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Abstract

The stationary state probability densities appear not only in the study of dynamical systems with random vector fields,
but also in the deterministic dynamical systems exhibiting chaotic behavior when the uncertainties in the initial conditions
are represented with the probability densities. But since it is very hard problem to determine these densities, in this paper
the new efficient method to obtain an approximate solution of Fokker–Planck–Kolmogorov equation which arises in the
determination of the stationary state probability densities has been given by representing the densities with compactly sup-
ported functions. With specific choice of the compactly supported functions as piecewise multivariable polynomials which
are supported on the ellipsoidal regions, the parameters to be calculated for determining the densities can be considerably
decreased compared to Multi-Gaussian Closure scheme, in which the stationary densities are assumed to be the weighted
average of the Gaussian densities. The main motivation to choose the compactly supported functions is that, in the chaotic
dynamics the states are trapped in a specific compact subspace of the state space. The stationary state densities of two basic
examples commonly considered in the literature have been estimated using the Parzen’s estimator, and the densities
obtained using the newly proposed method have been compared with these estimated densities and the densities obtained
with the Multi-Gaussian Closure scheme. The results indicate that the presented compactly supported piecewise polyno-
mial scheme can be successful compared to Multi-Gaussian scheme, when the system is highly nonlinear.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The effect of indeterministic inputs on the dynamical systems can be considered in the view of Fokker–
Planck–Kolmogorov (FPK) formalism. This formalism gives one the ability to transform the random
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dynamical systems evolving in the state space under the influence of Gaussian white noise either in additive or
in multiplicative form, to a new dynamical system evolving in the space of probability density functions stated
in terms of a linear parabolic partial differential equation, the Fokker–Planck–Kolmogorov equation [1]. Such
probability densities appear not only in the study of dynamical systems with random vector fields, but also in
the deterministic dynamical systems exhibiting chaotic behavior when the uncertainties in the initial conditions
are represented with the densities [2].

It is known that an exact solution of the FPK equation is generally hard to find and only in some special
cases exact solution is known [3–8]. Many approximate methods have been developed, such as the variational
methods based on the eigenfunction expansion of the probability density function (pdf) [9,10], iterative meth-
ods based on the solution of an integral equation [1,11], the maximum entropy approach originated by the
classical work of Jaynes [12] in which the solution of the FPK equation is presented by an infinite dimensional
dynamical system of the moments of the pdfs [13,14] and weighted residual schemes [15–19]. A simple
approach is the Gaussian Closure (GC) method where the solution is assumed to be Gaussian and the param-
eters of the Gaussian pdf are chosen in order to minimize the approximation error [20]. This approach has
been extended to Multi-Gaussian case in which the solution is assumed to be the sum of Gaussian pdfs
[21]. Another variant of this method called Exponential Closure is to use the exponential functions of polyno-
mials of the state variables, instead of Gaussian assumption [16,17]. In these methods, solution of the FPK
equation in the weak sense is reduced to a solution of nonlinear algebraic equations.

The GC is unsuitable when the system is highly nonlinear or when multiplicative random excitations exist.
In order to eliminate these drawbacks, the MGC method is used, but in this case the number of free param-
eters to be determined can be quite large, consequently, the method may not be feasible for high dimensional
nonlinear systems.

In Section 2.1 of this paper, the FPK equation arising from the stochastic dynamical system driven with
Gaussian white noise has been introduced first. In Section 2.2, the existing methods to obtain the approximate
solution of the FPK equation have been summarized. In Section 2.3 the new method based on the weighted
residual scheme has been proposed, in which instead of the exponential functions of polynomials, compactly
supported multivariable polynomial functions (CSP) have been used to simplify the problem of obtaining and
solving nonlinear algebraic equations which represent the FPK equation. Then in Section 3, to clarify the use-
fulness of this newly proposed method, the stationary state densities of dynamical systems with cubic nonlin-
earities whose exact solutions are known, have been obtained and the results have been compared with the
densities obtained by the MGC scheme and the estimated densities obtained using the Parzen’s kernel density
estimator [22,23].
2. The Fokker–Planck–Kolmogorov formalism

2.1. The Fokker–Planck–Kolmogorov equation

Let LmðRnÞ denote the measure space consists of all integrable functionsf : Rn ! R, such that
Z
Rn
jf ðxÞjm dx <1
and DðRnÞ � L1ðRnÞ be a set of density functions defined by
DðRnÞ , p 2 L1ðRnÞ p P 0 and kpkL1 ¼ 1
��� �

:

Consider the following stochastic differential equation:
dx

dt
¼ f ðxÞ þ gðxÞg ð1Þ
with initial condition
xð0Þ ¼ x0;
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where t P 0, x ¼ ðx1x2 � � � xnÞT 2 Rn, f ðxÞ 2 Rn, gðxÞ 2 Rn�n and g(t) is the white noise defined as
gðtÞ , dx1

dt
dx2

dt � � �
dxn
dt

� �T
, where xi are 1-D Wiener processes, E{xi(t)} = 0, E{xi(t)xi(t + s)} = 2d(s),

i = 1, . . . ,n and E{Æ} denotes the expectation operator.
The density function pðx; tÞ 2 DðRnÞ of the states x, at time t can be defined as
probfxðtÞ 2 B � Rng ¼
Z

B
pðz; tÞdz; ð2Þ
where prob{Æ} denotes the probability and p(x, t) satisfies
lim
kxk!�1

pðx; tÞ ¼ 0 8t P 0: ð3Þ
Theorem (Fokker–Planck–Kolmogorov [2]). If the functions gij,
ogij

oxk
,

o2gij

oxkoxl
, fi,

ofi
oxj

, op
ot ,

op
oxi

, o2p
oxioxj

are continuous for

t > 0 and x 2 Rn, and if fi, gij and their first derivatives are bounded, then pðx; tÞ 2 DðRnÞ satisfies
op
ot
¼ 1

2

Xn

i;j¼1

o2

oxioxj
ðaijpÞ �

Xn

i¼1

o

oxi
ðfipÞ 8t > 0; x 2 Rn ð4Þ
with initial condition
pðx; 0Þ ¼ p0ðxÞ; p0ðxÞ 2 DðRnÞ; ð5Þ

where aijðxÞ ,

Pn
k¼1gikðxÞgjkðxÞ i; j ¼ 1; 2; . . . ; n, which is always nonnegative, and p0(x) is the initial density of

the states.

Defining the FPK operator as
Lt ,
1

2

Xn

i¼1

Xn

j¼1

o
2

oxioxj
ðaijðxÞð�ÞÞ �

Xn

i¼1

o

oxi
ðfiðxÞð�ÞÞ �

o

ot
ð�Þ ð6Þ
and the system given in (1) with the initial density of the states (5), then FPK equation (4) can be written as
Ltpðx; tÞ ¼ 0 x 2 Rn; t > 0: ð7Þ

The stationary density pst(x), if exists, is defined by the limit
lim
t!1

pðx; tÞ , pstðxÞ 8p0ðxÞ 2 DðRnÞ: ð8Þ
In the stationary case, the FPK operator can be defined as
L ,
1

2

Xn

i¼1

Xn

j¼1

o2

oxioxj
ðaijðxÞð�ÞÞ �

Xn

i¼1

o

oxi
ðfiðxÞð�ÞÞ ð9Þ
and hence, the stationary density should satisfy the reduced FPK equation
LpstðxÞ ¼ 0 8p0ðxÞ 2 DðRnÞ ð10Þ

together with the boundary condition (3). Multiplying both sides of (10) with an arbitrary test function
h : Rn ! R of Hilbert space H with the usual inner product defined by hf ðxÞ; gðxÞi ,R

Rn f ðxÞgðxÞdx 8f ; g 2H, and integrating both sides over the whole domain yields the variational equation
hLpstðxÞ; hðxÞi ¼ 0: ð11Þ

Clearly, all solutions of (10) are the solutions of the variational equation (11), but the inverse statement, in
general, is not true. Finding solution of the infinite dimensional variational problem is almost as demanding
as the solution of the original problem. In practice, a finite set of linearly independent test functions,
Y , fhk 2HgN

k¼1 are chosen in order to satisfy
hLpstðxÞ; hkðxÞi ¼
Z

Rn
LpstðxÞhkðxÞdx ¼ 0; k ¼ 1; 2; . . . ;N : ð12Þ
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The solution pst(Æ), satisfying (12) is called the solution of the reduced FPK equation (10) in the weak sense. The
error between the exact solution of the variational problem and the weak sense solution vanishes in the space
spanned by fhkgN

k¼1.
2.2. Approximate solution of the FPK equation

Let p#(x) be an estimate of the solution of (10) parameterized by the N-dimensional vector #. An approx-
imate stationary solution in the weak sense can be obtained by substituting p#(x) in the FPK equation, and
determining the parameters using the orthogonality requirement of the test functions, and the right hand side
of the (10). This yields a set of nonlinear algebraic equations to be solved for # in terms of system parameters,
i.e.
� kð#Þ , hLp#ðxÞ; hki ¼ 0; k ¼ 1; 2; . . . ;N : ð13Þ
Denoting the resolution as the number of the basis functions, K, and if p#(x) is chosen to be
p#ðxÞ ¼
XK

i¼1

jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjCij

p e�
1
2ðx�miÞTC�1

i ðx�miÞ; ð14Þ
where jÆj denotes the determinant, # = {ji,Ci,mi, i = 1, . . . ,K}, Ci, and mi denote n · n positive symmetric
covariance matrices, n · 1 mean vectors to be determined respectively, then the method of obtaining approx-
imate solution is called Multi-Gaussian Closure (MGC) method [21]. The special case where K = 1, is equiv-
alent to Gaussian-Closure (GC) method. Another choice for p#(x) is an exponential function of a polynomial
QN(x), such that
p#ðxÞ ¼ ceQN ðxÞ; ð15Þ

QN ðxÞ ¼
X

0<
Pn

i¼1
ki6N

#k1;k2;...;kn

Yn

j¼1

xkj
j ; ð16Þ
where c is a normalization constant selected such that p#(Æ) is normalized. In this case, the method is called as
Exponential Closure method [24,16,17].

In both cases, the test functions are chosen to be simple monomials or monomials multiplied by the pdf
obtained by the GC, in which the approximate pdfs do not have compact support.

However, in practice, the stationary states of the stable systems are trapped in a specific compact subspace
of Rn, which implies that the integration over the whole domain is unnecessary. This fact is the inspiration of
the newly proposed method based on the compactly supported pdfs.
2.3. Approximation of the solution of the FPK equation using compactly supported polynomials

A function has compact support if it is zero outside of a compact set. Let Xi, i = 1, . . . ,K be the supports of
such base functions u#i

ð�Þ parameterized with vectors #i, i.e.
u#i
ðxÞ 6¼ 0 8x 2 Xi;

u#i
ðxÞ ¼ 0 8x 62 Xi; and 8x 2 oXi;
where oXi denotes the boundary of Xi. The solution of the reduced FPK (10) can be approximately con-
structed using such compactly supported functions as given in the sequel.

Assume that the pdf which approximate the solution of the reduced FPK (10) is a linear combination of
compactly supported functions
p#ðxÞ ¼
XK

i¼1

jiu#i
ðxÞ; ð17Þ
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where ji P 0 "i,
P

iji ¼ 1 and the set of parameters # , {#i, i = 1, . . . ,K}. In order to fulfill the prerequisites
of FPK theorem, it is sufficient that u#i

ð�Þs satisfy the following conditions for all i:
dnu#i
ðxÞ

dxn

����
oXi

¼ 0 8n P 1; ð18aÞ

!9x� 2 Xi 3
du#i
ðxÞ

dx

����
x¼x�
¼ 0;

d2u#i
ðxÞ

dx2

�����
x¼x�

< 0; and

du#i
ðxÞ

dx
6¼ 0 8x 6¼ x�; ð18bÞZ

Rn
u#i
ðxÞdx ¼

Z
Xi

u#i
ðxÞdx ¼ 1: ð18cÞ
In other words, u#i
ð�Þs are the single bump densities supported in the domain Xi.

Applying the linear FPK operator to the pdf defined in (17) yields
Lp#ðxÞ ¼L
XK

i¼1

jiu#i
ðxÞ ¼

XK

i¼1

jiLu#i
ðxÞ: ð19Þ
Multiplying with the test functions and integrating yields
Z
Rn
Lp#ðxÞhkðxÞdx ¼

XK

i¼1

ji

Z
Rn
Lu#i

ðxÞhkðxÞdx ¼
XK

i¼1

ji

Z
Xi

Lu#i
ðxÞhkðxÞdx: ð20Þ
Defining
� k;i ,

Z
Xi

Lu#i
ðxÞhkðxÞdx; i ¼ 1; 2; . . . K ð21Þ
and using (13), a set of equations in the form,
� 0 �
XK

i¼1

ji ¼ 1; ð22aÞ

� k �
XK

i¼1

ji� k;i ¼ 0; k ¼ 1; 2; . . . ; ðN � 1Þ ð22bÞ
is obtained. Solving the system of equations (22) yields the best approximation of the solution where the error
between the exact pdf and the approximated pdf vanishes on the space spanned by the test functions fhkgN�1

k¼1 .
The essence of the proposed method is to use the compactly supported functions. A family of such func-

tions in the form of compactly supported multivariable polynomials (CSP) which satisfy (18) is given by
ufli ;rign
i¼1
ðxÞ ¼ c � �1þ

Pn
i¼1

ðxi�liÞ2
r2

i

� 	2

; x 2 Xi;

0; otherwise;

8><
>: ð23Þ
which are supported over the ellipsoidal regions Xi defined by
Xi , x ¼ ðx1; . . . ; xnÞT
Xn

i¼1

ðxi � liÞ
2

r2
i

6 1

�����
( )

;

where flig
n
i¼1 and frign

i¼1 are the center and axes lengths of the n-dimensional ellipsoids respectively, and the c
is the normalization constant chosen according to (18c). With additional n � 1 parameters, ellipsoidal regions
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can be rotated around the ellipsoid center which results in extra degrees of freedom. The advantage of using
such a simple polynomial form of (23) has been demonstrated in Section 3.
3. Examples

Following examples chosen from [21] to demonstrate the application and approximation ability of the pro-
posed method.
3.1. 1-D example: bistable system

Let the system be
_x ¼ f ðxÞ þ
ffiffiffi
a
p

gðtÞ ¼ 1

2
ðx� x3Þ þ

ffiffiffi
a
p

gðtÞ ð24Þ
then the corresponding FPK operator is given by
Lp ¼ a
2

o2p
ox2
� o

ox
ðfpÞ ¼ � 1

2
ð1� 3x2ÞpðxÞ � 1

2
ðx� x3Þ dpðxÞ

dx
þ a

2

d2pðxÞ
dx2

: ð25Þ
The exact solution is known to be [8]
pexðxÞ ¼
2

p I�1
4

1
8a

� �
þ I 1

4

1
8a

� �
 � e�
1

2a
1
4�x2þx4

2

� �
; ð26Þ
where In(x) is the modified Bessel function of the first kind.
According to the method proposed in Section 2.3, the solution in form of CSP for the stationary density has

been assumed in the form of
pCSPðxÞ ¼
XK

i¼1

jiuli ;ri
ðxÞ; ð27Þ
where the simplest choice for u#i
which satisfies conditions (18) is
uli;ri
ðxÞ ¼

15
16ri

x�li
ri


 �2

� 1

� 	2

; li � ri 6 x 6 li þ ri;

0; otherwise

8><
>: ð28Þ
and it is shown for li = 0, ri = 1 in Fig. 1.
The total 3K parameters consist of # ¼ fli; rigK

i¼1 and ji, (i = 1, . . . ,K) must be determined from the non-
linear algebraic equations obtained using the described procedure in Section 2.3.

Eq. (21) takes the form
� k;iðxÞ ¼
Z liþri

li�ri

Luli;ri
ðxÞhkðxÞdx ð29Þ
and choosing hk , xk k = 1, . . . , 6, then evaluating (29) yields
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Fig. 1. u0,1(x), the chosen base function for bistable system.

Table
Nume

Param

l1

r1

l2

r2

l3

r3
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� 1;i¼
li

2
�l3

i

2
�3lir

2
i

14
;

� 2;i¼ aþl2
i �l4

i þ
r2

i

7
�6l2

i r
2
i

7
�r4

i

21
;

� 3;i¼
1

14
lið�21l4

i þð21�30r2
i Þl2

i �5r4
i þ9r2

i þ42aÞ;

� 4;i¼�2l6
i þ 2�30r2

i

7

� 	
l4

i þ
2

7
ð�5r4

i þ6r2
i þ21aÞl2

i � � �þ
2

231
ð�5r6

i þ11r4
i þ99ar2

i Þ;

� 5;i¼
5

462
lið�231l6

i �231ð3r2
i �1Þl4

i � � �þ11ð�35r4
i þ30r2

i þ84aÞl2
i �35r6

i þ55r4
i þ396ar2

i Þ;

� 6;i¼�3l8
i þð3�12r2

i Þl6
i þ

5

7
ð�14r4

i þ9r2
i þ21aÞl4

i � � �þ
5

77
ð�28r6

i þ33r4
i þ198ar2

i Þl2
i �

5r8
i

143
þ5r6

i

77
þ5ar4

i

7
:

For the case K = 1,2,3, a = 1,2, and j1 ¼ j2 ¼ j3 ¼ 1
3

the numerical solutions of (22) and MGC schemes have
been enlisted in the Tables 1 and 2, respectively. The comparison of the CSP, MGC schemes for K = 3 and
simulation data has been shown in Fig. 2. The simulation has been done using Euler–Maruyama solver
[25] with fixed step size of time increments, Dt = 1 · 10�1 s, and tmax = 5020 s, and first 20 s of the simulation
data have been ignored to allow the transients to die out.
1
rical solution of nonlinear algebraic equations for the CSP Scheme

eter K

a = 1 a = 2

1 2 3 1 2 3

0.0000 0.8645 0.0000 0.0000 0.9261 0.0000
2.5143 1.4157 2.5207 2.8552 1.7043 2.9343

�0.8645 0.9475 �0.9261 1.0041
1.4157 1.2442 1.7043 1.4919

�0.9475 �1.0041
1.2442 1.4919



Table 2
Numerical solution of nonlinear algebraic equations for the MGC scheme

Parameter K

a = 1 a = 2

1 2 3 1 2 3

l1 0.0000 0.9388 0.0000 0.0000 0.9261 0.0000
r1 0.8761 0.4721 0.3346 1.0000 1.7043 0.3675
l2 �0.9388 1.1542 �0.9261 1.2761
r2 0.4721 0.3837 1.7043 0.4629
l3 �1.1542 �1.2761
r3 0.3837 0.4629

3 2 1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Exact Solution

Parzen’s Estimator

CSP

MGC

−−−

Fig. 2. The pdfs of the state x for 1-D example.
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The pdf has been also estimated using the Parzen’s estimator [22], i.e.
p̂ðxÞ , 1

NhðNÞ
XN

i¼1

g
x� xðtiÞ

hðNÞ

� 	
ð30Þ
with
gðxÞ ¼ 1ffiffiffiffiffiffi
2p
p e�

x2

2 ; hðnÞ ¼ 1ffiffiffi
n
p

and x(ti) , x(t0 + iDt), i = 1, . . . ,N are the ensemble points obtained from the simulation. The resulting pdfs
from the simulations for 100 different realizations of Brownian paths have been averaged to smooth the esti-
mated pdf.

The pdf obtained by the proposed method is very close to the exact solution, and is in agreement with the
estimated pdf using the Parzen’s estimator from the simulation data.

The error between the approximate and the exact solutions can be determined using the L2-norm, i.e.
ðk � k2 ,

R
ð�Þ2 dxÞ1=2. The errors between the exact and the approximate solutions have been found by evalu-

ation of kpex(x) � pCSP(x)k2 and kpex(x) � pMGC(x)k2. They have been shown in Fig. 3 for the case K = 3. The
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resulting errors for different values of noise amplitudes are smaller for the CSP scheme as compared to MGC
scheme.

The moments EðxkÞ ,
R

R
xkpðxÞdx, k = 1,2, . . ., have been evaluated for the exact pdf and the approximate

pdfs obtained by CSP and MGC schemes (Table 3), and the relative errors defined as
EðxkÞ�ECSP;MGCðxkÞ

EðxkÞ

��� ���� 100
have been calculated for a = 1,2 and K = 3. The relative errors for a = 1 are then compared. Clearly, the
resulting error profile is better for the CSP scheme as can be seen in Fig. 4.

The resulting approximate pdfs of CSP scheme, as depicted in Fig. 5, are in agreement with the expected
physical situation as the noise power a is changed. When the noise power is small, the probability of finding
the state near the stable equilibria of the system with a = 0 will be higher. As the noise power increases, the
0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 3. Comparison of kpex(x) � pCSP(x)k2 and kpex(x) � pMGC(x)k2 for various values of a and K = 3.

Table 3
Comparison of the moments for the exact and the approximate solutions

a k Moments Relative error

Eex(xk) EMGC(xk) ECSP(xk) MGC CSP

1 odd 0 0.0000 0.0000 – –
2 1.0418 1.0236 1.0486 1.7460 0.6494
4 2.0418 2.0236 2.0486 0.8908 0.3313
6 5.1672 5.0944 5.1942 1.4081 0.5237
8 15.3762 15.2125 15.4371 1.0647 0.3960

10 51.5465 52.1506 51.3131 1.1720 0.4528

2 odd 0 0.0000 0.0000 – –
2 1.2905 1.2734 1.2942 1.3214 0.2868
4 3.2905 3.2734 3.2942 0.5182 0.1125
6 11.0333 10.9139 11.0592 1.0819 0.2348
8 43.9379 43.6480 44.0008 0.6598 0.1432

10 198.4034 201.9996 197.5986 1.8126 0.4057



2 4 6 8 10 12
0

1

2
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6

Fig. 4. Comparison of the relative errors with respect to the exact moments for MGC and CSP schemes (a = 1).
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peaks centered about the equilibria broadens, which implies that when averaged, the trajectory switches more
frequently between the stable equilibria.
3.2. 2-D example: duffing system under the Gaussian white noise excitation

Let the system (1) be as
_x

_y

� 	
¼

y

�x� �x3 � ay

� 	
þ

0 0

0
ffiffiffiffiffi
2a
p

� 	
g0

g1

� 	
; ð31Þ
where g0(t), g1(t) are one-dimensional independent Gaussian white noises. Corresponding FPK operator is gi-
ven by
L�;ap ¼ ap þ ðxþ �x3 þ ayÞ op
oy
� y

op
ox
þ a

o2p
oy2

: ð32Þ
The exact solution of the (32) is known to be [8]
pexðx; yÞ ¼
ffiffi
�
pffiffiffi

p
p

K1
4

1
8�

� � e
�1
8��

x2

2�
y2

2�
�x4

4 ; ð33Þ
where Kn(x) denotes the modified Bessel functions of the second kind. Note that the states are scaled so that
the exact pdf does not depend on a.

The base function u#i
has been chosen as
uai;bi ;l1i ;l2i
ðx; yÞ ¼

3
paibi

x�l1i
ai


 �2

þ y�l2i
bi


 �2

� 1

� 	2

; x�li1
ai


 �2

þ y�li2
bi


 �2

6 1;

0; otherwise:

8><
>: ð34Þ
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Fig. 5. The effect of increasing noise power on the approximate pdf for K=3 for the bistable 1-D system compared to exact solution: (a)
exact pdf; (b) CSP pdf.
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The function uai ;bi;l1i ;l2i
is compactly supported inside elliptic region defined by Xi ¼ x; y 2 R x�li1

ai


 �2

þ
����

�
y�li2

bi


 �2

6 1



.
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Assuming that the solution is in the form
pCSPðx; yÞ ¼
XK

i¼1

jiuai;bi;l1i ;l2i
ðx; yÞ; ð35Þ
5K parameters (i.e., # ¼ fai; bi; l1i; l2ig
K
i¼1 and fjigK

i¼1) should be determined. The test functions have been
chosen as h1(x,y) = x, h2(x,y) = y, h3(x,y) = xy, h4(x,y) = x2 and h5(x,y) = y2. In order to simplify the inte-
grals in (21) the following transformation
x! l1i þ air cosð/Þ;
y ! li2 þ bir sinð/Þ;
which transformed the elliptic regions to the region inside the unit circle have been specifically chosen.
Evaluating,
� k;i ¼ aibi

Z p

�p

Z 1

0

L�;auai ;bi;l1i;l2i
ðr;/Þhkðr;/Þr dr d/ ð36Þ
for k = 1, . . . , 5 yields
� 1;i ¼ l2i;

� 2;i ¼ �
1

8
l1i 3�a2

i þ 8�l2
1i þ 8

� �
� al2;i;

� 3;i ¼
1

80
ð�3�a4

i � 10ð6�l2
1i þ 1Þa2

i þ 10ðb2
i � 8ð�l4

1i þ l2
1i þ al2il1i � l2

2iÞÞÞ;

� 4;i ¼ 2l1il2i;

� 5;i ¼
1

4
ð�ðb2

i þ 8l2
2;iÞaþ 8a� l1ið3�a2

i þ 8�l2
1i þ 8Þl2iÞ:
For a first approximation with K = 1, solving (22) gives
l11 ¼ l21 ¼ 0; a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48�þ 5
p

3�
� 5

3�

s
; b1 ¼ 2

ffiffiffi
2
p

:

This solution has been depicted in Fig. 6, for � = 0.1,1,10. At the same resolution, MGC scheme with the
parameters
m1 ¼ ðl11l21Þ
T
; C1 ¼

r2
11 q11r11r21

q11r11r21 r2
21

 !T
in (14) results in
l11 ¼ l21 ¼ q11 ¼ 0; r11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�þ 1
p

6�
� 1

6�

s
; r21 ¼ 1:
A comparison of exact solution, the solution for the MGC, and proposed schemes for the marginal density
p(x) are shown in Fig. 7. To investigate the effect of increasing nonlinearity on the approximation error,
kpex(x,y) � pCSP(x,y)k2 and kpex(x,y) � pMGC(x,y)k2 have been compared in Fig. 8.
� = 0 corresponds to a linear systems for which the state pdf is purely Gaussian, hence the pdf calculated

using the MGC scheme is exact. However, due to the filtering introduced by the compactly supported poly-
nomials by truncating the pdf at the tails, the error is high for the CSP scheme. As the value of � increases, the
approximation error introduced by the MGC scheme increases fast, where as the approximation error of CSP
scheme scales almost linearly. Hence, when the system is highly nonlinear, the CSP scheme results in better
approximation error profile.

The proposed scheme estimates the pdf of the states in both examples successfully. Using the compactly
supported polynomials as in (23) has an advantage that it needs at most 3Kn parameters to be determined
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Fig. 6. pa1 ;b1 ;l11 ;l21
ðx; yÞ, the CSP solution of duffing system for K = 1: (a) CSP, � = 0.1; (b) exact, � = 0.1; (c) CSP, � = 1; (d) exact, � = 1;

(e) CSP, � = 10; (f) exact, � = 10.
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totally (i.e., n, n, n � 1 parameters for axis lengths, the center point and the axis rotations of the n-dimensional
ellipsoids, respectively, together with the weights of the base functions). On the other hand, Multi-Gaussian
Closure scheme needs K ðnþ2Þðnþ1Þ

2
parameters, in the same resolution. Further reduction in number of param-

eters to be determined is possible if the ellipsoid axes are chosen to be equal and the rotations are omitted,
which may be suitable in some cases as in example 2. Besides, there is an obvious numerical advantage that
the integrations over the ellipsoidal regions are quite easier, e.g. to calculate needed the moments.

On the other hand, because of the properties of the base functions, the density obtained by the proposed
method can not approximate the tail of the exact pdfs well. Hence, the proposed form of approximate densities



− −

Fig. 7. A comparison of marginal densities obtained by exact, MGC and CSP solutions for the noise driven duffing system. K = 1, � = 1.

Fig. 8. The effect of increasing nonlinearity on the approximation error.
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may not be suitable for some cases such as reliability analysis. The proposed method is more suitable when
qualitative behavior of the system under consideration is to be characterized. The approximate solutions
obtained can also be used as an initial condition for iterative FPK solution methods as in [11] to improve
the accuracy.
4. Conclusions

In this paper, the new method of obtaining set of nonlinear algebraic equations whose solutions are the
parameters of compactly supported approximate solution of FPK equation in the weak sense for the nonlinear
systems driven with Gaussian white noise, has been presented. With the specific choice of compactly supported
polynomial functions, it has been possible to choose the number of parameters to be determined considerably
smaller than the MGC scheme as the dimensionality of the system increases. The errors between the exact
solution and approximate solutions have been examined, and compared for the two examples commonly
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encountered in the literature. The pdfs obtained by the proposed method are very close to the exact solution,
and are in agreement with the pdfs estimated by the Parzen’s estimator obtained from the simulation data. The
approximate pdfs of the CSP method also confirm the expected physical behavior as the noise power is chan-
ged. The method can also be used to determine stationary densities arising from the chaotic behavior of the
low dimensional deterministic dynamical systems due to the uncertainties in the initial conditions. Since the
calculation of the related entropies in terms of the systems parameters are possible with the determination
of the densities, the entropy increase in the bifurcation phenomena can also be observed for such systems.
Hence, as a future work, the controlling the chaotic dynamics might be achieved by optimization of the entro-
pies calculated via the pdfs using the CSP scheme.
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