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Abstract

The system modelling and the circuit implementation of the nonlinear circuits using the wavelet domain techniques has
been accomplished in this study. When the time–frequency domain specifications have been given as the wavelet ridges, the
signal with the given ridges has been synthesized. Then, the dynamical wavelet network has been trained for the synthesized
signal. The circuit of the wavelet network has been designed and simulated.
� 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

Although the dynamic behavior of linear networks is
fully determined, the behavior of nonlinear dynamic circuits
can be extremely complex and unpredictable. Furthermore,
there are no certain procedures especially for the synthesis
of nonlinear circuits, instead there are specific solutions for
several applications. Since the time-domain methods and
frequency-domain methods alone do not provide adequate
information about the dynamics of such signals, there have
been several studies on the analysis of the nonlinear dynam-
ical systems with time–frequency domain methods [1–6].
Also, there have been studies on the reconstruction of the
attractors of the chaotic systems using the Wigner–Ville
distribution [7] and the wavelet transform [8]. The wavelet
network [9] which combines feedforward neural net-
works and wavelet decompositions, have attracted many
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researchers since the wavelet analysis has been successfully
applied for analyzing signals both in space and frequency
domain with different resolution levels [10–12]. Addition-
ally, the wavelet network is powered with the statistical
techniques in [13].

In this study, a circuit design procedure for the nonlinear
circuits with desired time–frequency domain behavior us-
ing wavelet domain methods has been proposed [14]. The
system includes four main blocks: signals synthesis, sys-
tem modelling, circuit synthesis and verification which are
shown in Fig. 1. The signal synthesis block synthesizes the
signal with desired time–frequency domain properties using
wavelet ridges method [15]. The system modelling block de-
termines the parameters of the dynamical wavelet network
using the time-series synthesized by the first block. In the
circuit synthesis block, the wavelet network circuit has been
realized with the wavelon circuit proposed in [16–18]. In
the verification phase, the wavelet ridges of the output of
the wavelet network have been calculated by singular value
decomposition-based ridge determination method proposed
in [19].
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Fig. 1. The block diagram of the system.

2. Signal synthesis

The signal synthesis block synthesizes the signal with
given time–frequency domain specifications as follows:

E(t, f ) =

⎧⎪⎪⎨
⎪⎪⎩

E1(t, f ) t0 � t < t1 and f0 �f < f1
...

En(t, f ) tn−1 � t < tn and fn−1 �f < fn,

0 otherwise
(1)

where E(t, f ) represents the energy distribution in the
time–frequency plane.

In this section, before explaining the signal synthesis us-
ing wavelet ridges, the necessary definitions and concepts
about the wavelet transform and wavelet ridges will be given.

2.1. Wavelet transform

In continuous wavelet transform (CWT), the signal is pro-
jected on a family of zero-mean functions called wavelets,
deduced from a mother wavelet by translations and dilations

Ws(a, b; �)�
∫ ∞

−∞
s(t)�∗

a,b(t) dt , (2)

where a and b are the dilation (scale) and translation co-
efficients, respectively; the scaled and translated wavelet is
obtained as

�a,b(t)�
1

a
�

(
t − b

a

)
, a ∈ R+, b ∈ R, (3)

where �(·) is the mother wavelet and * denotes the complex
conjugate.

The local time–frequency energy density which is called
scalogram Ps(a, b; �) has been defined in the wavelet do-
main as in [20]

Ps(a, b; �)�|Ws(a, b; �)|2. (4)

The continuous wavelet transform conserves the total en-
ergy of the signal ET according to the Plancherel’s formula
as in [21]

ET�‖s‖2
2 =

∫ ∞

−∞
|s(t)|2 dt

= c−1
�

∫ ∞

−∞

∫ ∞

0
|Ws(a, b; �)|2 dadb

a
, (5)

where c� is the admissibility constant.
For the numerical computations, the discrete samples of

the continuous wavelet transform have been considered and
the scaled and translated wavelets have been defined at the
dyadic grid as

�m,n(t) = a
−m/2
0 �(a−m

0 t − nb0) m, n ∈ Z, (6)

where a0, b0 ∈ R are the dilation and translation coeffi-
cients, respectively.

If the wavelets defined in Eq. (6) are chosen such as to
constitute a Riesz basis for every s(t) ∈ L2(R), by consid-
ering only finite number of basis vectors for practical pur-
poses, the total energy in Eq. (5) can be approximately given
in [19] as

ẼT � k

c�

M∑
m=1

N∑
n=1

pmn, (7)

where k�b0 ln a0 and the entries of the scalogram matrix
P = [pmn]M×N are defined as

pmn�|cmn|2 (8)

which are the local time–frequency domain energy densities
evaluated at the discrete dilations am and translations bn.
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2.2. Wavelet ridges

A way of giving the time–frequency domain specifica-
tions is to define the ridge of the time–frequency trans-
form (wavelet or Gabor transforms) or the instantaneous
frequency of the signal. The instantaneous frequency of a
signal is simply defined as the derivative of the phase of the
signal, and therefore the signals can be modelled by using a
frequency-modulated signal fitted to the change of the main
frequency.

The multi-component signal with the instantaneous am-
plitudes Al(t) and the instantaneous phases �l (t) can be
described by

s(t) =
L∑

l=1

Al(t)e
j�l (t), (9)

where L is the number of the components, then the wavelet
transform can be written as

Ws(a,b;�)=1

2

L∑
l=1

Al(b)ej�l (b)�̂
∗
(a�′

l (b))+r(a,b) (10)

with r(a, b) ∼ O(|A′
l |, |�′′

l |) where the prime denotes the
derivative [21,22]. Therefore, if the Fourier transform of the
mother wavelet “�̂(�)” is localized near a certain frequency
� = �0, the scalogram is localized around L curves

al = al(b) = �0

�′
l (b)

, l = 1, . . . , L, (11)

which are called ridges of the wavelet transform. The values
of the scalogram along the ridge construct the transform
skeleton or wavelet curve. Thus, the original signal s(t) can
be recovered using the skeleton of the transform.

2.3. Signal synthesis using wavelet ridges

The reconstruction of the signal from the wavelet ridges
for mono-component and multi-component signals have
been given in [22] and [23], respectively.

The real part of the signal s(t) given in Eq. (9) can be
constructed from the skeleton of the transform using the
approximate formula Eq. (10) as

sr (b) = 2 Re

{
L∑

l=1

Ws(a
l(b), b; �)

}
(12)

where L is the number of the ridges. The reconstruction us-
ing the transform skeleton is a simple scheme and it produces
good approximations. However, it requires the knowledge
of the transform at each point of the ridge [22]. Therefore,
each point along the ridge should be given for synthesis, or
the gaps along the ridges should be completed using inter-
polation or curve-fitting techniques. The synthesis program

Fig. 2. The block diagram of the static wavelet network.

has been written in MATLAB [15]. The time–frequency
domain specifications of the wavelet ridges of signals have
been given interactively by the user. The monocomponent
and multicomponent signals with sinusoidal, hyperbolic
or linear ridges can be obtained. Also, the specific points
of the ridges in time–frequency domain can be given by
the user.

3. System modelling

Any finite energy multivariate function can be approx-
imated by wavelets using the multiresolution approxima-
tion property of the wavelet decomposition. In order to ap-
proximate arbitrary nonlinear functions the wavelet network
which combines feedforward neural networks and wavelet
decompositions has been proposed in [9]. The identifica-
tion of static and dynamical systems using wavelet net-
work have attracted many researchers since the wavelet anal-
ysis has been successfully applied for analyzing signals
both in time and frequency domain with different resolution
levels [10–13].

When the input–output pairs measured from the system
to be modelled is given as

{x(tk), y(tk)|y(tk) = f (x(tk)) + εk, k = 1, 2, . . . , K ,

f (·) : Rd → R}, (13)

where εk is the measurement noise, the problem is to min-
imize the mean square error between the actual output and
the output of the wavelet network

MSE�1

2
E{(y − fw(x))2}, (14)

where the output of the wavelet network is defined as

fw(x) =
N∑

i=1

wi�d(Di(x − bi)) + cT x + b̄, (15)

where N is the number of d-dimensional wavelons, wi is
the wavelet coefficient for each d-dimensional wavelon,



568 F.A. Savacı, N. Özkurt / Int. J. Electron. Commun. (AEÜ) 62 (2008) 565–575

Fig. 3. The block diagram of the dynamical wavelet network.

Fig. 4. The input–output voltage pair of wavelet circuit.

Di =diag(d1
11, . . . , d

1
dd) ∈ Rd×d is the diagonal dilation ma-

trix whose diagonal elements are di
jj =1/aij where aij is the

dilation coefficient, �d(·) : Rd → R is the mother wavelet
function, and bi ∈ Rd is the translation coefficient vector,
c ∈ Rd represents the coefficient of the linear term and b̄

is the bias term to approximate the functions with nonzero
mean. The block diagram of the static wavelet network is
shown in Fig. 2.

The optimum parameter set and the number of wavelons
are to be determined for the construction of the wavelet
network. The selection of suitable wavelons is implemented
by the “Stepwise Selection by Orthogonalization” algorithm
proposed in [13].

3.1. Dynamical system modelling with wavelet
network

The wavelet networks have also been used in the iden-
tification of the dynamical systems or in the prediction of
the future outputs of the systems. Assume that a dynamical

Fig. 5. The block diagram of Mexican hat mother wavelet circuit.

Fig. 6. The output of Mexican hat mother wavelet circuit.

system is defined as

y(k) = F(x(k)) + εk, F (·) : Rd → R. (16)

According to the Taken’s time-delay embedding theorem
[24], the multidimensional dynamical structure of the system
can be retrieved from single scalar variable observed from
the system. Let a vector xs ∈ Rd is constructed from the
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Fig. 8. The synthesized signal for Example 1 with wavelet ridges
method.

observations as

xs(k) = [y(k − T )y(k − 2T ) . . . y(k − dT )], (17)

where d is the embedding dimension and T is the embedding
delay. The

y(k) = F(xs(k)) (18)

follows the dynamical evolution of the original system.
Therefore, the next state of the system is predicted from the
previous observations.

The system evolution function F is approximated by some
arbitrary set of basis functions for the modelling or iden-
tification of the nonlinear dynamical systems [10–12]. The
purpose is to represent Eq. (18) with the suitable wavelet
network. Since the observations can be expressed as a func-
tion of past measurements, the past values are used as inputs
and the present values are used as output for the wavelet
network to approximate the function F(·). The output of the
wavelet network FW is

y(k) = Fw(xs(k))

=
N∑

i=1

wi�d(Dixs(k) − bi) + cT x + f̄ . (19)

The block diagram of the dynamical wavelet network is
shown in Fig. 3.

4. Circuit synthesis

The static and dynamical wavelet networks successfully
model the nonlinear systems. The circuit implementation of
the wavelet network with sigmoidal mother wavelet [16] and
Mexican Hat mother wavelet [17] will be introduced in this
section.
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Fig. 9. The embedded monocomponent signal in phase space and the output of the wavelet network.

Fig. 10. The output of the circuit for monocomponent signal.

4.1. The circuit implementation of sigmoidal
mother wavelet

The sigmoidal mother wavelet function, which has been
proposed in [25], can be implemented as the sum of three
translated hyperbolic tangent functions as

�(x) = tanh (x − 2) − 2 tanh (x) + tanh (x + 2). (20)

The hyperbolic tangent function can be implemented by a
dual–transistor pair [16]. The input–output voltage pair of
the wavelet circuit in the PSpice is shown in Fig. 4.

The circuit implementations of the tensor product
wavelets are obtained as the analog multiplication of the
one-dimensional wavelets.

4.2. The circuit implementation of Mexican hat
mother wavelet

The Mexican Hat mother wavelet is one of the commonly
used real mother wavelet because of its good approximation

ability. The mother wavelet defined as

�(x) = (d − ‖x‖2) exp

(
−‖x‖2

2

)
�(·) : Rd → R, (21)

where ‖x‖2 = xT x.
The block diagram of the d-dimensional Mexican Hat

mother wavelet circuit is shown in Fig. 5. The adders and
amplifiers are implemented with operational amplifiers and
the four channel four quadrant analog multiplier MLT04
of Analog devices has been used for multiplication and
the exponential function is implemented with an antilog
amplifier [17].

The measured input–output voltage pair of the Mexican
Hat mother wavelet circuit is shown in Fig. 6.

4.3. The circuit implementation of dynamical
wavelet network

The wavelet network can be used for modelling the
nonlinear dynamical systems and the block diagram of the
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Fig. 11. (a) The time waveform, (b) the modulus, (c) the phase of the wavelet transform, and (d) the instantaneous frequency of the output
of the wavelet network for monocomponent signal.
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Fig. 12. The synthesized multicomponent aperiodic signal by the wavelet ridges method.

system is as shown in Fig. 3. In order to implement the
circuit of the dynamical wavelet network some additions
are made to the static wavelet network with Mexican Hat
mother wavelet [17]. The dynamical wavelet network circuit
is shown in Fig. 7a [18].

The capacitors are used as the memory elements which
store the delayed versions of the output of the wavelet net-
work. The voltage controlled switches are controlled by the
external pulse generators which are triggered sequentially as
shown in Fig. 7b where the duration of the pulses satisfies
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Fig. 14. The output of the circuit for multicomponent aperiodic signal.

Td < T . The inputs of static wavelet network consists of the
voltages on the capacitors.

5. Verification

In the proposed nonlinear circuit synthesis system the cir-
cuit has been designed according to the specifications given
in the time–frequency domain as the wavelet ridges. When
the design process has been completed, the output of the sys-
tem must be tested to determine whether the proposed circuit
satisfies the given conditions. Therefore, the wavelet ridges
of the obtained signal should be determined. There are sev-
eral ridge determination algorithms. The methods proposed
in [22] for noisy monocomponent signals and in [23] for
noisy multicomponent signals are successful in determina-
tion of the actual ridges. The proposed method based on the
singular value decomposition (SVD) of the scalogram ma-
trix [19] is computationally more faster than both methods.
In the proposed method the singular value decomposition of
the scalogram matrix of the related signal has been obtained.
The effects of the additive white Gaussian noise (AWGN)
is higher on the smaller singular values which correspond

to the components of the signal with lower energy levels.
Therefore, the effect of the noise is reduced by truncating
the lower singular values. The approximated scalogram has
been obtained by reconstructing the matrix by only using
the larger singular values. Then the wavelet ridges are ob-
tained by calculating the local maxima of the approximated
scalogram matrix.

6. Application

The complete examples of the applications of the non-
linear circuit synthesis system will be given in this section.
The synthesis of the circuit with monocomponent periodic
output signal has been introduced in the first example. The
second example includes the synthesis of the circuit with
multicomponent aperiodic output signal.

6.1. Example 1: monocomponent signal

Signal synthesis program which uses the transform skele-
ton method has been written in MATLAB. When the time
and frequency range is given, the pure sinusoidal signal,
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a linear or hyperbolic chirp can be synthesized. Also, the
points in the ridge can be given interactively by the user and
the ridges have been calculated by the linear interpolation.
In order to illustrate the performance of the operation, the
wavelet transform of the synthesized signal has been calcu-
lated.

The signal which have the energy distribution as

E(t, f ) =
{

1 1� t < 1.2 s and f = 20 Hz
0 otherwise

(22)

has been synthesized as shown in Fig. 8.
The time series obtained from the “Signal Synthesis”

block is then transferred to the second block in order to
determine the wavelet network parameters. The time series
has been embedded by time-delay embedding by choosing
the embedding dimension as de = 3 and the embedding de-
lay as T = �s where �s is the sampling period and chosen
as �s = 0.001 in the signal synthesis process. The suitable
wavelons have been selected by the stepwise selection by
orthogonalization algorithm using the Mexican hat mother
wavelet function. The number of wavelons has been se-
lected as 3 and the algorithm has been implemented until the
wavelet level 3. Then, the wavelet network has been trained
by back-propagation training algorithm for 50 epochs. The
time-delay embedded phase space and the output of the
trained wavelet network are shown in Fig. 9.

After the determination of the wavelet network param-
eters, the wavelet network circuit has been designed by

selecting the suitable wavelons and by adjusting the param-
eters of the wavelons and the amplifiers. The dynamical cir-
cuit structure has been given in Fig. 7. The output of the
circuit in time-domain are shown in Fig. 10. The circuit is
not sensitive to the initial conditions, i.e., the sinusoidal out-
put signal has been reached at the steady state after short
transients.

The wavelet ridges of the output of the wavelet network
has been determined by SVD-based method proposed in
[19]. The output of the wavelet network, the modulus and
the phase of the wavelet transform and the instantaneous
frequency of the signal are shown in Fig. 11.

6.2. Example 2: multicomponent aperiodic signal

The time–frequency domain specifications of the desired
signal is as following

E(t, f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.2 0.2� t < 0.8 s and f = 4 Hz
0.3 0.2� t < 0.5 s and f = 7 Hz
0.2 0.4� t < 0.7 s and f = 8 Hz
0.1 0.3� t < 0.6 s and f = 11 Hz
0.2 0.5� t < 0.8 s and f = 13 Hz
1 0.2� t < 0.8 s and f = 15 Hz
0 otherwise

(23)

and the desired signal, target time–frequency plane, the syn-
thesized signal and the wavelet transform of the synthesized
signal are shown in Fig. 12.
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In order to train the wavelet network with Mexican hat
mother wavelet function, the embedding delay has been cho-
sen as T = �s where the sampling period is �s = 0.002 s and
the embedding dimension of de=3. The number of wavelons
in the wavelet network is 7 and the network has been
trained for 1000 epochs. The obtained mean squared error
is MSE = 0.000375857. The output of the wavelet network
in phase space and in time-domain are shown in Fig. 13.

The wavelet network circuit has been simulated in Spice.
The output signal of the circuit in time domain are shown
in Fig. 14.

The wavelet ridges of the output signal have been ob-
tained by the SVD-based ridge determination algorithm. The
results are shown in Fig. 15.

7. Conclusions

A nonlinear circuit synthesis method in wavelet do-
main has been proposed in this study. When the desired
time–frequency domain specifications are given, the values
of the parameters of the dynamical wavelet circuit have
been determined in three steps. These are signal synthesis,
the system modelling and the circuit synthesis. As a last
step of the procedure, the accuracy of the synthesis has
been investigated by the verification block.
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