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Abstract 
 

Elliptic curves are proposed for the asymmetrical 
cryptography by Neal Koblitz and Victor Miller in 
1986 separately. Elliptic curve cryptography (ECC) is 
utilized by hardware embedded solutions on mobile 
equipments and smart cards after 2000. Currently, 
software implementation of ECC faces the 
computational speed problem. One of the proposed 
solutions is to do the arithmetic operations on different 
Euclidean coordinate systems. This paper concentrates 
on the research of this technique and delineates the 
performance results of the implementation of the 
aforementioned technique on the different 
cryptographic libraries such as CRYMPIX, GMP and 
MIRACL.  
 
1. Introduction 
 

The efficiency values of a software application such 
as running time and space utilization become very 
critical when the usability of an application is 
evaluated. This can be even more critical if a 
cryptographic protocol is used to establish a personal 
identification entity or to perform an 
encryption/decryption for a financial transaction with 
mobile equipment or to utilize a smart card in an 
unsecured platform such as Internet. The applications 
should establish the service in an acceptable time with 
the limited resources. However, the contemporary 
mobile equipments and smart cards have limits on 
computational power, main memory and 
communication bandwidth. In the mean time, the 
Internet is an open platform and Moor’s law [8] is 
valid for the malicious application programs and 
persons. Therefore, the cryptographic solution should 
provide the higher security level with low 
computational power and shorter key lengths. 

Today, the elliptic curve cryptography provides all 
these requirements with hardware embedded 
implementations. The application specific circuits 
(ASICs) or field programmable gate area logic circuits 
(FPGAs) are preferred in hardware embedded 
implementations. In ASIC implementation, design 
phase is expensive, if FPGA is used, the design is 
cheaper but the production of many products is 
expensive. The software implementation of elliptic 
curve cryptography counters these requirements, 
except the computational speed with the minimal costs. 
The computational speed problem is due to expensive 
arithmetic operations on elliptic curves such as 
calculation of multiplicative inverses and 
multiplication operations. 

This study concentrates on the reduction 
methodologies of computational cost of arithmetic 
operations for the elliptic curve cryptography in 
software platform. The rest of this paper is organized 
as follows: Section 2 details the different coordinate 
systems as well as elliptic curve point addition 
arithmetic on those coordinate systems. The arithmetic 
of elliptic curves and the computational costs regarding 
different coordinate systems are also covered in this 
section. 

The performance issue of the arithmetic operations 
on elliptic curves for different coordinate systems is 
evaluated in section 3. In this section three different 
cryptographic libraries, CRYMPIX, GMP and 
MIRACL are used for the defined operations and, 
those three libraries are compared and contrasted 
against one another. Section 4 summarizes the findings 
and the contributions on the topics given above. 

 

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00  © 2006



2. Elliptic Curve Point Addition Arithmetic 
in Different Coordinate Systems  
 
2.1. Efficiency Measurements 
 

The point addition arithmetic is applied on two and 
three dimensional coordinate systems. The 
computational cost of each arithmetic operation should 
be taken into consideration in order to compare the 
efficiency of algorithms in different coordinate 
systems. The efficiency is measured as the 
computational cost, which is in terms of elapsed time. 
The types of arithmetic operations are listed from high 
to low computational cost as depicted in Fig. 2.1. The 
measured units in Fig. 2.1 are as follows: 

• Inversion (I) is the multiplicative inverse in 
modular arithmetic. It has the highest 
computational cost and one inversion is 
approximately equals nineteen times of the 
cost of multiplication cost and denoted as 
1I ≈ 19M .  

• Multiplication (M) has a lower cost than 
inversion; therefore all inversions should be 
converted either to multiplication or to 
addition. 

• Addition (A) and subtraction (S) have the 
lowest cost, therefore omitted. 

Although it is not directly shown in Figure 2.1 there 
is yet another existing operation named as reduction. 
The reduction operation is necessary after each 
arithmetic operation since the results of all arithmetic 
operations should be guaranteed to be over the selected 
prime field. Such as if the Montgomery reduction 
technique is used; then the computational cost of one 
multiplication and reduction gets to be lower than 
standard multiplication and reduction operations. [3] 
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Figure 2.1 The operational costs of arithmetic 
operations. 
 

2.2. Using Different Coordinate Systems  
 

The NIST curves for all coordinate systems were 
employed in this study [9]. Point is defined by only 
two dimensions in the Affine coordinate system, it has 
the simplest form and requires the lowest bandwidth, 
and therefore it is preferred for communication 
between any two parties [4]. However, modular 
inversion is required for point addition and doubling 
rendering the Affine coordinate system highly 
inefficient.  Other coordinate systems require at least 
one extra value to represent a point but do not require 
the use of modular inversion. 

Figure 2.2 represents the computational cost of 
NIST curves while summarizing the addition and 
doubling operations and their respective computational 
costs in terms of time spent in different coordinate 
systems. The studied systems are Affine, Projective, 
Jacobian, Modified Jacobian and of Chudnovsky [1] 
[2] [3] [4] [6]. 

The Jacobian coordinate has faster doubling but 
slower addition than Projective coordinates. The 
Modified Jacobian and Chudnovsky Jacobian have the 
same arithmetical operations with that of Jacobian. In 
other words, the Modified Jacobian and Chudnovsky 
Jacobian are the variants of the Jacobian coordinate 
system [4]. 
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Figure 2.2 Computational time values for 
different coordinate systems. 

 
Cohen proposed the mixed coordinates, where the 

inputs and outputs to point additions and doublings 
may be in different coordinates [2]. This can be very 
efficient when scalar multiplication is implemented 
with the base point stored in Affine coordinates. The 
costs of point conversion are represented in Table 2.1. 

The conversion between Affine and Projective 
coordinates is inefficient due to a required inversion 

2006 International Conference on Hybrid Information Technology (ICHIT'06)
0-7695-2674-8/06 $20.00  © 2006



operation. Nevertheless; the conversion among the 
three Jacobian variants (Jacobian, Modified Jacobian 
and Chudnovsky Jacobian) is efficient and thus 
preferred for the scalar multiplication. The scalar 
multiplication can be started with point doubling in 
Modified Jacobian and continue with point addition in 
Chudnovsky Jacobian with the lowest cost. 

 
 Table 2.1 The computational costs of point 
conversion between different coordinate systems 

[4]. 
 
 
3. Elliptic Curve Arithmetic on Different 
Software Libraries and Coordinate 
Systems  
 

The point doubling and point addition is 
implemented by using NIST curves with 192, 224, 
256, 384 and 521 bit elliptic curves and their domain 
parameters [9]. A Pentium 4 microprocessor computer 
is used in this study; it has 512MB RAM, 256KB 
cache, and Windows XP operating system, plus an 
ANSI C compiler. 

The elliptic curve point addition and doubling 
algorithms are implemented on CRYMPIX, MIRACL 
and GMP multiprecision cryptographic software 
libraries. Each arithmetic operation is tested 10000 
times in each coordinate system by different libraries 
and the average running times were collected for all.  
 
3.1. Implementation with CRYMPIX Software 
Library  

 
The “CRYMPIX” is a multiprecision cryptographic 

software development library [5]. It is in version 
0.1.2.1 now and is developed by a research group in 
IS3 Laboratory of Izmir Institute of Technology [10]. 
CRYMPIX triggers base case methods for ECC sized 
operands. The function call overhead is decreased by 
the help of C macros. The memory management 
overhead is negligible with built-in kernel functions.  
All codes are compiled in “optimization -2”. Figures 
3.1 and 3.2 depict the point addition and point 

doubling operations performed in CRYMPIX with 
different coordinate systems. 
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Figure 3.1 Point addition in different coordinate 
systems in CRYMPIX. 
 

From an algorithmic analysis point of view, which 
was presented in Figure 2.2, the Chudnovsky Jacobian 
and Projective coordinates have the same 
computational cost for addition and, that is evident in 
Figure 3.1. 

 

Point Doubling in Crympix

0,00

0,02

0,04

0,06

0,08

0,10

0,12

192 224 256 384 521 bits

m
se

c

Affine Projective
Jacobian Chudnovsky
Modified Jocobian

 
Figure 3.2 Point doubling in different coordinate 
systems in CRYMPIX. 
 

Again, all the measurements represented in Figure 
3.2 are clearly in accordance with the measurements 
depicted in Figure 2.2. 
 
3.2. Implementation with GMP Software 
Library  
 

GMP is a multiprecision software development 
library [11]. The GMP is now in version 4.1.4, 
assembly modules are excluded for the test operations; 
and compilation is done in “optimization -2”. Figures 

From/To Affine Projective Jacobian 
Chud-
novsky Modified

Affine      
Projective 2M+I  2M+I 2M+I 2M+I 

Jacobian 4M+I 4M+I  2M 3M 

Chudnovsky 4M+I 4M+I   3M 

Modified 4M+I 4M+I  2M  
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3.3 and 3.4 reflect the same operations performed in 
GMP library. 

 

Point Doubling in GMP
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Figure 3.3 Point doubling in different coordinate 
systems in GMP. 
 

Specifically the point doubling has the most 
efficient values in Modified Jacobian Coordinates with 
GMP. 
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Figure 3.4 Point addition in different coordinate 
systems in GMP. 
 

GMP uses the “Exact division scheme” for 
inversion. This inversion method is very efficient. The 
result of this effectiveness is clearly seen in Figure 3.4. 
Specifically, 521 bits elliptic arithmetic is more 
efficient in Affine coordinate system. The utilization of 
efficient inversion and standard reduction techniques 
causes this unexpected result with GMP. 
 
3.3. Implementation with MIRACL Software 
Library  
 

MIRACL v.4.8 includes the related functions for 
point doubling and addition in Affine and Jacobian 
coordinate systems. Therefore, the test results could be 
collected only for these coordinates, and these 
functions include “is_the_point_on_the_curve” control 

operation, therefore calculations could be done for 
point addition 10000 times after first doubling 
operation. MIRACL uses Karatsuba and Comba 
multiplication algorithms and utilizes Montgomery 
reduction method [1] [3]. Figure 3.5 depicts the point 
addition operation in MIRACL library. 
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Figure 3.5 Performance values for point addition in 
MIRACL. 
 

As shown in Figure 3.5, the computational cost of 
elliptic curve arithmetic is cheaper in Jacobian 
coordinate system and it is harmonized with Figure 2.2 
as expected. 

 
4. Conclusions & Contributions  

 
The speed problem of ECC implementation comes 

from the highly computational cost of elliptic curve 
arithmetic.  The inversion has the highest cost and if 
“three dimensional” coordinate systems are used 
instead of Affine coordinate system; the inversion is 
eliminated. When the Projective coordinate system and 
Jacobian coordinate systems are evaluated, the speed 
can be increased approximately 30%. Moreover, the 
computational cost of point conversion from one 
coordinate system to the other is another important 
point and the computational costs of point conversion 
between different coordinate systems are summarized 
in Table 2.1. 

Taking into account the Table 4.1 it could be seen 
that, the Modified Jacobian has the minimal cost for 
doubling and Chudnovsky Jacobian has the minimal 
cost for addition and the cost for addition is the same 
for Projective and Chudnovsky Jacobian. However, the 
conversion cost from Modified Jacobian to Projective 
is 4M + I. Therefore, the execution should be done 
completely on Jacobian coordinate system. For 
example, the sequence of using coordinate systems can 
be preferred as Modified Jacobian for doubling and 
Chudnovsky Jacobian for point addition. 
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Table 4.1 Comparison of the computational costs of 
the Projective and Jacobian coordinate systems for 
scalar multiplication. 
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   Conversion 

 Doubling Addition Modified
Chud-
novsky

Pro 
Jective

Projective 12M 14M 2M+I 2M+I  
Chudnovsky 10M 14M 3M  4M+I
Modified  
Jocobian 8M 16M  2M 4M+I
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