
45

Implementing Fault-Tolerance in Real-Time
Programs by Automatic Program
Transformations

TOLGA AYAV

INRIA and Izmir Institute of Technology, Turkey

and

PASCAL FRADET and ALAIN GIRAULT

INRIA and University of Grenoble, France

We present a formal approach to implement fault-tolerance in real-time embedded systems. The

initial fault-intolerant system consists of a set of independent periodic tasks scheduled onto a set of

fail-silent processors connected by a reliable communication network. We transform the tasks such

that, assuming the availability of an additional spare processor, the system tolerates one failure at

a time (transient or permanent). Failure detection is implemented using heartbeating, and failure

masking using checkpointing and rollback. These techniques are described and implemented by

automatic program transformations on the tasks’ programs. The proposed formal approach to fault-

tolerance by program transformations highlights the benefits of separation of concerns. It allows

us to establish correctness properties and to compute optimal values of parameters to minimize

fault-tolerance overhead. We also present an implementation of our method, to demonstrate its

feasibility and its efficiency.

Categories and Subject Descriptors: C.3 [Special Purpose and Application-Based Systems]:

Real-Time and Embedded Systems; C.4 [Performance of Systems]: Fault Tolerance; D.2.4

[Software/Program Verification]: Formal Methods; D.4.5 [Reliability]: Checkpoint/restart

General Terms: Algorithms, Design, Languages, Reliability, Theory

Additional Key Words and Phrases: Fault-tolerance, heartbeating, checkpointing, program trans-

formations, correctness proofs

This work has been funded in part by the ARTIST2 Network of Excellence (http://www.artist-

embedded.org).

A shorter version of this article has been published in the conference EMSOFT 2006 under the title

“Implementing Fault-Tolerance in Real-Time Systems by Automatic Program Transformations.”

Author’s address: T. Ayav, Izmir Institute of Technology, Department of Computer Engineer-

ing, 35430 Urla Izmir, Turkey; emails: TolgaAyav@iyte.edu.tr; P. Fradet and A. Girault, Inria

Rhône-Alpes & LIG (POP ART team), Inovallée, 655 Avenue de l’Europe, 38334 Saint-Ismier cedex,

France; emails: {Pascal.Fradet, Alain.Girault}@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/07-ART45 $5.00 DOI 10.1145/1376804.1376813 http://doi.acm.org/

10.1145/1376804.1376813

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:2 • T. Ayav et al.

ACM Reference Format:
Ayav, T., Fradet, P., and Girault, A. 2008. Implementing fault-tolerance in real-time programs by

automatic program transformations. ACM Trans. Embedd. Comput. Syst. 7, 4, Article 45 (July

2008), 43 pages. DOI = 10.1145/1376804.1376813 http://doi.acm.org/10.1145/1376804.1376813

1. INTRODUCTION

In most distributed embedded systems, such as automotive and avionics, fault-
tolerance is a crucial issue [Cristian 1991; Nelson 1990; Jalote 1994]. It is de-
fined as the ability of the system to comply with its specification despite the
presence of faults in any of its components [Avizienis et al. 2004]. To achieve
this goal, we rely on two means: failure detection and failure masking. Among
the two classes of faults, hardware and software, we only address the former.
Tolerating hardware faults requires redundant hardware, be it explicitly added
by the system’s designer for this purpose, or intrinsically provided by the exist-
ing parallelism of the system. We assume that the system is equipped with one
spare processor, which runs a special monitor module, in charge of detecting the
failures in the other processors of the system, and then masking one failure.

We achieve failure detection thanks to timeouts; two popular approaches ex-
ist: the so-called “pull” and “push” methods [Aggarwal and Gupta 2002]. In the
pull method, the monitor sends liveness requests (i.e., “are you alive?” mes-
sages) to the monitored components, and considers a component as faulty if
it does not receive a reply from that component within a fixed time delay. In
the push method, each component of the system periodically sends heartbeat
information (i.e., “I am alive” messages) to the monitor, which considers a com-
ponent as faulty if two successive heartbeats are not received by the monitor
within a predefined time interval [Aguilera et al. 1997]. We employ the push
method, which involves only one-way messages.

We implement failure masking with checkpointing and rollback mechanisms,
which have been addressed in many works. It involves storing the global state
of the system in a stable memory, and restoring the last state upon the detection
of a failure to resume execution. There exist many implementation strategies of
checkpointing and rollback, such as user-directed, compiler-assisted, system-
level, and library-supported [Ziv and Bruck 1997; Kalaiselvi and Rajaraman
2000; Beck et al. 1994]. The pros and cons of these strategies are discussed
in Silva and Silva [1998]. Checkpointing can be synchronous or asynchronous.
In our setting where we consider only independent tasks, the simplest approach
is asynchronous checkpointing: tasks take local checkpoints periodically with-
out any coordination with each other. This approach allows maximum compo-
nent autonomy for taking checkpoints and does not incur any message over-
head.

We propose a framework based on automatic program transformations to im-
plement fault-tolerance in distributed embedded systems. Our starting point
is a fault-intolerant system, consisting of a set of independent periodic hard
real-time tasks scheduled onto a set of fail-silent processors. The goal of the
transformations is to automatically obtain a system tolerant to one hardware

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:3

failure. One spare processor is initially free of tasks: it will run a special
monitor task, in charge of detecting and masking the system’s failures. Each
transformation will implement a portion of either the detection or the masking
of failures. For instance, one transformation will add the checkpointing code into
the real-time tasks, while another one will add the rollback code into the mon-
itor task. The transformations will be guided by the fault-tolerance properties
required by the user. Our assumption that all tasks are independent (i.e., they
do not communicate with each other) simplifies the problem of consistent global
checkpointing, since all local checkpoints belong to the set of global consistent
checkpoints.

One important point of our framework is the ability to formally prove that
the transformed system satisfies the real-time constraints even in the presence
of one failure. The techniques that we present (checkpointing, rollback, heart-
beating, etc.) are pretty standard in the OS context. Our contribution is to study
them in the context of hard real-time tasks, to express them formally as auto-
matic program transformations, and to prove formal properties of the resulting
system after the transformations. Another benefit is to allow the computation
of optimal checkpointing and heartbeating periods to minimize the recovery
time when a failure occurs.

Section 2 gives an overview of our approach. In Section 3, we give a formal
definition for the real-time tasks and we introduce a simple programming lan-
guage. Section 4 presents program transformations implementing checkpoint-
ing and heartbeating. We present the monitor task in Section 5 and extend our
approach to transient and multiple failures in Section 6. In Section 7, we il-
lustrate the implementation of our approach on the embedded control program
of an autonomous vehicle. Finally, we review related work in Section 8 and
conclude in Section 9.

2. OVERVIEW OF THE PROPOSED SYSTEM

We consider a distributed embedded system consisting of p processors plus
a spare processor, a stable memory, and I/O devices. All are connected via a
communication network (see Figure 1(a)). We make two assumptions regarding
the communication and failure behavior of the processors.

Assumption 1. The communication network is reliable and the transmis-
sion time is deterministic.

Moreover, for the sake of clarity, we assume that the message transmission
time between processors is zero, but our approach holds for nonzero transmis-
sion times as well.

Assumption 2. All processors are fail-silent [Jalote 1994]. This means that
the processors may transiently or permanently stop responding, but do not
pollute the healthy remaining ones.

The system also has n real-time tasks, each fitting the simple-task model
of TTP [Kopetz 1997]: all tasks are periodic and independent (i.e., without
precedence constraints). More precisely, the program of each task has the form

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:4 • T. Ayav et al.

Fig. 1. (a) System architecture. (b) Program model of periodic real-time tasks.

described in Figure 1(b). Even though we present our method by assuming this
simple-task model, it can perfectly be applied to dependent tasks (i.e., with
precedence constraints). Indeed, in Section 7, we present such an applica-
tion with static schedules composed of dependent tasks and deterministic and
nonzero communication times, which we solve with our method.

We do not address the issue of distribution and scheduling of the tasks onto
the processors. Hence, for the sake of clarity, we assume that each processor
runs one single task (i.e., n = p). Executing more than one task on each proces-
sor (e.g., with a multirate cyclic execution approach) is still possible however.

Our approach deals with the programs of the tasks and defines program
transformations on them to achieve fault-tolerance. We consider programs in
compiled form at the assembly or binary code level, which allows us to evaluate
exact execution times (EXET) of the basic instructions and, hence, the worst-case
execution times (WCET) and best-case execution times (BCET) of complex programs
having conditional statements. We represent these three-address programs us-
ing a small imperative language. Since the system contains only one redundant
processor, we provide a masking of only one processor failure at a time. Masking
of more than one transient processor failure at a time could be achieved with
additional spare processors (see Section 6).

Assumption 3. There exists a stable memory to keep the global state for
error recovery purposes.

The stable memory is used to store the global state. The global state pro-
vides masking of processor failures by rolling back to this safe state as soon
as a failure is detected. The stable memory also stores one shared variable per
processor, used for failure detection: the program of each task, after transfor-
mation, will periodically write a 1 into this shared variable, while the monitor
will periodically (and with the same period) check that its value is indeed 1
and will reset it to 0. When a failure occurs, the shared variable corresponding
to the faulty processor will remain equal to 0, therefore allowing the moni-
tor to detect the failure. The spare processor provides the necessary hardware

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:5

redundancy and executes the monitor program for failure detection and mask-
ing purposes.

Assumption 4. The communications between the processors and the stable
memory are only validated when they have completed successfully (i.e., they
are considered as atomic transactions).

The above assumption guarantees that if a processor fails while writing some
data into the stable memory (e.g., when performing a checkpoint), then this
transaction is not validated.

When the monitor detects a processor failure, it rolls back to the latest local
state of the faulty processor stored in the stable memory. It then resumes the
execution of the task that was running on the faulty processor from this local
state. Remember that, since the tasks are independent, the other tasks do not
need to roll back to their own previous local state. This failure-masking process
is implemented by an asynchronous checkpointing, i.e., processors take local
checkpoints periodically without any coordination with each other.

The two program transformations used for adding periodic heartbeat-
ing/failure detection and periodic checkpointing/rollback amount to inserting
code at specific points. This process may seem easy, but the conditional state-
ments of the program to be transformed, i.e., if branchings, create many differ-
ent execution paths, making it actually quite difficult. We, therefore, propose
a preliminary program transformation, which equalizes the execution times
between all the possible execution paths. This is done by padding dummy code
in if branchings. After this transformation, the resulting programs have a
constant execution time. Then, checkpointing and heartbeating commands are
inserted into the code at constant time intervals. The periods between check-
points and heartbeats are chosen in order to minimize their cost while satis-
fying the real-time constraints. A special monitoring program is also gener-
ated from the parameters of these transformations. The monitor consists of a
number of tasks that must be scheduled by an algorithm providing deadline
guarantees.

The algorithmic complexity of our program transformations is linear in
the size of the program. The overhead in the transformed program is the
result of fault-tolerance techniques we use (heartbeating, checkpointing and
rollback). This overhead is unavoidable and compares favorably to the over-
head induced by other fault-tolerance techniques, e.g., hardware and software
redundancy.

The memory overhead is also linear in the memory size of the program.
Indeed, this overhead results from the need to store the global state of each
task when performing the checkpointing. In addition, an array of integers of
size n, where n is the total number of tasks, is used for the heartbeating and
fault detection.

3. TASKS

A real-time periodic task τ = (S, T) is specified by a program S and a
period T . The program S is repeatedly executed each T units of time. A

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:6 • T. Ayav et al.

program usually reads its input (which is stored in a local variable), executes
some statements, and writes its output (see Figure 1(b)). Each task also has
a deadline d ≤ T that it must satisfy when writing its output. To simplify
the presentation, we take the deadline equal to the period, but our approach
does not depend on this assumption. Hence, the real-time constraint associated
to the task (S, T) is that its program S must terminate before the end of its
period T .

Programs are written in the following imperative programming language:

S ::= x:=A assignment
| skip no operation
| read(i) input read
| write(o) output write
| S1;S2 sequencing
| if B then S1 else S2 conditional
| for i = n1 to n2 do S iteration

where A and B denote, respectively, integer expressions (arithmetic expres-
sions on integer variables) and boolean expressions (comparisons, and, not,
etc), and n1 and n2 denote integer constants. Here, we assume that the only
variables used to store the input and the output are i and o, respectively. These
instructions could be generalized to multiple reads and writes or to I/O oper-
ations parameterized with a port. This language is well-known, simple, and
sufficiently expressive. The reader may refer to Nielson and Nielson [1992] for
a complete description.

The following example program Fac reads an unsigned integer variable and
places it in i. It bounds the variable i by 10 and computes the factorial of i,
which it finally writes as its output. Here, Fac should be seen as a generic
computation simple enough to concisely present our techniques. Of course, as
long as they are expressed in the previous syntax, much more complex and
realistic computations can be treated as well.

Fac = read(i) ;
if i > 10 then i := 10; o := 1; else o := 1;
for l = 1 to 10 do

if l <= i then o := o ∗ l ; else skip;
write(o);

The simplest statement of the language is skip (the nop instruction), which
exists on all processors. We take the EXET of the skip command to be the unit
of time and we assume that the execution times of all other statements are
multiple of EXET (skip). A more fundamental assumption is that the execution
times (be it EXET, WCET, or BCET) of any statement or expression can be evaluated.
A more fundamental assumption is that the exact execution times (EXET) of
any basic instruction is known. This is required to precisely insert periodic
heartbeats and checkpoints. Other techniques (e.g., inserting heartbeats and
checkpoints at least every x time units) would only require knowing the WCET

of each basic instruction. Either way, it is possible to evaluate the WCET and
BCET of all statements and programs. Languages with more complex control

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:7

Table I. Exact, Worst-Case, and Best-Case Execution Times of Our

Programming Language’s Statements

EXET(skip) = BCET(skip) = WCET(skip) = 1

EXET(read) = BCET(read) = WCET(read) = 3

EXET(write) = BCET(write) = WCET(write) = 3

EXET(x := e) = BCET(x := e) = WCET(x := e) = 3

EXET(S1;S2) = EXET(S1) + EXET(S2)

BCET(S1;S2) = BCET(S1) + BCET(S2)

WCET(S1;S2) = WCET(S1) + WCET(S2)

WCET(if B then S1 else S2) = 1 + max(WCET(S1), WCET(S2))

BCET(if B then S1 else S2) = 1 + min(BCET(S1), BCET(S2))

EXET(for i = n1 to n2 do S) = (n2 − n1 + 1) × (3 + EXET(S))

BCET(for i = n1 to n2 do S) = (n2 − n1 + 1) × (3 + BCET(S))

WCET(for i = n1 to n2 do S) = (n2 − n1 + 1) × (3 + WCET(S))

structures could be considered as well. Of course, this may lead to (potentially
very) conservative WCET. In any cases, the WCET of programs must be computable
to formally prove that deadlines are met.

The WCET analysis is the topic of much work (see Puschner and Burns [2000]
and Lisper [2006] for surveys); we shall not dwell upon this issue any further.
This is not a critical assumption, since WCET analysis has been applied with
success to real-life processors with branch prediction [Colin and Puaut 2000]
or with caches and pipelines [Theiling et al. 2000].

For the remainder of the article, we fix the execution times of statements to
be (in time units) those of Table I.

Of course, when the EXET of a statement is known, it is also equal to its
WCET and its BCET. The above figures are valid for any “simple” expressions e or
b. Using temporary variables, it is always possible to split complex arithmetic
and boolean expressions so that they remain simple enough (as in three-address
code). The WCET (resp. BCET) of the for statement is computed in the same way,
by replacing EXETby WCET in the right-hand part (resp. BCET); the same thing for
the “;”.

With these figures, we get WCET (Fac) = 84. In the rest of the article, we
consider the task (Fac, 200), that is to say Fac with a deadline/period of 200
time units.

The real-time property for a system of n tasks {(S1, T1), . . . , (Sn, Tn)} is that
each task must meet its deadline. Since each processor runs a single task, it
amounts to:

∀i ∈ {1, 2, . . . , n}, WCET(Si) ≤ Ti (1)

The semantics of a statement S is given by the function [[S]] : State → State.
A state s ∈ State maps program variables V to their values. The semantic
function takes a statement S, an initial state s0 and yields the resulting state
sf obtained after the execution of the statement: [[S]]s0 = sf . Several equivalent
formal definitions of [[.]] (operational, denotational, and axiomatic) can be found
in Nielson and Nielson [1992].

The IO semantics of a task (S, T) is given by a pair of streams

(i1, . . . , in, . . .), (o1, . . . , on, . . .)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:8 • T. Ayav et al.

where ik is the input provided by the environment during the kth period and
ok is the last output written during the kth period. So, if several write(o) are
performed during a period, the semantics and the environment will consider
only the last one. We also assume that the environment proposes the same
input during a period: several read(i) during the same period will result in the
same readings.

For example, if the environment proposes 2 as input then the program

read(i); o := i; write(o); read(i); o := o ∗ i; write(o)

produces 4 as output during that same period, and not (2, 4). Assuming the
sequence of integers as inputs, the IO semantics of Fac is:

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .),

(0, 1!, 2!, 3!, 4!, 5!, 6!, 7!, 8!, 9!, 10!, 10!, 10!, . . .)

4. AUTOMATIC PROGRAM TRANSFORMATIONS

Failure detection and failure masking rely on inserting heartbeating and check-
pointing instructions in programs. These instructions must be inserted such
that they are executed periodically. We therefore transform a task program
such that a heartbeat and a checkpoint are executed every THB and TCP period
of time respectively. Conditional statements complicate this insertion. They
lead to many paths with different execution times. It is therefore impossible
to insert instructions at constant time intervals without duplicating the code.
To avoid this problem, we first transform the program in order to fix the exe-
cution time of all conditionals to their worst-case execution time. Intuitively,
it amounts to adding dummy code to conditional statements. After this time,
equalization, checkpoints, and heartbeats can be introduced simply using the
same transformation.

A transformation may increase the WCET of programs. Thus, after each trans-
formation T , the real-time constraint WCET(T (S)) ≤ T must be checked; thanks
to our assumptions on WCET, this can be done automatically.

4.1 Equalizing Execution Time

Equalizing the execution time of a program consists in padding dummy code
in least expensive branches. The dummy code added for padding is sequences
of skip statements. We write skipn to represent a sequence of n skip state-
ments: EXET(skipn) = n. This technique is similar to the one used in “single
path programming” [Puschner 2002].

The global equalization process is defined recursively by the following trans-
formation rules, noted F . The rules below must be understood like a case ex-
pression in the programming language ML [Milner et al. 1990]: cases are evalu-
ated from top to bottom, and the transformation rule corresponding to the first
pattern that matches the input program is performed.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:9

Transformation Rule 1

1. F[if B then S1 else S2] = if B then F[S1]; skipmax (0,δ2−δ1);

else F[S2]; skipmax (0,δ1−δ2);
with δi = WCET(F[Si]) for i = 1, 2

2. F[for i = n1 to n2 do S] = for i = n1 to n2 do F[S]
3. F[S1;S2] = F[S1]; F[S2]
4. F[S] = S otherwise

Conditionals are the only statements subject to code modification (Rule 1).
The transformation adds as many skip as needed to match the execution
time of the other branch: hence, the max(0, δ2 − δ1) in the then branch.
The “most expensive” branch remains unchanged, while the “least expensive
branch” ends up taking the same time as the most expensive one. The trans-
formation is applied inductively to the statement of each branch prior to this
equalization.

We now prove that, for any program S, the best- and worst-case execution
times of F[S] are identical:

PROPERTY 1. ∀S, BCET(F[S]) = WCET(F[S]) = EXET(F[S]).

PROOF. The proof is by induction on the structure of the program S.

—Let S = if B then S1 else S2. The induction hypothesis is that
BCET(F[S1]) = WCET(F[S1]) = EXET(F[S1]) = δ1 and EXET(F[S2]) =
BCET(F[S2]) = WCET(F[S2]) = EXET(F[S2]) = δ2. According to Rule 1 and
Table I, we thus have WCET(F[S]) = 1+max(δ1+max(0, δ2−δ1), δ2+max(0, δ1−
δ2)).

Without loss of generality, assume that δ1 ≥ δ2 (the symmetrical case
yields similar computations). Then δ1 + max(0, δ2 − δ1) = δ1 + 0 = δ1, and
δ2 + max(0, δ1 − δ2) = δ2 + δ1 − δ2 = δ1. Hence WCET(F[S]) = 1 + max(δ1, δ1) =
1 + δ1.

Conversely, we also have BCET(F[S]) = 1 + min(δ1 + max(0, δ2 − δ1), δ2 +
max(0, δ1−δ2)). Then, still by assuming that δ1 ≥ δ2, we also find BCET(F[S]) =
1 + min(δ1, δ1) = 1 + δ1.

In conclusion, BCET(F[S]) = WCET(F[S]) and therefore it is also equal to
EXET(F[S]).

—Let S = for i = n1 to n2 do S1. The induction hypothesis is that
BCET(F[S1]) = WCET(F[S1]) = EXET(F[S1]) = δ1. According to Rule 2 and
Table I, we thus have EXET(F[S]) = (n2 − n1 + 1) × (3 + δ1). Since n1 and n2

are constant and by induction hypothesis, this is also equal to BCET(F[S]) and
WCET(F[S]).

—Let S = S1;S2. The induction hypothesis is that BCET(F[S1]) =
WCET(F[S1]) = EXET(F[S1]) = δ1 and BCET(F[S2]) = WCET(F[S2]) =
EXET(F[S2]) = δ2. According to Rule 3 and Table I, we thus have EXET(F[S]) =
δ1 + δ2. By induction hypothesis, this is also equal to BCET(F[S]) and
WCET(F[S]).

Thus, we conclude that for any S, BCET(F[S]) = WCET(F[S]) = EXET(F[S]).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:10 • T. Ayav et al.

We also prove that the transformation F does not change the WCET of pro-
grams:

PROPERTY 2. ∀S, WCET(S) = WCET(F[S]).

PROOF. The proof is by induction on the structure of the program S.

—Let S = if B then S1 else S2. The induction hypothesis is that WCET(S1) =
WCET(F[S1]) = δ1 and WCET(S2) = WCET(F[S2]) = δ2. According to Rule 1 and
Table I, we thus have:

WCET(F[S]) = 1 + max(δ1 + max(0, δ2 − δ1), δ2 + max(0, δ1 − δ2))

= 1 + max(max(δ1, δ1 + δ2 − δ1), max(δ2, δ2 + δ1 − δ2))

= 1 + max(max(δ1, δ2), max(δ2, δ1))

= 1 + max(δ1, δ2)

According to Table I, we also have WCET(S) = 1 + max(WCET(S1), WCET(S2)).
By induction hypothesis, this is equal to 1 + max(δ1, δ2), that is, WCET(F[S]).

—Let S = for i = n1 to n2 do S1. The induction hypothesis is that WCET(S1) =
WCET(F[S1]). According to Rule 2 and Table I, we thus have WCET(F[S]) =
(n2 −n1 +1)× (3+ WCET(F[S1])). Moreover, according to Table I, we also have
WCET(S) = (n2 −n1 +1)× (3+WCET(S1)). By induction hypothesis, this is equal
to WCET(F[S]).

—Let S = S1; S2. The induction hypothesis is that WCET(S1) = WCET(F[S1])
and WCET(S2) = WCET(F[S2]). According to Rule 3 and Table I, we thus have
WCET(F[S]) = WCET(F[S1]) + WCET(F[S2]). Moreover, according to Table I, we
also have WCET(S) = WCET(S1) + WCET(S2). By induction hypothesis, this is
equal to WCET(F[S]).

Thus, we conclude that for any S, WCET(S) = WCET(F[S]).

The transformation F applied on example Fac produces the new program
Fac1:

Fac1 = F[Fac] =read(i);
if i > 10 then i := 10; o := 1; else o := 1; skip3;
for l = 1 to 10 do

if l <= i then o := o ∗ l ; else skip3;
write(o);

4.2 Checkpointing and Heartbeating

Checkpointing and heartbeating both involve the insertion of special commands
at appropriate program points. The special commands we insert are:

—hbeat sends a heartbeat telling the monitor that the processor is alive. This
command is implemented by setting a special variable in the stable memory.
The vector HBT[1 . . . n] gathers the heartbeat variables of the n tasks. The
command hbeat in task i is thus implemented as HBT[i] := 1. The failure
detection will be presented in detail in Section 5. Informally, the monitor

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:11

periodically decrements and checks each HBT[i] variables at the same period
at which they are set to 1. A failure is detected as soon as HBT[i] reaches −2
(and not 0, to account for the eventual clock drifts).

—checkpt saves the current state in the stable memory. It is sufficient to save
only the live variables and only those that have been modified since the last
checkpoint. This information can be inferred by static analysis techniques.
Here, we simply assume that checkpt saves enough variables to revert to a
valid state when needed.

Heartbeating is usually done periodically, whereas the policies for check-
pointing differ. Here, we chose periodic heartbeats and checkpoints. In our con-
text, the key property is to meet the real-time constraints. We will see in Sec-
tion 5 how to compute the optimal periods for those two commands, optimality
being defined w.r.t. those real-time constraints.

In this section, we define a transformation IT
c (S, t) that inserts the com-

mand c every T units of time in the program S. It will be used both for check-
pointing and heartbeating. The parameter T denotes the period whereas the
time counter t counts the time residual before the next insertion. Because the
WCET of the “most expensive” atomic statement of our language is 3 and not 1
(e.g., WCET(read) = 3), it is not, in general, possible to insert the command c
exactly every T time units. However, we will establish a bound on the maximal
delay between any two successive commands c inserted in S.

The transformation I relies on the property that all paths of the program
have the same execution time (see Property 1 in Section 4.1). In order to insert
heartbeats afterward, this property should remain valid after the insertion of
checkpoints. We may either assume that checkpt takes the same time when
inserted in different paths (e.g., the two branches of a conditional), or reap-
ply the transformation F after checkpointing. Again, the rules below must be
understood like a case expression in ML.

Transformation Rule 2

1. IT
c (S, t) = c ; IT

c (S, T − EXET(c) + t) if t ≤ 0

2. IT
c (a, t) = a if a is atomic

3. IT
c (S1;S2, t) = IT

c (S1, t) ; IT
c (S2, t1)

with t1 = t−EXET(S1) if EXET(S1) < t
with t1 = T −EXET(c)−r if EXET(S1) = t + q(T − EXET(c)) + r

with q ≥ 0 0 ≤ r < T − EXET(c))

4. IT
c (if b then S1 else S2, t) = if b then IT

c (S1, t − 1) else IT
c (S2, t − 1)

5. IT
c (for l = n1 to n2 do S, t) = Fold (IT

c (Unfold (for l = n1 to n2 do S), t))

Rule 1 inserts the command c when the time counter t is negative or null.
This means that c is inserted either at the “right place” or “slightly after,” but
never “before the right place.” The transformation proceeds with the resulting
program and the time target for the next insertion is reset to T − EXET(c) + t,
that is, it is computed w.r.t. the ideal previous insertion point to avoid any drift.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:12 • T. Ayav et al.

Rule 2 returns atomic commands unchanged. Indeed, an atomic command
cannot be split (hence rule 3 does not apply) and since t > 0, no insertion must
be performed (if t ≤ 0, then rule 1 applies).

Rule 3 states that the insertion in a sequence S1; S2 is first done in S1.
The residual time t1 used for the insertion in S2 is either (t − EXET(S1)) if no
insertion has been performed inside S1 or (T − EXET(c) − r) if r is the time
residual remaining after the q + 1 insertions inside S1 (i.e., if EXET(S1) = t +
q(T − EXET(c)) + r).

Rule 4 states that, for conditional statements, the insertion is performed in
both branches. The time of the test and branching is taken into account by
decrementing the time residual (t − 1).

Rule 5 applies to loop statements. It unrolls the loop completely (thanks
to the Unfold operator), performs the insertion in the unrolled resulting pro-
gram, and then factorizes code by folding code in for loops as much as possible
(thanks to the Fold operator). The Unfold operator is defined by the following
transformation rule:

Transformation Rule 3

1. Unfold (for l = n1 to n2 do S) = l := n1; S; l := n1 + 1; . . . l := n2; S

While the Fold operator is based on the following transformation rules:

Transformation Rule 4

1. l := n; S; l := n + 1; S � for l = n to n + 1 do S
2. (for l = n1 to n2 do S); l := n2 + 1; S � for l = n1 to n2 + 1 do S
3. l := n1; S; (for l = n1 + 1 to n2 do S) � for l = n1 to n2 do S

In fact, it would be possible to express the transformation I such that it
minimally unrolls loops and does not need folding. However, the transformation
rules would be much more complex, and we instead chose a simpler presentation
involving the Fold operator.

Transformation rules 2 assume that the period T is greater than the execu-
tion time of the command c, i.e., T > EXET(c). Otherwise, the insertion may loop
by inserting c within c and so on.

We now give a bound on the time interval between any two successive com-
mands c in the transformed program IT

c (F(S), T):

PROPERTY 3. In a transformed program IT
c (F(S), T), the actual time interval

� between the beginning of two successive commands c is such that:

T − ε ≤ � < T + ε

with ε being the EXET of the most expensive atomic instruction (assignment or
test) in the program. Please also note that for the first c inserted in the program,
� is defined as just the beginning time of c.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:13

We formalize and prove Property 3 in the appendix.
In order to check the real-time constraints, we must precisely compute the

overhead resulting from the transformation S′ = IT
c (S, t):

WCET(IT
c (S, t)) = WCET(S) +

⌈
WCET(S) − t
T − WCET(c)

⌉
× WCET(c) (2)

Indeed, the first c is inserted after t units of time, hence the numerator
WCET(S)−t. Also, each time a c is inserted, the time counter is reset to T−WCET(c);
hence the denominator T −WCET(c). Finally, if WCET(S)−t = n×(T −WCET(c)) + r
with 0 < r < T − WCET(c), then the total number of inserted c is n + 1, while if
r = 0, then the total number of inserted c is n since Transformation rules 2 do
not insert a last c when the time counter is 0 and at the same time S is termi-
nated; hence the
.� function. Equation (2) is valid only when the denominator
is strictly positive, that is, when T − WCET(c) > 0. This is reasonable because,
if T ≤ WCET(c), it means that the program S′ resulting from the transforma-
tion I performs only c commands and has absolutely no time to perform the
computations of the initial program S.

CONDITION 1. For the transformation S′ = IT
c (S, T) to be valid, the condition

T − WCET(c) > 0 must hold.

Both checkpointing and heartbeating are performed using the transforma-
tion I. First, checkpoints are inserted, and then heartbeats. The period be-
tween two checkpoints must take into account the overhead that will be added
by heartbeats afterward. By applying equation (2) to the period T ′

CP for S, we
obtain (where we take h = WCET(hbeat) for conciseness):

TCP = T ′
CP +

⌈
T ′

CP

THB − h

⌉
× h

We are not interested in the exact computation within one given period T ′
CP ,

but rather in the average computation over all the periods T ′
CP. Therefore, we

suppress the
.� function to obtain:

TCP = T ′
CP + T ′

CP

THB − h
× h = T ′

CP ×
(

1 + h

THB − h

)

⇐⇒ T ′
CP = TCP

1 + h
THB−h

= TCP × (THB − h)

THB
(3)

According to Condition 1, we must have T ′
CP > c, that is:

TCP (THB − h) > THB c ⇐⇒ TCP THB − TCP h − THB c > 0 (4)

Figure 2 illustrates Equation (4). The portion of the plane that satisfies this con-
dition is located strictly above the curve. The portion of the plane located above
the inner blue rectangle (the dashed area) satisfies the more restrictive, but
easier to check, condition TCP > 2 c ∧ THB > 2 h. Intuitively, TCP = 2 c means

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:14 • T. Ayav et al.

Fig. 2. Curve TCP THB − TCP h − THB c = 0 for h = 3 and c = 10.

that the transformed program spends 50% of its time performing checkpoints,
while THB = 2 h means that it spend 50% of its time performing heartbeats.

With these notations, the insertion of checkpoints and heartbeats is described
by the following ML code:

let (S′, −) = IT ′
CP

checkpt(S, T ′
CP) in

let (S′′, −) = ITHB
hbeat(S

′, 0) in

S′′; hbeat(k)

The command hbeat(k) is a special heartbeat that sets the variable to k instead
of 1, that is, HBT[i] := k. Following this last heartbeat, the monitor will there-
fore decrease the shared variable and will resume failure detection when the
variable becomes 0 again. This mechanism accounts for the idle interval of time
between the termination of S′′ and the beginning of the next period. Hence, k
has to be computed as:

k =
⌈

T − WCET(S′′; hbeat)

THB

⌉
(5)

Figure 3 illustrates the form of a general program (i.e., not Fac3) after all the
transformations.

By applying Equation (2) to the first transformation S′ = IT ′
CP

checkpt(S, T ′
CP) and

to the second transformation S′′ = ITHB
hbeat(S

′, 0), we get:

WCET(S′) = WCET(S) +
⌈

WCET(S) − T ′
CP

T ′
CP − WCET(checkpt)

⌉
× WCET(checkpt) (6)

WCET(S′′) = WCET(S′) +
⌈

WCET(S′)
THB − WCET(hbeat)

⌉
× WCET(hbeat) (7)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:15

Fig. 3. Program with checkpointing and heartbeating.

After the insertion of heartbeats, the period between checkpoints will be

equal to T ′
CP

(
1 + h

THB−h

)
, i.e., TCP . More precisely, it follows from Property 3

that:

PROPERTY 4. The actual time intervals �CP and �HB between two successive
checkpoints and heartbeats are such that:

TCP − ε ≤ �CP < TCP + ε + h and THB − ε ≤ �HB < THB + ε

PROOF. The proof is based on Property 3. After transformation

IT ′
CP

checkpt(S, T ′
CP), Property 3 gives:

T ′
CP − ε ≤ �′

CP < T ′
CP + ε (8)

Assuming the WCET of the most expensive atomic command of checkpt is less
than or equal to ε, after the second transformation, ITHB

hbeat(S
′, 0), Property 3

satisfies the condition THB − ε ≤ �HB < THB + ε. The second transformation,
however, changes �

′
CP given in Equation (8) to �CP such that each portion with

the time interval T ′
CP in the final program will be augmented with

T ′
CP

THB−h
hbeat

commands. Therefore, by following Equation (3), T ′
CP + T ′

CP

THB−h
.h leads to TCP ,

i.e., the desired value of checkpointing interval. Although we take into account
heartbeating in the first transformation, the heartbeating command hbeat is
invisible to the first transformation. The worst case occurs in the boundary
condition of Equation (3) when a heartbeat is inserted just before a checkpoint
command. In this case, TCP is shifted upward by h. In the best case, this shift is
zero. Therefore, by shifting up the lower and upper bounds of �CP with [0, h],
we finally derive TCP − ε ≤ �CP < TCP + ε + h.

As pointed out above, the transformation I requires the period to be bigger
than the cost of the command. For checkpointing and heartbeating we must
ensure that:

THB > WCET(hbeat) and T ′
CP > WCET(checkpt)

To illustrate these transformations on our previous example, we take:

EXET(hbeat) = 3 EXET(checkpt) = 10 TCP = 80 THB = 10

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:16 • T. Ayav et al.

Thus, we get T ′
CP = 80 − 3∗T ′

CP
10−3

i.e., T ′
CP = 56 and I56

checkpt(Fac1, 56) produces:

Fac2 = read(i);
if i > 10 then i := 10; o := 1; else o := 1; skip3;
for l = 1 to 6 do

if l <= i then o := o ∗ l ; else skip3;

l := 7; if l <= i then checkpt; o := o ∗ l ; else checkpt; skip3;
for l = 8 to 10 do

if l <= i then o := o ∗ l ; else skip3;
write(o);

A single checkpt is inserted after 56 time units, which occurs inside the con-
ditional of the 7th iteration of the for loop. The checkpoint is inserted exactly at
the desired point in both branches of the conditional. The transformation pro-
ceeds by unrolling the loop and inserting checkpt at the right places. Portions
of the code are then folded to make two for loops.

For the next step, we suppose, for the sake of the example, that checkpt,
which takes 10 units of time, can be split in two parts checkpt =
checkpt1;checkpt2 where checkpt1 and checkpt2 take, respectively, 7 and 3 time
units exactly. Recall that checkpt is made of the basic instructions of Table I. In
other words, the largest WCETof an atomic instruction remains 3 (it would be 10
if checkpt was atomic). We add a heartbeat as a first instruction and, in order
to finish with a heartbeat, we must add 5 skip at the end. The transformation
I10
hbeat(Fac2, 0) inserts a heartbeat every 10 time units and yields:

Fac3 = hbeat; read(i);
if i > 10 then i := 10; hbeat; o := 1; else o := 1; hbeat; skip3;
for l = 1 to 6 do

if l <= i then hbeat; o := o ∗ l ; else hbeat; skip3;
l := 7;if l <= i then hbeat; checkpt1; hbeat; checkpt2; o := o ∗ l ;

else hbeat; checkpt1; hbeat; checkpt2; skip3;
for l = 8 to 10 do

hbeat; if l <= i then o := o ∗ l ; else skip3;

write(o); hbeat; skip5; hbeat;

Notice that the exact interval between any two successive hbeatis always
equal to 10 time units, except at two points:

—Between the hbeat located between checkpt1 and checkpt2, and the hbeat lo-
cated inside the second for loop, the interval is 12 time units. This is because
of the fact that when the transformation Ireaches the second for loop, the
residual time t is equal to 9; hence the hbeat cannot be inserted right away,
the I transformations enters the for body and the time residual becomes 12.
So the hbeat is inserted at the beginning of the for body. To avoid a clock
drift, the residual time t at this point is reset to 8 since the hbeat should have
been inserted 2 time units earlier. Unfortunately, the next hbeat cannot be
inserted after 8 time units, the reason being similar; instead it is inserted
after 10 time units.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:17

—Between the last but one hbeat and the last hbeat, the interval is 8 time
units. Indeed, the residual time after inserting the last but one hbeat is 8
time units. Since we are at the end of the program and we want to terminate
with a hbeat, we insert a skip5 to match the desired residual time, which is
equal to 8 − EXET(hbeat) = 8 − 3 = 5 at the end of the hbeat.

In Fac3, the checkpoint is performed after 83 units of time in both branches,
which is inside the [80, 86) interval of Property 4. Finally, since WCET(Fac3) =
143 and the period is 200, Equation (5) gives
 200−143

10
� = 6, so the last hbeat

must be changed into hbeat(6).

5. IMPLEMENTING THE MONITOR

A special program called monitor is executed on the spare processor. As already
explained, the monitor performs failure detection by checking the heartbeats
sent by each other task. The other responsibility of the monitor is to perform
a rollback recovery in case of a failure. In our case, rollback recovery involves
restarting the failed task on the spare processor from its latest state stored in
the stable memory. In the following subsections, we comprehensively explain
heartbeat detection and rollback recovery actions, together with the implemen-
tation details and conditions for real-time guarantee.

5.1 Failure Detection

The monitor periodically checks the heartbeat variables HBT[i] to be sure of
the liveness of the processor running the tasks τi. For a correct operation and
fast detection, it must check each HBT[i] at least at the period THBi . Since each
processor (or each task) has a potentially different heartbeat period, the mon-
itor should concurrently check all the variables at their own speed. A common
solution to this problem is to schedule one periodic task for each of the n other
processors, whose period is equal to the corresponding heartbeating interval.
Therefore, the monitor runs n real-time periodic tasks �i = (Deti, THBi), with
1 ≤ i ≤ n, plus one aperiodic recovery task that will be explained later. The
deadline of each task �i is equal to its period TH Bi . The program Deti is:

Deti = HBT[i] := HBT[i] − 1;
if HBT[i] = −2 then run Rec(i);

When positive, HBT[i] contains the number of TH Bi periods before the next
heartbeat of τi, hence the next update of HBT[i]. When it is equal to −2, the
monitors decides that the processor i is faulty, so it must launch the failure-
recovery program Rec. When HBT[i] is equal to −1, the processor i is suspected,
but not yet declared faulty. Indeed, it might just be late, or HBT[i] might not
have been updated yet because of the clock drift between the two processors.

In order to guarantee the real-time constraints, we must compute the worst-
case failure detection time αi for each task τi. Since the detector is not synchro-
nized with the tasks, the heartbeat send times (σk)k≥0 of τi and the heartbeat
check times (σ ′

k)k≥0 of Deti may differ in such a way that ∀k ≥ 0, |σk −σ ′
k| < TH Bi .

The worst case is when σk−σ ′
k � THBi and τi fails right after sending a heartbeat:

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:18 • T. Ayav et al.

in such a case, the detector receives this heartbeat one period later and starts
suspecting the processor i. Hence, it detects its failure at the end of this pe-
riod. As a result, at worst, the detector program detects a failure after 3 × THB.
Remember that the program transformation always guarantees the interval
between two consecutive heartbeats to be within [THBi , THBi + ε).

Let Lr and Lw denote respectively the times necessary for reading and writ-
ing a heartbeat variable, let ξi be the maximum time drift between Deti and τi
within one heartbeat interval (ξi � TH Bi), the worst-case detection time αi of
the failure of task τi then satisfies:

αi < 3(THBi + ε + ξi) + Lr + Lw (9)

Finally, the problem of the clock drift between the task τi that writes HBT[i],
and the task Deti that reads HBT[i], must be addressed. Those two tasks
have the same period THBi , but since the clocks of the two processors are
not synchronized, there are drifts. We assume that these clocks are quasi-
synchronous [Caspi et al. 1999], meaning that any of the two clocks cannot take
the value true more than twice between two successive true values of the other
one. This is the case in many embedded architectures, e.g., TTA and FlexRay
for automotive [Rushby 2001]. With this hypothesis, τi can write HBT[i] twice
in a row, which is not a problem. Similarly, Deti can read and decrement HBT[i]
twice in a row. Again, which is not a problem since Deti decides that τi is faulty
only after three successive decrements (i.e., from 1 to −2).

5.2 Rollback Recovery

As soon as the monitor detects a processor failure, it restarts the failed task
from the latest checkpoint. This means that the monitor does not exist anymore
since the spare processor stops the monitor task and starts executing the failed
task instead. The following program represents the recovery operation:

Rec (x) = FAILED := x;
restart (τx , CONTEXTx);

where restart (τx , CONTEXTx) is a macro that stops the monitor application and
instead restarts τx from its latest checkpoint specified by CONTEXTx . The shared
variable FAILED holds the identification number of the failed task. FAILED = 0
indicates that there is no failed processor. FAILED = x ∈ {1, 2, . . . , n} indicates
that τx has failed and has been restarted on the spare processor. The recovery
time (denoted with β) after a failure occurrence can be defined as the sum of
the failure detection time plus the time to reexecute the part of the code after
the last checkpoint. If we denote the time for context recovering by LC, then
the worst-case recovery time β is:

β = 3

(
THB + ε + max

1≤i≤n
ξi

)
+ TCP + Lr + Lw + LC + WCET(Det) + WCET(Rec) (10)

5.3 Satisfying the Real-Time Constraints

After the program transformations, the WCET of the fault-tolerant program of
the task (S′′, T), taking into account the recovery time, is given by Equation (11)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:19

below:

WCET(S′′) = WCET(S) +
⌈

WCET(S′′)
THB

⌉
× WCET(hbeat)

+
(⌈

WCET(S′′)
TCP

⌉
− 1

)
× WCET(checkpt) (11)

where the “−1” accounts for the fact that there is no checkpt either at the very
beginning or at the very end of the program, that is, when there is nothing to
backup.

Note that this WCET does not include the error detection time and recovery
time; for this, we must add the β term computed by Equation (10). We now wish
to prove that Equation (11) is consistent with Equations (6) and (7), and with
the value of T ′

CP . For the sake of conciseness, we write h for WCET(hbeat), c for
WCET(checkpt), and S for WCET(S). Equation (11), therefore, becomes (note that
neglecting the
.� function is for the purpose of a computation averaged over all
the periods):

S′′ = S + S′′ · h
THB

+ S′′ · c
TCP

− c ⇐⇒ S′′ ·
(

1 − h
THB

− c
TCP

)
= S − c

⇐⇒ S′′ = S − c

1 − h
THB− c

TCP

= (S − c) TCP THB

TCP THB − TCP h − THB c
(12)

It is interesting to check that, by combining Equations (6) and (7), we will obtain
the same expression. Indeed, we first get:

S′′ = S + c · S − T ′
CP

T ′
CP − c

+ h

THB − h

(
S + c · S − T ′

CP

T ′
CP − c

)

=
(

S + c · S − T ′
CP

T ′
CP − c

)
· THB

THB − h

= S (T ′
CP − c + c) − c T ′

CP

T ′
CP − c

· THB

THB − h
= (S − c) T ′

CP

T ′
CP − c

· THB

THB − h

By combining with Equation (3), which gives the value of T ′
CP , we obtain:

S′′ = (S − c) TCP

TCP (THB−h)

THB
− c

= (S − c) TCP THB

TCP THB − TCP h − THB c
(13)

As expected, we can see that Equations (12) and (13) are identical.
Now, one may also be interested in the optimum values, T �

CP and T �
HB, i.e., the

values that offer the best trade-off between fast failure detection, fast failure
recovery, and least overhead as a result of the code insertion. If we add the term
β of Equation (10) to Equation (13), we obtain a two-value function f of the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:20 • T. Ayav et al.

form:

f (x, y) = (S − c) x y

x y − x h − y c
+ x + 3 y + K (14)

where x stands for TCP , y stands for THB, and K is a constant. This func-
tion is defined only when the denominator is strictly positive, that is, when
x y − x h − y c > 0. Note that this is exactly Equation (4) resulting from Con-
dition 1.

Since the least overhead resulting from the code insertion means the smallest
WCET for S′′, we have to minimize f . Now, the computation of its two partial
derivatives yields:

∂ f
∂x

= (S − c) y (x y − x h − y c) − (S − c) x y (y − h)

(x y − x h − y c)2
+ 1

= (S − c) (x y2 − x yh − y2c − x y2 + x yh)

(x y − x h − y c)2
+ 1 = 1 − (S − c) y2c

(x y − x h − y c)2

∂ f
∂ y

= (S − c) x (x y − x h − y c) − (S − c) x y (x − h)

(x y − x h − y c)2
+ 3

= (S − c) (x2 y − x2h − x yc − x2 y + x yc)

(x y − x h − y c)2
+ 3 = 3 − (S − c) x2h

(x y − x h − y c)2

From this, we compute the Hessian matrix of f (we skip the details):

∇2 f (x, y) =
⎛
⎝ ∂2 f

∂x2

∂2 f
∂x y

∂2 f
∂ yx

∂2 f
∂ y2

⎞
⎠ =

⎛
⎝ 2 (S−c) y2 c (y−h)

(x y−x h− y c)3

2 (S−c) x y c h
(x y−x h− y c)3

2 (S−c) x y c h
(x y−x h− y c)3

2 (S−c) x2h (x−c)

(x y−x h− y c)3

⎞
⎠ (15)

This matrix is positive definite since its two eigen values are strictly positive
whenever the condition x y − x h − y c > 0 holds (again, we skip the details).
Hence, the function f if convex and it admits a unique minimum (x�, y�) in the
portion of the plane, where x y − x h − y c > 0. The optimal values x� and y�

are those that nullify the two first order partial derivatives. Hence, they are
the solutions of Equations (16) and (17) below:

(S − c) y2 c

(x y − x h − y c)2
= 1 ⇐⇒ (S − c) y2 c = (x y − x h − y c)2 (16)

(S − c) x2 h

(x y − x h − y c)2
= 3 ⇐⇒ (S − c) x2 h = 3 (x y − x h − y c)2 (17)

On the one hand, by combining Equations (16) and (17), we get:

(S − c) x2 h − 3 (S − c) y2 c = 0 ⇐⇒ x2 = 3 y2 c

h
⇐⇒ x = y

√
3 c

h
(18)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:21

On the other hand, Equation (16) can be rewritten as:

(S − c) y2 c = (x y − x h − y c)2 ⇐⇒ y
√

c (S − c) = x y − x h − y c (19)

where only the positive square root is kept, since we are only interested in
positive solutions. Now, in Equation (19), by replacing x, as given by its expres-
sion (18), we get:

y
√

c (S − c) = y2

√
3 c

h
− y h

√
3 c

h
− y c

⇐⇒
√

c (S − c) = y

√
3 c

h
− h

√
3 c

h
− c (since y �= 0)

⇐⇒ y = h +
√

c h
3

+
√

h (S − c)

3

Finally, by replacing this value of y in Equation (18), we get:

x = c +
√

3 c h +
√

c (S − c)

In conclusion, the optimal values T �
CP and T �

HB that minimize the overhead
resulting from the code insertion are:

T �
CP = c +

√
3 c h +

√
c (S − c) (20)

T �
HB = h +

√
c h
3

+
√

h (S − c)

3
(21)

With our Fac example, we get T �
CP = 46.69 ms and T �

HB = 14.76 ms. This
means that the values we have chosen, respectively, 80 ms and 10 ms, were not
the optimal values. Figure 4 is a three-dimension plot of f with the numerical
values of the Fac example.

Equations (20) and (21) give the optimal values for the heartbeat and check-
point periods. In order to satisfy the real-time property of the whole system,
the only criterion that should be checked is:

f (TCPi , TH Bi) < Ti, ∀i ∈ {1, 2, . . . , n} (22)

Removing the assumption of zero communication time just involves adding
a worst-case communication delay parameter in Equations (9) and (10), which
does not have an effect on the optimum values, T �

CP and T �
HB.

Finally, we give the following property in order for our framework to be
complete and sound:

PROPERTY 5. The real-time distributed system with the specifications drawn
in this work can always tolerate one failure and still respect its real-time
constraints.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:22 • T. Ayav et al.

Fig. 4. Three dimensional plot of f (TCP , THB).

PROOF. The recovery time β given in Equation (10) relies on fixed heart-
beating and checkpointing intervals (given in Property 4). Therefore, according
to Condition (22), there exist TCP and THB such that the algorithm completes
before its deadline against one failure.

5.4 Scheduling All the Detection Tasks

The monitoring application consists of n detector tasks plus one recovery task.
Detector tasks are periodic and independent, whereas the recovery task will be
executed exactly once, at the end of the monitoring application (when a failure
is detected). Therefore, it can be disregarded in the schedulability analysis.
We thus have the task set � = {(Det1, TH B1

), (Det2, TH B2
), . . ., (Detn, TH Bn)} that

must satisfy:

∀i ∈ {1, 2, . . . , n}, WCET(Deti) ≤ TH Bi . (23)

Preemptive scheduling techniques such as rate-monotonic (RM) and earliest-
deadline-first (EDF) settle the problem. Both RM and EDF are the major
paradigms of preemptive scheduling, and basic schedulability conditions for
them were derived by Liu and Layland for a set of n periodic tasks under the
assumptions that all tasks start at time t = 0, relative deadlines are equal
to their periods, and tasks are independent [Liu and Layland 1973]. RM is a
fixed-priority based preemptive scheduling, where tasks are assigned priorities
inversely proportional to their periods. In EDF, however, priorities are dynam-
ically assigned inversely proportional to each task’s distance from its deadline
(in other words, as a task gets nearer to its deadline, its priority increases). For
many reasons, as remarked in Buttazzo [2005], RM is the most common sched-
uler implemented in commercial RTOS kernels. In our context, it guarantees
that � is schedulable if:

n∑
i=1

WCET(Deti)

TH Bi

≤ 2(21/n − 1) (24)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:23

Under the same assumptions, EDF guarantees that � is schedulable if:

n∑
i=1

WCET(Deti)

TH Bi

≤ 1 (25)

The above schedulability conditions highlight the fact that both RM and EDF
are appropriate and sufficient for scheduling the monitoring tasks with deadline
guarantee. EDF allows a better processor utilization, but at the cost of a lot of
context switching when processor utilization is close to 1.

6. EXTENSIONS

We propose two extensions to our approach. The first one concerns transient
failures. The second extension is to tolerate several failures at a time.

6.1 Tolerating Transient Failures

Our framework tolerates one permanent processor failure. Relaxing this as-
sumption to make the system tolerate one transient processor failure (one at
a time, of course) implies addressing the following issue. After restarting the
failed task on the spare processor, if the failure of the processor is transient,
it could likely happen that the failed task also restarts, although probably in
an incorrect state. Hence, a problem occurs when the former task updates its
outputs since we would have two tasks updating the same output in paral-
lel. This problem can be overcome by enforcing a property such that all tasks
must check the shared variables FAILED and SPARE so that they can learn the
status of the system and take a precaution if they have already been replaced
by the monitor. When a task realizes that it has been restarted by the monitor,
it must terminate immediately. In this case, since there is no more monitor
in the system, the task terminates itself and restarts the monitor application,
thus returning the system to its normal state where it can again tolerate one
transient processor failure. Note that this would require the architecture to be
homogeneous: all the processors should be able to replace any other one with
equivalent performances.

The following code implements the needed action:

Remi = if FAILED = i and SPARE �= This Processor then
SPARE := This Processor; FAILED := 0; restart monitor ;

where restart monitor is a macro that terminates the task and restarts the
monitoring application, and This Processor is the ID of the processor executing
that code. The shared variable SPAREis initially set to the ID number of the spare
processor.

For example, assume that the task i has failed and has been restarted on the
spare processor. When the previous code is executed on the spare processor, it
will see that even if FAILED is set to i, the task should not be stopped, since it
runs on the spare processor. On the other hand, the same task resuming after
a transient failure on the faulty processor will detect that it must stop and will
restart the monitor task.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:24 • T. Ayav et al.

At the very least, an Remi must be inserted in the program of τi just before
the output update: write(o) =⇒ Remi; write(o). Besides, each Remi; write(o)
sequence of code must be an atomic transaction. Thus, in order to detect any
transient processor failure and to guarantee the real-time constraints, the min-
imal duration of the transient failure must be larger than the max of all the
tasks’ periods. If we want to tolerate transient failures with shorter durations,
we must insert Remi statements at shorter intervals.

6.2 Tolerating Several Failures at a Time

We assumed that the system had one spare processor running a special monitor-
ing program. In fact, additional spare processors could be added to tolerate more
processor failures at a time. This does not incur any problem with our proposed
approach. The only concern is the implementation of a coordination mechanism
between the spare processors, in order to decide which one of them should re-
sume the monitor application after the monitor processor has restarted a failed
task τi.

7. APPLICATION: THE CYCAB VEHICLE

We illustrate the implementation of our program transformations on the em-
bedded control program of the CYCAB autonomous vehicle. This application does
not exactly fit our theoretical model, the main difference being that it consists of
communicating tasks rather than independent tasks. Our goal in this section is
precisely to show that our technique can be adapted to such applications, and
therefore that the independent tasks assumption can be relaxed. Note, how-
ever, that we have not actually made the CYCAB fault-tolerant, meaning that
we have not modified its hardware architecture. We have just used its control
program as a case study.

First, in Section 7.1, we present the CYCAB and show how a static schedule
is created for its distributed architecture. The program transformations on the
CYCAB’s application are given in Section 7.2. Finally, experimental results with
fault injection are presented in Section 7.3.

7.1 Overview of the CYCAB and the AAA Methodology

The CYCAB is a vehicle that was designed to transport up to two persons in
downtown areas, pedestrian malls, large industrial or amusement parks, and
airports, at a maximum speed of 30 km·h−1 [Baille et al. 1999; Sekhavat and
Hermosillo 2000]. It is shown in Figure 5. The mechanics of CYCAB is bor-
rowed from a small electrical golf car frame, already produced in small se-
ries. The steering is done through an electrical jack mechanically linked to the
wheels. Each wheel motor block has its own power amplifier. There are two
MPC555 microcontrollers, named F555 and R555, which drive, respectively,
the power amplifiers of the two front wheels and the rear wheels. The com-
munications between the nodes are made through a CAN serial bus. The CAN
bus has been designed specially for automotive applications and allows safe
communications in disturbed environment, with a rate of 1 Mbit·s−1. The ar-
chitecture also includes a PC board that drives the screen and the hard disk.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:25

Fig. 5. The CYCAB vehicle.

Fig. 6. Architecture graph of the CYCAB application.

In the remainder of this article, we call these nodes F555, R555, and ROOT,
respectively.

Concretely implementing our program transformations would require one
additional node, named MONITOR, connected to the four motor blocks via dual
commands in order to be able to control them after the failure of either one of the
F555 or R555 processors. The architecture graph of the CYCAB is therefore given
in Figure 6. Also, neither the MPC555 microcontroller nor the PC board are
fail-silent; so guaranteeing that they obey this assumption requires additional
hardware: for each processor, this requires the addition of a dual board with
self-checking hardware to switch off the output when a failure is detected.

For the present case study, we consider the “manual-driving” application im-
plemented on the CYCAB. This application is distributed on the architecture
using the SYNDEX tool that supports the algorithm architecture adequation
methodology (AAA). The goal of this methodology is to find out an optimized
implementation of an application algorithm on an architecture, while satisfy-
ing distribution constraints. AAA is based on graphs models to exhibit both
the potential parallelism of the algorithm and the available parallelism of the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:26 • T. Ayav et al.

Fig. 7. Application graph of CYCAB. A processor name written inside a task indicates a processor

constraint, i.e., that task must be scheduled onto that processor.

multicomponent architecture. The implementation is formalized in terms of
graphs transformations [Grandpierre et al. 1999; Grandpierre and Sorel 2003].
Concretely, starting from a graph specification of the application and a graph
specification of the target architecture, SYNDEX first produces a static multi-
processor schedule of the application on the architecture. It then generates the
corresponding embeddable code.

Concerning the CYCAB manual-driving application, its algorithm graph is
given in Figure 7.

Task execution times and communication times are defined and given in
Tables II and IV (see later), respectively (“n/a” means that this task cannot be
executed onto this processor). We take into account the communication times be-
tween all the tasks (including to and from the tasks running on the MONITOR
node).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:27

Table II. Task Execution Times (ms) of the CYCAB Application Algorithm

Task name WCET on F555 on R555 on ROOT on MONITOR

FSAngle, FSPwm 0.3 n/a n/a 0.3

jtk n/a 0.3 n/a 0.3

RLinc, RRinc n/a 0.2 n/a 0.2

FLinc, FRinc 0.2 n/a n/a 0.2

ctr x, ctr y, FS 0.6 0.6 0.6 0.6

lpf x, lpf y, speed1

sat2, ctrl rl, lpf rl 0.2 0.2 0.2 0.2

ctrl rr, lpf rr, ctrl fl

lpf fl, ctrl fr, lpf fr

accel1 0.3 0.3 0.3 0.3

sat1 0.3 0.3 0.3 0.3

RLcurtis, RRcurtis n/a 0.5 n/a 0.5

FLcurtis, FRcurtis 0.5 n/a n/a 0.5

disp n/a n/a 0.5 0.5

Fig. 8. Static schedule generated by the SYNDEX tool (completion time = 4.19 ms).

The AAA algorithm of SYNDEX produces the static schedule shown in
Figure 8. The real-time constraint is the completion time of the whole algo-
rithm. Let S1, S2, and S3 be the programs of processors F555, ROOT, and R555
respectively. Let S̄1, S̄2, and S̄3 be equal to WCET(S1), WCET(S2), and WCET(S3),
respectively. The completion time of the whole algorithm is therefore given by
Equation (26) below:

S = max(S1, S2, S3) (26)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:28 • T. Ayav et al.

Fig. 9. Application graphs for heartbeating and checkpointing. The two algorithms are executed

periodically with the periods THB and TCP respectively.

According to Figure 8, S1 = 4.19 ms, S2 = 3.05 ms, S3 = 4.10 ms, hence,
S = 4.19 ms. The period of the algorithm, i.e., the deadline, is set to 10 ms in
this case study.

7.2 Applying Program Transformations

Our approach is to apply our program transformations on the static sched-
ules generated by SYNDEX rather than on the embeddable code generated by
SYNDEX.

The heartbeating and checkpointing program transformations periodically
insert heartbeating and checkpointing codes at the appropriate places in the
static schedule of Figure 8, while generating the monitor application for heart-
beat checking and error recovery operations on the MONITOR processor. The
graph representation of heartbeat and checkpoint operations is given with
Figure 9. We assume that all the tasks are atomic, i.e., heartbeat and check-
point codes cannot be inserted inside the tasks; rather, they are placed between
the tasks. For example, according to Table II, the execution time of the longest
task, ε, is equal to 0.6 ms. In fact, AAA suggests to divide tasks as much as pos-
sible to exhibit more potential parallelism (therefore achieving a better sched-
ule length but at the cost of a more expensive heuristics). Hence, this approach
simplifies the transformation while still satisfying the properties. Moreover, the
checkpointed data to be stored will be much less since checkpoints are taken
only between the tasks, i.e., internal variables of tasks are not included in the
checkpoint data.

For proper operation, each processor failure should be detected. Therefore,
heartbeating and checkpointing transformations are independently applied to
each processor. In order to apply the transformations to a processor, we should
fill the idle times between tasks with no-operations. For instance, the program
S2 of the ROOT processor is as follows:

S2 = idle time; ctrl fl; lpf fl; lpf rr; disp;

Even though all idle times are filled with no-operations before insertion, task
dependency may cause new idle times after placing a checkpoint or heartbeat,
since an insertion slightly changes the static schedule. Hence, after each inser-
tion, the resulting static schedule is checked once more and all idle times are
filled again before continuing with the next insertion.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:29

Before applying our transformations, we must also calculate the optimal
heartbeating and checkpointing periods by modifying the computations pre-
sented in the previous sections. First, the worst case error detection time and
the recovery time given with Equations (9) and (10) can be expressed by Equa-
tions (27) and (28) below:

αi < THBi + ε + ξi + Lr + Lw (27)

β = THB + ε + max
1≤i≤n

ξi + TCP + Lr + Lw + LC + WCET(Det) + WCET(Rec) (28)

where n is the number of processors. The reason why the “3” factor in Equa-
tion (9) has been removed in Equation (27) is that the tasks monitori are not
scheduled anymore with a rate monotonic policy (implying a complete lack of
synchronization with the tasks hbeati), but, instead, are scheduled statically by
SYNDEX thanks to the data-dependencies expressed in the application graphs
of Figure 9 (implying a synchronization between each task hbeati and its cor-
responding task monitori). The reasoning is the same between Equations (10)
and (28).

Checkpoint and heartbeat transformations are applied to the processor’s pro-
grams S1, S2, and S3 independently. The following ML code illustrates how we
apply the program transformations to the whole application.

let (S′
i, −) = IT ′

CP
checkpt(Si, T ′

CP) in

let (S′′
i , −) = ITHB

hbeat(S
′
i, 0) in

S′′
i ; hbeat(ki) ∀i ∈ {1, 2, 3}

where

ki =
⌈

T − WCET(S′′
i ;hbeat)

THB

⌉
Note that the timing analysis presented here does not use any knowledge of

the initial static schedule and assumes the worst case, i.e., all processors and
communication buses are fully-utilized. Fully-utilized here means that pro-
grams S1, S2, and S3 do not have idle times between their tasks. The commu-
nication bus has also no idle time. Normally, as can be seen in Figure 8, idle
times appear between tasks and between messages, because of the data depen-
dency. These idle times might be filled with hbeat and checkpt tasks and their
communications. If there is no idle time, then each insertion of checkpt (resp.
hbeat) increases the completion time by c + �checkpt (resp. h + �hbeat), at worst,
because of the data dependency.

Therefore, the maximum value of the completion time of the algorithm in
the presence of one failure can be computed as follows:

S ′
max = S +

3∑
i=1

Si − T
′
CP

T ′
CP − c

× (c + �checkpt) (29)

S ′′
max = S′ +

3∑
i=1

[
Si + Si − T

′
CP

T ′
CP − c

× (c + �checkpt)

]
h + �hbeat

THB − h
(30)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:30 • T. Ayav et al.

The worst-case recovery time β of Equation (10) can be rewritten for our appli-
cation as follows:

β = THB + ε + max
1≤i≤n

ξi + TCP + Lr + Lw + LC + WCET(Det) + WCET(Rec) (31)

When we add the term β to Equation (30), we obtain the completion time of the
application algorithm as a two-value function f of the form:

f (x, y) = S ′′
max + β

= S + (S1 + S2 + S3)
h + �hbeat

y − h
+ x + y

+ (S1+S2+S3) y − 3x y + 3xh

x y − xh − yc
× (c + �checkpt) (y + �hbeat)

y − h
+ K ′ (32)

where x stands for TCP , y stands for THB and K ′ is a constant, i.e., β−x− y . Tak-
ing into account the execution times of Det and Rec, we find that K ′ � 0.2 ms.

Similarly, f is the WCET that may occur only if the initial schedule given
in Figure 8 has fully utilized the processors and communication buses. The
analysis considers the worst case and it holds for any given schedule. Gener-
ally, and as in our case seen in Figure 8, processors and communication buses
will have idle times that might be filled by hbeat tasks, checkpt tasks, and
their communications. Therefore, the actual completion time is expected to
be less than the one given in Equation (32). In critical conditions, the anal-
ysis can be relaxed by taking into account the static schedule so that the
completion time can be calculated precisely to check whether the deadline is
met.

The computation of the two partial derivatives of f (x, y) yields:

∂ f
∂x

= 1

(hx + (c − x) y)2
(h

2
x2 + 2h(c − x)x y + y(y(4c2 − 2cx + x2 + 3c�checkpt)

+ 3c(c + �checkpt)�hbeat) − y(c + �checkpt) (y + �hbeat)(S1 + S2 + S3))

∂ f
∂ y

= 1

(h − y)2(hx + (c − x) y)2
((h − y)2(c2(y2 − 3x�hbeat)

+ cx(3hx + 2h y − 2 y2 + 3x�hbeat − 3�checkpt�hbeat)

+ x2(h
2 − 2h y + y2 + 3h�checkpt + 3�checkpt�hbeat))

− (hx2(h − y)2 − h y(2hx + (c − 2x) y)�checkpt

− ((c − x)x(h − y)2 + (h
2
x + (c − x) y2)�checkpt)�hbeat)(S1 + S2 + S3))

As in Section 5.3, we can compute the Hessian matrix of f and show that
this matrix is positive definite since its two eigen values are strictly positive
whenever the condition x y − x h − y c > 0 holds (again, we skip the details).
Hence, the function f if convex and it admits a unique minimum (x�, y�) in the
portion of the plane where x y − x h − y c > 0. The optimal values x� and y�

are those that nullify the two first order partial derivatives.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:31

Table III. Task Execution Times (ms) of Heartbeating and Checkpointing

Task name WCET on F555 on R555 on ROOT on MONITOR

hbeat1, cp1 0.06 n/a n/a 0.06

hbeat2, cp2 n/a 0.06 n/a 0.06

hbeat3, cp3 n/a n/a 0.06 0.06

monitor1, monitor2, monitor3

cpsave1, cpsave2, cpsave3 n/a n/a n/a 0.06

Table IV. Communication Times

Communication Duration (ms)

hbeat → monitor �hbeat = 0.12

checkpt → cpsave �checkpt = 0.15

Other messages � = 0.15

Taking into account the values given in Tables III and IV, we find the optimal
values as follows:

T �
CP = 1.71348 ms

T �
HB = 1.57404 ms

Recalling Property 5 and Condition (22), it can be proved that the trans-
formed program always meets its deadline, even in the presence of one failure:

f (x�, y�) = S ′′
max + y� + y� + K ′ < T

⇐⇒ 6.48439 + 1.71348 + 1.57404 + 0.2 < 10

⇐⇒ 9.97191 ms < 10 ms

7.3 Results and Discussion

If we apply the transformations to insert hbeat and checkpt tasks with the
periods of T �

HB and T �
CP respectively, we obtain the schedule given in Figure 10.

For instance, the ROOT processor will have the following task sequence after
our transformations:

hbeat; nop30; hbeat; nop2; checkpt; nop23 ; ctrl fl; hbeat; lpf fl; nop;
checkpt; nop; lpf rr; disp; hbeat;

In failure-free operation, the completion time of the new algorithm is 5.60 ms
as shown in Figure 10. The overhead of the fault-tolerance properties is, there-
fore, 5.60 − 4.19 = 1.41 ms.

Thanks to Equation (32), we prove that the deadline is always met in spite of
one processor failure. Figure 11, on the other hand, illustrates how the failure
detection and recovery operations are handled in one iteration of the algorithm.

For a correct failure recovery, two kinds of messages must be dealt with,
the messages sent to the faulty processor and the messages sent by the faulty
processor:

—Following a failure, the MONITOR rolls back to the last checkpoint and
restarts the schedule of the faulty processor. To do this, it needs the data

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:32 • T. Ayav et al.

Fig. 10. Fault-tolerant static schedule with heartbeating and checkpointing (the completion time

is 5.6023 ms).

sent by all the processors to the faulty one. Therefore, all the messages flying
on the bus must be stored in the stable memory.

—A task blocked because it is waiting for some data that was supposed to be
sent by the faulty processor, just needs to wait for the MONITOR to roll
back, reexecute the schedule of the faulty processor, and send the awaited
data (this is what happens between task lpf rr on processor ROOT and
task ctrl rr on processor FMPC555 in Figure 11). To guarantee that the
monitor task will not mistake the faulty processor and the blocked proces-
sor, each task waiting for some communication must periodically execute a
hbeat.

Finally, we have performed some tests to show the completion time of the
transformed program after a failure recovery. Figure 12 shows the completion

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:33

Fig. 11. Example of a recovery when processor F555 fails at time t = 3 ms (the completion time

is 6.9197 ms).

times of the algorithm for 60 failure instants. For each failure instant, the
figure illustrates three completion times for the failure of the three processors.
Processor failures are injected by software at relative failure times that range
from 0.1 to 6 ms with 0.1-ms intervals. For example, the completion time will
be 8.78 ms if processor F555 fails at the failure instant t = 3.8 ms, 7.02 ms if
processor ROOT fails at the same instant and 7.99 ms if processor R555 fails
at the same instant.

According to this experiment, the maximum completion time is achieved for
the failure of processor F555 when the failure instant is around 3.75 ms, that
is, just after a heartbeat (it maximizes the detection delay) and just before a
checkpoint (it maximizes the roll-back delay); see Figure 10. The monitor will

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:34 • T. Ayav et al.

Fig. 12. Completion times when processors F555, ROOT, and R555 fails.

notice the failure approximately THB ms later and return to the last checkpoint
that occurred approximately TCP ms before the failure instant. Thus, the
completion time will be approximately THB + TCP greater than the failure free
completion time.

8. RELATED WORK

Related work on failure detectors is abundant. On the theoretical side, Fisher
et al. [1985] have demonstrated that, in an asynchronous distributed system
(i.e., no global clock, no knowledge of the relative speeds of the processes or the
speed of the communications) with reliable communications (although mes-
sages may arrive in another order than they were sent), if one single process
can fail permanently, then there is no algorithm that can guarantee consen-
sus on a binary value in finite time. Indeed, it is impossible to tell if a process
has died or if it is just very slow in sending its message. If this delayed pro-
cess’s input is necessary, say, to break an even vote, then the algorithm may be
delayed indefinitely. Hence, no form of fault-tolerance can be implemented in
totally asynchronous systems. Usually, one assumption is relaxed, for instance
an upper bound on the communication time is known, and this is exactly what
we do in this paper to design our failure detector. Then, Chandra and Toueg
[1996] formalized unreliable failure detectors in terms of completeness and
accuracy. In particular, they have shown what properties are required to reach
consensus in the presence of crash failures. On the practical side, Aggarwal and
Gupta [2002] present in a short survey on failure detectors. They explain the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:35

push and pull methods in detail and introduce QoS techniques to enhance the
performance of failure detectors.

Our program transformations are related to software thread integration
(STI). STI involves weaving a host secondary thread inside a real-time primary
thread by filling the idle time of the primary thread with portions of the sec-
ondary thread [Dean and Shen 1998]. Compared to STI, our approach formal-
izes the program transformations and also guarantees that the real-time con-
straints of the secondary thread will be preserved by the obtained thread (and
not only those of the primary thread).

Other work on program transformation for fault-tolerance has been con-
ducted by Liu and Joseph [1992]. A program is modeled as a sequence of atomic
actions, each action being a transition from the program’s internal state to its
next state. The union composition is used to model choice. The authors use a
simple specification language with assignment, sequential composition, condi-
tional composition (if then else with multiple clauses), and iterative compo-
sition (do while). Each action is assumed to terminate. They also define the
semantics of this language. Failures are then formally specified as additional
actions putting the program into an error state. The failures considered here
are hardware fail-stop, and are assumed not to affect recovery actions. The er-
ror state is identified by a special variable f , which is true only in this state (it
is assumed that the initial program never modifies f). This assumption elimi-
nates the problem of failure detection. The authors then add a set of recovery
actions to put back the error state of a faulty program in a good state. Back-
ward and forward recovery actions are two special cases of such recovery ac-
tions. The authors then show how to insert checkpointing and recovery actions
thanks to program refinement (a particular case of program transformation).
Although they present a sound theoretical framework, they do not specifically
deal with concrete fault-tolerance techniques to achieve fault-tolerance. Also,
their assumption concerning failure detection eliminates the need for a specific
program transformation to obtain this; in contrast, we treat this specifically
with heartbeating. Finally, a crucial distinction with our own work is that they
do not address real-time properties.

Other works on failure recovery include the efforts of reserving sufficient
slack in dynamic schedule, i.e., gaps between tasks because of the precedence,
resources, or timing constraints, so that the scheduler can reexecute faulty
tasks without jeopardizing the deadline guarantees [Mossé et al. 2003]. Further
studies proposed different heuristics for reexecution of faulty tasks in impre-
cise computation models such that faulty mandatory sub-tasks may supersede
optional subtasks [Aydin et al. 2000]. In contrast, our work is entirely in the
static scheduling context.

Other related work on automatic transformations for fault-tolerance include
the work of Kulkarni and Arora [Kulkarni and Arora 2000]. It involves syn-
thesizing a fault-tolerant program starting from a fault-intolerant program. A
program is a set of states (valuations of the program’s variables) and a set of
transitions between states. A fault is a set of transitions. Two execution models
are considered: high atomicity (the program can read/write any number of its

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:36 • T. Ayav et al.

variables in one atomic step, i.e., it can make a transition from any one state to
any other state) and low atomicity (it can’t). The initial fault-intolerant program
ensures that its specification is satisfied in the absence of faults, although no
guarantees are provided in the presence of faults. Three levels of fault-tolerance
are studied: failsafe ft (in the presence of faults, the synthesized program
guarantees safety), non-masking ft (in the presence of faults, the synthesized
program recovers to states from where its safety and liveness are satisfied), and
masking ft (in the presence of faults the synthesized program satisfies safety
and recovers to states from where its safety and liveness are satisfied). Thus
six algorithms are provided. In the high atomicity model (resp. low), the au-
thors propose a sound algorithm that is polynomial (resp. exponential) in the
state space of the initial fault-intolerant program. In the low atomicity model,
the transformation problem is NP-complete. Each transformation involves re-
cursively removing bad transitions. This principle of program transformation
implies that the initial fault-intolerant program should be maximal (weakest
invariant and maximal nondeterminism). In conclusion, Kulkarni et al. offer a
comprehensive formal framework to study fault-tolerance. Our own work could
be partially represented in terms of their model, since our programming lan-
guage can be easily converted to the finite-state automaton consisting of a set of
states and transitions. Moreover, our study complies well with their detector–
corrector theory presented thoroughly in Arora and Kulkarni [1998]. However,
we deal explicitly with the temporal relationships in the automatic addition
of fault-tolerance by using heartbeating and checkpointing/rollback as a spe-
cific detector-corrector pair. Therefore, defining and implementing our system
in terms of Kulkarni’s model might require much effort and be of interest for
future research.

Finally, discrete controller synthesis [Ramadge and Wonham 1987] has been
successfully applied to derive automatic program transformation methods for
fault-tolerance [Dumitrescu et al. 2004; Girault and Rutten 2004; Girault and
Yu 2006; Dumitrescu et al. 2007]. The principle is similar to the work of Kulka-
rni and Arora, except that the set of events labeling the transitions is par-
titioned into the two subsets of controllable and uncontrollable events, faults
being uncontrollable. Besides, a synthesis objective is given by the user, usually
in terms of invariant or reachable states sets. Discrete controller synthesis then
involves traversing exhaustively the state space of the system (with symbolic
algorithms) to build a controller that will steer the system in such a way that
it satisfies its synthesis objective whatever be the uncontrollable events. This
approach is thus richer (thanks to the uncontrollability of events) and more
flexible (thanks to the synchronous product used to specify the labeled transi-
tion system of the initial fault-intolerant system) than the work of Kulkarni
and Arora.

9. CONCLUSION

In this article, we have presented a formal approach to fault-tolerance. Our
fault-intolerant real-time application consists of periodic, independent tasks
that are distributed onto processors showing omission/crash failure behavior,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:37

and of one spare processor for the hardware redundancy necessary to fault-
tolerance. We derived program transformations that automatically convert the
programs such that the resulting system is capable of tolerating one perma-
nent or transient processor failure at a time. Fault-tolerance is achieved by
heartbeating and checkpointing/rollback mechanisms. Heartbeats and check-
points are thus inserted automatically, which yields the advantage of being
transparent to the developer, and on a periodic basis, which yields the advan-
tage of relatively simple verification of the real-time constraints. Moreover,
we choose the heartbeating and checkpointing periods such that the overhead
because of adding the fault-tolerance is minimized. We also proposed mech-
anisms to schedule all the detection tasks onto the spare processor, in such
a way that the detection period is, at worst, three times the heartbeat pe-
riod. To the best of our knowledge, the two main contributions presented in
this article (i.e., the formalization of adding fault-tolerance with automatic
program transformations, and the computation of the optimal checkpoint-
ing and heartbeating periods to minimize the fault-tolerance overhead) are
novel.

This transparent periodic implementation, however, has no knowledge about
the semantics of the application and may yield large overheads. In the future,
we plan to overcome this drawback by shifting checkpoint locations within
a predefined safe time interval such that the overhead will be minimum.
This work can also be extended to the case where processors execute mul-
tiple tasks with an appropriate scheduling mechanism. On the other hand,
these fundamental fault-tolerance mechanisms can also be followed by other
program transformations in order to tolerate different types of errors such
as communication, and data upsetting. These transformations are seemingly
more user dependent, which may lead to the design of aspect-oriented based
tools.

Another area of future research will be to use a proof assistant (e.g., PVS,
ACL2, Coq, etc.) to prove that a task is fault-tolerant and meets its deadline
even when a failure occurs. The results we have presented in this article are a
first step towards this goal.

APPENDIX - FORMALIZATION AND PROOF OF PROPERTY 3

Property 3 ensures that the transformation IT
c (S, T) inserts a command c after

each T time units (modulo ε). This time interval is intuitively clear but not
formalized. The standard approach to formalize and prove Property 3 would
be to define a timed semantics of programs (i.e., a semantics where time evo-
lution is explicit) and then to show that the execution of IT

c (S, T) involves
reducing c each T time units. In order to stick to our program transforma-
tion framework, we rather explicit all the execution traces of a program, and
we prove by induction on all the possible traces that two successive com-
mands c are always separated by T time units (modulo ε). For this, we define
the function Traces which associates to each program the set of all its possi-
ble executions. An execution is represented as sequences of basic instructions
a1; . . . ; an. Basically, the Traces function unfold loops and replaces conditionals

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:38 • T. Ayav et al.

by the two possible executions depending on the test. Formally, it is defined as
follows:

Transformation rule 5

1. Traces (a) = {a} if a is atomic
2. Traces (S1;S2) = {T1;T2 | T1 ∈ Traces (S1), T2 ∈ Traces (S2)}
3. Traces (if b then S1 else S2) = {skip;T | T ∈ Traces (S1) ∪ Traces (S2)}
4. Traces (for l = n1 to n2 do S) = Traces (Unfold (for l = n1 to n2 do S))

The instruction skip in rule 3 above represents the time taken by the test, i.e.,
one time unit. For any initial state, there is always a trace τ in Traces (S) repre-
senting exactly the execution of S. The important point is that such execution
traces τ have a constant execution time (i.e., BCET(τ) = WCET(τ) = EXET(τ)), and,
moreover, we have for any τ :

τ ∈ Traces (S) =⇒
{

BCET (S) ≤ EXET (τ) ≤ WCET (S) and
BCET (S) = WCET (S) ⇒ EXET (τ) = EXET (S)

(A1)

We consider that Traces treats c (the command inserted by the transformation
I) as an atomic action.

We introduce the equivalence relation
.= to normalize and compare execution

traces. The relation is a syntactic equivalence modulo the associativity of se-
quencing. It also allows the introduction of the dummy instruction void, similar
to skip, except that EXET(void) = 0. The relation

.= is such that:

(τ1;τ2);τ3
.= τ1;(τ2;τ3) τ

.= (void;τ)
.= (τ ;void)

We generalize Property 3 to take into account any initial time residual before
inserting the first command c:

PROPERTY 6. Let S, c, t, and T be such that:

(0) BCET (S) = WCET (S) (1) EXET (c) + ε < T
(2) t ≤ EXET (S) (3) −ε < t ≤ T

Then ∀τ ∈ Traces (IT
c (S, t)), τ

.= S1;c;S2 . . . c;Sn (1 ≤ n) and verifies:

t ≤ EXET(S1) < t + ε (Init)
T − ε < EXET (c;Si) ≤ T + ε (1 < i < n) (Period)
r − ε < EXET (Sn) ≤ r If EXET (S) = t + q(T − EXET (c)) + r (End)

with 0 ≤ q and 0 ≤ r < T − EXET(c)

Property 6 states than any execution trace of the transformed program starts
by an execution of t (modulo ε) time units before inserting the first command c.
Then, the execution inserts a c every T time units (modulo ε). After the last c,
the program takes less than r < T − EXET(c) unit of times to complete, r being
the remaining of the division of EXET(S) by (T − EXET(c)). This last condition is
based on a periodic decomposition of the execution of the source program S. It
also ensures that there is no time drift. The property relies on the four following
conditions:

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:39

0. The program S should have been time equalized beforehand.

1. The period T must be greater than the execution time of the command c
plus the execution time of the most expensive atomic action. This condition
ensures that it is possible to execute at least one atomic action between two
c and therefore the program will make progress.

2. The global execution time must be greater than t (otherwise there is nothing
to insert).

3. The time residual t might be negative but no less than ε. Otherwise, it would
mean that the ideal point to insert c has been missed by more than ε time
units.

PROOF THAT PROPERTY 6 HOLDS FOR POSITIVE TIME RESIDUALS. We prove that
Property 6 holds for 0 < t ≤ T , by structural induction on S.

CASE S = a: By hypothesis, 0 < t ≤ EXET (a), so IT
c (a, t) = a;c. The only

execution trace is a;c .= a;c;void, which satisfies the property. Indeed:

—By definition of ε, EXET(a) ≤ ε and, by hypothesis, 0 < t and t ≤ EXET(a),
therefore:

t ≤ EXET (a) < t + ε (Init)

—From EXET (a) = t + r with 0 ≤ r < ε and EXET (void) = 0, it follows that:

r − ε < EXET (void) ≤ r (End)

CASE S = S1;S2: There are two sub-cases depending on t.

1. EXET(S1) < t: Therefore IT
c (S1;S2, t) = S1;IT

c (S2, t − EXET(S1)) because of
rules 1 and 4.
Condition (2) enforces that t < EXET (S1;S2) = EXET (S1)+ EXET (S2), therefore
t−EXET (S1) < EXET (S2). Condition (3) enforces that t ≤ T and, by hypothesis,
EXET (S1) < t therefore 0 < t − EXET (S1) ≤ T − EXET (S1) ≤ T . Hence, S2 sat-
isfies the induction hypothesis, and ∀τ2 ∈ Traces (IT

c (S2, t − EXET(S1))), τ2
.=

S2,1;c;S2,2 . . . c;S2,n (1 ≤ n) and verifies:

t − EXET (S1) ≤ EXET (S2,1) < t − EXET (S1) + ε (Init)
T − ε < EXET (c;S2,i) ≤ T + ε (1 < i < n) (Period)
r − ε < EXET (S2,n) ≤ r If EXET (S2) = t − EXET (S1) + q(T − EXET (c)) + r

with 0 ≤ q and 0 ≤ r < T − EXET (c) (End)

Any execution trace τ of IT
c (S1;S2, t) is made of an execution trace τ1

of IT
c (S1, t) followed by an execution trace τ2 of IT

c (S2, t − EXET (S1)). In
other words, τ

.= τ1;S2,1;c;S2,2 . . . c;S2,n. The property is satisfied if, t ≤
EXET (τ1;S2,1) < t + ε, which follows from the fact that the Traces func-
tion satisfies the Property (33), i.e., EXET (τ1) = EXET (S1), and the hypothesis
EXET (S1) < t.

2. t ≤ EXET (S1): In this case, there will be at least one insertion of c in S1, after
t time units, and possibly other insertions every T time units:

IT
c (S1;S2, t) = IT

c (S1, t);IT
c (S2, t1)

with EXET (S1) = t + q(T − EXET (c)) + r, 0 ≤ q, 0 ≤ r < T − EXET (c)),
t1 = T − EXET (c) − r

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:40 • T. Ayav et al.

Since t ≤ EXET (S1), S1 satisfies the induction hypothesis and
∀τ1 ∈ Traces (IT

c (S1, t)), τ1
.= S1,1;c;S1,2 . . . c;S1,m (1 ≤ m) and verifies:

t ≤ EXET (S1,1) < t + ε (Init1)
T − ε < EXET (c;S1,i) ≤ T + ε (1 < i < m) (Period1)
r − ε < EXET (S1,m) ≤ r (End1)

The transformation is then applied on S2 with the time residual t1 = T −
EXET (c;S1,m). There are two sub-cases depending on the execution time of S2.
a. T − EXET (c) − r ≤ EXET (S2):

This is condition (2) to apply the induction hypothesis on S2. Condition
(3) is −ε < T − EXET (c) − r ≤ T , which follows from the fact that EXET (c)
and r are positive and r < T − EXET (c)). By induction hypothesis, ∀τ2 ∈
Traces (IT

c (S2, T − (EXET (c) + r))), τ2
.= S2,1;c;S2,2 . . . c;S2,n (1 ≤ n) and

verifies:

T − EXET (c) − r ≤ EXET (S2,1) < T − EXET (c) − r + ε (Init2)
T − ε < EXET (c;S2,i) ≤ T + ε (1 < i < m) (Period2)
r2 − ε < EXET (S2,n) ≤ r2

If EXET (S, 2) = T − EXET (c) − r + q2(T − EXET (c)) + r2

with 0 ≤ q2 and 0 ≤ r2 < T − EXET (c) (End2)

Any execution trace τ ∈ Traces (IT
c (S1;S2, t)) is of the form:

τ
.= S1,1;c;S1,2 . . . c;S1,m;S2,1;c;S2,2 . . . c;S2,n

We just have to check that T −ε < EXET (c;S1,m;S2,1) ≤ T +ε which follows
from:

(End1) r − ε < EXET (S1,m) ≤ r
(Init2) T − EXET (c) − r ≤ EXET (S2,1) < T − EXET (c) − r + ε

We get T − ε < EXET (c) + EXET (S1,m) + EXET (S2,1) < T + ε, and the
combined trace τ satisfies the property.

b. EXET (S2) < T − EXET (c) − r:
Any execution trace τ ∈ Traces (IT

c (S1;S2, t)) is of the form:

τ
.= S1,1;c;S1,2 . . . c;S1,m;τ2

Since EXET (S1) = t +q(T −EXET (c))+r, exet(S1;S2) = t + q(T −EXET (c))+
r + EXET (S2) and 0 ≤ r + EXET (S2) < T − exect(c). We have to check that

r + EXET (S2) − ε ≤ EXET (S1,m;τ2) < r + EXET (S2)

which follows directly from (End1) and the fact that the Traces function
satisfies the Property (33), i.e., EXET (τ2) = EXET (S2).

CASE S = if b then S1 else S2. Recall that:

IT
c (if b then S1 else S2, t) = if b then IT

c (S1, t − 1) else IT
c (S2, t − 1)

Hence, traces are of the form τ = skip;S1,1;c;S1,2 . . . c;S1,m or τ = skip;S2,1;
c;S2,2 . . . c;S2,m. Since t > 0 and ε ≤ 1, we have t − 1 > −ε, so the induc-
tion hypothesis applies on S1 (resp. S2). Therefore, ∀τ1 ∈ Traces (IT

c (S1, t)),

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:41

τ1
.= S1,1;c;S1,2 . . . c;S1,m (1 ≤ m) and verifies:

t − 1 ≤ EXET (S1,1) < t − 1 + ε (Init1)
T − ε < EXET (c;S1,i) ≤ T + ε (1 < i < m) (Period1)
r − ε < EXET (S1,m) ≤ r If EXET (S) = t − 1 + q(T − EXET (c)) + r (End)

with 0 ≤ q and 0 ≤ r < T − EXET (c)

It follows that t ≤ EXET (skip;S1,1) < t + ε and the combined trace satisfies the
property. The reasoning is the same with S2.

CASE S = for l = n1 to n2 do S: Recall that:

IT
c (for l = n1 to n2 do S, t) = Fold (IT

c (Unfold (for l = n1 to n2 do S), t))

It follows that:

Traces (Fold (IT
c (Unfold (for l = n1 to n2 do S), t)))

= Traces (IT
c (Unfold (for l = n1 to n2 do S), t))

= Traces (IT
c (l := n1; S; . . . , t))

The operator Unfold replaces for-loop by sequences of commands. This case
boils down to the already treated case S = S1;S2.

PROOF THAT PROPERTY 6 HOLDS FOR NEGATIVE TIME RESIDUALS. For −ε < t ≤ 0
we have IT

c (S, t) = c;IT
c (S, T − EXET (c) + t). Since Property 6 holds for pos-

itive time residuals, it follows from EXET (c) + ε < T and −ε < t that
T −EXET (c)+t is positive and therefore ∀τ ∈ Traces (IT

c (S, T − EXET (c) + t)), τ
.=

S1;c;S2 . . . c;Sn (1 ≤ n) and verifies:

T − EXET (c) + t ≤ EXET (S1) < T − EXET (c) + t + ε (Init)
T − ε < EXET (c;Si) ≤ T + ε (1 < i < n) (Period)
r − ε < EXET (Sn) ≤ r (End)

If EXET (S) = T − EXET (c) + t + q(T − EXET (c)) + r
with 0 ≤ q and 0 ≤ r < T − EXET (c)

The traces in Traces (IT
c (S, T − EXET (c) + t)) are of the form:

c;S1;c;S2 . . . c;Sn
.= void;c;S1;c;S2 . . . c;Sn

Since EXET (void) = 0 and, by hypothesis, −ε < t ≤ 0, we have:

t ≤ EXET (void) < t + ε (Init)

It remains to show that the (Period) condition holds, i.e., T − ε < EXET (c;S1) <

T + ε. We have:

T − EXET (c) + t ≤ EXET (S1) < T − EXET (c) + t + ε

Since EXET (c;S1) = EXET (c) + EXET (S1) and −ε < t ≤ 0, we conclude:

T − ε < T + t ≤ EXET (c;S1) < T + t + ε ≤ T + ε

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

45:42 • T. Ayav et al.

REFERENCES

AGGARWAL, A. AND GUPTA, D. 2002. Failure detectors for distributed systems. Tech. rep., Indian

Institute of Technology, Kanpur, India. http://resolute.ucsd.edu/diwaker/publications/ds.pdf.

AGUILERA, M., CHEN, W., AND TOUEG, S. 1997. Heartbeat: A timeout-free failure detector for quies-

cent reliable communication. In Proceedings of the 11th International Workshop on Distributed
Algorithms. Saarbrucken, Germany. Springer-Verlag, Berlin, 126–140.

ARORA, A. AND KULKARNI, S. 1998. Detectors and correctors: A theory of fault-tolerance com-

ponents. In Proceedings of the International Conference on Distributed Computing Systems
(ICDCS’98). Amsterdam, The Netherlands. IEEE, Los Alamitos, CA. 436–443.

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., AND LANDWEHR, C. 2004. Basic concepts and taxon-

omy of dependable and secure computing. IEEE Trans. Depend. Secure Comput. 1, 1, 11–

33.

AYDIN, H., MELHEM, R., AND MOSSÉ, D. 2000. Optimal scheduling of imprecise computation tasks in

the presence of multiple faults. In Proceedings of Real-Time Computing Systems and Applications
(RTCSA’00). Cheju Island, South Korea. IEEE, Los Alamitos, CA. 289–296.

BAILLE, G., GARNIER, P., MATHIEU, H., AND PISSARD-GIBOLLET, R. 1999. Le CYCAB de l’Inria Rhne-

Alpes. Tech. rep. 0229, Inria, Rocquencourt, France.

BECK, M., PLANK, J., AND KINGSLEY, G. 1994. Compiler-assisted checkpointing. Tech. rep., Univer-

sity of Tennessee.

BUTTAZZO, G. 2005. Rate monotonic vs EDF: Judgment day. Real-Time Syst. 29, 1, 5–26.

CASPI, P., MAZUET, C., SALEM, R., AND WEBER, D. 1999. Formal design of distributed control systems

with Lustre. In Proceedings of International Conference on Computer Safety, Reliabilitiy, and
Security (SAFECOMP’99). Lecture Notes in Computer Science, vol. 1698. Springer-Verlag, Berlin.

396–409.

CHANDRA, T. AND TOUEG, S. 1996. Unreliable failure detectors for reliable distributed systems. J.
ACM 43, 2, 225–267.

COLIN, A. AND PUAUT, I. 2000. Worst case execution time analysis for a processor with branch

prediction. Real Time Syst. 18, 2/3, 249–274.

CRISTIAN, F. 1991. Understanding fault-tolerant distributed systems. Comm. ACM 34, 2, 56–78.

DEAN, A. AND SHEN, J. 1998. Hardware to software migration with real-time thread integration.

In Proceedings of the Euromicro Conference. Västeras, Sweden. IEEE, Los Alamitos, CA. 10243–

10252.

DUMITRESCU, E., GIRAULT, A., MARCHAND, H., AND RUTTEN, E. 2007. Optimal discrete controller syn-

thesis for modeling fault-tolerant distributed systems. In Workshop on Dependable Control of
Discrete Systems (DCDS’07). Cachan, France. IFAC, New York. 23–28.

DUMITRESCU, E., GIRAULT, A., AND RUTTEN, E. 2004. Validating fault-tolerant behaviors of syn-

chronous system specifications by discrete controller synthesis. In Workshop on Discrete Event
Systems (WODES’04). Reims. France. IFAC, New York.

FISHER, M., LYNCH, N., AND PATERSON, M. 1985. Impossibility of distributed consensus with one

faulty process. J. ACM 32, 2, 374–382.

GIRAULT, A. AND RUTTEN, E. 2004. Discrete controller synthesis for fault-tolerant distributed sys-

tems. In Proceedings of the International Workshop on Formal Methods for Industrial Critical
Systems (FMICS’04). Electronic Notes in Theoretical Computer Science, vol. 133, Elsevier Sci-

ence, New York. 81–100.

GIRAULT, A. AND YU, H. 2006. A flexible method to tolerate value sensor failures. In Proceedings
of the International Conference on Emerging Technologies and Factory Automation (ETFA’06).
Prague, Czech Republic. IEEE, New York. 86–93.

GRANDPIERRE, T., LAVARENNE, C., AND SOREL, Y. 1999. Optimized rapid prototyping for real-time

embedded heterogeneous multiprocessors. In Proceedings of the 7th International Workshop on
Hardware/Software Co-Design (CODES’99). Rome, Italy. ACM, New York.

GRANDPIERRE, T. AND SOREL, Y. 2003. From algorithm and architecture specifications to automatic

generation of distributed real-time executives: A seamless flow of graphs transformations. In

Proceedings of the International Conference on Formal Methods and Models for Codesign (MEM-
OCODE’03). Mont Saint-Michel, France. IEEE, Los Alamitos, CA.

JALOTE, P. 1994. Fault-Tolerance in Distributed Systems. Prentice-Hall, Englewood Cliffs, NJ.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

Implementing Fault-Tolerance in Real-Time Programs • 45:43

KALAISELVI, S. AND RAJARAMAN, V. 2000. A survey of checkpointing algorithms for parallel and

distributed computers. Sadhana 25, 5, 489–510.

KOPETZ, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Academic Publishing, Novell, MA.

KULKARNI, S. AND ARORA, A. 2000. Automating the addition of fault-tolerance. In Proceedings of
the International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’00). M. Joseph, Ed. Lecture Notes in Computer Science, vol. 1926, Springer-Verlag,

Berlin, 82–93.

LISPER, B. 2006. Trends in timing analysis. In Proceedings of the IFIP Working Conference on
Distributed and Parallel Embedded Systems (DIPES’06). Braga, Portugal. Springer, Berlin, 85–

94.

LIU, C. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in hard real-time

environnement. J. ACM 20, 1, 46–61.

LIU, Z. AND JOSEPH, M. 1992. Transformation of programs for fault-tolerance. Formal Aspects
Comput. 4, 5, 442–469.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The Definition of Standard ML. MIT Press,

Cambridge, MA.

MOSSÉ, D., MELHEM, R., AND GHOSH, S. 2003. A nonpreemptive real-time scheduler with recovery

from transient faults and its implementation. IEEE Trans. Software Engin. 29, 8, 752–767.

NELSON, V. 1990. Fault-tolerant computing: Fundamental concepts. IEEE Comput. 23, 7, 19–25.

NIELSON, H. AND NIELSON, F. 1992. Semantics with Applications—A Formal Introduction. Wiley,

New York, NY.

PUSCHNER, P. 2002. Transforming execution-time boundable code into temporally predictable

code. In Design and Analysis of Distributed Embedded Systems (DIPES’02), B. Kleinjohann,

K. Kim, L. Kleinjohann, and A. Rettberg, Eds. Kluwer Academic Publishing.

PUSCHNER, P. AND BURNS, A. 2000. A review of worst-case execution-time analysis. Real-Time
Syst. 18, 2/3, 115–128.

RAMADGE, P. AND WONHAM, W. 1987. Supervisory control of a class of discrete event processes.

SIAM J. Control Optim. 25, 1, 206–230.

RUSHBY, J. 2001. Bus architectures for safety-critical embedded systems. In Proceedings of the In-
ternational Workshop on Embedded Systems (EMSOFT’01). Lecture Notes in Computer Science,

vol. 2211, Springer-Verlag, Berlin.

SEKHAVAT, S. AND HERMOSILLO, J. 2000. The Cycab robot: A differentially flat system. In Proceedings
of the IEEE Conference on Intelligent Robots and Systems (IROS’00). Takamatsu, Japan. IEEE,

Los Alamitos, CA.

SILVA, L. AND SILVA, J. 1998. System-level versus user-defined checkpointing. In Proceedings of the
Symposium on Reliable Distributed Systems (SRDS’98). West Lafayette, IN. IEEE, Los Alamitos,

CA. 68–74.

THEILING, H., FERDINAND, C., AND WILHELM, R. 2000. Fast and precise WCET prediction by separate

cache and path analyses. Real-Time Sys. 18. 2/3, 157–179.

ZIV, A. AND BRUCK, J. 1997. An on-line algorithm for checkpoint placement. IEEE Trans. Com-
put. 46, 9, 976–985.

Received June 2006; revised February 2007; accepted May 2007

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 45, Publication date: July 2008.

