ∧ m ∧ c ¿ aj/0. If

c ≤ m thenaj = (aj ∧ m) ∨ c ≤ m, a contradiction. Soc � m. Therefore1 = m ∨ c and

m ∧ c = aj ∧m ∧ c ¿ L by Lemma 2.2(3). Thusc is a weak supplement ofm in L. By Theorem

3.5,L is acws-lattice. 2

Theorem 3.5 is also used in the proof of the following theorem which in its turn gives a new

result for modules.

Theorem3.7— If a/0 is a cws-sublattice ofL and1/a has no maximal element, thenL is also

a cws-lattice.

PROOF: Let b be a maximal element ofL. If a ≤ b thenb is a maximal element of1/a, but1/a

has no maximal element. Soa � b, thereforea ∨ b = 1 anda/(a ∧ b) ∼= (a ∨ b)/b = 1/b. Sinceb

is a maximal element ofL, a ∧ b is a maximal and therefore a cofinite element ofa/0. Then there

is a weak supplementc of a ∧ b in a/0, that is(a ∧ b) ∨ c = a and(a ∧ b) ∧ c ¿ a/0. Sincec is in

a/0, c ∧ b = c ∧ (a ∧ b) ¿ L. c ∨ b = c ∨ (a ∧ b) ∨ b = a ∨ b = 1. Soc is a weak supplement ofb

in L. By Theorem 3.5,L is acws-lattice. 2

Lemma3.8 — LetL be a compactly generated lattice anda be a cofinite element ofL. If a has

a weak supplementb in L and for every compact elementc with c ≤ b, rad(c/0) = c ∧ rad(L),
thena has a compact supplement inL.
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PROOF : Sincea is cofinite,1/a is compact. So by Lemma 3.1,a has a compact weak supple-

mentc with c ≤ b, i.e. 1 = a ∨ c anda ∧ c ¿ L. Thena ∧ c ≤ rad(L). Soa ∧ c ≤ c ∧ rad(L) =
rad(c/0). Sincec is compact,rad(c/0) ¿ c/0 by [10, Proposition 9 (iii)]. Thusa ∧ c ¿ c/0.

Hencec is a supplement ofa in L. 2

Using Lemma 3.8 one can easily modify the proofs of [1, Theorem 2.19] and [1, Corollary 2.20]

to prove Theorem 3.9 and Corollary 3.10.

Theorem3.9— Let L be a compactly generated lattice such that for every compact elementc

of L, rad(c/0) = c ∧ rad(L). ThenL is cofinitely weak supplemented if and only ifL is cofinitely

supplemented.

Corollary 3.10 — LetL be a compact lattice such that for every compact elementc of L,

rad(c/0) = c∧ rad(L). ThenL is weakly supplemented if and only ifL is supplemented. Further-

more in this case every compact element ofL is a supplement.
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