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Abstract

This study is concerned with the fracture of an infinite thick-walled cylinder. The inner surface of the cylinder is stress
free and the outer is rigidly fixed. The cylinder having a ring-shaped crack located at the symmetry plane is subjected to
distributed compressive load on its surfaces. The Hankel and Fourier transform techniques are used for the solution of the
field equations. By applying the boundary conditions, the singular integral equation in terms of crack surface displacement
derivative is derived. By using an appropriate quadrature formula, the integral equation is reduced to a system of linear
algebraic equations. Numerical results are obtained for the stress intensity factors at the edges of the crack, surfaces of
which are subjected to uniform, linear and parabolic load distributions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In fracture mechanics, pressure vessels, pipes and other cylindrical containers having crack have been stud-
ied by numerous authors because of their industrial significance. No matter how a crack is initiated or intro-
duced in a structural member, accurate prediction of the fracture conditions such as stress intensity factors, is
important to assess its remaining life. One of the most widely used method of solution of crack problems lead-
ing to calculation of the stress intensity factors in infinite domains is the integral transform. A thick-walled
cylinder with an axisymmetric internal or edge crack has been studied by Erdol and Erdogan [1]. The problem
is formulated in terms of a singular integral equation which has a simple Cauchy Kernel for the internal crack
and a generalized Cauchy Kernel for the edge crack.

Sneddon and Welch [2] analyzed the distribution of stress in a long cylinder of elastic material when it is
deformed by pressure to the inner surfaces of a penny-shaped crack located symmetrically at the center of the
cylinder. In the paper by Gupta [3] the axisymmetric semi-infinite cylinder with fixed short end is considered.
0013-7944/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b inner and outer radii of the crack
A, B inner and outer radii of the hollow cylinder
b � a width of the ring-shaped crack
p(r) distributed load on the crack surfaces
r, z position coordinates
u, w displacement components in r and z directions
rr, rz, srz normal and shear stress components of stress
j 3 � 4m
m Poisson’s ratio
l shear modulus of elasticity
a the Hankel transform variable
k the Fourier transform variable
J0, J1 Bessel functions of the first kind of order zero and one
I0, I1 the modified Bessel functions of the first kind of order zero and one
K0, K1 the modified Bessel functions of the second kind of order zero and one
K, E the complete elliptic integrals of the first and the second kinds
f(r) the unknown crack surface displacement derivative
F(a) Hankel transform of f(r)
F*(r) Hölder-continuous function
c power of singularity at the crack edges
s, n normalized variables at z = 0
k1(a), k1(b) Mode I stress intensity factor at the inner and the outer edges of the crack
�k1ðaÞ; �k1ðbÞ normalized Mode I stress intensity factors
M1 the Kernel which contains the elliptic integrals
N11 the Kernel which has singular terms when t = A, B and r = ±A, ±B

N11s(r, t), N11b(r, t) the singular part and the bounded part of the Kernel N11

L. Aydin, H. Secil Altundag Artem / Engineering Fracture Mechanics 75 (2008) 1294–1309 1295
Integral transform method is used in order to formulate the problem and a singular integral equation is
obtained. Delale and Erdogan [4] have considered a hollow cylinder problem. The cylinder contains an arbi-
trarily oriented radial crack and it is subjected to arbitrary normal tractions on the crack surfaces. In that
study, the problem is formulated in terms of a singular integral equation using the basic dislocation solutions
as the Green’s functions. The elasticity problem for a long hollow cylinder which contains an axisymmetric
circumferential crack has been studied by Nied and Erdogan [5]. The problem is formulated in terms of a sys-
tem of singular integral equations with the Fourier coefficients of the derivative of the crack surface displace-
ment density functions. The stress intensity factors (SIFs) and the crack opening displacement have been
calculated. In the paper by Benthem and Minderhoud [6] the problem of a finite strip compressed between
two rigid stamps is solved by the eigenfunction technique. Artem and Gecit [7] considered the fracture of
an axisymmetric hollow cylindrical bar containing a ring-shaped crack at the symmetry plane and rigid inclu-
sions. The cylinder is under the action of uniform loading. An integral transform technique has been used in
order to formulate the problem in terms of the system of three singular integral equations. These integral
equations are solved numerically and the stress intensity factors are calculated for crack and two rigid inclu-
sions. Birinci [8] analyzed the elastostatic axisymmetric problem for a long thick-walled cylinder containing an
axisymmetric circumferential internal or edge crack with cladding at the inner surface of the cylinder. An inte-
gral transform technique is used and the problem is formulated in terms of a singular integral equation. This
integral equation is solved numerically by using quadrature formulas. The stress intensity factors are calcu-
lated and influence of the geometrical configuration and the cladding on the SIFs are discussed. A problem
of ring-shaped crack contained in an infinitely thick-walled transversely isotropic cylinder is considered by
Uyaner [9]. The cylinder is under the action of uniform loading. The stress function is expressed in terms
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of governing equations. Hankel and Fourier transforms are used and the problem is reduced to a singular inte-
gral equation. The singular integral equation is solved by the Gaussian quadrature and the stress intensity fac-
tors are calculated.

The present paper investigates the stress intensity factors at the edges of the crack for the long hollow cyl-
inder containing a ring-shaped crack whose surfaces are subjected to distributed load. The hollow cylinder has
rigid outer surface and stress free inner surface. The material of the cylinder is assumed to be homogeneous,
linearly elastic and isotropic. General expressions for the problem is obtained by adding the solutions of two
sub-problems: (1) an infinite medium having a ring-shaped crack and (2) an infinite medium without crack
subjected to arbitrary axisymmetric loads, in order to have sufficient number of unknowns in the expressions.
Displacement and stress expressions for the problems (1) and (2) are obtained by using the Hankel and the
Fourier transform techniques, respectively. Applying the boundary conditions on the lateral surfaces of the
cylinder and the crack surfaces, a singular integral equation in terms of crack surface displacement derivative
is derived. The singular integral equation is reduced to a system of linear algebraic equations by using Gauss–
Lobatto quadrature formula. The improper integrals appearing in the coefficients are calculated numerically
by using Gauss–Laguerre integration formula. Finally, normalized Mode I stress intensity factors at the edges
of the crack are calculated. The main objective of this study is to have a good acquaintance with the mathe-
matical difficulties which may arise in a hollow cylinder containing a crack and also to have an idea on the
interaction of the crack and the rigid outer surface for this particular geometry.
2. Formulation of the problem

An infinitely long thick-walled cylinder with inner radius A, outer radius B and a ring shaped crack of
width (b � a) at the symmetry plane z = 0, is taken into consideration (see Fig. 1). The crack surfaces are
under the action of distributed axisymmetric compressive loads. The inner surface of the cylinder is stress free
and the outer wall is rigid.

The governing equations of the axisymmetric elasticity problem in terms of r- and z-components of the dis-
placement vector, u(r,z) and w(r,z)
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must be solved subjected to the following boundary conditions:
rzðr;�1Þ ¼ 0 ðAhrhBÞ ð2Þ
wðr; 0Þ ¼ 0 ðAhrha; bhrhBÞ; ð3aÞ
srzðr; 0Þ ¼ 0 ðahrhbÞ; ð3bÞ
rzðr; 0Þ ¼ �pðrÞ ðahrhbÞ; ð3cÞ

rr A; zð Þ ¼ 0 ð�1hzh1Þ; ð4aÞ
srzðA; zÞ ¼ 0 ð�1hzh1Þ; ð4bÞ
uðB; zÞ ¼ 0 ð�1hzh1Þ; ð4cÞ
wðB; zÞ ¼ 0 ð�1hzh1Þ; ð4dÞ
where j = 3 � 4m, m being the Poisson’s ratio, p(r) is the intensity of the known distributed load on the crack
surfaces.

The general expressions for the perturbation problem can be obtained as the sum of the general solutions of
the following two sub-problems in order to have sufficient number of unknowns in the expressions of the dis-
placements and stresses so that all of the boundary conditions can be satisfied:



Fig. 1. Geometry of the problem.
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(1) Problem of an infinite axisymmetric elastic medium with a ring-shaped crack of width (b � a) at z = 0
plane. In the solution of Eq. (1), displacements u(r,z) and w(r,z) are assumed to be in the form
uðr; zÞ ¼
Z 1

0

Uða; zÞaJ 1ðarÞda; ð5Þ

wðr; zÞ ¼
Z 1

0

W ða; zÞaJ 0ðarÞda; ð6Þ
where J0 and J1 are the Bessel functions of the first kind of order zero and one, respectively. Substituting (5)
and (6) in (1) and inverting the related Hankel transforms, the following system of ordinary differential equa-
tions can be obtained
2a
dU
dz
� a2ðj� 1ÞW þ ðjþ 1Þ d

2W
dz2
¼ 0; ð7aÞ

ðjþ 1Þð�a2UÞ þ ðj� 1Þ d
2U

dz2
� 2a

dW
dz
¼ 0: ð7bÞ
The solution of the system of differential equations is found to be
Uða; zÞ ¼ ðc1 þ c2zÞe�az þ ðc3 þ c4zÞeaz; ð8aÞ

W ða; zÞ ¼ ðc1 þ c2zÞ þ j
z

c2

h i
e�az þ �ðc3 þ c4zÞ þ j

z
c4

h i
eaz; ð8bÞ
where c1, c2, c3 and c4 are arbitrary unknown constants.
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The axisymmetric infinite medium can be separated into upper and lower half-spaces and the expressions
for the displacements and stresses are matched at z = 0 by considering the following stress type boundary
conditions:
rz1
ðr; 0Þ ¼ rz2

ðr; 0Þ ð0 6 rh1Þ; ð9aÞ
srz1
ðr; 0Þ ¼ srz2

ðr; 0Þ ð0 6 rh1Þ; ð9bÞ
o

or
½u1ðr; 0Þ � u2ðr; 0Þ� ¼ 0 ð0 6 rh1Þ; ð9cÞ

o

or
½w1ðr; 0Þ � w2ðr; 0Þ� ¼ 2f ðrÞ ð0 6 rh1Þ; ð9dÞ
where f(r) is the unknown crack surface displacement derivative such that f(r) = 0 when (A < r < a, b < r < B),
the subscripts 1 and 2 denote upper and lower half-spaces, respectively.

Since the hollow cylinder having a ring-shaped crack is symmetric about z = 0 plane, it is sufficient to con-
sider the solution of the axisymmetric problem only in the upper or lower half-space. Therefore, the general
expressions for the displacements and the stresses in the upper half-space are found to be [10]:
uHankelðr; zÞ ¼
1
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ðazþ 1ÞF ðaÞe�azaJ 0ðarÞda; ð11bÞ

srzHankelðr; zÞ ¼
4l

jþ 1

Z 1

0

azF ðaÞe�azaJ 1ðarÞda; ð11cÞ
where
F ðaÞ ¼
Z b

a
f ðrÞrJ 1ðarÞdr: ð12Þ
and l is the shear modulus.
(2) An infinite elastic medium with no crack subjected to arbitrary symmetric loads. The medium is sym-

metric about both z-axis and z = 0 plane. Governing equations (Eq. (1)) are solved for the displacement com-
ponents by the use of Fourier sine and cosine transforms in z-direction (Watson [11]). Hence, the general
expressions for displacements and stresses are obtained as (see [10] for details)
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rzðr; zÞFourier ¼
2l
p

Z 1

0

fc1kI0ðkrÞ þ c2kK0ðkrÞ � c3½ðjþ 5ÞkI0ðkrÞ þ 2k2rI1ðkrÞ�

� c4½ðjþ 5ÞkK0ðkrÞ � 2k2rK1ðkrÞ�g cos kzdk; ð14bÞ

srzðr; zÞFourier ¼
2l
p

Z 1

0

fc1kI1ðkrÞ � c2kK1ðkrÞ � c3½2k2rI0ðkrÞ þ ðjþ 1ÞkI1ðkrÞ� � c4½2k2rK0ðkrÞ

� ðjþ 1ÞkK1ðkrÞ�g sin kzdk; ð14cÞ
where I0, I1 and K0, K1 are the modified Bessel functions of the first and second kinds of order zero and one,
respectively.

The expressions for displacements and stresses obtained in Hankel and Fourier solutions of the problem
will be added together for the solution of the perturbation problem. After some routine manipulations, arbi-
trary unknown constants c1–c4 appearing in Fourier solution of the problem are obtained in terms of
unknown function F(a) using the conditions at inner and outer lateral surfaces of the cylinder (Eqs. (4a)–
(4d)) as
ci ¼ ½ci1S3 þ ci2S4 þ ci3S2 þ ci4S1�=D ði ¼ 1–4Þ ð15a–dÞ

where c11–c44, D and S1–S4 are given in AppendixA.

3. Integral equation

The unknown function F(a) can be determined by the remaining boundary condition on the crack surface
stated as follows:
rzðr; 0Þ ¼ �pðrÞ ða < r < bÞ: ð16Þ

Substituting the sum of the expressions given in (11b) and (14b) for the stress in (16), the following singular
integral equation with Kernel having Cauchy-type singularity [12] is obtained
2l
pðjþ 1Þ
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a
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N 11ðr; tÞ ¼
Z 1

0

L11ðr; t; kÞdk; ð20Þ
in which K and E are the complete elliptic integrals of the first and the second kinds, respectively.
Eq. (17) must be solved with the single-valuedness condition for the displacement around the crack:
Z b

a
f ðtÞdt ¼ 0: ð21Þ
The integral equation (Eq. (17)) has three types of singularities:

(1) A simple Cauchy-type singularity at t = r,
(2) Logarithmic singularity in the Kernel M1,
(3) N11 has singular terms when t = A, B and r = ±A, ±B due to the behavior of the integrand of the inte-

gral N11 as k!1. Therefore, N11(r, t) can be written in the following form
N 11ðr; tÞ ¼
Z 1

0

L111ðr; t; kÞdkþ
Z 1

0

½L11ðr; t; kÞ � L111ðr; t; kÞ�dk ¼ N 11sðr; tÞ þ N 11bðr; tÞ ð22Þ
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where
L111ðr; t; kÞ ¼ limk!1L11 r; t; kð Þ: ð23Þ
Here, N11s(r, t)and N11b(r, t) indicate the singular and the bounded parts of the Kernel, respectively.

By using asymptotic expansions for modified Bessel functions of the first and second kinds, L111(r, t,k) can
be obtained in the form
L111ðr; t; kÞ ¼
1ffiffiffiffi
rt
p e�kð2B�r�tÞ 1

j

��
ð�4ðB� rÞðB� tÞk2 � 2ðB� rÞkþ 6ðB� tÞkþðj2 þ 3ÞÞ

�

þekð2A�r�tÞ½4ðA� rÞðA� tÞk2 þ 2ðA� rÞkþ 6ðA� tÞkþ 4�
�
: ð24Þ
The singular part of the Kernel can be obtained by integrating L111(r,t,k) as
N 11sðr; tÞ ¼
1ffiffiffiffi
rt
p 1

j
ð�4ðB� rÞ2 d2

dr2
� 12ðB� rÞ d

dr
þ ð3� j2ÞÞ

� ��
1

ðt þ r � 2BÞ

þ �4 A� rð Þ d2

dr2
þ 12 A� rð Þ d

dr
� 2

� �
1

t þ r � 2Að Þ

�
: ð25Þ
The unknown function f(t) is expected to be singular at the edges of the crack r = a, r = b and therefore its
behavior may be determined by writing
f ðtÞ ¼ F �ðtÞ½ðt � aÞðb� tÞ��c ð0hReðcÞh1Þ; ð26Þ
where F*(t) is Hölder-continuous function in the interval [a,b] and c is an unknown constant. f(t) has an inte-
grable singularity at the edges of the crack. Evaluating the integral containing the singular term using the tech-
nique given in [12] and using the procedure described in Artem [13], the following characteristic equation for c
can be obtained:
cot pc ¼ 0: ð27Þ
Therefore c = 1/2 which is in perfect agreement with previously reported results for the power of stress singu-
larity at the tips of an imbedded crack.
4. Solution of integral equation

Having determined the singular behavior of the unknown function, the integral appearing in Eq. (17) may
be non-dimensionalized for convenience in the numerical scheme introducing the following dimensionless vari-
ables s, n on the crack by
t ¼ b� a
2

sþ bþ a
2

ðahthb;�1hsh1Þ; ð28Þ

r ¼ b� a
2

nþ bþ a
2

ðahrhb;�1hnh1Þ: ð29Þ
After some manipulations Eq. (17) becomes
1

p

Z 1

�1

�f ðsÞ 2

s� n
þ bM 1ðn; sÞ þ bN 11ðn; sÞ

� �
ds ¼ � pðnÞðjþ 1Þ

2l
ð�1hnh1Þ; ð30Þ
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where
�f ðsÞ ¼ f
b� a

2
sþ bþ a

2

� �
; pðnÞ ¼ p

b� a
2

nþ bþ a
2

� �
ð31Þ

bM 1ðn; sÞ ¼ ðb� aÞM1ðn; sÞ; ð32Þ

bN 11ðn; sÞ ¼
b� a

2

� �
b� a

2
sþ b� a

2

� �
N 11ðn; sÞ: ð33Þ
Then, substituting singular behavior of the dimensionless unknown function
�f ðsÞ ¼ F �ðsÞð1� s2Þ�1=2
; ð34Þ
in Eq. (30), the singular integral equation becomes:
1

p

Z 1

�1

�F �ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p 2

s� n
þ bM 1ðn; sÞ þ bN 11ðn; sÞ

� �
ds ¼ � pðnÞðjþ 1Þ

2l
ð�1hnh1Þ; ð35Þ
where
F �ðsÞ ¼ F �
b� a

2
sþ bþ a

2

� �
b� a

2

� ��1

: ð36Þ
By using the Gauss–Lobatto integration formula [14], the integral equation can be reduced to the following
system of algebraic equations:
Xn

i¼1

Ci
�F �ðsiÞ

2

si � ni
þ bM 1ðni; siÞ þ bN 11ðni; siÞ

� �
ds ¼ � pðnÞðjþ 1Þ

2l
; ð37Þ
where
si ¼ cos½ði� 1Þp=ðn� 1Þ� ði ¼ 1; 2; . . . ; nÞ; ð38Þ
nj ¼ cos½ð2j� 1Þp=2ðn� 1Þ� ðj ¼ 1; 2; . . . ; n� 1Þ; ð39Þ
are the roots and the weighting constants of related Lobatto polynomials are
C1 ¼ Cn ¼
1

2 n� 1ð Þ ; Ci ¼
1

n� 1
ði ¼ 2; 3; . . . ; n� 1Þ: ð40Þ
Eq. (37) contains (n � 1) equations for n-unknowns, F �ðsiÞ. Since the number of unknowns is larger than the
number of equations, the single-valuedness condition
Xn

i¼1

CiF �ðsiÞ ¼ 0 ð�1hsh1Þ; ð41Þ
must be taken into consideration to complete the system to n equations.

5. Results and discussion

The system of algebraic equations is solved numerically for unknowns F �ðsiÞ at discrete collocation points.
The infinite integral appearing in the bounded part of N11(n,s) in Eq. (37) may be evaluated by using Laguerre
quadrature formula given in Stroud and Secrest [14]. After the numerical solution is obtained one can calcu-
late the stress state at the close vicinity of the points (r = a and r = b at z = 0) described by means of so-called
Mode I stress intensity factors at the edges of the crack
k1ðaÞ ¼ lim
r!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� rÞ

p
rzðr; 0Þ; ð42aÞ

k1ðbÞ ¼ lim
r!b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr � bÞ

p
rzðr; 0Þ; ð42bÞ
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or
�k1ðaÞ ¼ k1ðaÞ=pðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p
¼ 2

sðjþ 1Þ F
�ð�1Þ; ð43aÞ

�k1ðbÞ ¼ k1ðbÞ=pðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p
¼ � 2

sðjþ 1Þ F
�ð1Þ; ð43bÞ
as normalized stress intensity factors. Here, s = p(r)/2l. Normalized stress intensity factors �k1ðaÞ and �k1ðbÞ are
calculated for various geometric configurations for different values of Poisson’s ratio as the material param-
eter. As examples, results are obtained for the following load distributions on crack surfaces:
p0ðrÞ ¼ p0 ð44aÞ

p1ðrÞ ¼
3ðb2 � a2Þðr � BÞ

2b3 � 3Bb2 � 2a3 þ 3Ba2
p0 ð44bÞ

p2ðrÞ ¼
6ðb2 � a2Þðr � BÞ2

3b4 � 8Bb3 þ 6B2b2 � 3a4 þ 8Ba3 � 6B2a2
p0 ð44cÞ
where p0 is the mean of compressive distributed load on crack surfaces. The uniform pressure on crack sur-
faces is considered for the purpose of possible comparisons, since extensive number of examples with uniform
load appear in the literature. The outer lateral surface of the cylinder is rigidly fixed while the inner surface is
free. It is obvious that the stress distribution at the location of the crack for an infinite cylinder loaded at infin-
ity (even with uniform axial loads) will not be uniform. It will rather be varying with the radial coordinate r. In
order to present additional useful results one may expect for the perturbation problem in such situations where
the infinite cylinder is loaded at infinity, here linearly varying and parabolically varying load distributions on
the crack surfaces are also considered.

Defining the dimensionless parameters
r1 ¼
A
B
; r2 ¼

a
B
; r3 ¼

b
B

ð45Þ
the following dimensionless distributions are obtained
�p0ðnÞ ¼ p0 ð46aÞ

�p1ðnÞ ¼
3ðr2

3 � r2
2Þððr3 � r2Þnþ r3 þ r2 � 2Þ

2ð2r3
3 � 3r2

3 � 2r3
2 þ 3r2

2Þ
p0 ð46bÞ

�p2ðnÞ ¼
3ðr2

3 � r2
2Þððr3 � r2Þnþ r3 þ r2 � 2Þ2

2ð3r4
3 � 8r3

3 þ 6r2
3 � 3r4

2 þ 8r3
2 � 6r2

2Þ
p0 ð46cÞ
As a starting point to check the formulation and the numerical scheme of the problem we consider the follow-
ing case: when the crack size becomes very small compared to other dimensions of the cylinder (say, (b � a)/
B = 10�5), the problem turns out to be a finite crack in an infinite medium and therefore normalized stress
intensity factors at the edges of the crack, �k1ðaÞ and �k1ðbÞ, approach unity. This is the well-known result
for crack tips surrounded by a homogenous medium.

Fig. 2 shows the variation of normalized Mode I stress intensity factors at the edges of the internal central
crack (the thickness of the net ligaments, (a � A) and (B � b), are equal) for different loading conditions. As
the thickness of the net ligaments decreases, in other words, as the crack size increases, the normalized stress
intensity factors at the inner edge of the crack, �k1ðaÞ, increases while at the outer edge of the crack, �k1ðbÞ,
decreases. From Table 1, it can also be observed that both �k1ðaÞ and �k1ðbÞ decrease as the wall thickness of
cylinder increases. Results for �k1ðaÞ and �k1ðbÞ for different load distributions with r1 = A/B = 0.25 and
r3 = b/B = 0.8 are also given for comparison in Fig. 3. It can be observed from Fig. 4 that �k1ðaÞ increases



Fig. 2. Variation of Mode I normalized stress intensity factors �k1ðaÞ and �k1ðbÞ for internal central crack with different load distributions
(A/B = 0.25).

Table 1
Variation of normalized stress intensity factors, �k1ðaÞ and �k1ðbÞ, for the internal central crack in the thick-walled cylinder

ð�k1ðaÞ ¼ k1ðaÞ=p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p
; �k1ðbÞ ¼ k1ðbÞ=p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p
; v ¼ 0:3Þ

b� a
B

�k1ðaÞ �k1ðbÞ
A/B = 0.25 A/B = 0.20 A/B = 0.125 A/B = 0.25 A/B = 0.20 A/B = 0.125

!0 !1.0 !1.0 !1.0 !1.0 !1.0 !1.0
0.05 1.00999 1.01011 1.01067 0.990367 0.989731 0.988878
0.10 1.02038 1.01990 1.02083 0.980565 0.978931 0.976687
0.15 1.03145 1.02944 1.03053 0.970255 0.967435 0.962990
0.20 1.04367 1.03902 1.03989 0.959180 0.955179 0.947453
0.25 1.05775 1.04918 1.04905 0.947087 0.942099 0.929777
0.30 1.07464 1.06079 1.05815 0.933708 0.928073 0.909688
0.35 1.09547 1.07516 1.06727 0.918781 0.912862 0.886957
0.40 1.12141 1.09415 1.07641 0.902146 0.896074 0.861424
0.45 1.15331 1.12023 1.08542 0.883965 0.877178 0.833042
0.50 1.19078 1.15639 1.09406 0.865168 0.855651 0.801900

Fig. 3. Variation of Mode I normalized stress intensity factors �k1ðaÞ and �k1ðbÞ with a/B for different load distributions (A/B = 0.25, b/
B = 0.8, m = 0.3).
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Fig. 4. Variation of Mode I normalized stress intensity factor �k1ðaÞ with a/B for different A/B values (b/B = 0.8, m = 0.3).

Fig. 5. Variation of Mode I normalized stress intensity factors �k1ðaÞ and �k1ðbÞ with b/B for different load distributions (A/B = 0.25, a/
B = 0.4, m = 0.3).
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as a/B decreases, but only when a/B decreases from 0.35 to 0.30 for r1 = A/B = 0.25, there is a slight decrease.
In this case there is a considerable interaction between the crack and the stress-free inner surface of the cyl-
inder. The Kernel used in the present study is no longer bounded in the corresponding closed interval, and, of
course, the single-valuedness condition is no longer valid [1]. However for the cases r1 = A/B = 0.125 and
r1 = A/B = 0.2, a similar behavior is not observed because the crack is far enough from the inner surface
of the cylinder.

Fig. 5 shows variation of �k1ðaÞ and �k1ðbÞ, normalized Mode I stress intensity factors at the edges of the
crack, for r1 = A/B = 0.25 with r2 = a/B= 0.4. As it is expected, �k1ðbÞ decreases when b/B increases. This
means that the rigid outer surface prevents the crack from opening. In other words, the strength of stress sin-
gularity decreases.

Another observation is that for fixed (b � a), when a/B increases, that is, when the crack approaches the
rigid surface, as it is expected, both �k1ðaÞ and �k1ðbÞ decrease. The behavior of �k1ðaÞ and �k1ðbÞ for different
crack lengths and the uniform load p0 only, are shown in Fig. 6.

Normalized stress intensity factors �k1ðaÞ and �k1ðbÞ, are also calculated for different values of Poisson’s ratio
and the results are illustrated in Fig. 7.



Fig. 6. Variation of Mode I normalized stress intensity factors �k1ðaÞ and �k1ðbÞ with a/B for two different fixed crack lengths.

Fig. 7. Variation of Mode I normalized stress intensity factors �k1ðaÞ and �k1ðbÞ with b/B for different values of Poisson’s ratio (A/B = 0.25).
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6. Conclusions

The present paper considers the investigation of the stress intensity factors at the edges of the crack for a
long thick-walled cylinder containing a ring-shaped crack whose surfaces are subjected to compressive distrib-
uted load. The normalized Mode I stress intensity factors are computed for the crack and the results are pre-
sented in graphical and tabular forms. It is observed that �k1ðaÞ is always greater than �k1ðbÞ. The influence of
rigid surface is discussed in this study. It is concluded that as the crack approaches the rigid surface, normal-
ized Mode I stress intensity factor at the outer edge of the crack decreases. This is because the rigid wall pre-
vents the crack from opening. In other words, the strength of stress singularity decreases. Comparing the
results for different loadings, we see that they show similar behavior. Finally, it is also observed that the stress
intensity factors are affected by the Poisson’s ratio as material property.
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Appendix A

The coefficients which appear in Eq. (15) are
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c11 ¼ ABðK0ðBkÞH 00 þ K1ðBkÞH 01Þ �
BK1ðAkÞ

k

� �
k3

þ Aðjþ 1ÞK1ðBkÞH 00 �
1

2
Bðjþ 1ÞðK0ðBkÞH 10 þ K1ðBkÞH 11

� �
k2 þ 1

2
ðjþ 1Þ2K1ðBkÞH 10k

c12 ¼
BK0ðAkÞ

k
� ABðK0ðBkÞH 10 þ K1ðBkÞH 11Þ

� �
k3

þ BK1ðAkÞ
Ak

þ 1

2
Bðj� 1ÞðK0ðBkÞH 10 þ K1ðBkÞH 01Þ � Aðjþ 1ÞK1ðBkÞH 10

� �
k2

þ 1

2
ðj2 � 1ÞK1ðBkÞH 00k

c13 ¼ 2ABðH 00K0ðAkÞ � H 10K1ðAkÞ þ 2AK1ðBkÞ
k

� �
k4 � Bðjþ 1ÞK0ðBkÞk2

A

þ 1� j2ð ÞK1ðBkÞ
2Ak

� BH 10ðjþ 1ÞK1ðAkÞ
A

� �
k2

c14 ¼ 2ABðH 01K0ðAkÞ � H 11K1ðAkÞ � 2AK0ðBkÞ
k

� �
k4

þ 2Aðjþ 1ÞðH 00K0ðAkÞ � H 10K1ðAkÞÞ þ Bðjþ 1ÞK1ðBkÞ
Ak

� �
k3

þ �ðjþ 1Þðjþ 3ÞK0ðBkÞ
2Ak

� BH 11ðjþ 1ÞK1ðAkÞ
A

� �
k2 � H 10ðjþ 1Þ2K1ðAkÞk

A

c21 ¼ �ABH 00I0ðBkÞ � BI1ðAkÞ
k

þ ABH 01I1ðBkÞ
� �

k3

þ 1

2
BH 10ðjþ 1ÞI0ðBkÞ þ AH 00ðjþ 1ÞI1ðBkÞ � 1

2
BH 11ðjþ 1ÞI1ðBkÞ

� �
k2 � 1

2
BH 10ðjþ 1ÞI1ðBkÞk

c22 ¼ �BI0ðAkÞ
k

þ ABH 10I0ðBkÞ � ABH 11I1ðBkÞ
� �

k3 þ 1

2
H 00ðj2 � 1ÞI1ðBkÞk

þ � 1

2
BH 00ðj� 1ÞI0ðBkÞ þ BI1ðAkÞ

Ak
þ 1

2
BH 01ðj� 1ÞI1ðBkÞ � AH 10ðjþ 1ÞI1ðBkÞ

� �
k2

c23 ¼ �2ABH 00I0ðAkÞ � 2ABH 10I1ðAkÞ þ 2AI1ðBkÞ
k

� �
k4 þ Bðjþ 1ÞI0ðBkÞk2

A

þ �BH 10I1ðAkÞ
A

� BH 10jI1ðAkÞ
A

þ ð1� j2ÞI1ðBkÞ
2Ak

� �
k2

c24 ¼ �2ABH 01I0ðAkÞ þ 2AI0ðBkÞ
k

� 2ABH 11I1ðAkÞ
� �

k4

þ �ð 2AH 00I0ðAkÞ � 2AH 00jI0ðAkÞ � 2AH 10I1ðAkÞ � 2AH 10jI1ðAkÞ

þ BI1ðBkÞ
Ak

þ BjI1ðBkÞ
Ak

Þk3 þ ðj2 þ 4jþ 3ÞI0ðBkÞ
2Ak

� BH 11I1ðAkÞ
A

� �
k2 � H 10ðjþ 1Þ2I1ðAkÞk

A

c31 ¼
AK0ðAkÞ

2Bk
� 1

2
BH 10K0ðBkÞ � 1

2
BH 11K1ðBkÞ

� �
k2 þ 1

4
ðjþ 1ÞðH 11K0ðBkÞ � H 10K1ðBkÞÞk



L. Aydin, H. Secil Altundag Artem / Engineering Fracture Mechanics 75 (2008) 1294–1309 1307
c32 ¼
1

2
BH 00K0ðBkÞ � AK1ðAkÞ

2Bk
þ 1

2
BH 01K1ðBkÞ

� �
k2

þ �K0ðAkÞ
4Bk

� 1

2
H 01K0ðBkÞ þ BH 10K0ðBkÞ

2A
� 1

4
H 01jK0ðBkÞ þ BH 11K1ðBkÞ

2A
þ 1

4
H 00jK1ðBkÞ

� �
k

� H 11ðjþ 1ÞK0ðBkÞ
2A

c33 ¼ AH 01K0ðAkÞ � BK0ðBkÞ
Ak

� AH 11K1ðAkÞ
� �

k3 � H 11ðjþ 1ÞK1ðAkÞk
2A

� ðjþ 1ÞK1ðBkÞk
2A

c34 ¼ AH 00K0ðAkÞ � AH 10K1ðAkÞ þ BK1ðBkÞ
Ak

� �
k3 � ðjþ 1ÞK0ðBkÞk

2A
� H 10ðjþ 1ÞK1ðAkÞk

2A

c41 ¼ �AI0ðAkÞ
2Bk

þ 1

2
BH 10I0ðBkÞ � 1

2
BH 11I1ðBkÞ

� �
k2 þ 1

4
ð�j� 1ÞðH 11I0ðBkÞ þ H 10I1ðBkÞÞk

c42 ¼ � 1

2
BH 00I0ðBkÞ � AI1ðAkÞ

2Bk
þ 1

2
BH 01I1ðBkÞ

� �
k2

þ I0ðAkÞ
4Bk

þ 1

2
H 01I0ðBkÞ � BH 10I0ðBkÞ

2A
þ 1

4
H 01jI0ðBkÞ þ BH 11I1ðBkÞ

2A
þ 1

4
H 00jI1ðBkÞ

� �
k

þ H 11ðjþ 1ÞI0ðBkÞ
2A

c43 ¼ �AH 01I0ðAkÞ þ BI0ðBkÞ
Ak

� AH 11I1ðAkÞ
� �

k3 � H 11ðjþ 1ÞI1ðAkÞk
2A

� I1ðBkÞk
2A

c44 ¼ �AH 00I0ðAkÞ � AH 10I1ðAkÞ þ BI1ðBkÞ
Ak

� �
k3 � ðjþ 1ÞI0ðBkÞk

2A
� H 10ðjþ 1ÞI1ðAkÞk

2A

D ¼ ABI2
0ðBkÞK2

0ðAkÞk4 � ABI2
1ðBkÞK2

0ðAkÞk4 þ ABI2
0ðAkÞK2

0ðBkÞk4

� ABI2
1ðAkÞK2

0ðBkÞk4 � ABI2
0ðBkÞK2

1ðAkÞk4 þ ABI2
1ðBkÞK2

1ðAkÞk4

� 2ABI0ðBkÞI1ðAkÞK0ðBkÞK1ðAkÞk4 � 2ABI0ðAkÞI1ðBkÞK0ðAkÞK1ðBkÞk4

� 2ABI1ðAkÞI1ðBkÞK1ðAkÞK1ðBkÞk4 � AI0ðBkÞI1ðBkÞK2
0ðAkÞk3

� AjI0ðBkÞI1ðBkÞK2
0ðAkÞk3 þ AjI0ðBkÞI1ðBkÞK2

1ðAkÞk3

þ AI0ðAkÞI1ðBkÞK0ðAkÞK0ðBkÞk3 þ AjI0ðAkÞI1ðBkÞK0ðAkÞK0ðBkÞk3

� AI1ðAkÞI1ðBkÞK0ðAkÞK0ðBkÞk3 � AI0ðBkÞI1ðBkÞK0ðAkÞK1ðAkÞk3

þ AjI1ðAkÞI1ðBkÞK0ðBkÞK1ðAkÞk3 þ AI0ðAkÞI0ðBkÞK0ðAkÞK1ðBkÞk3

� AjI0ðAkÞI0ðBkÞK0ðAkÞK1ðBkÞk3 � AI2
0ðAkÞK0ðBkÞK1ðBkÞk3

þ AjI2
0ðAkÞK0ðBkÞK1ðBkÞk3 � AI0ðAkÞI0ðBkÞK0ðAkÞK1ðBkÞk3

þ AjI2
1ðAkÞK0ðBkÞK1ðBkÞk3 þ AI0ðAkÞI1ðAkÞK0ðBkÞK1ðBkÞk3

þ AI0ðAkÞI0ðBkÞK1ðAkÞK1ðBkÞk3 � AjI0ðBkÞI1ðAkÞK1ðAkÞK1ðBkÞk3

� BI2
1ðAkÞK2

0ðBkÞk2

2A
� BjI2

1ðAkÞK2
0ðBkÞk2

2A
� BI2

0ðBkÞK2
1ðAkÞk2

2A

� BjI2
0ðBkÞK2

1ðAkÞk2

2A
þ BI2

1ðBkÞK2
1ðAkÞk2

2A
þ BjI2

1ðBkÞK2
1ðAkÞk2

2A

þ BI2
1ðAkÞK2

1ðBkÞk2

2A
þ BjI2

1ðAkÞK2
1ðBkÞk2

2A
þ Bk2

A
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� BI0ðBkÞI1ðAkÞK0ðBkÞK1ðAkÞk2

A
þ j2I1ðAkÞI1ðBkÞK0ðBkÞK1ðAkÞk

2A

� BjI0ðBkÞI1ðAkÞK0ðBkÞK1ðAkÞk2

A
� BI1ðAkÞI1ðBkÞK1ðAkÞK1ðBkÞk2

A

� BjI1ðAkÞI1ðBkÞK1ðBkÞK1ðAkÞk2

A
þ Ak2

B
þ j2I0ðBkÞI1ðBkÞK2

1ðAkÞk
2A

þ jI0ðBkÞI1ðBkÞK1ðAkÞk2

A
þ I0ðBkÞI1ðBkÞK2

1ðAkÞk
2A

þ jI1ðAkÞI1ðBkÞK0ðBkÞK1ðAkÞk
A

þ I1ðAkÞI1ðBkÞK0ðBkÞK1ðAkÞk
2A

� j2I2
1ðAkÞK0ðBkÞK1ðBkÞk

2A
� jI2

1ðAkÞK0ðBkÞK1ðBkÞk
A

� j2I0ðBkÞI1ðAkÞK1ðAkÞK1ðBkÞk
2A

� jI0ðBkÞI1ðAkÞK1ðAkÞK1ðBkÞk
A

� I0ðBkÞI1ðAkÞK1ðAkÞK1ðBkÞk
2A

þ j2

4AB
þ j

AB
þ 3

4AB

� I2
1ðAkÞK0ðBkÞK1ðBkÞk

2A
where
H ijðAk;BkÞ ¼ KiðAkÞIjðBkÞ þ ð�1Þiþjþ1I iðAkÞKjðBkÞ ði; j ¼ 0; 1Þ:

S1–S4 appearing in Eq. (15) are given as:
S1 ¼
1

ðjþ 1Þ

Z b

a
f ðtÞtg1 dt; S2 ¼

1

ðjþ 1Þ

Z b

a
f ðtÞtb1 dt;

S3 ¼
1

ðjþ 1Þ

Z b

a
f ðtÞta1 dt; S4 ¼

1

ðjþ 1Þ

Z b

a
f ðtÞtd1 dt;
where
a1 ¼ �4ðtI0ðAkÞK0ðtkÞ � AI1ðAkÞK1ðtkÞÞk2

þ 4ðtI1ðAkÞK0ðtkÞ � AI0ðAkÞK1ðtkÞÞk
A

þ 2ðjþ 1ÞI1ðAkÞK1ðtkÞ
A

b1 ¼ �2tkI0ðtkÞK0ðBkÞ � ðjþ 1ÞI1ðtkÞK0ðBkÞ þ 2BkI1ðtkÞK1ðBkÞ

d1 ¼
1

2
k2ðAI0ðAkÞK1ðtkÞ � tI1ðAkÞK0ðtkÞÞ

g1 ¼ ðjþ 1ÞI1ðtkÞK1ðBkÞ � 2kðtI0ðtkÞK1ðBkÞ � BI1ðtkÞK0ðBkÞÞ
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