
Computational Cost Analysis of Elliptic Curve Arithmetic

Serap Atay1, Ahmet Koltuksuz2, Hüseyin Hışıl3, Şaban Eren4

1,2,3 Izmir Institute of Technology, College of Engineering, Dept. of Computer Engineering,

Gülbahçe, Urla, 35430 Izmir, Turkey
{serapatay, ahmetkoltuksuz, huseyinhisil}@iyte.edu.tr

4Ege University, College of Engineering, Dept. of Computer Engineering,

Bornova, Izmir, Turkey
saban.eren@ege.edu.tr

Abstract

Elliptic curves are proposed for the asymmetrical
cryptography by Neal Koblitz and Victor Miller in
1986 separately. Elliptic curve cryptography (ECC) is
utilized by hardware embedded solutions on mobile
equipments and smart cards after 2000. Currently,
software implementation of ECC faces the
computational speed problem. One of the proposed
solutions is to do the arithmetic operations on different
Euclidean coordinate systems. This paper concentrates
on the research of this technique and delineates the
performance results of the implementation of the
aforementioned technique on the different
cryptographic libraries such as CRYMPIX, GMP and
MIRACL.

1. Introduction

The efficiency values of a software application such
as running time and space utilization become very
critical when the usability of an application is
evaluated. This can be even more critical if a
cryptographic protocol is used to establish a personal
identification entity or to perform an
encryption/decryption for a financial transaction with
mobile equipment or to utilize a smart card in an
unsecured platform such as Internet. The applications
should establish the service in an acceptable time with
the limited resources. However, the contemporary
mobile equipments and smart cards have limits on
computational power, main memory and
communication bandwidth. In the mean time, the
Internet is an open platform and Moor’s law [8] is
valid for the malicious application programs and
persons. Therefore, the cryptographic solution should
provide the higher security level with low
computational power and shorter key lengths.

Today, the elliptic curve cryptography provides all
these requirements with hardware embedded
implementations. The application specific circuits
(ASICs) or field programmable gate area logic circuits
(FPGAs) are preferred in hardware embedded
implementations. In ASIC implementation, design
phase is expensive, if FPGA is used, the design is
cheaper but the production of many products is
expensive. The software implementation of elliptic
curve cryptography counters these requirements,
except the computational speed with the minimal costs.
The computational speed problem is due to expensive
arithmetic operations on elliptic curves such as
calculation of multiplicative inverses and
multiplication operations.

This study concentrates on the reduction
methodologies of computational cost of arithmetic
operations for the elliptic curve cryptography in
software platform. The rest of this paper is organized
as follows: Section 2 details the different coordinate
systems as well as elliptic curve point addition
arithmetic on those coordinate systems. The arithmetic
of elliptic curves and the computational costs regarding
different coordinate systems are also covered in this
section.

The performance issue of the arithmetic operations
on elliptic curves for different coordinate systems is
evaluated in section 3. In this section three different
cryptographic libraries, CRYMPIX, GMP and
MIRACL are used for the defined operations and,
those three libraries are compared and contrasted
against one another. Section 4 summarizes the findings
and the contributions on the topics given above.

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00 © 2006

2. Elliptic Curve Point Addition Arithmetic
in Different Coordinate Systems

2.1. Efficiency Measurements

The point addition arithmetic is applied on two and
three dimensional coordinate systems. The
computational cost of each arithmetic operation should
be taken into consideration in order to compare the
efficiency of algorithms in different coordinate
systems. The efficiency is measured as the
computational cost, which is in terms of elapsed time.
The types of arithmetic operations are listed from high
to low computational cost as depicted in Fig. 2.1. The
measured units in Fig. 2.1 are as follows:

• Inversion (I) is the multiplicative inverse in
modular arithmetic. It has the highest
computational cost and one inversion is
approximately equals nineteen times of the
cost of multiplication cost and denoted as
1I ≈ 19M .

• Multiplication (M) has a lower cost than
inversion; therefore all inversions should be
converted either to multiplication or to
addition.

• Addition (A) and subtraction (S) have the
lowest cost, therefore omitted.

Although it is not directly shown in Figure 2.1 there
is yet another existing operation named as reduction.
The reduction operation is necessary after each
arithmetic operation since the results of all arithmetic
operations should be guaranteed to be over the selected
prime field. Such as if the Montgomery reduction
technique is used; then the computational cost of one
multiplication and reduction gets to be lower than
standard multiplication and reduction operations. [3]

0
0,02
0,04
0,06
0,08
0,1

0,12

m
se

c

256 512 bits

The operational costs of arithmetic operations

Mul+Mod Inversion Mul+Mod (Montgomery)

Figure 2.1 The operational costs of arithmetic
operations.

2.2. Using Different Coordinate Systems

The NIST curves for all coordinate systems were
employed in this study [9]. Point is defined by only
two dimensions in the Affine coordinate system, it has
the simplest form and requires the lowest bandwidth,
and therefore it is preferred for communication
between any two parties [4]. However, modular
inversion is required for point addition and doubling
rendering the Affine coordinate system highly
inefficient. Other coordinate systems require at least
one extra value to represent a point but do not require
the use of modular inversion.

Figure 2.2 represents the computational cost of
NIST curves while summarizing the addition and
doubling operations and their respective computational
costs in terms of time spent in different coordinate
systems. The studied systems are Affine, Projective,
Jacobian, Modified Jacobian and of Chudnovsky [1]
[2] [3] [4] [6].

The Jacobian coordinate has faster doubling but
slower addition than Projective coordinates. The
Modified Jacobian and Chudnovsky Jacobian have the
same arithmetical operations with that of Jacobian. In
other words, the Modified Jacobian and Chudnovsky
Jacobian are the variants of the Jacobian coordinate
system [4].

22

12

9
10

8

21

14
16

14
16

0

5

10

15

20

25

C
os

t

Doubling Addition

Computational time values for different coordinate systems.

Affine Projective Jacobian Chudnovsky Modified Jocobian

Figure 2.2 Computational time values for
different coordinate systems.

Cohen proposed the mixed coordinates, where the

inputs and outputs to point additions and doublings
may be in different coordinates [2]. This can be very
efficient when scalar multiplication is implemented
with the base point stored in Affine coordinates. The
costs of point conversion are represented in Table 2.1.

The conversion between Affine and Projective
coordinates is inefficient due to a required inversion

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00 © 2006

operation. Nevertheless; the conversion among the
three Jacobian variants (Jacobian, Modified Jacobian
and Chudnovsky Jacobian) is efficient and thus
preferred for the scalar multiplication. The scalar
multiplication can be started with point doubling in
Modified Jacobian and continue with point addition in
Chudnovsky Jacobian with the lowest cost.

 Table 2.1 The computational costs of point
conversion between different coordinate systems

[4].

3. Elliptic Curve Arithmetic on Different
Software Libraries and Coordinate
Systems

The point doubling and point addition is
implemented by using NIST curves with 192, 224,
256, 384 and 521 bit elliptic curves and their domain
parameters [9]. A Pentium 4 microprocessor computer
is used in this study; it has 512MB RAM, 256KB
cache, and Windows XP operating system, plus an
ANSI C compiler.

The elliptic curve point addition and doubling
algorithms are implemented on CRYMPIX, MIRACL
and GMP multiprecision cryptographic software
libraries. Each arithmetic operation is tested 10000
times in each coordinate system by different libraries
and the average running times were collected for all.

3.1. Implementation with CRYMPIX Software
Library

The “CRYMPIX” is a multiprecision cryptographic

software development library [5]. It is in version
0.1.2.1 now and is developed by a research group in
IS3 Laboratory of Izmir Institute of Technology [10].
CRYMPIX triggers base case methods for ECC sized
operands. The function call overhead is decreased by
the help of C macros. The memory management
overhead is negligible with built-in kernel functions.
All codes are compiled in “optimization -2”. Figures
3.1 and 3.2 depict the point addition and point

doubling operations performed in CRYMPIX with
different coordinate systems.

Point Addition in Crympix

0,00

0,02

0,04

0,06

0,08

0,10

0,12

192 224 256 384 521 bits

m
se

c

Affine Projective
Jacobian Chudnovsky
Modified Jocobian

Figure 3.1 Point addition in different coordinate
systems in CRYMPIX.

From an algorithmic analysis point of view, which
was presented in Figure 2.2, the Chudnovsky Jacobian
and Projective coordinates have the same
computational cost for addition and, that is evident in
Figure 3.1.

Point Doubling in Crympix

0,00

0,02

0,04

0,06

0,08

0,10

0,12

192 224 256 384 521 bits

m
se

c

Affine Projective
Jacobian Chudnovsky
Modified Jocobian

Figure 3.2 Point doubling in different coordinate
systems in CRYMPIX.

Again, all the measurements represented in Figure
3.2 are clearly in accordance with the measurements
depicted in Figure 2.2.

3.2. Implementation with GMP Software
Library

GMP is a multiprecision software development
library [11]. The GMP is now in version 4.1.4,
assembly modules are excluded for the test operations;
and compilation is done in “optimization -2”. Figures

From/To Affine Projective Jacobian
Chud-
novsky Modified

Affine
Projective 2M+I 2M+I 2M+I 2M+I

Jacobian 4M+I 4M+I 2M 3M

Chudnovsky 4M+I 4M+I 3M

Modified 4M+I 4M+I 2M

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00 © 2006

3.3 and 3.4 reflect the same operations performed in
GMP library.

Point Doubling in GMP

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

192 224 256 384 521 bits

m
se

c

Affine Projective
Jacobian Chudnovsky
Modified Jocobian

Figure 3.3 Point doubling in different coordinate
systems in GMP.

Specifically the point doubling has the most
efficient values in Modified Jacobian Coordinates with
GMP.

Point Addition in GMP

0,00
0,02
0,04
0,06
0,08
0,10
0,12
0,14
0,16

192 224 256 384 521 bits

m
se

c

Affine Projective
Jacobian Chudnovsky
Modified Jocobian

Figure 3.4 Point addition in different coordinate
systems in GMP.

GMP uses the “Exact division scheme” for
inversion. This inversion method is very efficient. The
result of this effectiveness is clearly seen in Figure 3.4.
Specifically, 521 bits elliptic arithmetic is more
efficient in Affine coordinate system. The utilization of
efficient inversion and standard reduction techniques
causes this unexpected result with GMP.

3.3. Implementation with MIRACL Software
Library

MIRACL v.4.8 includes the related functions for
point doubling and addition in Affine and Jacobian
coordinate systems. Therefore, the test results could be
collected only for these coordinates, and these
functions include “is_the_point_on_the_curve” control

operation, therefore calculations could be done for
point addition 10000 times after first doubling
operation. MIRACL uses Karatsuba and Comba
multiplication algorithms and utilizes Montgomery
reduction method [1] [3]. Figure 3.5 depicts the point
addition operation in MIRACL library.

Point Addition in MIRACL

0,00

0,02

0,04

0,06

0,08

0,10

0,12

192 224 256 384 521 bits

m
se

c

Affine Jacobian

Figure 3.5 Performance values for point addition in
MIRACL.

As shown in Figure 3.5, the computational cost of
elliptic curve arithmetic is cheaper in Jacobian
coordinate system and it is harmonized with Figure 2.2
as expected.

4. Conclusions & Contributions

The speed problem of ECC implementation comes

from the highly computational cost of elliptic curve
arithmetic. The inversion has the highest cost and if
“three dimensional” coordinate systems are used
instead of Affine coordinate system; the inversion is
eliminated. When the Projective coordinate system and
Jacobian coordinate systems are evaluated, the speed
can be increased approximately 30%. Moreover, the
computational cost of point conversion from one
coordinate system to the other is another important
point and the computational costs of point conversion
between different coordinate systems are summarized
in Table 2.1.

Taking into account the Table 4.1 it could be seen
that, the Modified Jacobian has the minimal cost for
doubling and Chudnovsky Jacobian has the minimal
cost for addition and the cost for addition is the same
for Projective and Chudnovsky Jacobian. However, the
conversion cost from Modified Jacobian to Projective
is 4M + I. Therefore, the execution should be done
completely on Jacobian coordinate system. For
example, the sequence of using coordinate systems can
be preferred as Modified Jacobian for doubling and
Chudnovsky Jacobian for point addition.

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00 © 2006

Table 4.1 Comparison of the computational costs of
the Projective and Jacobian coordinate systems for
scalar multiplication.

10. References

[1]. Blake I., Serousii G. & Smart N., Elliptic Curves in
Cryptography, Cambridge University Press, 1999.

[2]. Cohen H., Miyaji A., Ono T., “Efficient elliptic curve
exponentiation using mixed coordinates”, In Advances in
Cryptology – Asiacrypt’98 (Beijing), valume 1514, Lecture
notes in Computer Sciences, Springer Verlag Berlin, 1998,
pp. 51-65.

[3]. Hankerson D., Menezes A., Vanstone S., Guide to
Elliptic Curve Cryptography, Springer Verlag, 2003.

[4]. Hitchcook Y., Dawson E., Clark A., Montague P.,
“Implementing an Efficient Elliptic Curve Cryptosystem over
GF(p) on a Smart Card”, The 10th Biennial Computational
Techniques and Applications Conference, 16-18 July 2001,
University Of Queensland,Brisbane, Australia, Received 1
June 2001, revised 24 October 2002.

[5]. Koltuksuz, A., Hişil, H., “Crympix: Cryptographic
Multiprecision Library”, LNCS 3733, ISBN: 3-540-29414-7,
vol. 3733/2005, Springer-Verlag, pp. 884-893.

[6]. Silverman J. H., The Arithmetic of Elliptic Curves,
Springer Verlag, New York, 1986.

[7]. Washington L. C., Elliptic Curves Number Theory and
Cryptography, Chapman Publications, 2003.

[8]. http://www.intel.com/research/silicon/mooreslaw.html

[9]. http://csrc.nist.gov/fips

[10]. http://is3.iyte.edu.tr/

[11]. http://www.swox.com/gmp/

 Conversion

 Doubling Addition Modified
Chud-
novsky

Pro
Jective

Projective 12M 14M 2M+I 2M+I
Chudnovsky 10M 14M 3M 4M+I
Modified
Jocobian 8M 16M 2M 4M+I

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00 © 2006

