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Determination of Wavelet Ridges of Nonstationary
Signals by Singular Value Decomposition

Nalan Özkurt and F. Acar Savacı

Abstract—The ridges obtained from chaotic signals can give the
relevant information about the phase structures of the dynamical
systems. Therefore, a new wavelet ridge determination method
for the noisy signals and nonstationary signals, which is based on
the singular value decomposition (SVD) has been proposed in this
paper. The proposed method has been compared with Carmona
method for monocomponent signals, and multicomponent signals.
The proposed method is computationally more effective than
the Carmona method to determine the actual ridges. Also, the
ridges of the periodic limit cycles and chaotic attractors have been
determined by using the SVD-based method to find the degree of
chaoticity.

Index Terms—Instantaneous frequency, singular value decom-
position (SVD), wavelet ridge.

I. INTRODUCTION

DUE TO THE nonstationary property of most of the signals
from nature, the study of nonstationary signals in many

different fields of science and engineering is very important and
the wavelet analysis has found a wide interest in various areas
such as in mechanics [1], in data compression [2], in molecular
dynamics [3], in geophysics [4], in biomedical engineering [5],
[6].

Because of the nonstationary nature of the chaotic wave-
forms, the chaotic waveforms have also been analyzed in the
time-frequency domain especially by Wigner distribution [7],
[8] and by wavelets [9]–[12]. The time-frequency represen-
tation of the trajectories would be more convenient to get
dynamical information about the chaotic system, since the
asymptotic quantities (Lyapunov exponents, entropy, fractal
dimension) only reflect the asymptotical behavior. This repre-
sentation can reveal the phase-space structures by obtaining the
relevant information from a single trajectory through the ex-
traction of main frequencies along the ridge (i.e., a curve at the
time-frequency plane along which the energy is locally max-
imum). The original signal can be recovered using the skeleton
of the transform [13]–[15] which is defined as the values of
the wavelet transform (WT) coefficients along the ridges.
The instantaneous frequencies which have been determined
through the ridges can also be used to detect the resonance
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trappings and to characterize the degree of the chaoticity [9].
The ridge-detection algorithm based on the phase of the WT
has been given in [16], [17]. The extension of this work to noisy
mono-component and multicomponent signals have been done
in [18] and [13], respectively. In this paper, the determination of
the wavelet ridges of noisy signals and chaotic signals based on
the singular value decomposition (SVD) has been introduced.

In Section II, after briefly introducing the WTs, the scalogram
matrix has been constructed. In Section III, the definitions of the
analytical signal, the instantaneous frequency and the ridge of
the WT have been given. The proposed method based on SVD to
determine the ridges has been introduced in Section IV and the
given method has been applied in Section V to the chirp signals
and chaotic signals arising from Chua’s circuit [19].

II. WAVELET ANALYSIS

The wavelets are the family of the signals that is produced by
the translations and the dilations of a mother wavelet satisfying
the admissibility condition. The continuous WT coefficients of
a signal are determined for the different scales
and translations as follows:

(1)

where and are the dilation (scale) and translation coefficients,
respectively, and * denotes the complex conjugate; the scaled
and translated wavelet is obtained as

(2)

where is the mother wavelet. The mother wavelet must
satisfy the admissibility condition which implies zero mean as

(3)

as given in [5], where is the Fourier transform of the
mother wavelet.

A local time-frequency energy density called scalogram
has been defined in the wavelet domain as [20]

(4)

The continuous WT conserves the total energy of the signal
according to the Plancherel’s formula as in [16]

(5)
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For the numerical computations, the discrete samples of the
continuous WT have been considered and the scaled and trans-
lated wavelets have been defined at the dyadic grid as

(6)

where are the dilation and translation coefficients,
respectively. Then, the numerical approximation of the total en-
ergy gives

(7)

with and WT coefficients are defined as

(8)

where .
If the wavelets defined in (6) are chosen such as to constitute a

Riesz basis for every then the approximate energy
is bounded with the energy bounds which can be calculated from
the frame bounds defined in [20].

By considering only finite number of basis vectors for prac-
tical purposes, the approximate total energy in (7) can be further
approximated as

(9)

where the entries of the scalogram matrix are
defined as

(10)

which are the local time-frequency domain energy densities
evaluated at the discrete dilations and translations .

The truncation of the infinite dimensional scalogram matrix
in time has been done by observing the attractor of the chaotic
signal in the phase space.

For the nonstationary signals with compact support, only the
samples in the support have been used to construct the finite
dimensional scalogram matrix. The truncation in frequency has
been done when the wavelet coefficients were sufficiently small.

In this paper, the WT has been demonstrated by choosing the
following standard complex Morlet mother wavelet

(11)

where defines the center frequency of the wavelet.

III. WAVELET RIDGES

In this section, before introducing the SVD-based ridge de-
termination method, the related definitions will be given as fol-
lows.

Definition 1: The analytical mono-component signal
associated with the real signal is a complex function of time
defined as

(12)

where the function is the Hilbert transform of which is
defined in [16]

Definition 2: The instantaneous angular frequency is defined
as the derivative of the phase

(13)

Definition 3: Let be a real finite energy signal.
The signal is asymptotic iff

(14)

where and
For the chosen asymptotic mother wavelet in the form of

, the WT of the analytical signal
can be found by using (1) and the integral WT of the real signal

is obtained as

(15)
where [20]. Since the integrand
is asymptotic, the stationary phase theorem given in [16] and
[17] can be directly applied.

Let be the stationary point of the argument of the
integrand

(16)

(17)

[21], and then the WT in (15) can be approximated as in [17] by

(18)

where

(19)

Since at , the chosen translated and dilated Morlet
mother wavelet in (18) has its maximum, then at that time
instant is also locally maximum neglecting the
correction term.

Definition 4: The ridge of the WT of is the set of points
(a, b) which are the stationary points of the argument of the WT
“ ” in (15) (i.e., ).

The ridge can be obtained from (16) as

(20)

and then the instantaneous angular frequency along the ridge
becomes

(21)

The multicomponent signal with the instantaneous ampli-
tudes and the instantaneous phases can be
described by

(22)

where is the number of the components.
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The WT of the multicomponent signal has been given in
[13] as

(23)

where .
If the Fourier transform of the mother wavelet “ ” is lo-

calized near a certain angular frequency , the scalogram
is localized around ridges

(24)

The representation above is valid at if the instantaneous
frequencies of the components of the signal are separable [20].

IV. SVD-BASED RIDGE DETERMINATION

In the literature, there are several ridge-detection methods
such as stationary phase method which calculates the ridge
using the stationary point theorem [16], [17]; the simple method
which directly determines the local maxima of the scalogram
[9], [17]; the Carmona method which converts the detection
problem into an optimization problem [18] and its extension
to the multicomponent signals using the algorithm based on
the Markov Chain Monte Carlo method [13]. In this section,
the wavelet ridge-detection algorithm based on singular value
decomposition of the scalogram of the mono-component and
multicomponent nonstationary signals in the presence of noise
and measurement errors has been explained. The proposed
algorithm is different than the ones given in [13], [22] which
apply SVD directly to the data matrix, but it is similar to the
algorithms which apply the SVD method to the WT coefficient
matrix [23], [24]. In [23], the first left singular vector called
as pseudo power signature is used in the classification of the
seismic signals. The left and right singular vectors are used to
characterize the speech signals in [24].

Lemma 1: The Frobenius norm of an matrix of
rank

(25)

where are the singular values of [25], [26].
The lemma states that the energy of the signal in wavelet

domain is related with the singular values. Since the singular
values are in decreasing order, the most of the energy is con-
tained in the components associated with the greater singular
values.

The scalogram matrix with can
be decomposed into its singular values as

(26)

where the singular value matrix the orthogonal
matrices and and these matrices can
be decomposed into two parts

(27)

(28)

where the , and where
representing the dominant components associated with

the original signal, and the less significant components and the
noise are included in ,
and .

The effects of the additive white Gaussian noise (AWGN) is
higher on the smaller singular values which correspond to the
components of the signal with lower energy levels when SNR
is not too low. Therefore, the effect of the noise is reduced by
truncating the lower singular values. The approximated scalo-
gram matrix with rank is obtained as

(29)

by using only the signal components , and .
The number of the singular values included in approximation
has been defined by considering the ratio of the energy as-

sociated with the singular values to the total energy

(30)

where is the total energy of the scalogram matrix. For the
given noise threshold , the singular values with

have been included in and the
remaining singular values have been considered as the
noise or the minor energy components.

In the wavelet domain at the fixed time instant the max-
imum energy occurs at the scale , i.e.,

(31)

where denotes the th column of the approximated
scalogram matrix and

(32)

and is the main ridge of the approximated scalogram.
Therefore, the main ridge can be calculated by determining the
global maximum (assuming it exists for most of the practical
signals) of the approximated scalogram for each time instant

.
The ridges of the multicomponent signal with sufficiently

large amount of energy are also taken into account because the
energy contribution of these components can not be neglected.
The ridges are defined as

(33)

where is the energy threshold and then the ridges are deter-
mined by finding the local maxima of the approximated scalo-
gram for each time instant. In the case of mono-component
signal, since the signal has single instantaneous frequency at a
given time instant, a single ridge (the main ridge) will be suffi-
cient to locate the energy concentrations.

V. APPLICATIONS

In this section, some of the applications of the proposed
method have been given.

The center angular frequency of the mother wavelet has been
chosen as for the examples given below.
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Fig. 1. (a) Time-waveform. (b) Scalogram. (c) Actual ridge, ridges calculated by stationary phase, and SVD-based method. (d) Ridges calculated by simple
method, Carmona method and SVD-based method for chirp signal with additive Gaussian noise.

Fig. 2. Ridges on the scalogram of double-scroll attractor.

Example 1: The monocomponent chirp signal is given as fol-
lows:

(34)

where Hz and is the number of samples and is the
sampling time which are chosen as 600 and 0.01, respectively.

For comparison of the methods, the chirp signal is embedded
in Gaussian noise with signal to noise ratio dB
and the scalogram matrix has been calculated for
dilations which include the frequency range in which the en-
ergy of the signal is localized. The time waveform of the noisy
chirp signal is shown in Fig. 1(a) and its scalogram is illus-
trated in Fig. 1(b). The actual ridge and the ridges calculated by
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Fig. 3. Scalogram and the ridges of the signal with two hyperbolic chirps.

Fig. 4. Instantaneous frequencies of the signals from Chua’s circuit by the SVD-based method.

Stationary Phase method are shown in Fig. 1(c), while ridges
calculated by Simple method and Carmona method are shown
in Fig. 1(d). The proposed method has been illustrated in both
Figs. 1(c) and (d) for comparison purposes.

The ridge finding algorithms have been implemented using
MATLAB in the PC with 1.4 GHz CPU. The computation
times of the algorithms for the stationary phase method, simple
method, multiridge Carmona method and SVD-based method
are 134.613 s, 0.030 s, 50.082 s, and 3.715 s, respectively.

Example 2: The wavelet ridges of the double-scroll attractor
of Chua’s circuit [27] has been determined by both multiridge
Carmona method and the proposed method.

Four singular values of which energy contribution is greater
than 10% of the total energy have been included in the approx-
imated scalogram . Then, the local maxima of the approx-
imate scalogram has been obtained with energy threshold

. The ridges calculated by multiridge Carmona method
and SVD-based method are shown in Fig. 2. Both methods pro-
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duce acceptable results showing the energy concentrations of
the double-scroll attractor.

Both algorithms have been implemented using MATLAB
and the computation times for multiridge Carmona method and
SVD-based method are 1452.3 s and 22.12 s, respectively. The
computational cost of the Carmona method grows drastically
when the size of the scalogram matrix becomes large, however
the computations are faster when the ridges are calculated by
SVD-based method.

Example 3: Performance of SVD-Based Method Under Addi-
tive White Gaussian Noise: The signal containing two hyper-
bolic chirps is defined as

(35)

where , and . The ridges of the given
signal has been determined by using the SVD-based method for
noise-free case and for two different signal to noise ratios. The
scalogram of the noise-free signal and the computed ridges are
shown in Fig. 3.

Example 4: Wavelet Ridges of Periodic, Quasi-Periodic, and
Chaotic Signals: The wavelet ridges of the signals measured
from the dynamical systems give information about the phase
space structures of the system such as periodicity, quasi-peri-
odicity, chaoticity. Also, the strength of chaos (i.e., the stronger
chaos, the faster the divergence of the initially nearby trajec-
tories and the larger the Lyapunov characteristic exponents
[28]) can be characterized by the geometry and number of the
ridges: weak chaos is characterized by one main connected
ridge whereas strong chaos is characterized by multiple short
ridges distributed over the time-frequency plane without an
order [9]. The ridges of the signals obtained from Chua’s circuit
are shown in Fig. 4.

VI. CONCLUSION

In this paper, the wavelet ridge determination algorithm
based on the singular value decomposition of the scalogram
of the nonstationary signals has been explained. The method
has been applied for noisy mono-component chirp signal and
the performance has been compared with stationary phase
method, the simple method and the Carmona method. The
SVD-based method has also been applied to the double-scroll
attractor of the Chua’s circuit in order to evaluate the perfor-
mance for the multicomponent signals. The proposed method
is computationally more effective than the Carmona method for
monocomponent and multicomponent signals in determining
the actual ridges in noisy situations. Furthermore, the wavelet
ridges of the periodic, quasi-periodic and chaotic signals arising
from the Chua’s circuit have been determined and it is observed
that the characterization of the signals can be made considering
the ridges of the signal.

REFERENCES

[1] D. Newland, Random Vibrations, Spectral, and Wavelet Analysis. New
York: Longman, 1993.

[2] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Upper
Saddle River, NJ: Prentice-Hall , 1995.

[3] A. Askar, A. Cetin, and H. Rabitz, “Wavelet transform for the analysis
of molecular dynamics,” J. Phys. Chem., vol. 100, pp. 19 165–19 173,
1996.

[4] E. Foufoula-Georgiou and P. Kumar, Wavelets in Geophysics. San
Diego, CA: Academic, 1994.

[5] M. Akay, Time Frequency and Wavelets in Biomedical Signal Pro-
cessing. New York: IEEE Press, 1997.

[6] R. Carmona, W. Hwang, and R. Frostig, “Wavelet analysis for brain-
function imaging,” IEEE Trans. Med. Imag., vol. 14, no. 3, pp. 556–564,
Sep. 1995.

[7] P. Chen, “Study of chaotic dynamical systems via time-frequency anal-
ysis,” in Proc. IEEE Int. Symp. Time-Frequency and Time-Scale Anal-
ysis, Oct. 1994, pp. 357–360.

[8] L. Galleani, M. Biey, M. Gilli, and L. Presti, “Analysis of chaotic signals
in the time-frequency plane,” in Proc. IEEE Int. Conf. Nonlinear Signal
and Image Processing (NSIP’99), Antalya, Turkey, 1999, pp. 100–104.

[9] C. Chandre, S. Wiggins, and T. Uzer, “Time-frequency analysis of
chaotic systems,” Phys. D, vol. 181, pp. 171–196, 2003.

[10] N. Özkurt and F. Savacı, “Wavelet analysis of the generalized Chua’s cir-
cuit,” in Proc. 9th Workshop Nonlinear Dynamics of Electronic Sytems,
Delft, The Netherlands, Jun. 2001, pp. 100–104.

[11] L. Wong and J. C. Chen, “Nonlinear and chaotic behavior of structural
system investigated by wavelet transform techniques,” Int. J. Nonlin.
Mech., vol. 36, pp. 221–235, 2001.

[12] D. Allingham, M. West, and A. Mees, “Wavelet reconstruction of non-
linear dynamics,” Int. J. Bifurc. Chaos, vol. 8, pp. 2191–2201, 1998.

[13] R. Carmona, W. Hwang, and B. Torresani, “Multiridge detection and
time-frequency reconstruction,” IEEE Trans. Signal Process., vol. 47,
no. 2, pp. 480–492, Feb. 1999.

[14] T. Quatieri, Discrete-Time Speech Signal Processing: Principles and
Practice. Upper Saddle River, NJ: Prentice-Hall, 2001.

[15] N. Özkurt and F. Savacı, “Reconstruction of nonstationary signals in
wavelet domain based on singular value decomposition,” in Proc. 11th
Workshop Nonlinear Dynamics of Electronic Sytems (NDES’2003), vol.
1, Scuol, Switzerland, 2003, pp. 181–184.

[16] N. Delprat, B. Escudie, P. Guillemain, R. Kronland-Martinet, P.
Tchamitchian, and B. Torresani, “Asymptotic wavelet and Gabor anal-
ysis: Extraction of instantaneous frequencies,” IEEE Trans. Inf. Theory,
vol. 38, pp. 644–664, 1992.

[17] M. Todorovska, “Estimation of instantaneous frequency of signals using
the continuous wavelet transform,” Univ. of Southern California, Los
Angeles, Tech. Rep. CE 01-07, 2001.

[18] R. Carmona and W. Hwang, “Characterization of signals by the ridges
of their wavelet transforms,” IEEE Trans. Signal Process., vol. 45, no.
10, pp. 2586–2590, Oct. 1997.

[19] L. Chua, M. Komuro, and T. Matsumoto, “The double-scroll family,”
IEEE Trans. Circuits Syst., Fundam. Theory Appl., vol. 33, pp.
1073–1118, 1999.

[20] S. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA: Aca-
demic, 1999.

[21] B. Boashash, “Estimating and interpreting the instantaneous frequency
of a signal—Part 1: Fundamentals,” Proc. IEEE, vol. 80, no. 4, pp.
520–538, Apr. 1992.

[22] B. Pilgram and W. Schappacher, “Estimation of the dominant singular
values for SVD based noise reduction method,” Int. J. Bifurc. Chaos,
vol. 8, pp. 571–580, 1998.

[23] V. Venkatachalam and J. Aravena, “Nonstationary signal classification
using pseudo power signatures: The matrix SVD approach,” IEEE
Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 12,
pp. 1497–1505, Dec. 1999.

[24] M. Casey, “Auditory group theory with applications to statistical basis
methods for structured audio,” Ph.D. dissertation, Sch. Architecture and
Planning, MIT Media Lab., Cambridge, MA, 1998.

[25] B. de Moor, “Mathematical concepts and techniques for modeling of
static and dynamic systems,” Ph.D. dissertation, Dept. of Electrotech-
nics, Katholieke University, Leuven, Belgium, 1988.

[26] G. H. Golub and C. V. Loan, Matrix Computations. Baltimore, MD:
The Johns Hopkins Univ. Press, 1996.

[27] L. Aguirre, G. Rodrigues, and E. Mendes, “Nonlinear identification
and cluster analysis of chaotic attractors from a real implementation of
Chua’s circuit,” Int. J. Bifurc. Chaos, vol. 7, pp. 1411–1423, 1997.

[28] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. Cam-
bridge, U.K.: Cambridge Univ. Press, 1999.


	toc
	Determination of Wavelet Ridges of Nonstationary Signals by Sing
	Nalan Özkurt and F. Acar Savacı
	I. I NTRODUCTION
	II. W AVELET A NALYSIS
	III. W AVELET R IDGES
	Definition 1: The analytical mono-component signal $Z_s(t)$ asso
	Definition 2: The instantaneous angular frequency is defined as 
	Definition 3: Let $s(t) \in L^2({\BBR})$ be a real finite energy
	Definition 4: The ridge of the WT of $s(t)$ is the set of points

	IV. SVD-B ASED R IDGE D ETERMINATION
	Lemma 1: The Frobenius norm of an $M\times N$ matrix $A$ of rank

	V. A PPLICATIONS

	Fig.€1. (a) Time-waveform. (b) Scalogram. (c) Actual ridge, ridg
	Fig.€2. Ridges on the scalogram of double-scroll attractor.
	Example 1: The monocomponent chirp signal is given as follows: $

	Fig.€3. Scalogram and the ridges of the signal with two hyperbol
	Fig.€4. Instantaneous frequencies of the signals from Chua's cir
	Example 2: The wavelet ridges of the double-scroll attractor of 
	Example 3: Performance of SVD-Based Method Under Additive White 
	Example 4: Wavelet Ridges of Periodic, Quasi-Periodic, and Chaot
	VI. C ONCLUSION
	D. Newland, Random Vibrations, Spectral, and Wavelet Analysis . 
	M. Vetterli and J. Kovacevic, Wavelets and Subband Coding . Uppe
	A. Askar, A. Cetin, and H. Rabitz, Wavelet transform for the ana
	E. Foufoula-Georgiou and P. Kumar, Wavelets in Geophysics . San 
	M. Akay, Time Frequency and Wavelets in Biomedical Signal Proces
	R. Carmona, W. Hwang, and R. Frostig, Wavelet analysis for brain
	P. Chen, Study of chaotic dynamical systems via time-frequency a
	L. Galleani, M. Biey, M. Gilli, and L. Presti, Analysis of chaot
	C. Chandre, S. Wiggins, and T. Uzer, Time-frequency analysis of 
	N. Özkurt and F. Savacı, Wavelet analysis of the generalized Chu
	L. Wong and J. C. Chen, Nonlinear and chaotic behavior of struct
	D. Allingham, M. West, and A. Mees, Wavelet reconstruction of no
	R. Carmona, W. Hwang, and B. Torresani, Multiridge detection and
	T. Quatieri, Discrete-Time Speech Signal Processing: Principles 
	N. Özkurt and F. Savacı, Reconstruction of nonstationary signals
	N. Delprat, B. Escudie, P. Guillemain, R. Kronland-Martinet, P. 
	M. Todorovska, Estimation of instantaneous frequency of signals 
	R. Carmona and W. Hwang, Characterization of signals by the ridg
	L. Chua, M. Komuro, and T. Matsumoto, The double-scroll family, 
	S. Mallat, A Wavelet Tour of Signal Processing . San Diego, CA: 
	B. Boashash, Estimating and interpreting the instantaneous frequ
	B. Pilgram and W. Schappacher, Estimation of the dominant singul
	V. Venkatachalam and J. Aravena, Nonstationary signal classifica
	M. Casey, Auditory group theory with applications to statistical
	B. de Moor, Mathematical concepts and techniques for modeling of
	G. H. Golub and C. V. Loan, Matrix Computations . Baltimore, MD:
	L. Aguirre, G. Rodrigues, and E. Mendes, Nonlinear identificatio
	H. Kantz and T. Schreiber, Nonlinear Time Series Analysis . Camb



