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Abstract. The path generation synthesis of a double-slider linkage is performed for a given elliptic 

curve. It is shown that there are ∞2 linkages that can trace the same ellipse. The formulation for obtain-

ing all such linkages is presented. The formulation sheds light for the design of the planar slider-crank 

and four-bar linkages from the given algebraic form of the coupler path curve as well. 
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1 Introduction 

Path generation synthesis problem is one of the main problems of kinematic syn-

thesis of linkages. The synthesis can be performed via graphical or algebraic 

methods. Although the enhanced computer aided design programs can be fast and 

efficient means for path generation synthesis, algebraic formulation allows de-

tailed parametric design with several solutions. 

The algebraic design of planar linkages have been mainly performed using the 

dyadic approach for decades [1]. In the dyadic approach, the linkage is divided in-

to couples of links, called dyads and the dyad dimensions are determined using the 

position and loop closure equations for a given number of positions of the point to 

be traced on the desired path. In exact synthesis the coupler point of the linkage 

passes through the selected points for design, which are called precision points. 

On the other hand, in approximate synthesis, the coupler point does not exactly 

pass through the points selected for design, which are called design points [2]. 

While exact synthesis is studied abundantly [1], approximate synthesis methods 

are less known. For either exact or approximate synthesis, the main approach is to 

write the position and loop closure equations and then solve these equations to de-

termine the link length dimensions.  
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An alternative approach makes use of the characteristics of a coupler curve for 

path generation synthesis. Once the algebraic characteristics of the coupler curve 

of a linkage is known, one may seek a good fit of such a curve to the desired path. 

Such a study was first published by Bleschmidt and Uicker in 1986 [3], in which 

the trinodal tricircular sextic coupler curve of a planar four bar linkage is worked 

out. The sextic of the four-bar linkages is a special type of sixth order polynomial 

in x and y coordinates of the coupler point and it has 15 independent coefficients. 

These 15 coefficients are comprised of 9 independent linkage dimensions, hence 

an overdetermined system of 15 equations is obtained. In [3] the authors select 

very specific points on the coupler curve, such as the double points and singular 

foci, in order to determine the 15 coefficients of the sextic. They propose using an 

iterative method to solve for the linkage dimensions. In 1993 Ananthasuresh and 

Kota [4] further worked on [3] and developed an alternative method, which is 

based on fitting the sextic on 15 points and see if the 9 linkage dimensions can be 

determined. Obviously such a method is heavily based on trial and error. Recently 

Bai [5, 6] worked on the dependency among the coefficients for both four-bar and 

slider-crank linkages in order to obtain a determined system of equations. In case 

of a slider-crank linkage, the coupler curve is a special quartic with 13 coefficients 

depending on 8 independent linkage dimensions. Once a proper set of coefficients 

are given, Bai’s formulation allows the designer to determine the corresponding 

linkage dimensions via numerical solution of a nonlinear set of equations, which 

results in the cognate solutions. However, this methodology still does not answer 

the question of how to select the design points for the path generation problem. 

The path generation synthesis via the coupler curve equation problem consists 

of two steps: 1) Fitting the coupler curve with specific algebraic properties on a 

given set of points on the desired path and 2) Determining the linkage dimensions 

out of the coefficients of the curve. The curve fitting part is an issue because of the 

dependent coefficients of the curves of the slider-crank and four-bar linkages. 

While the planar slider-crank and four-bar linkages have fourth and sixth order 

coupler curves, respectively, coupler point of a double-slider linkage traces an el-

lipse - a second order curve. So, the double-slider linkage is also called an elliptic 

trammel and it has been used to draw exact ellipses since the times of Archimedes. 

Fitting an ellipse to a cluster of points is well studied in the literature (See for 

ex. [7]). In this study we investigate the determination of the double-slider linkage 

dimensions for a given ellipse equation. This is also a first step for further investi-

gation of the nature of coupler curves of slider-crank and four-bar linkages.  

2 The Double-Slider Linkage 

A double-slider linkage is depicted in Fig. 1. One can locate the coupler point P 

for given X0, Y0, , , p, q and h. The coupler triangle side lengths a, b and p + q 

can be determined from p, q and h.
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Fig. 1 A double-slider linkage 

The coordinates of P are found as follows: 
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where c and s are short for cos and sin, respectively. The variables t = |MR| and 

 depend on each other due to loop closure. Using sine theorem in triangle MQR 
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Substituting Eq. (2) in Eq. (1) and eliminating  from X and Y terms:  

 AX2 + BXY + CY2 + DX + EY + F = 0  (3) 

where  
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Eq. (3) is a quadratic polynomial in X and Y, so it is a conic section. Checking 

the discriminant  = B2 – 4AC, it can be seen that it is an ellipse equation: 
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Also we have a real ellipse if C < 0, where 
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 and  are invariants (under coordinate transformations) of the quadratic equa-

tion (3). For an ellipse  < 0 and if  = 0, it is a point ellipse and if C > 0, it is an 

imaginary ellipse [8]. Eq. (3) is a homogeneous equation with 6 coefficients, so 

only 5 of the coefficients can be arbitrary. Considering that the coefficients de-

pend on 7 linkage dimensions, two of the linkage dimensions can be selected arbi-

trarily. Therefore, infinitely many different double-slider linkages can draw the 

same ellipse, unlike the finitely many cognates of slider-crank or four-bar linkages 

drawing the same curve. Having noticed this, we can simplify the problem by as-

suming two of the linkage dimensions. Let = /2 and h = 0. This gives us the el-

liptic trammel originally used by Archimedes. In this case, the dimensions |RP| = a 

= p and |QP| = b = q give the semi-major and semi-minor axes of the ellipse, re-

spectively [9]. The coefficients simplify to 
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In Section 3, we explain how to determine the linkage dimensions from Eq. (6) 

for given coefficients. Then in Section 4, we generalize the solution for  ≠ /2 

and h ≠ 0.



Path Generation Synthesis of Planar Double-Slider Linkages via the Elliptic Coupler Curve   5 

3 Determining Linkage Dimensions from Coefficients 

For a given general ellipse equation with coefficients A, B, C, D, E and F, we can 

determine the linkage dimensions X0, Y0, , a and b from Eq. (6). However notice 

that the ellipse equation (3) is homogeneous, i.e. multiplying all coefficients with 

a constant does not alter the equation. We shall solve this problem as follows: The 

six coefficients given in Eq. (6) depend on five parameters, so there should be a 

relation among the six parameters. This relation is found by eliminating the link-

age dimensions from Eq. (6). Solving for X0 and Y0 from D and E: 
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Substituting X0 and Y0 solutions of Eq. (7) in F expression in Eq. (6) and using 

the  and  definitions given in Eqs. (4) and (5): 

 2 2a b 4     (8) 

For  = /2 and h = 0 from Eq. (4)  = –4a2b2, so from Eq. (8): 

 2 16      (9) 

Since C > 0 from Eq. (6), we can conclude that C < 0 from Eq. (9). So it is 

guaranteed that the ellipse is real. Eq. (9) gives a relationship among the coeffi-

cients of the ellipse equation (3). With this relationship we can deal with the ho-

mogeneity issue. 

For given link length dimensions X0, Y0, , a and b, we can uniquely determine 

the ellipse equation coefficients A, B, C, D, E and F by Eq. (6). Lets call these the 

normalized coefficients. However, when an ellipse equation is given, generically 

the coefficients A, B, C, D, E, F are not normalized. In [5, 6], the homogeneity 

problem is solved by dividing the equation by the leading coefficient, but this re-

sults in rather complicated rational expressions in terms of the linkage dimensions. 

We follow an alternative approach here. Let A = kA, B = kB, C = kC, D = kD, 

E = kE and F = kF for a nonzero constant k. Substituting these in Eq. (9) we get:  
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Given a general ellipse equation, the normalized coefficients are obtained by 

multiplying all original coefficients with k given in Eq. (10). After normalization, 

we can determine the linkage dimensions. X0 and Y0 are already found in Eq. (7). 

, a and b can be determined from the A, B and C expressions given in Eq. (6): 
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Noting that b < a, because a is the semi-major axis and b is the semi-minor axis 

of the ellipse,  can be determined as follows:  
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4 The General Case (  /2 and h  0)

In this section we demonstrate that the general case where   /2 and h  0 can 

be analyzed using the results from Section 3. It is well known that the coupler link 

of a planar double-slider linkage performs the Cardan (or elliptic) motion. In Car-

dan motion the moving and fixed centrodes are both circles. The moving circle has 

half the radius of the fixed circle and rolls inside. A general point has an elliptic 

path, while a point selected on the moving circle has a linear path [10]. In Fig. 1, 

point M is the center of the fixed circle and also a point on the moving circle. Also 

points Q and R are on the moving circle due to their linear path. So, for a given 

double-slider linkage, the moving centrode is simply the circle passing through the 

slider points Q, R and the intersection point M of the slider lines. Since all points 

on the moving circle have linear paths, one can relocate the slider points Q and R 

on the moving circle without disturbing the motion of the coupler link. 

The specific case we worked on in Section 3 ( = /2 and h = 0) corresponds to 

the case where |RQ| = a – b = 2r (r: radius of the moving circle) and the midpoint 

of RQ is the center of the moving circle. For a given elliptic equation (3), one can 

first obtain the specific linkage solution with  = /2 and h = 0. Then the moving 

circle can be obtained with center at midpoint T of RQ and radius |TR| = |TQ| = r 

= (a – b)/2. Then the slider points Q and R can be relocated to Q and R on the 

moving circle (Fig. 2). The new locations Q and R gives us the two arbitrary pa-

rameters for the infinitely many solutions of the linkage. 
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Fig. 2 Cardan circles and the coupler link 

In Fig. 2, a moving frame is attached to the coupler link such that x-axis is 

along RQ and the configuration where joint R is coincident with the fixed circle 

center M is shown. At this configuration, the new locations Q and R can be pa-

rameterized by angles 1 and 2 measured from the x-axis such that 1, 2  

(/2, /2] (CCW is positive). 1 and 2 are two parameters to be used instead of 

 and h of Fig. 1. Coordinates of P, Q and R with respect to xy-frame:  
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Recalling that r = (a – b)/2, the new link lengths of the coupler link QRP are  
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X0, Y0, , a (semi-major axis) and b (semi-minor axis) are determined in Sec-

tion 3. Eq. (14) gives d, e and f in terms of a, b and selected 1, 2. Once the link 

lengths are found, the kinematic analysis of the linkage can be performed and it 

can be verified that the coupler point P traces the given ellipse equation. We per-

formed this verification and also animated the motion of the linkage for any given 

ellipse equation using Microsoft Excel®. 
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5 Conclusions 

In order to determine the planar double-slider linkage dimensions for a given al-

gebraic equation of an elliptic curve, the scaling factor of the homogeneous equa-

tion is determined from the dependency of the ellipse equation coefficients and it 

is shown that the scale factor can be written in terms of the coordinate-free invari-

ants of the curve. Similarly, one can analyze the coupler curves of planar slider-

crank and four-bar linkages in a coordinate-free representation leading to determi-

nation of the invariants of the curve. We already solved the coordinate-free part 

for the slider-crank mechanism and there remains only the inclusion of coordinate 

transformations. Application of the approach for the four-bar linkage is also prom-

ising. 
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