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Abstract: The use of full spectral region from near infrared spectroscopic analysis
does not always end up with a good multivariate calibration model as many of
the wavelengths do not contain necessary information. Due to the complexity of
the spectra, some of the wavelengths or regions may, in fact, disturb the model-
building step. Genetic algorithms are one of the useful tools for solving wavelength
selection problems and may improve the predictive ability of conventional multivariate
calibration methods. This study demonstrates application of genetic algorithm-based
multivariate calibration to near infrared spectroscopic determination of several diesel
fuel parameters. The parameters studied are cetane number, boiling and freezing point,
total aromatic content, viscosity, and density. Multivariate calibration models were
generated using genetic inverse least squares (GILS) method and used to predict
the diesel fuel parameters based on their near infrared spectra. For each property, a
different data set was used and in all cases the number of samples was around 250.
Overall, percent standard error of prediction (%SEP) values ranged between 2.48
and 4.84% for boiling point, total aromatics, viscosity, and density. However, %SEP
results for cetane number and freezing point were 11.00% and 14.86%, respectively.

Keywords: diesel fuel, genetic algorithms, multivariate calibration, near infrared
spectroscopy

INTRODUCTION

Advances in computers and automation technology have made today’s instru-
ments incredibly fast, so that they can produce hundreds of spectra in a few
minutes for a given sample that contains multiple components. Unfortunately,
univariate calibration methods are not suitable for this type of data, as they
require an interference-free system. Thanks to the chemometrics, multivariate
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calibration methods make it possible to relate instrument responses that con-
sist of several predictor variables to a chemical or physical property of a sam-
ple. Several classical multivariate calibration methods have been developed
in last couple of decades (Lindberg et al., 1983; Geladi and Kowalski, 1986;
Haaland and Thomas, 1988; Wentzell et al., 1997) for the analysis of complex
chemical mixtures, and the choice of the most suitable calibration method is
very important in order to generate calibration models with high predictive
ability for future samples. In some cases, conventional methods may not offer
a satisfactory solution to a given problem due to the complexity of the data,
and it may be necessary to apply some sort of variable selection. There have
been many mathematical methods of variable selection (Lindgren et al., 1994;
Centner et al., 1996; Forina et al., 1999), and genetic algorithm is one of them
offering a fast and effective solution for large scale problems (Leardi et al.,
1992; Lucasius and Kateman, 1993; Hörchner and Kalivas, 1995).

Inverse Least Squares (ILS) is based on the inverse of Beer’s Law,
where concentrations of an analyte are modeled as a function of absorbance
measurements. Genetic Inverse Least Squares (GILS) is modified versions
of original ILS methods in which a small set of wavelengths are selected
from a full spectral data matrix and evolved to an optimum solution using
a genetic algorithm (GA), and has been applied to a number of wavelength
selection problems (Özdemir and Dinç, 2004; Özdemir and Öztürk, 2004;
Özdemir, 2005). GAs are non-local search and optimization methods that are
based upon the principles of natural selection (Hibbert, 1993; Paradkar and
Williams, 1997; Pizarro et al., 1998; Mosley and Williams, 1998; Özdemir
and Williams, 1999).

Near infrared (NIR) spectroscopy (McClure, 1994) has become a popular
method for simultaneous chemical analysis and is being studied extensively
in a number of different fields, such as process monitoring (DeThomas et
al., 1994), biotechnology (Arnold et al., 2000), and pharmaceutical and food
industry (Wählby and Skjöldebrand, 2001; Tran et al., 2004) because of the
potential for on-line, nondestructive and noninvasive instrumentation. The
NIR portion of the electromagnetic spectrum covers the range from 780 nm
to 2,500 nm, and most of the absorption bands observed in this region are
due to overtones and combinations of the fundamental mid-IR molecular
vibrational bands. Although all the fundamental vibrational modes can have
overtones, the most commonly observed bands arise from the C�H, O�H,
and N�H bonds in the molecules.

A broad description of the six properties of the diesel fuel data set studied
here was given elsewhere (Soyemi et al., 2000), and detailed information
about how these properties are determined by standard reference methods
was provided. In this work, genetic algorithm-based calibration method ge-
netic inverse least squares (GILS) was tested with the aim of establishing
calibration models that have a high predictive ability for the near infrared
spectroscopic determination of several chemical and physical parameters of
diesel fuels.
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GENETIC INVERSE LEAST SQUARES

The major drawback of the classical least squares (CLS) method is that all
of the interfering species must be known and their concentrations included
in the model. This need can be eliminated by using the inverse least squares
(ILS) method which uses the inverse of Beer’s Law. In the ILS method,
concentration of a component is modeled as a function of absorbance mea-
surements. Because modern spectroscopic instruments are very stable and
provide excellent signal-to-noise (S/N) ratios, it is believed that the majority
of errors lie in the reference values of the calibration sample, not in the
measurement of their spectra. In fact, in many cases the concentration data
of calibration set is generated from another analytical technique that already
has its inherent errors, which might be higher than those of the spectrometer
(for example, Kjeldahl protein analysis used to calibrate NIR spectra).

The ILS model for m calibration samples with n wavelengths for each
spectrum is described by:

C D AP C EC (1)

where C is the m � l matrix of the component concentrations, A is the
m � n matrix of the calibration spectra, P is the n � l matrix of the unknown
calibration coefficients relating l component concentrations to the spectral
intensities, and EC is the m � l matrix of errors in the concentrations not fit
by the model. In the calibration step, ILS minimizes the squared sum of the
residuals in the concentrations. The biggest advantage of ILS is that Eq. (1)
can be reduced for the analysis of a single component at a time since analysis
is based on an ILS model is invariant with respect to the number of chemical
components included in the analysis. The reduced model is given as:

c D Ap C ec (2)

where c is the m� 1 vector of concentrations for the component that is being
analyzed, p is n � 1 vector of calibration coefficients, and ec is the m � 1

vector of concentration residuals not fit by the model. During the calibration
step, the least-squares estimate of p is:

Op D .A0A/�1A0
� c (3)

where Op are the estimated calibration coefficients. Once Op is calculated, the
concentration of the analyte of interest can be predicted with the equation
below.

Oc D a0
� Op (4)

where Oc is the scalar estimated concentration and a is the spectrum of the
unknown sample. The ability to predict one component at a time without
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knowing the concentrations of interfering species has made ILS one of the
most frequently used calibration methods.

The major disadvantage of ILS is that the number of wavelengths in the
calibration spectra should not be more than the number of calibration samples.
This is a big restriction since the number of wavelengths in a spectrum will
generally be much more than the number of calibration samples and the
selection of wavelengths that provide the best fit for the model is not a trivial
process. Several wavelength selection strategies, such as stepwise wavelength
selection and all possible combination searches, are available to build an ILS
model which fits the data best.

Genetic Algorithms (GA) are global search and optimization methods
based upon the principles of natural evolution and selection as developed by
Darwin. Computationally, the implementation of a typical GA is quite simple
and consists of five basic steps, including initialization of a gene population,
evaluation of the population, selection of the parent genes for breeding and
mating, crossover and mutation, and replacing parents with their offspring.
These steps have taken their names from the biological foundation of the
algorithm.

Genetic inverse least squares (GILS) is an implementation of a GA for
selecting wavelengths to build multivariate calibration models with reduced
data sets. GILS follows the same basic initialize/breed/mutate/evaluate algo-
rithm as other GAs to select a subset of wavelengths but is unique in the way
it encodes genes. A gene is a potential solution to a given problem, and the
exact form may vary from application to application. Here, the term gene is
used to describe the collection of instrumental responses at the wavelength
range given in the data set. The term “population” is used to describe the
collection of individual genes in the current generation.

In the initialization step, the first generation of genes is created randomly
with a fixed population size. Although random initialization helps to minimize
bias and maximize the number of possible recombinations, GILS is designed
to select initial genes in a somewhat biased random fashion in order to start
with genes better suited to the problem than those that would be randomly se-
lected. Biasing is done with a correlation coefficient by plotting the predicted
results of initial population against the actual component concentrations. The
size of the gene pool is a user-defined even number in order to allow breeding
of each gene in the population. It is important to note that the larger the
population size, the longer the computation time. The number of instrumental
responses in a gene is determined randomly between a fixed low limit and
high limit. The lower limit was set to 2 in order to allow single-point crossover
whereas the higher limit was set to eliminate overfitting problems and reduce
the computation time. Once the initial gene population is created, the next
step is to evaluate and rank the genes using a fitness function, which is the
inverse of the standard error of calibration (SEC).

The third step is where the basic principle of natural evolution is put
to work for GR. This step involves the selection of the parent genes from
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the current population for breeding using a roulette wheel selection method
according to their fitness values. The goal is to give a higher chance to
those genes with high fitness so that only the best performing members of
the population will survive in the long run and will be able to pass their
information to the next generations. Because of the random nature of the
roulette wheel selection method, however, genes with low fitness values will
also have some chance to be selected. Also, there will be genes that are
selected multiple times and some genes will not be selected at all and will
be thrown out of the gene pool. After the selection procedure is completed,
the selected genes are allowed to mate top-down in pairs, whereby the first
gene mates with the second gene and the third one with the fourth one and
so on, as illustrated in the following example:

Parents

S1 D .A347; A251; #A379; A218/ (5)

S2 D .A225; A478; #A343; A250; A451; A358; A231; A458/ (6)

The points where the genes are cut for mating are indicated by #.

Offspring

S3 D .A347; A251; A343; A250; A451; A358; A231; A458/ (7)

S4 D .A379; A218; A225; A478/ (8)

where A347 represents the instrument response at the wavelength given in
subscript, S1 and S2 represent the first and second parent genes, and S3 and
S4 are the corresponding genes for the offspring. Here the first part of S1 is
combined with the second part of the S2 to give the S3, likewise the second
part of the S1 is combined with the first part of the S2 to give S4. This
process is called the single point crossover and is common in GILS. Single-
point crossover will not provide different offspring if both parent genes are
identical, which may happen in roulette wheel selection when both genes are
broken at the same point. Also note that mating can increase or decrease the
number of instrument responses in the offspring genes. After crossover, the
parent genes are replaced by their offspring and the offspring are evaluated.
The ranking process is based on their fitness values following the evaluation
step. Then the selection for breeding/mating starts all over again. This is
repeated until a predefined number of iterations is reached.

Mutation, which introduces random deviations into the population, was
also introduced into the GILS during the mating step at a rate of 1%, as is
typical in GAs. This is usually done by replacing one of the responses in
an existing gene with a randomly selected new one. Mutation allows the GR
to explore the search space and incorporate new material into the genetic
population. It helps keep the search moving and can eject GILS from a local
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minimum on the response surface. However, it is important not to set the
mutation rate too high since it may keep the GA from being able to exploit
the existing population. Also, the GILS method is an iterative algorithm, and,
therefore, there is a high possibility that the method may easily over-fit the
calibration data so that the predictions for independent sets might be poor.
To eliminate possible over-fitting problems, cross validation is used in which
one spectrum is left out of the calibration set and the model is constructed
with m � 1 sample. Then this model is used to predict the concentration of
left-out sample. This process is continued until all samples are left out at least
once in each iteration. As long as the number of spectra in the calibration
set is not too large, cross validation is an effective method of eliminating
over-fitting. If the number of calibration spectra is very large, then the GILS
method has the option of a half-validation approach in which the half of the
spectra in the calibration set is used to validate the model in each iteration.

In the end, the gene with the lowest SEC (highest fitness) is selected
for the model building which is done by simple least squares. This model
is used to predict the concentrations of component being analyzed in the
prediction (test) sets. The success of the model in the prediction of the test
sets is evaluated using standard error of prediction (SEP). Because random
processes are heavily involved in GR, as in all the GAs, the program has
been set to run several times for each component in a given multi-component
mixture during the course of this study. The best run (i.e., the one generating
the lowest SEC for the calibration set and at the same time producing SEPs
for prediction sets that are in the same range with the SEC) is subsequently
selected for evaluation and further analysis. The termination of the algorithm
can be done in many ways. The easiest way is to set a predefined iteration
number for the number of breeding/mating cycles.

GILS has some major advantages over classical univariate and multi-
variate calibration methods. First of all, it is quite simple in terms of the
mathematics involved in the model building and prediction steps, but at the
same time it has the advantages of the multivariate calibration methods with a
reduced data set since it uses the full spectrum to extract genes. By selecting
a subset of instrument responses, it is able to eliminate nonlinearities that
might be present in the full spectral region.

EXPERIMENTAL

The near infrared spectra of diesel fuel samples, together with six properties
that were measured at the Southwest Research Institute, are obtained from
the web site of Eigenvector Research Corporation (http://software.eigenvector.
com/Data/index.html). It contains six different data sets for the parameters:
cetane number, boiling point, freezing point, total aromatic content, viscosity,
and density. Each set has a different number of samples (around 250), and
the above physical and chemical properties of the samples were determined
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independently using standard reference methods before the near infrared
spectra were recorded. The diesel fuel data set investigated here has also been
used in a number of previous studies (Leardi, 2000; Boger, 2003; Esteban-
Diez et al., 2004) for testing new variable selection and calibration algorithms.
Each spectrum in all data sets contains 401 distinct wavelengths, but the
wavelength range was not indicated. The genetic inverse least squares (GILS)
method was written in MATLAB programming language using Matlab 5.3
(MathWorks Inc, Natick, MA).

RESULTS AND DISCUSSION

The diesel fuel data set used in this study was selected to demonstrate the
applicability of genetic multivariate calibration for the determination of some
physical and chemical properties of diesel fuels that are very important in
assigning the quality of the fuel using near infrared spectroscopy in place of
expensive and time-consuming standard reference methods. Several different
properties were investigated, and a different data set is used for each one of
them. Table 1 shows these properties along with the number of calibration and
prediction samples in each set. The composition of calibration and prediction
sets was decided based on the information given in the description of the data
set at Eigenvector Research database archive. It was reported that each data
set contains 20 high-leverage samples which were included in the calibration
set of our study. The remaining samples were split into two sets with the
names ending with an extension of �a and �b for calibration and predic-
tion sets, respectively. Figure 1 shows near infrared spectra of six different
diesel fuel samples, one from each set. Because the main composition of
all samples are similar, the spectral features of these fuel samples are very
much alike, and only minute differences exist in some parts of the whole
spectrum. Throughout the multivariate calibration process, it is expected that
these differences will reveal the information necessary to build successful
calibration models otherwise almost impossible with univariate calibration
methods.

Table 1. The properties of the diesel fuel data sets investigated in this study along
with the number of calibration and prediction samples in each set

Cetane Boiling Freezing Total aromatics, Viscosity, Density,
Properties number point, ıC point, ıC w/w% cSt g/mL

Number of calibration
sample

133 133 136 138 136 142

Number of prediction
sample

112 113 115 118 116 121
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Figure 1. Near infrared spectra of six diesel fuel samples taken from six different
data sets.

In order to prepare calibration models, six separate calibration and pre-
diction sets were prepared for all the properties, as shown in Table 1. Because
of the random nature of the GILS method, the program was set to run 30
times with 20 genes and 50 iterations. Since the GILS program is iterated
50 times in each run, it is possible that the algorithm may end up with
an over-fit model which produces very poor results for the prediction set.
On the other hand, the number of calibration samples for each property
is around 135, and this number is too large to apply full cross validation
methods to avoid possible over-fitting. To eliminate the problem, a half-
validation approach was used in GILS method in which all the odd num-
bered samples in the original calibration set were selected for the model
building step, and the even numbered samples were reserved for model
validation in each iteration. This approach not only eliminates the over-
fitting but also significantly reduces the iteration time. Table 2 shows the

Table 2. Results of genetic inverse least squares (GILS) method for the six
parameters of diesel fuel data

Total
Cetane Boiling Freezing aromatics, Density,

Parameters number point, ıC point, ıC w/w% Viscosity, cSt g/mL

Range 40–60 198–286 (�24)–(�0.2) 13–47 1.3–3.6 0.80-0.87
R

2 0.865 0.986 0.897 0.997 0.973 0.995
SEC 1.31 2.03 1.45 0.33 0.07 <0.01
%SEC 6.94 2.23 6.28 1.14 2.99 1.60
SEP 2.11 3.62 2.77 0.67 0.10 <0.01
%SEP 11.00 3.92 14.86 2.48 4.82 3.36
APR 100.15 100.01 105.19 100.32 99.93 100.03
SD 4.39 1.40 104.17 2.37 4.52 0.19
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Figure 2. Actual versus GILS predicted properties of diesel fuel data.

results of the GILS method for the six parameters studied. To evaluate the
model performance, standard error of calibration (SEC) and standard error
of prediction (SEP) were used for calibration and prediction sets, respec-
tively. These parameters can be dimensionally compared to the property
studied. To be able to report the result free of dimensionality consideration,
percentage of SEC (%SEC) and SEP (%SEP) were also reported. As can
be seen from Table 2, the %SEC values were ranged between 1.14% and
6.94% and for the %SEP between 2.48 and 14.86% for all the proper-
ties. It is evident that the GILS method was able to generate successful
calibration models for all the properties except for the determination of
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Figure 3. Frequency distribution of the genetic algorithm selected variables for the
six properties of diesel fuel data: (a) total aromatics, (b) density, (c) boiling point, (d)
viscosity, (e) cetane number, and (f) freezing point.

freezing point and cetane number. For these two properties, predictions were
somewhat poor.

Since there are more than 100 samples in the prediction sets, it is
not practical to illustrate the GILS predicted results in a table, so average
percent recoveries (APR) and associated standard deviation (SD) values for
the prediction sets are also given in the last two rows of Table 2. As can
be seen, except for the freezing point, all other determinations were resulted
with standard deviations ranging from 0.19 to 4.52. The plot of actual versus
GILS predicted concentrations based on NIR data for six properties of diesel
fuel data is illustrated in Figure 2. The R2 values were ranged between 0.973
and 0.997 for total aromatics content, density, boiling point, and viscosity,
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indicating very good correlation between predicted and actual values. For
cetane number and freezing point, the values were 0.865 and 0.897, respec-
tively. As a result, it can be said that NIR spectroscopy in conjunction with
multivariate calibration can be used for fast determination of several physical
and chemical properties of diesel fuels.

Because GILS is a wavelength selection based method, it is interesting
to observe the distribution of selected wavelengths in multiple runs over the
entire full spectral region. Figure 3 illustrates the frequency distribution of
selected wavelengths in 30 runs for all of the six properties. The distribution of
selected wavelengths does not indicate a strong localization of the algorithm
but in each run, GILS method was able go generate successful calibration
models for most of the properties of diesel fuels studied.

CONCLUSIONS

This study has demonstrated the application of NIR spectroscopy with genetic
multivariate calibration to simultaneous determination of diesel fuel proper-
ties. Because of the fact that the percent standard error of prediction (%SEP)
values are below 5% for total aromatic content, density, boiling point, and
viscosity, the NIR spectroscopy can be used for simultaneous determination
of chemical and physical properties of diesel fuels. On the other hand, the
genetic algorithm used in the GILS method is able to select and extract the
most relevant information to build successful calibration models that have
high predictive ability for the independent test samples.
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