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7.1 Introduction

Even at the dawn of the 21st century, landmines still pose a global threat. Buried
just inches below the surface, combatants and noncombatants alike are all at risk
of stepping on a mine. Their very nature is such that these furtive weapons do not
discriminate, making it an urgent task to tackle the problem. According to the U.S.
State Department [1], based on an estimate reported just a few years ago, there
are well over 100 million anti-personnel mines around the world. The existence of
these passive weapons causes a disruption in the development of already impover-
ished regions, as well as maiming or killing countless innocent passers-by. Since
the ratification of the anti-personnel mine total ban treaty in 1997, their detection,
removal, and elimination have become a top priority. Nevertheless, at the current
rate, given the manpower and the man-hours that could be dedicated to the removal
of these sleeping arms, it would take centuries. The concerns regarding the speed
of removal and safety of the disposers eventually bring us to the discussion of the
proposed method.

There are numerous efforts for utilizing robots for landmine detection and/or
removal whereas nearly all research activity based on robotics seems to be focused
on using sophisticated systems with costly hardware [2]. Even then, the speed that
these robots can offer for mine detection is limited because the high associated cost
limits the number of robots procured. Another shortcoming of a complex system is
the difficulty of repair and maintenance in a harsh environment such as a minefield
and also the possible catastrophic loss of the entire system due to an unexpected
mine detonation.

As opposed to the idea of having a complete agent with state-of-the-art equip-
ment, the goal may be accomplished by down-to-earth individuals working as a
team, indirectly guided by a competent alpha agent. The task of the swarm is to
autonomously sweep an area for mines as quickly as possible, as safely as possible.
The swarm should be scalable and robust: loss or gain of members should not affect
the behavior and reliability of the system, and obstacles or any other disturbances
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should not affect the stability. Following these guidelines, the main objective of
this study is to present an efficient autonomous navigation and detection method
to guide a group of inexpensive robotic agents. To lower the cost of the agent, a
minimal number of sensors, actuators, Ics, and other components should be used. In
addition, the navigation method should fare well without needing very precise (and
costly) sensors.

Nature already provided good solutions to manage groups of less able beings:
fish schools, ant swarms, animal packs, bird flocks, and so on. With the growing de-
sire of humans to create intelligent systems, these biosystems are being thoroughly
inspected [3–10] and implemented [11–14] in various studies.

In this study a robotic agent is referred to as a drone, the group of robotic agents
is referred to as a swarm, and the agent with mapping abilities is referred to as the
alpha drone.

7.2 Desired Swarm Behavior and Drone Properties

Before going into the details of anything else, one should define the desired behavior
of the swarm. The swarm should:

• Autonomously sweep a prescribed area.
• Exhibit swarming (collision avoidance, polarization, attraction to swarm mates).
• Designate the mine locations with an acceptable accuracy.
• Find all the mines in the swept area (high reliability).
• Be able to tolerate loss of members due unexpected situations.

At this point, equipping all members with advanced sensors and microcomputers
will quite increase the cost, so it is decided to have two types of agents: drones and
an alpha drone. Because our main interest is to have minimalist robotic agents that
could be fielded in large numbers to speed up the mine cleaning process, a drone
should:

• Have a unique identification number.
• Know and control its heading and speed.
• Have a means of wide-angle proximity detection (i.e., sonar array). These sensors

need not be very precise. The behavior model should work for rough and noisy
sensor readings.

• Have a means of detecting mines (i.e., metal detector).
• Have a means of wireless communication although it should consume low power,

be inexpensive, and therefore low-range.
• Have the means of making simple preprogrammed decisions.
• Avoid stepping on mines.

The alpha drone’s main task is to record the mine locations and indirectly control
the drones by presenting them with a desired heading; the alpha drone should:

• Know its absolute location with good accuracy (i.e., using GPS).
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• Know the boundaries of the area to be swept.
• Be able to indirectly force the drones to move in a direction.
• Collect landmine location data from drones and mark them on a map.
• Never step on a mine.
• Have all the necessary subsystems of a drone.

7.3 Drone Model

There are some proposed distributed behavior models for fish schools and bird
flocks. Our particular interest is in the models proposed by Aoki [8], Huth and Wis-
sel [9], Couzin et al. [10], and Reynolds [11]. To summarize, schooling and flocking
was explained using three concentric zones: a zone of repulsion, zone of orientation,
and zone of attraction. Also it was shown that the overall heading of the flock can
be controlled by adding a migratory urge, which is simply a direction. The models
not only explain the schooling phenomena to a good extent but also give a good
tool to manage groups of robots. In a previous simulation work by authors based on
these fish school models, it has been seen that the school tends to move in a hexag-
onal close-packed formation. This is an ideal formation pattern to be used in mine
sweeping because there are no gaps left in a group of mine detectors. The authors
began with these preliminary models, altered them to fit the world of mobile robots
by translating the means of sensing and locomotion, and extended the model further.

Perhaps the most important problem of adapting these originator models to the
world of robotics is the means of sensing. In the biological world, thanks to millions
of years of evolution, even the simplest organism is equipped with highly precise
and effective sensors. However, the robotic systems still have to utilize relatively
poor sensors compared to those of biological organisms. Despite the advances in
image processing and pattern recognition techniques, a full-blown visual sensor is
still too costly or merely incompetent to deal with the complicated real world. The
proposed model in this study is especially devised for robotic agents equipped with
simple, readily available, and well-understood sensors such as infrared transceivers.

In this study we call an individual mobile robotic agent a drone. A drone is
a simple entity, trying to find its way following the alpha drone’s migration or-
ders and mimicking other drones’ movement while trying to survive. In our basic
model, a drone has an array of near-range proximity sensors (possibly ultrasonic),
a low-range wireless transmitter/receiver (possibly RF), differential locomotion
(i.e., tracks), a simple microcontroller, a mine detector, a digital compass, and an
attraction beacon (possibly an IR beacon with a certain frequency).

The drone model implemented in simulation is given in Fig. 7.1. Radii rPSA,
rMDS, rAB, and rWCS are ranges for the proximity sensor array (PSA), mine detec-
tion sensor (MDS), attraction beacon (AB), and wireless communication system
(WCS), respectively, where lMDS represents the distance where the mine detec-
tion sensor is placed apart from the robot body. The hatched circle represents the
robot body.
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Fig. 7.1 Proposed drone model

The PSA is an active sensor array that gives true/false outputs within a certain
angle resolution; a drone has a rough idea of the bearings of nearby objects. MDS
gives an analog reading; in the case of a metal detector the output will be higher
when a metallic object is closer and vice versa. WCS has two bidirectional channels,
one being used for communication with the alpha drone (alpha channel) and the
other with drones (beta channel). A drone also knows and can change its speed and
heading. The attraction sensor array (ASA) is a passive sensor that detects other AB
signals within a certain angle resolution; a drone has a rough idea of the bearings of
other drones.

WCS broadcasts the following information from the beta channel in specific time
intervals: a unique ID number, its speed, and heading. AB emits a unidirectional,
“I am here,” signal at specific time intervals. When MDS detects a mine, WCS
broadcasts its ID along with a, “Mine detected,” message and a life count from
the alpha channel. All drones rebroadcast any message they receive from the alpha
channel, coming both from drones and the alpha drone, after decreasing the life
count by one. A message with zero life count is not broadcast.

This system is a simplified version of the packet routing method used in the In-
ternet protocol and eliminates the possibility of unendingly broadcasting the same
message over and over. It’s important to understand that it may be difficult and im-
practical to precisely synchronize the “clocks” of the drones, hence the so-called
WCS broadcasts will occur asynchronously. Another interesting point is that beta
channel broadcasts may also be forwarded like alpha channel broadcasts, thus en-
abling a drone to know all members’ current velocity. However this will result in
much more crowded network traffic and may not be applicable in practice for large
swarms. In simulation, both cases are considered.
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7.4 Alpha Drone Model

The alpha drone is nothing more than a drone with two additional subsystems as a
GPS and a means of knowing the relative position of drones in the flock. One such
method is proposed by Wildermuth and Schneider [14] based on vision and pattern
recognition. Also, if the wireless communication system is selected to operate on
RF, triangulation techniques may be used to obtain the relative position data. The
alpha drone has two main tasks: to present a general heading, the migratory urge, for
the swarm, and to mark the mine locations on a map that is reported by drones and
detected by the alpha drone itself. In addition, the alpha drone exhibits swarming
as do other drones. Ultimately, the alpha drone requires more computational power
and memory.

In case detecting the relative position of drones becomes too complicated or too
slow, certain other approaches may be used. (1) Whenever a mine is detected, the
alpha drone marks the place where it is currently located. The mine map generated
will only give a density distribution of the minefield, without giving the actual co-
ordinates. (2) All drones are equipped with GPS, which may increase the cost to
undesirable levels.

7.5 Distributed Behavioral Rules and Algorithm

The behavior of drones can be divided into two categories: migrating and swarming,
and mine detection and avoidance (see Fig. 7.2). These behavior modes are fused
by a decision-making process. All inputs from subsystems are multiplied by weights
and a resultant velocity request is generated. Finally, the velocity request is fed into
the traction system to generate motion. The inputs are composed of PSA, MDS, and
ASA readings, the heading imposed by the alpha drone, and an average of received
velocity broadcasts by other drones.

ASA
Attraction to flock mates

PSA
Collision avoidance  

WCS b Channel
Swarm polarization
from swarm mates

WCS a Channel
Migratory urge by alpha

drone  

Drone Controller
Input weighing and

 generating velocity request  
MDS

Mine avoidance  

Fig. 7.2 Drone subsystems
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Assume that a drone is able to fully perceive its surroundings, thus knowing the
exact locations of obstacles. To exhibit basic collision avoidance, the drone should
move in the opposite direction to the sum of unit position vectors (in its local coor-
dinate frame) of obstacles.

In Fig. 7.3, O is the local coordinate frame for a drone; U1 and U2 are the unit
vectors pointing towards obstacles. For the general case:

ûc = −

n
∑

i=1
ui∣∣∣∣ n

∑
i=1

ui

∣∣∣∣
(7.1)

where n is the number of obstacles, ui is the unit vector pointing towards the ith
obstacle, and ûc is the unit vector pointing towards the required direction of motion
to avoid collision.

In our model, a drone has a specific number of proximity sensors nPSA that are
placed symmetrically on a circle. Each sensor is assumed to cover an angle equal to
2π
/

nPSA. In addition, these sensors are not able to detect the distance to an obstacle
but just provide an on/off signal if something is detected or not in a certain range.

Figure 7.4 shows a PSA with nPSA = 6. For this particular example, each sensor
covers an area of 2π/6 = 60◦. If an obstacle comes in PSA range within 0–59◦ then
the first sensor is activated, within 60–129◦ the second sensor is activated, and so on.
Because a sensor does not indicate the exact bearing of the obstacle, it is assumed
that the obstacle is just in the middle of the sensor coverage. That is, if the first

Fig. 7.3 Basic collision
avoidance
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sensor is activated, we assume that the obstacle is at 30◦, for the second sensor it is
90◦, for the ith sensor it is

φobstacle =
2π

nPSA
(i−0.5)

Because we are dealing only with unit vectors in Eq. 7.1, it’s enough to find the
polar angle of ûc. This angle is our heading to avoid collision that is given by

θc = −ATAN2

[
nPSA

∑
i=1

sin(qi) ,
nPSA

∑
i=1

cos(qi)

]

qi =
2πµi(i−0.5)

nPSA
(7.2)

where µi is the respective sensor output as 1 or 0 (1 if the respective sensor detects
an object, 0 otherwise), and θc is the collision avoidance heading request.

The attraction heading request is derived exactly as collision avoidance with a
single exclusion. The minus sign is removed because we want the drone to move
towards the other drones. Also note that ASA is a passive sensor and it only detects
the signal emitted by other drones.

θa = −ATAN2

[
nASA

∑
i=1

sin(qi) ,
nASA

∑
i=1

cos(qi)

]

qi =
2πµi(i−0.5)

nASA
(7.3)

where nASA is the number of sensors in attraction sensor array, µi is the respective
sensor output as 1 or 0, and θa is the attraction heading request.

The heading request for migration is supplied by the alpha drone; because a drone
knows its heading relative to true north, this migration direction is simply converted
to a heading request.

The swarm polarization heading is generated by summing the broadcasts from
other drones. The main problem is that the broadcasts are asynchronous. We have
two solutions to this problem: use a fixed length array in memory to keep the incom-
ing broadcasts; or use a dynamic array (stack) with a specified maximum size, add
each incoming broadcast to the stack with a timestamp, and delete broadcasts that
are older than a certain time. The second approach is used in simulation. The broad-
casts of drones are in the same manner as the migration urge broadcast of the alpha
drone, but in this case drones broadcast their actual heading in terms of compass
directions.

θp =
n

∑
i=1

θi

n
(7.4)

where n is the number of elements in polarization stack, and θi is the heading data
in the ith stack element.

θr = ATAN2(ηmSθm +ηpSθp +ηaSθa +ηcSθc −ηlµl ,

ηmCθm +ηpCθp +ηaCθa +ηcCθc) (7.5)
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where C and S stands for cosine and sine; ηm,ηp,ηa,ηc,ηl are the weights of im-
portance for migration, polarization and attraction, collision avoidance, and mine
avoidance, respectively; and θm,θp,θa,θc are the heading requests generated by said
behaviors. µl is the signal strength of MDS. Equation 7.5 is in fact scaling and ad-
dition of unit vectors describing behaviors. Another point is that, for example, by
selecting ηl and ηc much bigger then the others, the system behavior shifts to hier-
archical where survival supersedes all other rules. Only in the absence of mines or
obstacles, do the other factors come into effect.

Now that the drone knows where to turn, it needs to know how fast it should go.
The guidelines for speed selection can be given as: (1) the fewer drones you see
around, go faster to catch up with the flock, and (2) try to move with the same speed
as the other flock mates, which helps polarization. At this point, the same type of
stack, which is used to store bearing broadcasts, is used to store velocity broadcasts.

ν ′ = f (m)

(
λ

n

∑
i=1

νi

n
+(1−λ)νmax

)
f (m) =

∣∣∣∣m/a, m > a
1, m ≤ a (7.6)

where f (m) is pseudo-acceleration, n is the number of elements in the stack, νi
is the speed data in ith stack element, λ is the polarization parameter, νmax is the
maximum attainable speed, m is the number of inactive sensors in ASA (i.e., sensors
not detecting anything), and a is a limitation value that prevents too much speed loss
for members near the center of the flock. Note that 1 ≤ a < number of sensors in
ASA and a = 1 means no speed loss limitation. Also note that 0 ≤ λ < 1, for λ = 0
speed matching will not occur.

7.6 Simulation Results

Simulations were carried out in two phases. In the first, interactions between two
individuals are taken into consideration. The idea was whether a concept of swarm
stability could be specified. Among any collection of individuals, the quality of be-
ing a swarm is inversely proportional to the distance between the particles, or agents.
There is such a distance that the agents are not in a swarm formation any more but
rather are acting freely. This first phase defines a “swarm stability” or swarm en-
tropy, which is quantified in Tsallis entropy, whose details may be explained in a
separate study. Agents normally roam apart from each other in search of food (a
mine) so as to cover an area as fast as possible with the least likelihood of missing
anything during the search. But this separation should not be too great in order not
to lose the swarm behavior along with all the advantages that accompany it.

The definition of entropy, which was first discovered by Ludwig Boltzmann, can
be given as a measure of disorder. There are many types of entropy definition in
the literature. One of them is Tsallis entropy, first explained in 1988 [15]. Tsallis
modified the mathematical expression of entropy definition in his study and defined
a new parameter, q.
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Fig. 7.5 Entropy changing with time for free and swarm modes

ST =
1−∑

i
Pq

i

1−q
(7.7)

During the roaming of the individuals, entropy fluctuates at around its highest,
meaning the distance between the agents is rather far, and swarm stability is low;
that is, the quality of remaining as a swarm may disappear should the particles get
farther away. However, a sudden decrease in entropy may occur as in Fig. 7.5, when
the individuals converge after the discovery of food (a mine).

Peaks in the entropy of a swarm mode were created by attractive and repulsive
behavior of individuals. Close encounters are considered as risks of collision and
quick reactions to avert it. Please note that such peaks are missing in the free mode
(i.e., roaming a certain field).

In Fig. 7.6, at around 62.2 s, a repulsion may be seen because these two agents
have moved too close, namely into the repulsive field, and at 62.7, they start to move
back again.

In the second phase, the whole model is implemented in a computer program in
an object-oriented fashion. Lengths are described in terms of “units.” The following
drone parameters are used for each simulation run (Fig. 7.7).

Maximum speed: 20 units/s Turning rate: 180◦s
Drone shape: disc Diameter: 10 units

Four distinct swarm behaviors are observed. These are: high polarization (HP),
balanced polarization (BP), low polarization (LP), and disarray. The first three be-
haviors have their uses where the disarray behavior indicates an unstable swarm,
which is not desired.

High polarization means that the velocity (both speed and heading) of an indi-
vidual drone is nearly the same as the swarm average in the absence of disturbances.
The average speed of the swarm is maximized. The main disadvantage is that the
swarm aggregates very slowly when it meets a disturbance (an obstacle or a mine).
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Fig. 7.6 Entropy variation where there is an attraction between two individuals

Fig. 7.7 Simulation screenshot: drones detected a mine. The “Landmine Detection Simulator” can
be found at the author’s Web site: http://www.iyte.edu.tr/∼erhansevil/landmine.htm

Thus the mine detection reliability is decreased significantly. This behavior results
in either a high migration weight µm, or a high polarization weight µp. It is an ideal
swarm behavior for traversing mine-safe zones to go quickly to an objective area.

Balanced polarization means that the velocity of an individual drone is close
to the neighboring drones but not necessarily close to the average swarm velocity.
This offers high speed (although lower then HP) and high reliability. The swarm
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aggregates quickly after meeting disturbances. This behavior results in nearly equal
µm and µp, and high µa. It is an ideal swarm behavior for most cases.

Low polarization means that the velocity of an individual drone is highly different
from that of its neighbors. This happens when µa is high and µp is low and also µm
is selected between. The only use for this behavior is that the swarm can find its way
when there are too many obstacles, such as a labyrinth.

Disarray occurs if:

• µa is too low (swarm disintegrates).
• µl is too low (drones step on mines).
• µc is too low (drones collide with each other).
• µm is too low (swarm moves in a random direction).

Note that, by really unsuitable parameters, more than one symptom of disarray
can be observed. Surprisingly, if the other parameters are chosen well, a low µp,
even zero, does not lead to disarray.

Another important concept is efficiency. What should be the optimal number of
drones to be used? It is observed that up to an optimum population, efficiency of the
swarm increases. After that point, adding more drones does not improve the mine
detection speed or performance much. This is mainly because too many drones form
a useless bulk in the center of the swarm. However, the optimum number of drones
also depends on the terrain (rough, smooth, etc.), landmine density, actual speed and
turning rates of drones, sensor ranges, and swarm behavior.

7.7 Conclusion

A distributed behavioral model to guide a group of minimalist mobile robots is
presented. The main point of interest for the model is that it is based on weighting
sensor inputs and not on precedence-based rules. By chancing the weights, it is
possible to shift the behavior of the swarm while all other physical parameters (such
as sensor ranges) remain constant. The model is presented in a computer simulation
that gave promising results.

It should be noted that the selection of weights changes the behavior of the swarm
drastically and sometimes unexpectedly. To optimize the drone behavioral weights
is the upcoming part of this study on which the authors are currently working.
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