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Abstract

A dynamic wavelet network circuit implementation for modelling the nonlinear dynamical networks has been proposed in
this study. The dynamical wavelet network includes static wavelet network with Mexican hat wavelet function, the voltage-
controlled switches and capacitors. The circuit simulations have been done in Spice for the period-1 limit cycle, the spiral

and double scroll attractors of the Chua’s circuit.
© 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

The time—frequency domain methods have attracted many
researchers from different branches of science in order to
analyze the behavior of the nonlinear dynamical systems.
The wavelets [1-3], the Wigner—Ville distribution [4-6] have
been used to analyze the chaotic systems. Also, there are
studies on the modelling of the nonlinear dynamical systems
with artificial neural networks. The wavelet network which
uses both the learning and generalization ability of feedfor-
ward neural networks and time—frequency domain localiza-
tion property of wavelet decomposition has been proposed
in [7]. The wavelet network has been used in the identifi-
cation of static and dynamical systems [8—10]. The circuit
implementation of a wavelet network for static systems has
been done in [11] using sigmoidal wavelet function proposed
in [12]. Also, the wavelet network circuit for identification
of the static networks using Mexican hat wavelet has been
given in [13]. In this study, a circuit implementation pro-
cedure for modelling dynamical systems using the wavelet
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network with Mexican Hat mother wavelet in [13-15] has
been proposed. After introducing the brief descriptions of the
wavelet analysis and the wavelet network in Section 2, the
dynamical wavelet network modelling has been explained
in Section 3. The circuit structure for the dynamical wavelet
network has been proposed in Section 4. Finally, the ex-
amples of dynamical system modelling have been given in
Section 5.

2. Wavelet analysis and wavelet network

The wavelets are the family of the signals that is produced
by the translations and the dilations of a mother wavelet
satisfying the admissibility condition. The properties of the
wavelet transform (WT) and the fundamentals of the wavelet
networks will be given in the sequel.

2.1. Wavelet analysis

The continuous wavelet transform coefficients of a signal
s(1) € L*(R) are determined for the different scales and
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translations as follows:
o0

Ws(a, b; Y’)é/ s} , (1) dt, (D
—00

where a and b are the dilation (scale) and translation coetf-
ficients, respectively, and * denotes the complex conjugate;
the scaled and translated wavelet is obtained as
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where V() is the mother wavelet. The mother wavelet must
satisfy the admissibility condition as
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where ‘:”(w) is the Fourier transform of the mother wavelet
[16].

For the numerical computations, the discrete samples of
the continuous wavelet transform have been considered and
the scaled and translated wavelets have been defined at the
dyadic grid as

V() =ay""* W(ag"t —nbo), m,neZ, )

where ag, bg € R are the dilation and translation coefficients,
respectively, and WT coefficients are defined as

Cmn éWs (@m, bn; W), (5)

where a,, éao_m, byEnbo.
If the wavelets defined in Eq. (4) are chosen such as to
constitute a Riesz basis for every s(r) € L%(R)

o0 o0
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where 0 < A< B < oo are called as lower and upper frame
bounds, respectively, then the signal can be decomposed
using the wavelet basis as

SO =Y conPn(t). )

2.2. Wavelet network

A network called wavelet network combining both feed-
forward neural networks and wavelet decomposition has
been presented in [7].

When the input—output pairs measured from the system
to be modelled is given as

), Y lym) = fxm) + e, k=1,2,..., K,
fO) R Ry, (8)

where ¢ 1S a random variable representing the measurement
noise, then the problem is to minimize the mean square
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Fig. 1. The block diagram of the static wavelet network.

error between the actual output and the output of the wavelet
network

MSE2LE [ (v = fu()?], ©)

where E represents the expected value and the output of the
wavelet network fy,(-) : R? — R is defined as

N
fo ) =" wi¥a(Di(x — b)) +c"x +b, (10)

i=1

where N is the number of d-dimensional wavelons, w;
is the wavelet coefficient for each d-dimensional wavelon,
D; = diag(d},, ...,d},) € R™ is the diagonal dilation
matrix whose diagonal elements are d; g = 1/a;; where a;;

is the dilation coefficient, ¥ () : R?Y — R is the mother
wavelet function, and b; € RY is the translation coefficient
vector, ¢ € R? represents the coefficient of the linear term
and b is the bias term to approximate the functions with
nonzero mean. The block diagram of the static wavelet
network is shown in Fig. 1. In the wavelet network circuit,
the dilation of the wavelons are modelled by adding DC
voltages to the input and scaling has been implemented by
op-amp amplifiers by adjusting the gain of the amplifier ac-
cording to the scaling parameter. Similarly, the linear term
has been obtained by op-amp amplifiers and the bias term
is obtained by adding DC voltage. The adding operation
has also been implemented by op-amp adders. The opti-
mum parameter set and the number of wavelons are to be
determined for the construction of the wavelet network. The
selection of suitable wavelons is implemented by the “Step-
wise Selection by Orthogonalization” algorithm proposed
in [9].

3. Dynamical system modelling with wavelet
network

The wavelet networks have also been used in the iden-
tification of the dynamical systems or in the prediction
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Fig. 2. The block diagram of the dynamical wavelet network.
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Fig. 3. (a) Dynamical wavelet network circuit and (b) the triggering pulses for voltage-controlled switches.

of the future outputs of the systems. In order to build a
wavelet network model, the model parameters are fit to
the given time series. Assume that a random process gen-
erating y(k), x(k) € R — R, k=1,2,...,K and the
relationship between them is as following:
F():R! > R,

y(k) = F(x(k)) + &k, (11)

where e is a random variable. According to the Taken’s
time-delay embedding theorem [17], the multidimensional
dynamical structure of the system can be retrieved from
single scalar variable observed from the system. Let a vector
z € R? is constructed from the observations as

72(k)=[ytk =T) y(k =2T) ... y(k —dT)], (12)

where d is the embedding dimension and 7T is the embedding
delay. The

y(k) = F(z(k))

follows the dynamical evolution of the original system.
Therefore, the next state of the system is predicted from the
previous observations.

The system evolution is approximated by some arbitrary
set of basis functions for the modelling or identification of
the nonlinear dynamical systems [8,18-20]. The purpose
is to represent Eq. (13) with the suitable wavelet network.
Since the observations can be expressed as a function of past
measurements, the past values are used as inputs and the
present values are used as output for the wavelet network

(13)



N. Ozkurt, F. Acar Savaci / Int. J. Electron. Commun. (AEU) 60 (2006) 338—344 341

Fig. 4. The basin of attraction of period-1 limit cycle of the Chua’s
circuit.

to approximate the function F'(-). The output of the wavelet
network Fy, is

y(k) = Fy(z(k))

N
=Y wiVa(Diz(k) = bi) + c"x + . (14)

i=1

The block diagram of the dynamical wavelet network is
shown in Fig. 2.

4. The circuit implementation of dynamical
wavelet network

The wavelet network can be used for modelling the non-
linear dynamical systems as explained in Section 3. The
circuit of the dynamical wavelet network shown in Fig. 2
has been implemented using the static wavelet network with
Mexican hat mother wavelet as a main block and also us-
ing the delay blocks which have been realized by switched
capacitors as shown in Fig. 3a.

The capacitors are used as the memory elements which
store the delayed versions of the output of the wavelet net-
work. The voltage-controlled switches are controlled by the
external pulse generators which are triggered sequentially as
shown in Fig. 3b where the duration of the pulses satisfies
Ty < T. The inputs of static wavelet network consists of the
voltages on the capacitors.

Table 1. The wavelet network parameters of Example 1

5. Applications

The Chua’s circuit with periodic limit cycle, the spiral and
double scroll attractors have been chosen as the dynamical
model examples. The dynamics of the Chua’s circuit [21] is
described by the following differential set of equations

x=ou(y —h(x)),
y=x—y+z, (15)
z=-Py,

where o and f are the parameters defined by the circuit
components and the piecewise linear characteristic is as

h(x) = (m1 —mo)(|x + 1| — |x —1J), (16)

where m| = —=, mg = —%.

Example 1 (Period 1 limit cycle of Chua’s circuit). The
time series of the period 1 limit cycle has been obtained by
numerically integrating the system equation of the Chua’s
circuit for N =500 samples with sampling period 7,=0.01s
and by selecting the parameters o = 8 and § = 14.2857143.
The time-series has been embedded with embedding dimen-
sion d.=3 and embedding delay 7'=1,. The wavelet network
contains three 3-dimensional wavelons. The
observed limit-cycle is stable almost everywhere except
on the set with zero measure B = D — Dp where
D ={x =[x1,x2,x3]] = 5<x;<5 i=1,2,3} and xy,
x2,x3 are the time-delay embedded coordinates,
Da = {x € Djy|x;1 = x2 = x3} and Dj, represents the set
inside the attractor. The basin of attraction of the wavelet
network has been investigated by comparing the Hausdorff
distances [22] of the attractors to the original attractor. An
illustration of the basin of the attraction of the wavelet
network is shown in Fig. 4. The parameters of the wavelet
network have been given in Table 1.

The wavelet network trained for the Period 1 Limit Cycle
of Chua’s circuit has been implemented in Spice by using the
ideal circuit components with the given structure in Fig. 3.
The output of the circuit has been filtered by a low-pass filter
in order to eliminate the high-frequency switching effects.
The filtered output is shown in Fig. 5. The limit cycle from
the circuit also have same basin of attraction characteristics
with the wavelet network simulated in MATLAB.

i D; b; wj

1 diag(2.0585, 6.3006, 5.4508) [0.5305 1.0902 1.0910]T —0.0132
2 diag(3.4354, 2.3726, 5.3374) [0.8998 0.8716 1.1062]T 0.0106
3 diag(5.9255, 10.5644, 5.1070) [0.7516 0.8955 0.8895]T —0.0057

¢ =1[0.9993 — 2.98322.9835]T b =0.0012
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Fig. 5. The output of dynamical wavelet network circuit for Pe-
riod-1 limit cycle.
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Fig. 6. The output of dynamical wavelet network circuit for spiral
attractor.

Example 2 (Spiral attractor of Chua’s circuit). The time se-
ries of the spiral attractor of Chua’s circuit has been obtained
for N=1000 samples for 7;=0.05 s and selecting the param-
eters o = 8.50000425 and f§ = 14.2857143. The embedding

Table 2. The wavelet network parameters of Example 2
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Fig. 7. The output of dynamical wavelet network circuit for dou-
ble-scroll attractor.

dimension and the embedding delay have been chosen as
d.=3 and T =1, respectively. The wavelet network contains
5 wavelons. The output of the circuit is shown in Fig. 6 and
the parameters of the wavelet network have been given in
Table 2.

Example 3 (Double-scroll attractor of Chua’s circuit). When
the bifurcation parameter o of the Chua’s circuit has been
chosen as 9, the double scroll attractor has been obtained
in the phase space. The time series has been obtained for
N = 2000 samples for 73 = 0.1s. The embedding dimen-
sion and the embedding delay have been chosen as d. =3
and T = 31, respectively. The wavelet network contains 6
wavelons and the parameters of the wavelet network have
been given in Table 3. The output of the circuit is shown in
Fig. 7.

6. Conclusions

The circuit implementation of the dynamical wavelet net-
work has been introduced by using the Mexican Hat mother
wavelet circuit proposed in [13]. Because of the difficul-
ties in obtaining the correct values of the components the

i D; b; w;

1 diag(2.3338, 1.9983, 2.3056) [0.5985 1.0037 0.6188]T 0.0065
2 diag(6.1175, 5.4661, 6.2254) [0.5557 0.2928 0.0139]T 0.0117
3 diag(13.9630, 14.0703, 14.0315) [0.2929 0.2838 0.3219]T 0.0019
4 diag(1.2247, 1.9068, 1.2169) [0.2264 0.6518 1.0349]T 0.0058
5 diag(3.4556, 3.5469, 3.9565) [0.2620 0.7019 0,3844]T 0.0074

c=[0.8564 — 2.69542.8359]T b = —4.9823¢ — 004
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Table 3. The wavelet network parameters of Example 3

i D;

diag(2.3981, 3.3344, 3.7859)
diag(2.3406, 1.8408, 3.8478)
diag(2.0044, 0.0000006, 2.2383)
diag(16.6680, 16.7195, 16.7027)
diag(33.3401, 33.3050, 33.2771)
diag(8.2909, 8.3315, 8.1242)

[ NS/ TS SOV S I

b; w;

[0.6150 0.0001 0.3245]T —0.2477
[0.4715 0.9353 0.4970]T —0.1256
[—0.5015 0.1297 — 0.3632]T 0.0841
[0.2234 0.4278 0.3927]T ~1.3303
[0.2277 0.4123 0.4021]T —6.2826
[0.2089 0.4498 0.3834]T —0.3437

¢ =[0.3248 — 1.48981.9562]T b = 0.0487

proposed method may not be suitable for the implementation
of the large circuits. On the other hand, it is suitable for VLSI
manufacturing because of the systematic procedure and also
the VLSI manufacturing allows the accurate realization. The
circuit simulations for the period-1 limit cycle, the spiral
and double-scroll attractor of the Chua’s circuit have been
accomplished and the attractors have been embedded in the
phase space.
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