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Case Study: Finite Element Method and Artificial Neural
Network Models for Flow through Jeziorsko Earthfill Dam in
Poland

Gokmen Tayfur'; Dorota Swiatek?; Andrew Wita®; and Vijay P. Singh, F.ASCE*

Abstract: A finite element methodFEM) and an artificial neural networkANN) model were developed to simulate flow through
Jeziorsko earthfill dam in Poland. The developed FEM is capable of simulating two-dimensional unsteady and nonuniform flow through
a nonhomogenous and anisotropic saturated and unsaturated porous body of an earthfill dam. For Jeziorsko dam, the FEM model h
5,497 triangular elements and 3,010 nodes, with the FEM network being made denser in the dam body and in the neighborhood of th
drainage ditches. The ANN model developed for Jeziorsko dam was a feedforward three layer network employing the sigmoid function
as an activator and the back-propagation algorithm for the network learning. The water levels on the upstream and downstream sides
the dam were input variables and the water levels in the piezometers were the target outputs in the ANN model. The two models wert
calibrated and verified using the piezometer data collected on a section of the Jeziorsko dam. The water levels computed by the mode
satisfactorily compared with those measured by the piezometers. The model results also revealed that the ANN model performed as goc
as and in some cases better than the FEM model. This case study offers insight into the adequacy of ANN as well as its competitivenes
against FEM for predicting seepage through an earthfill dam body.
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men et al.(2002 drilled boreholes and used dye trace tests to
identify the seepage paths in the rock-fill Kalecik dam in Turkey.

Earthfill and rockfill dams are usually designed under steady state  USing a finite element metho@"EM) based on an invariant
seepage. Anomalous seepage may pose a threat to the integrity dhesh technique, Honjo et 4995 analyzed seepage through the
the dam, and any excessive and unplanned seepage may lead @turated-un_saturated zone in the _Tqu_aela dam in P_aklstan. Th_ey
the dam failure. Prediction of infiltration and seepage in time and @nalyzed various stages of reservoir filling and depletion and vari-
space and the consequent seepage path through the dam is impoPUS_conditions of sedimentation in the reservoir. Tien-Kuen
tant for planning and implementing technically and economically (1996 investigated the stability of an earth dam under steady
sound remedial stability measures. state seepage by a FEM. Naouss and N4fla96 developed a
Seepage paths have been predicted by both physical and mathfinite difference methodFDM) to calculate the piezometer head
ematical models. Panthulu et 42001 used an electrical resis- and seepage velocity at all nodal locations within a permeable
tivity method to delineate zones favorable to seepage and a self-Stratum. Solving the inverse problem with a steady state model of
potential method to delineate seepage paths for two of the Saddle*aturated-unsaturated seepage flow in porous media, Xu et al.

dams of the Som-Kamla-Amba project in Rajasthan, India. Turk- (2003 designed a hydraulically optimal earth-dam cross section.
This study developed a numerical model using the FEM for

two-dimensional unsteady state seepage through the saturated-

Introduction

professor, Dept. of Civil Engineering, Faculty of Engineering, lzmir
Institute of Technology, Gulbahcekoyu, Urla, lzmir 35347, Turkey.
E-mail: gokmentayfur@iyte.edu.tr

Assistant  Professor, Dept. of Hydraulic Engineering and
Environmental Recultivation, Warsaw Agricultural Univ., Warsaw,
Poland. E-mail: dorotams@Ievis.sggw.waw.pl

SAssistant  Professor, Institute  of Meteorology and Water
Management, Dams Monitoring Centre, Warsaw, Poland. E-mail:
aw@otkz.pol.pl

“A. K. Barton Professor, Dept. of Civil and Environmental
Engineering, Louisiana State Univ., Baton Rouge, LA 70803-6405
(corresponding authprE-mail: cesing@Isu.edu

Note. Discussion open until November 1, 2005. Separate discussions
must be submitted for individual papers. To extend the closing date by
one month, a written request must be filed with the ASCE Managing

unsaturated zone in an earthfill dam. The FEM model can be more
effective when data on the spatial variation of the actual model
parameters at every element of the numerical mesh is available.
However, such extensive data throughout the entire dam body is
seldom available, primarily due to time and budgetary constraints.
Furthermore, the numerical solution of the highly nonlinear flow
equations is prone to problems of instability and lack of conver-
gence. Thus, in this study, an artificial neural netwGANN)
model was also developed for predicting seepage in time and
space and the locus of the seepage path utilizing only the water
level data at the upper and lower pools of a dam.

ANNSs have been recently employed for the solution of many
hydraulic, hydrologic, and water resources problems ranging from

Editor. The manuscript for this paper was submitted for review and pos- "ainfall runoff (Tokar and Johnson 1999; Rajurkar et al. 20@2
sible publication on June 2, 2003; approved on November 16, 2004. This Sediment transpoxtiain 2001; Tayfur 2002; Nagy et al. 200®

paper is part of thdournal of Hydraulic Engineering, Vol. 131, No. 6,
June 1, 2005. ©ASCE, ISSN 0733-9429/2005/6-431-440/$25.00.

solute transportAziz and Wong 1992; Lu et al. 1998However,
for seepage through an earthfill dam they do not seem to have
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been applied. In addition, it is not clear how they would compare  The hydraulic conductivityk(h)] is related to the soil-water
with FEM. These issues are addressed in this case study wherg@ressurgh) as(Van Genuchten 1979
both the developed models of FEM and ANN were applied to 1 ga (- nr J8)?
predict seepage through the body of Jeziorsko earthfill dam in k(h):ks[ ] { _[0‘—] } (4)
Poland. Piezometers placed on the section of Jeziorsko dam for 1+(a-h)" 1+(a-h)"

monitoring seepage have been used since 1995. The model result§, o o p=parameter which can take on a value ofBurdine
were compared using the data obtained from these piezometer51953 or 2 (Mualem 1976.

The performance of the two models was also quantitatively ana-  the solution of Eq(1) yields the spatial and temporal distri-

lyzed and compared. bution of the soil-water pressure field in the domain of interest.
Consequently, it is possible to determine the position of the water
level corresponding to the zero pressure, i.e., isdlin®, and to

Seepage Flow Models find other quantities describing the soil-infiltration and seepage
characteristics in the dam, such as the spatial and temporal distri-
Unsaturated Flow bution of the water content and hydraulic head.
A two-dimensional unsteady flow through an earthfill dam can be
described by the Richards equatitteuman 1975as Finite Element Model
h h Eqg. (1) was solved using the finite element meth@&®EM). Ac-
i[kr(h) . (kxxa— + kxf— + kxz):| cordingly, Eq.(1) was reduced to the following system of first-
128 X Jz order nonlinear differential equatiorgsleuman 1975
1% oh oh oh:
+(9_Z[kr(h)'(kzx&+k225+kzz):|+s Aijhj"'FijEl:Qi_Bi"'Div ij=1,2,...m 5)
dh
=[Cth +s,8) (1) ~ Where
Le
l -
whereh=soil-water pressurén>0 in the saturated zong;<0 in Aj = > Ekr[kxxbibj +kbic; + bjc) + k, £icil,
e

the unsaturated zonb=0 at the water tab)ek (h)=relative hy-

draulic conductivity expressed als(h)=k(h)/k;, where k(h)

=hydraulic conductivity and.=saturated hydraulic conductivity ihj=1,2,...m (6)
[k.(h)=1 in the saturated zoheC(h) =differential water capacity
characterizing the change in the water retention due to the change A
in the water content, i.eC(h)=d6/dh, where=water content Fij= 2 1—2[(2Ci +Cj1 + Cjp) + S(2Syi + Syjr + Suj2) |
andC(h) is equal to zero in the saturated zoSg=water satura- e

tion ratio which is equal t®/6,, where6,=saturated water con-

tent and0 =6 in the saturated zone arfy), is equal to 1 in the fori=j, otherwise F;=0 0
fully saturated zone and it is equal to O in the fully unsaturated

Le

zone; S;=specific water retentionS=source water discharge, Le (Lo,
such as seepage from a ditch per unit volume per unit time; and Q=-> Tl 8
K:[txx lfz]:two-dimensional tensor of hydraulic conductivity. ¢
qu.x(ljzcan be employed to simulate two-dimensional unsteady Le
state water flow through a nonhomogeneous, anisotropic, B = 2?(&;-) 9)
saturated-unsaturated porous media receiving lateral 8oit,is e '
usually assumed that in the unsaturated zone the impact of the
consolidation on the water retention is negligible compared to the Le
effect of changes in retention resulting from the change in the D, :2 A S (10)
water content. Hence it is assumed t&gt0 in the unsaturated e 3
zone.
The relation between the water cont¢f} and the soil-water — 1
pressuregh) can be described using the empirical formula of Van ke = é(kri + K1+ Kij2) (11
Genuchten1979
where (Lq); depicts the flow at the boundary of the lendthat
0-0, 1 k element(e), where the Neumann boundary condition is poged;
B— 6, - 1+(a-|h)" (2) j2=number of the remaining nodes in the element;number of
nodes;Le=number of elements\ =area of the triangular element
where6, =residual water conten&, n, andB =parameters; anf (i,j.K; &=xz~%z, wherei=1,2,3;j=2,3,1;k=3,1,2; b,
is expressed a@=(1-a/n), wherea=parameter which can take =z-7; and ¢;=xx;. Note thatD;#0 for nodes where the
on a value of ].(Mualem 1976 or 2 (Burdine 1953 source functiorS+ 0 is determined.
Following Eg.(2), one can find the following expression for The time derivative in Eq(5) was approximated by the back-
C(h): ward difference method. The predictor-corrector and Picard’s it-
| eration methods were employed for the solution of the resulting
C(h) = do _ (n-1)-a"-(6s-6,) |t &) system of algebraic nonlinear equations. The predictor-corrector

“dh [1+(a- [h)]ere method linearizes the system of equations at each time step and
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Fig. 1. Representation of three layer feed-forward artificial neural
networks

(x;) are fed into the input layer neurons which, in turn, pass them
on to the hidden layer neuroiig) after multiplication by connec-
tion weights(vy;) (Fig. 1)

nel}=2Xivij _bj (16)
A hidden layer neuron adds up the weighted input received from
each input neuroiixv;;), associates it with a biad), and then
passes the resu(inet) on through a generally employed nonlinear
sigmoid transfer function

f(net) = 17

1+e—neq
The learning of ANNs is generally accomplished by the most
commonly used supervised training algorithm of the back-
propagation algorithm. The objective of the back-propagation al-
gorithm is to find the optimal weights that would generate an
output vectory=(y;,Ys, ... ,Yp) as close to the target values of the
output vectorT=(ty,t,, ... ,t,) as possible with the selected accu-
racy. The optimal weights are found by minimizing a predeter-
mined error functiodE) of the following form(ASCE Task Com-

Picard’'s method iteratively solves the resulting system, which has mittee 2000:

a large and sparse coefficient matrix, utilizing the method of suc-

cessive overrelaxatio(BOR.
The right choice of the time stefd\t) is essential in order to

have a stable numerical scheme. The right time step, taking intoynere y;=component of an ANN output vectorY; t

E=2 D (yi—t)? (19
P p

account the change in the water content in the flow region, was = component of a target output vect®; p=number of output

selected following Belmans et 41983 as

AB max
(5
At/ max

where A6,,,,=maximum incremental increase in the water con-
tent 6. The value selected from the range of 0.6046,,.
<0.002 resulted in stable numerical solutions.

The value ofC(h) determined from Eq(3) leads to large er-
rors in the numerical modéCelia et al. 1990; Ross 1990; Pani-
coni et al. 1991; Li 1993; Rathfelder and Abriola 1994; and Tocci
et al. 1997. ThereforeC(h) was evaluated effectively by follow-
ing Cooley(1983 and Abriola and Rathfelde€1993 as

At < (12

Dteim eim_ 9it
C=——=—= h"#h 13
i Dthlm hlm_ hi't I It ( )
where

oM —9;
D" = —— 14
tVi At ( )

hM - h
Dh"= — 15
i At ( )

Note that wherh"=h;;, thenC; is evaluated from Eq(3).

Atrtificial Neural Networks

ANNSs have an ability to identify relationships from given patterns

neurons; and®=number of training patterns.

In the back-propagation algorithm, the effect of the input is
first passed forward through the network to reach the output layer.
After the error is computed, it is then propagated back towards
the input layer with the weights being modified. The gradient-
descent method, along with the chain rule of differentiation, was
employed to modify the network weights 88SCE Task Com-
mittee 2000

AUij(n) =- Ba_E + OLmAUij(n - 1) (19)
whereAv;;(n) and Av;;(n-1)=weight increments between node
andj during thenth and(n-1)th pass or epocty=learning rate;
and a,,=momentum factor.

An equation similar to Eq(19) was also used to correct the
bias values. The learning rat8) was used to increase the likeli-
hood of avoiding the training process being trapped in a local
minimum instead of a global minimum. However, it is possible
that the training process can still be trapped in a local minimum
despite the use of a learning rate. The solution often follows a
zigzag path while trying to reach a minimum error and this may
slow down the training process. The momentum factqr) can
be employed to speed up training in very flat regions of the error
surface and help prevent oscillations in the weigltSCE Task
Committee 2000

The network learns by adjusting biases and weights that link
its neurons. Before training, weights and biases of the network
must be set to small random values. Also, due to the nature of the
sigmoid function used in the back-propagation algorithm, all ex-
ternal input and output values before passing them into a network
should be standardized. Without standardization, large values of

and hence they have an ability to solve large-scale complex prob-input into an ANN would require extremely small weighting fac-
lems, such as pattern recognition, nonlinear modeling, classifica-tors to be applied and this could cause a number of problems
tion, association, and control. Their hydraulic applications gener- (Dawson and Wilby 1998 Since sigmoid function extends to

ally consider a three-layer feedforward artificial neural network,
as shown in Fig. 1. In a feedforward ANN, the input quantities

minus infinity and plus infinity asymptotically, it never reaches
zero or one. Therefore in most cases it is better to compress the
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Typical cross-section of dam
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Fig. 2. Detailed cross-section sketch of the Jeziorsko earth-fill dam with depicted soil layers

data into the 0.1-0.9 range. E@0), which compresses all the the cross section of the dam. The slope of the upstream side is 1:3
data into the range of 0.1-0.9, was employed, in this study, for while the inclination of the downstream side is 1:2.5. The cross

standardization section has two different layers of the geological formation. The
lower layer, 35 m thick, represents an alluvial deposit that over-
x =0.1 +0'8(Xi B Xmini) (20) lies a chalk formation and the upper layer represents a quaternary
(Xma>§ —xmini) formation (medium grained sandFig. 2). The upper part of the

chalk layer is impermeable and therefore the bottom part of the
alluvial deposit forms the model boundary. The infiltration model
parameterse, n, 6,, 65, andk, for the two layers are given in
Table 1. The geological material at the dam toe involves rocky
sediments of chalk, clay-dust glacier formations, and sand-gravel
alluvial deposits.

On the downstream side of the toe of the dam, at a height of
The Jeziorsko earthfill dam located in the central part of Poland 112.7 m and at a distance Of_ about 77 m from.the upstrgam s!de
was employed in this study to calibrate and verify the FEM and ©f the dam, a stoneware drainage of 30-cm-diameter pipe is in-
ANN models. The dam partitions the Warta River valley near Stalled(Fig. 2. At about every 80 m there are openings carrying
Uniejow City and forms, with other lateral dams, a reservoir area @Way the water from the drainage pipe down to the drainage ditch
of 42.3 kn?. The maximum water rise is 121.5 m above the mean (Ditch A'in Fig. 2) situated at about a height of 112.3 m and a
sea level and its reservoir capacity is 202 milliof riihe dam  distance of 5 m from the drainage piffig. 2). The second drain-
body is homogeneous, constructed with medium grained sand.age ditch(Ditch B in Fig. 2 runs parallel to the firstDitch A) at
The length of the dam is 2,720 m and its height is 12 m. The @ height of 112 m and a distance of about 35 m from Ditch A.
upstream slope is secured with a tight ferroconcrete screen joinedlhe bottom and the slopes of the ditches are secured with ferro-
with a clay cutoff wall of 0.5 m thickness and 50 m width. A seal concrete panels separated by openwork panels.
made up of a film and extending down to 800 m inside the reser-  The infiltrated water flows in the direction from the upstream
voir forms an extension of the clay cutoff wall. The cross section side towards the downstream side. What affects the infiltration
14900 of the Jeziorsko dam was considered for determining in- and seepage is the pressure gradient due to the difference in the
filtration and seepage. Fig. 2 shows a schematic representation ofvater levels in the upstream and downstream sides of the dam,

where Xy, and Xy, are the maximum and minimum values of
the ith neuron in the input layer for all the feed data vectors,
respectively.

Application: A Case Study of Jeziorsko Dam

Table 1. Hydraulic Parameters of the Soil Layers

0, Ks 05
Layer type a n [cm®/cm?] [cm/day] [em®/cm?]
Upper 0.02307 1.46826 0.0012 172.8 0.364
(medium grain sand
Lower 0.17327 1.82043 0.003 1728 0.395

(alluvial deposix
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Fig. 3. Temporal variations of water level in piezometers and in the upper and lower reservoirs

tubular drainage, and two drainage ditches. Four piezometersfor this segment of the boundary. At the untight screen on the
were placed in the dam in order to monitor the flow of infiltrated upstream side it was assumed that the leakage was uniformly
water through the dam bod¥ig. 2). Three piezometerdabeled distributed and the Cauchy boundary condition of nonzero water
as P37, P38, and PB®ere placed on the dam body whereas one flux was employed for this segment of the boundary. The Cauchy
piezometer(labeled as P148was placed in the alluvial deposit boundary condition assumes that the difference between the
layer (see Fig. 2 The water levels in the piezometers have been known total pressure hed#l,) and the unknown pressure head in
measured every 2 weeks since 1995. Fig. 3 presents the watethe region of the interesH) was caused by the water fluxas
levels measured in the piezometers and the levels in the upper and
lower reservoirs of the dam for the period from October 2, 1995 Ha(x,z,t) = H(x,z,t)
to May 20, 2002. According to the observed records, the water ax,zt) = (21)
levels in Ditch A and Ditch B have been constant and are equal to Y
112.4 and 112.1 m, respectively. There is no data available on thewhere+y represents the resistance to the input to/output from the
drainage outflow. According to Fig. 3, the water level in P148 is region.
higher than that in Ditch A although P148 is located further down  The Dirichlet boundary conditions in terms of the water level
from Ditch A. Ditch A and Ditch B do local draining in the vi-  on the upstream and downstream sides of the reservoir were ex-
cinity of their locations, thus lowering only the local head in pressed at the left and right parts of the analyzed cross section.
nearby areas. On the other hand, the actual total head pressure i§he Neumann boundary conditiogy=0, was specified for the
transferred from the upstream side of the dam through the base-nodes at the border of the upstream slope above the upper water.
ment of the dam body to alluvial deposit where P148 is located In the drainage ditches, the Dirichlet boundary condition was em-
resulting in the head in P148 to be higher than that in Ditch A. ployed asH(t)=z+hy(t)=112.4 and 112.1 m for Ditches A and

It has been observed that the horizontal screen sealing theB, respectively. The impermeable boundary of the lower layer
upstream and downstream slopes of the dam have a significantvas described by the Neumann boundary condition, ¢e0.0
impact on the water level. The technical state evaluation of the (upper part of chalk layer—Fig.)2
dam shows that the horizontal screen is tight and there is leakage It was assumed that on the downstream slope and farther on
on the upstream slope. the terrain surfaces in the direction of lower water level, there
might be free water outflow described by the so-called potential
boundary condition. In mathematical formulations, this type of
boundary condition reduces to the Dirichlet typehss0 for the
A numerical solution of Eq(1) requires the specification of ap- saturated zone or the Neumann typega0 for the unsaturated
propriate initial and boundary conditions. Initially the soil-water zone. The numerical model changes the condition type automati-
pressure field needs to be specified. For the boundary conditionsgally at any instant of time, depending upon the calculated value
as appropriate, the Neumann-, Dirichlet- and/or Cauchy-type con-of the flow flux (q) and/or the soil-water pressutb).
ditions can be specified. For the FEM solution the initial soil- The interaction between the drainage and the surroundings
water pressure was specified as the initial condition. It was as-takes place on the boundaries. The effect of the drainage may be
sumed that the horizontal screen was completely tight and thedescribed as a point sourdde Marsily 1986; and Fipps and
Neumann boundary condition of zero water flux was employed Skaggs 1986or as a boundary condition. The type of the bound-

Initial and Boundary Conditions
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Fig. 4. Layout of the computational network, antifiltration protections and piezometers locations

ary condition on the drainage depends on the available informa-model results with the measured water level values of each
tion. In this study, the effect of drainage was reflected as a poten-piezometer. Fig. @ shows measured water levels versus FEM-
tial boundary condition of free outflow. Depending upon the predicted water levels presented in Fig. 5. The coefficient of de-
pressure distribution in the region, the drainage boundary wastermination(R?) is 0.97 and the slope of the regression line is
located either in the saturated or unsaturated zone or in both. Parkimost one and the intercept is close to zero, implying a success-
of the drainage layout in the saturated zone was considered activéul calibration of the FEM model. In order to objectively evaluate
and the related boundary condition was described as the free outthe model performance, the most commonly employed error mea-
flow boundary condition asi=h+z=z, whereh=0 andq<0. sures, such as the root mean square gRMSE) and the mean
This implies that there is a free flow from the dam body through apsolute errofMAE) were computed for each case as shown in
this segment of the boundary. Evidently, it was assumed that therig. 5 and summarized in Table 2. The calibrated valueyof
drainage is capable of carrying away all the water flowing hich resulted in satisfactory results as presented in Fig. 5, Fig.
through the cross section of the boundary. The remaining drainagega) and Table 2, was 361072 cm/h at the 9 m long segment

points located in the unsaturated zone were considered as nOBeginning at the toe of the upstream slope andx@67 cm/h
active and they were modeled by the conditigr=0 andh<0. until the top of the dam body.

Depending upon infiltration, the location of the boundary might Using the measured data for the period from July 3, 2000 to

shift from one region to the other. May 20, 2002, the model was validated and its prediction results
were compared with the measured data as shown in Fig. 7. Com-
Numerical Model Calibration and Verification parison of FEM-predicted water levels with measured water lev-

A program, calledFILTRANS(Swiatek 2002, was used for the els is shown in Fig. &), with a coefﬂm_ent (.)f dgtermmatlo(R )
simulation of infiltration, seepage, and seepage PRITRANS of 0.94 and the slope of the regression line is almost 1 and the

solves unsteady infiltration through an earthen hydraulic structure'r"[ercept(;S close Ito O.I Tg's |rr:1plljes s?tlsf?jc':ggl/vlpredldctllons of the
of embankment type. The region of interéste cross section 1 measured water levels by the develope model. Fig. 8

+900 of the Jeziorsko damwas divided into triangular finite ~ /SO Shows a bandwidth with 2SE (where SE is the standard

elements, as shown in Fig. 4. The network was composed of €00 about the regression line, where the computed SE is
5,497 triangular elements and 3,010 nodal points. The network 0-206 m. As seen in Fig.(8), there are only four pointéout of

was made denser in the dam body and in the neighborhood of thel88 outside the bandwidth. In other words, bandwidth accounts
drainage ditche¢Fig. 4). The elements in the vicinity of the tu- for about 98% of the scatter points. This implies that the devel-
bular drainage were radially placed in order to be consistent with 0Ped numerical model can predict about 98% of the measured
the flow in this region. The data obtained from piezometers P37, data with=0.412 m. The calculated RMSE and MAE values for
P38, P39, and P148, as shown in Fig. 3, were used for model€ach case as shown in Fig. 7 are given in Table 3. The average
calibration and verification. The first three piezometers are placedRMSE and MAE values were 0.205 and 0.165 m, respectively.
in the dam body and P148 is placed in the upper part of the When the simulated water level data was compared to the data
alluvial deposit layefFig. 2). The calibration involved the evalu-  obtained from other piezometers, the model performance was not
ation of the leakage from the upstream slope and determining thesatisfacory in the case of P14Big. 7). The related RMSE and
value of the coefficieny in Eq.(21). The pressure field calculated MAE values for this piezometer were 0.232% more than the

for the steady state was assumed to form the initial condition. ~ average errgrand 0.25(52% more than the average epjiore-

The model was calibrated by comparing the model results with spectively(Table 3. This may be because this piezometer was
the measured data of 1 year from June 21, 1999 to June 19, 2000placed in the upper alluvial deposit layer where there might exist
This period, which corresponded to the construction job, con- possible cracks causing variations in the pore-water pre¢Bige
tained all the possible variations of water rise in the upper reser-2). The model was not able to consider such possible cracks and
voir. Fig. 5 presents the calibration runs comparing the predicted hence it underestimated the water levels in this piezometer.
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Table 2. Calculated Error Measures—Calibration Run

Date (06.21.99-06.19.00)

FEM model ANN model
Fig. 5. Calculated and measured water levels at piezomé&iefz37,
(b) P38,(c) P39, andd) P148 for the period June 21, 1999—-June 19, RMSE MAE RMSE MAE
2000. Calibration run Piezometer (m) (m) (m) (m)
P37 0.20 0.17 0.18 0.13

- o ) P38 0.17 0.14 0.13 0.10
Artificial Neural Network Model Training and Testing P39 0.14 0.11 0.16 0.13
The ANN model had three layers—input, hidden, and output. The P148 0.30 0.29 0.11 0.10
input layer had three neurons, the hidden layer had five neurons Average 0.203 0.178 0.144 0.117

and the output layer had one neuron. The input variables wereNote;: ANN=artificial neural network; FEMfinite element method:;
upper water level, lower water level, and identification of a MAE=the mean absolute error; RMSEoot mean square error.

JOURNAL OF HYDRAULIC ENGINEERING © ASCE / JUNE 2005 / 437

J. Hydraul. Eng., 2005, 131(6): 431-440



Downloaded from ascelibrary.org by 1IZMIR YUKSEK TEKNOLOJI ENSTITUSU on 07/20/16. Copyright ASCE. For personal use only; all rights reserved.

116.0

115.5
115.0 4
114.5 4

114.0 4

Water Level (m)

113.5
113.0

1125

Piezometer #37

N
k./ -+-e-.-Measured Data
~—»— FEM Model

——— ANNs Model

.................................................

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

@

Date (07.03.00-05.20.02)

g £
— y L2
3 -
H
—
5 . ---»---Measured Data
§ 113.0 —s— FEM Model
1125 - —=— ANNs Model
112.0 +rrrrrrr T T T T T T T T T T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
b
®) Date (07.03.00-05.20.02)
C 150
Piezometer #39
1145
g A
T 1140 jor
3
g 11354 -+ -e---Measured Data
£ —— FEM Model
113.0 ANNs Model
1125 T T T T T T T T T T T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
© Date (07.03.00-05.20.02)
114.0
113.8 4 Piezometer #148

Water Level (m)

---e---Measured Data
—=»——FEM Model
~—a— ANNs Model

1

@)

Fig. 7. Calculated and measured water levels at piezomé&iefz37,
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summarized in Table 2. The results in Table 2, Fig. 5, and Fig.
6(b) indicate successful training of the ANN model.

The trained ANN model was then tested by predicting the
measured water level data in the piezometers for the period from
July 3, 2000 to May 20, 2002. The model-predicted water level
for each piezometer is given in Fig. 7 from which it is seen that
the ANN model satisfactorily predicted the measured water level
in each piezometer. Fig.(l8) compares the ANN-predicted water
levels with the measured water levels, with a coefficient of deter-
mination (R?) of 0.93 and the slope of the regression line is al-
most 1 and the intercept is close to 0. This indicates satisfactory
predictions of the measured water levels by the developed ANN
model. Fig. 8b) also shows a bandwidth with2SE about the
regression line, where the computed SE value for Fifp) &

Table 3. Calculated Error Measures—Validation Run

2002. Validation run FEM model ANN model
RMSE MAE RMSE MAE

Piezometer (m) (m) (m) (m)

a 0.04 momentum factor, and 10,000 iterations. The training runs P37 0.19 0.14 0.23 0.20

comparing the predicted model results with the measured waterP38 0.18 0.13 0.22 0.17

level values of each piezometer are presented in Fig. 5. Hiy. 6 P39 0.18 0.14 0.15 0.13

shows measured water levels versus ANN-predicted water levels.P148 0.27 0.25 0.09 0.07

The coefficient of determinatiofiR?) is 0.96 and the slope of the  Average 0.205 0.165 0.173 0.143

regression line is 1 and the intercept is almost 0. The RMSE andNote: ANN=artificial neural network; FEMfinite element method;
MAE values were computed for each case as shown in Fig. 5 andMAE =the mean absolute error; RMSEoot mean square error.
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0.177 m. It is seen that the bandwidth accounts for about 97% of flow through the Jeziorsko earthfill dam in Poland. Both the mod-

the scatter points. In other words, the developed ANN model can els were calibrated and verified using the measured data from the
predict about 97% of the measured data witl®.354 m. The piezometers placed on a section of the Jeziorsko dam for moni-
calculated RMSE and MAE values for each case as shown in Fig.toring seepage. The satisfactory prediction in time and space of
7 are given in Table 3. The average RMSE and MAE values were the seepage path through the dam by the models indicate that

0.173 and 0.143 m, respectively. these models can be employed to verify the piezometer readings

to detect the anomalies in the course of infiltrated water and seep-
Comparison of Artificial Neural Network and Finite age and hence enable planning and implementing technically and
Element Method Models and Discussion economically sound remedial stability measures.

. . . The following conclusions are drawn from this case studly.
When the ANN model is compared with the FEM model as in Both the FEM and ANN models exhibit comparable predictive

Fig. 7, Fig. 8, and in Table 3 it is seen that the ANN model is as h . .

. . capability, although in some piezometers ANN outperforms FEM.
good as the FEM model, especially for piezometers P37, P38, and . . L
P39. In the case of predicting the water level in P148, the ANN (2) The FEM model yields spatial and temporal variations of state

. variables, such as water level, whereas the ANN model yields
model performed better than the FEM model as seen from Fig. 7. | ! - C
; t I t f such bles. Therefore th
In this case, the error was 0.07 m for the ANN model as opposed only femporal variations of such variables. HNeTelore the seepage

path can be easily trace(B) The FEM model provides informa-
to Oﬁs mhfor th% FE'Z' mo((jje(IITabee 3. b d tion on situations that may be detrimental to dam saf@lyThe
T € physics-based model o FEM represents our best UNAE"EenN model uses the spatial distribution of hydraulic parameters
standing Of. the physical Process. In this mOdEI.’ the relations of the geologic formation and drainage outflow, which is usually
among the input and output variables are well-defined. Thereforenot available. The lack of such data reduces the accuracy of FEM.

'tblla; unlvErTalnadptpl|r(r:]ab|rllt3|/.VUrsi|r;ig rgh's f";ﬁdeli ': 'SV pr?ssllble t\? r(5) The ANN model can estimate the locus of seepage path in a
obtain spatial and temporal variations ot the stale variables over ., ., body. It can also detect any anomalies during the course of

the domain (.)f mtere;t und_er different val_ues of the_ model param- seepage which may need fixin@@) ANN is more user-friendly
eters. Such information might be essential, especially for investi- nd easier to construct than is FEW) ANN predicts seepage by
gating any undesired cases that might happen and be detrimentq‘if}sing only the water levels in the upper and lower pools of the
to daf“ safety. On the. other ha}nd, the FEM model can .be MOT€ yam thus requiring less and easily measurable field data. On the
effective when extensive data in the domain of interest is avail- other hand, the FEM model requires a complicated numerical
able. However, in practical situations satisfying all the data needstechnique for the solution of the model equations, specification of

gf: g?arppr::nesqs;'/r?tslz?gr 'Se saer:1d(7;n ?qv?#'ib::easdgitt% tlmn?) %':tj the initial and boundary conditions, and values of many model
udg y INts. xample, | ! uay. arameters some of which cannot be easily measy8&d-EM

V\;atsh avallalblg Orll fthe S?.at'al d(ljsttrrl]bu(tjlor! of hydr?flljhc p_?;amete_lrs has a universal applicability while ANN is a site-specific model
or the geological formation and the drainage outtiow. The avail- ., requires sufficiently long historical data.

ability of such data could have improved the performance of the This case study might give an insight to the engineers, who are

FrE'\éli rggdetlﬁ Flatrle:n?o\;ei tifrllepplir;ozvmangetof tgefFEtl\/: m_clj_ﬂiel Iin responsible for dam safety due to anomalous seepage, regarding
predicling the water leve as not satistactory. S 1S the appropriateness of using a nondeterministic model of ANN

beca_use the m0d9| was not able to_ consider p_055|ble cracks in thi“/ersus a deterministic model of FEM for predicting flow through
alluvial deposit layer where the piezometer is placed. Further- an earthfill dam under different situations

more, there is always a problem of convergence and instability in
the numerical solution of the highly nonlinear differential equa-
tions of the physics-based model.

The ANN is a much simpler model, which has an ability to
recognize the pattern between input and output variables when
provided with sufficient measured field data. For example, as
shown in this study, it was able to capture the pattern between the C(h)
water levels in the upper and lower reservoirs and the water levels
in the piezometers, thus successfully predicting the locus of the ~Ha = total pressure head;
seepage path in the body of the dam in a simple and easy manner. = soil-water pressure; _ o
From a practical point of view, the use of ANN in such a situation K = two-dimensional tensor of hydraulic conductivity;
might be vital to detect any anomalies in the course of seepage k() = relative hydraulic conductivity;
and hence to develop immediate remedial measures. It should be, K(h) = hydraulic conductivity; o
however, noted that ANN is a data-driven black box model which = saturated hydraulic conductivity;
does not reveal any explicit relation between input and output = number of observations;
variables, thus it does not provide much insight into understand- = parameter;
ing the physical problem. Furthermore, although ANN has very = number of training patterns;
successful interpolation capability, it lacks the extrapolation abil- = number of output neurons;

ity for the cases for which it is not trained. = water flux; )
= specific water retention;

= source water discharge;

water saturation ratio;

= component of a target output vecftor

FEM and ANN models were developed to predict seepage = measured water level;

through the body of an earthfill dam. In order to investigate the = predicted water level;

performances of the models, in this case study, both developed Xmay = Maximum value of théth neuron in the input layer
models were applied to predict temporal and spatial variation of for all the feed data vectors;

Notation

The following symbols are used in this paper:
= differential water capacity;
= unknown pressure head in the region of the interest;

1]

Conclusions
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Xmin, = Minimum value of thdth neuron in the input layer
for all the feed data vectors;
y; = component of an ANN output vectdf,
oy = momentum factor;
a = parameter;
B = parameters;
v = resistance to the input to/output from the region;
d = learning rate;
6 = water content;
0, = saturated water content; and
0, = residual water content.

References

Abriola, L. M., and Rathfelder, K(1993. “Mass balance errors in mod-
eling two-phase immiscible flows: Causes and remedigdy. Water
Resour. 16, 223-239.

ASCE Task Committeg2000. “Artificial neural networks in hydrology,
II: Hydrologic applications.”J. Hydrologic Eng. 5(2), 124-137.

Aziz, A. R. A., and Wong, K. F. V(1992. “Neural network approach to
the determination of aquifer parameter&found Water 30(2), 164—
166.

Belmans, C., Wesseling, J. G., and Feddes, R(1883. “Simulation
model of the water balance of a cropped soil: SWATRE.Hydrol,
63, 271-286.

Burdine, N. T.(1953. “Relative permeability calculations from pore size
distribution data.”Pet. Trans., AIME 198, 71-78.

Celia, M. A., Bouloutas, E. T., and Zarba, R. [1990. “A general

mass-conservative numerical solution for the unsaturated flow equa-

tion.” Water Resour. Rgs26(7), 1483-1496.

Cooley, R. L.(1983. “Some new procedures for numerical solution of
variably saturated flow problemsWater Resour. Res19(5), 1271—
1285.

Dawson, W. C., and Wilby, R(1998. “An artificial neural network ap-
proach to rainfall-runoff modeling.Hydrol. Sci. J, 43(1), 47—66.

de Marsily, G.(1986. Quantitative hydrogeologyAcademic, New York.

Fipps, G., and Skaggs, R. W986. “Drains as a boundary condition in
finite elements."Water Resour. Regs22(11), 1613-1621.

Honjo, Y., Giao, P. H., and Naushahi, P. 4995. “Seepage analysis of
Tarbela dam(Pakistan using finite element method.Iht. J. Rock
Mech. Min. Sci. Geomech. AbstB2(3), 131A.

Jain, S. K.(200)). “Development of integrated sediment rating curves
using ANNs.”J. Hydraul. Eng, 1271), 30-37.

Li, C. W. (1993. “A simplified Newton iteration method with linear finite
elements for transient unsaturated floWater Resour. Res29, 965—
971.

Lu, R.-S., Lai, J.-L., and Lo, S.-L{(1998. “Predicting solute transfer to
surface runoff using neural networksWater Sci. Technql.38(10),

440 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / JUNE 2005

173-180.

Mualem, VY.(1976. “A new model for predicting the hydraulic conduc-
tivity of unsaturated porous mediaWater Resour. Rgs12, 513-522.

Nagy, H. M., Watanabe, K., and Hirano, N2002. “Prediction of sedi-
ment load concentration in rivers using artificial neural network
model.” J. Hydraul. Eng,. 1286), 588-595.

Naouss, A. W., and Najjar, Y. M1996. “Seepage design charts for flat
bottom dams resting on heterogeous mediat”’ J. Rock Mech. Min.
Sci. Geomech. Abstr33(3), 136A.

Neuman, S. R1975. “Galerkin method of analyzing nonsteady flow in
saturated-unsaturated porous medHiriite elements in fluidswiley,
New York, \Vol. 1.

Paniconi, C., Aldama, A., and Wood, E.®99J). “Numerical evolution
of iterative and noniterative methods for the solution of nonlinear
Richards equation.Water Resour. Res27(6), 1147-1163.

Panthulu, T. V., Krishnaiah, C., and Shirke, J. {2001). “Detection of
seepage paths in earth dams using self-potential and electrical resis-
tivity methods.”Eng. Geol. (Amsterdam)59(3—4), 281-295.

Rajurkar, M. P., Kothyari, U. C., and Chaube, U. @002. “Atrtifical
neural networks for daily rainfall-runoff modelingMydrol. Sci. J,
47(6), 865—-878.

Rathfelder, K., and Abriola, L. M(1994. “Mass conservative numerical
solutions of the head-based Richards equatid¥dter Resour. Res.
30(9), 2579-2586.

Ross, P. J(1990. “Efficient numerical methods for infiltration using
Richards’ equation.Water Resour. Res26, 279-290.

Swiatek, D.(2002. “Application of filtration numerical model for esti-
mation of river embankments antiseepage protections efficiency.”
IMGW Research PaperdNo. 13—Series: Water Engineering, War-
saw.

Tayfur, G.(2002. “Artificial neural networks for sheet sediment trans-
port.” Hydrol. Sci. J, 47(6), 879-892.

Tien-Kuen, H.(1996. “Stability analysis of an earth dam under steady
state seepageComput. Struct. 586), 1075-1082.

Tocci, M. D., Kelley, C. T., and Miller, C. T(1997. “Accurate and
economical solution of the pressure head form of Richards’ equation
by the method of lines.Adv. Water Resoyr.20, 1-14.

Tokar, A. S., and Johnson, P. A999. “Rainfall-runoff modeling using
artificial neural networks.J. Hydrologic Eng, 4(3), 232—-239.

Turkmen, S., Ozguler, E., Taga, H., and Karaogullarindan(2002.
“Seepage problems in the karstic limestone foundation of the Kalecik
Dam (south Turkey.” Eng. Geol. (Amsterdam)63(3-4), 247-257.

Van Genuchten, R(1979. “Calculating the unsaturated hydraulic con-
ductivity with a new closed form analytical modeResearch Rep.
1978-WR-08Water Research Program Department of Civil Engineer-
ing, Princeton Univ.

Xu, Y.-Q., Unami, K., and Kawachi, T2003. “Optimal hydraulic design
of earth dam cross section using saturated-unsaturated seepage flow
model.” Adv. Water Resoyr.26(1), 1-7.

J. Hydraul. Eng., 2005, 131(6): 431-440



