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Abstract: We derive one-loop renormalization group (RG) invariant observables and

analyze their phenomenological implications in the MSSM and its µ problem solving ex-

tensions, U(1)′ model and NMSSM. We show that there exist several RG invariants in

the gauge, Yukawa and soft-breaking sectors of each model. In general, RG invariants are

highly useful for projecting experimental data to messenger scale, for revealing correlations

among the model parameters, and for probing the mechanism that breaks supersymme-

try. The Yukawa couplings and trilinear soft terms in U(1)′ model and NMSSM do not

form RG invariants though there exist approximate invariants in low tan β domain. In

the NMSSM, there are no invariants that contain the Higgs mass-squareds. We provide a

comparative analysis of RG invariants in all three models and analyze their model-building

and phenomenological implications by a number of case studies.
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1. Introduction

The supersymmetric models provide an elegant solution to the gauge hierarchy problem in

a genuinely perturbative way for all scales right up to the planckian territory. The pertur-

bative nature of the model allows one to relate measurements at the electroweak scale to

physics at ultra high energies. This communication between the infrared (IR) and ultra-

violet (UV) regimes proceeds with the renormalization group (RG) flow of the lagrangian

parameters. Indeed, various phenomena central to supersymmetry phenomenology e.g.

gauge coupling unification [1], radiative electroweak breaking [2], induction of flavor struc-

tures [3] even for flavor-blind soft terms are pure renormalization effects.

Projection of experimental data to ultra high energies requires solving renormalization

group equations (RGEs) for parameters of the model. This projection, however, is generally

complicated by the coupled nature of RGEs in that measurement of a set of parameters

at low scale cannot directly be rescaled to ultra high energies due to leakage of other,

possibly unknown, quantities. Therefore, in course of fitting a given model to laboratory

and astrophysical data it would be advantageous to have as much information as possible

about correlations among the parameters. Concerning this, a highly useful tool is provided

by the RG-invariant observables. Indeed, such quantities prove highly useful not only

for projecting the experimental data to high energies but also for deriving certain sum

rules which enable fast consistency checks of the model [4 – 6]. However, it should be kept

in mind that, even the RG-invariant observables cannot be guaranteed to work perfectly

because (i) the RG invariance holds at a given loop order and it is generically disrupted
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by higher loop effects (In general, scale and conformal invariances imply each other [7],

and superconformal group involves both scale invariance and a continuous R symmetry

with correlated charges [8]. Therefore, in softly broken supersymmetric theories, where R

invariance is explicitly broken, the RG invariance, if any, cannot be an all-order effect.),

(ii) the RGEs get modified at sparticle thresholds so that what equations must be used is

not known a priori, and (iii) parameters with nontrivial flavor structures typically do not

exhibit RG-invariant combinations (this can be tied up to the fact that scale invariance

puts strong constraints on flavor structures of rigid and soft parameters of the theory [9]).

The flavor mixings and sparticle thresholds disrupt RG equations and associated invariants

already at one loop order. On the other hand, modification in a given RG invariant due

to higher loop contributions is of order one less loop factor. For instance, disruption of a

one-loop RG invariant by two loop effects is of one loop order. Below we will restrict our

analysis to one loop RGEs with no flavor mixings in fermion sector.

This work is devoted to derivations and analyses of RG-invariant observables in the

minimal supersymmetric model (MSSM) and its µ-problem solving minimal extensions i.e.

the next-to-minimal supersymmetry (NMSSM) and its gauged version U(1)′ model. Indeed,

MSSM suffers from the naturalness problem associated with the Dirac mass of Higgsinos.

This mass parameter, µ, is nested in the superpotential of the theory, and hence, its scale

is not controlled by the mechanism that breaks supersymmetry [10]. Consequently, it is

necessary to find a mechanism for stabilizing µ to the electroweak scale. In fact, U(1)′

model and NMSSM both provide a dynamical solution to the problem by inducing µ via

the VEV of an MSSM-singlet chiral superfield. The U(1)′ models are extensions of the

MSSM by both an MSSM singlet and an additional abelian symmetry U(1)′ [11, 12]. On

the other hand, NMSSM has the same gauge group as MSSM yet its spectrum contains a

pure gauge singlet [13]. One here notes that a Tev scale U(1)′ symmetry or NMSSM are

not necessarily the only solutions to the µ problem. Indeed, modification of the Kahler

potential by operators of the form M−1
P l ẑ†ĤuĤd, ẑ being a hidden sector field, generates

the µ parameter at the right scale provided that theory possesses a global Peccei-Quinn or

continuous R invariance to forbid a bare µ parameter to appear in the superpotential [14]

(see also the related scenarios in [15] and [16]). Apart from this, the mechanism proposed

in [17] provides a simultaneous solution to the µ problem and the scale of supersymmetry

breaking within the supergravity framework by constructing explicit models of the hidden

sector.

The RG-invariant observables and their phenomenological implications have already

been analyzed in various contexts. In addition to discussions in [4 – 6] there have been

studies of the RG invariants [18] and resulting sum rules [19] within supersymmetric gauge

theories and certain string-inspired soft terms. In this work, we will provide a comparative

analysis of the RG invariants in the MSSM and its µ problem solving extensions. The

RGEs for U(1)′ model had been first given in [12]. Here we generalize them to finite

bottom and tau Yukawas. They are listed in appendix A. The RGEs for NMSSM had

been given in [20], and we rederive and list them in appendix B, for completeness. In

appendices we also discuss limiting cases where U(1)′ and NMSSM RGEs reduce to those

of the MSSM [21].
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We start our analysis, in section 2 below, by first describing the common part of all

three models i.e. the sfermion sector. Then we derive RG-invariant observables and discuss

their phenomenological implications for the MSSM in section 3, for U(1)′ model in section 4,

and finally for the NMSSM in section 5. In section 6 we conclude the work.

2. Generalities

For the three supersymmertic models we will discuss the fermion sector is common whereas

the Higgs and gauge sectors vary from model to model. In general, one can write

Ŵ = ŴHiggs + Ŵfermion (2.1)

where the superpotential of the fermion sector is given by

Ŵfermion = ÛYuQ̂Ĥu + D̂YdQ̂Ĥd + ÊYeL̂Ĥd (2.2)

which encodes the Yukawa couplings Yu,d,e (of up quarks, down quarks and of leptons)

each being a 3×3 non-hermitean matrix in the space of fermion flavors. The fermion masses

are induced by the vacuum expectation values of the Higgs doublets Ĥu and Ĥd, common

to all three models. In Ŵfermion the left-handed quarks are arranged in SU(2)L doublets

Q̂ and the left-handed leptons in SU(2)L doublet L̂. On the other hand, the left-handed

anti up and anti down quarks are represented by Û and D̂, respectively. Finally, Ê collects

left-handed anti leptons.1

The breakdown of supersymmetry is parameterized by various soft terms belonging to

Higgs, gaugino and scalar fermion sectors (see, e.g. the review volume [22]):

Lsoft = LHiggs
soft + Lgaugino

soft + Lsfermion
soft (2.3)

whose sfermion part reads as

− Lsfermion
soft = Q̃†m2

QQ̃ + Ũm2
UŨ † + D̃m2

DD̃† + L̃†m2
LL̃ + Ẽm2

EẼ† +

+
[
ŨYA

u Q̃Hu + D̃YA
d Q̃Hd + ẼYA

e L̃Hd + h.c.
]

, (2.4)

where YA
u,d,e, like Yukawas themselves, are non-hermitean flavor matrices whereas the

sfermion mass-squareds m2
Q,...,E are all hermitean.

The interactions contained in (2.2) and (2.4) exhibit mixings of various flavors in both

rigid and soft terms. As mentioned in Introduction, we focus only on the flavor-diagonal

interactions due to the fact that flavor mixings generically prohibit the construction of

RG invariants except for those parameters which depend on traces or determinants of the

flavor matrices. Moreover, one recalls that there is a certain degree of correlation between

conformal invariance and flavor violation in that the former can put stringent constraints

on the latter [9]. Consequently, we switch off flavor mixings in all rigid and soft parameters

1The neutrino masses and hence the requisite superfields (heavy Majorana neutrinos or light right-handed

neutrinos) are not incorporated in supersymmetric models under discussion.
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to obtain

Yu,d,e → diag. (0, 0, ht,b,τ ) ,

YA
u,d,e → diag. (0, 0, ht,b,τ At,b,τ ) ,

m2
Q → diag.

(
m2

euL
,m2

ecL
,m2

etL

)
,

m2
L → diag.

(
m2

eeL
,m2

eµL
,m2

eτL

)
,

m2
U → diag.

(
m2

euR
,m2

ecR
,m2

etR

)
,

m2
D → diag.

(
m2

edR
,m2

esR
,m2

ebR

)
,

m2
E → diag.

(
m2

eeR
,m2

eµR
,m2

eτR

)
, (2.5)

where m2
euL

= m2
edL

, m2
ecL

= m2
esL

and m2
etL

= m2
ebL

by gauge invariance. Note that light

fermion Yukawa couplings are totally neglected. This reduction scheme for flavor mixings

sets up the notation and framework for the fermion sector. The gauge and Higgs sectors

differ from model to model, and they will be discussed in detail in the following sections.

Another model-independent aspect to be noted concerns IR and UV boundaries of the

RGEs. For all three supersymmetric models of interest, we neglect modifications in the

particle spectrum and RGEs coming from decoupling of the heavy fields. In other words,

we assume that all soft masses are approximately equal to MSUSY ∼ 1TeV in logarithmic

sense. This scale sets up the IR boundary for exact supersymmetric RG flow. The UV

boundary lies just beneath the scale of string territory, and we will take it to be the scale of

gauge coupling unification in the MSSM: MGUT ∼ 1016 GeV. Therefore, in our framework,

the RG invariance of a given quantity means its scale independence in between the IR and

UV scales above. In what follows, we judiciously combine the RGEs of individual quantities

until we arrive at a RG-invariant observable within one loop accuracy. In general, there is

no guarantee of maintaining RG invariance of a given quantity at higher loop levels.

3. The RG invariants in the MSSM

The MSSM is based on SU(3)c × SU(2)L × U(1)Y gauge group with respective gauge

couplings g3, g2 and g1. The Higgs sector is spanned by Ĥu and Ĥd so that

ŴHiggs = µĤuĤd (3.1)

and

− LHiggs
soft = m2

Hu
H†

uHu + m2
Hd

H†
dHd + [µBHuHd + h.c.] ,

−Lgaugino
soft =

1

2

∑

a=3,2,1

[Maλaλa + h.c.] , (3.2)

where Ma is the gaugino mass.
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By using one-loop RGEs (the RGEs in the MSSM have been computed up to two

(partially up to three) loops order in [21]) within the MSSM one can derive a number of

invariants. Several RG invariants are listed in table 1. The invariant I1 correlates the gauge

couplings with arbitrary constants c1 and c2. The constants, however, can be related by

using the values of gauge couplings at MSUSY and MGUT:

c1

c2
= −5

3

g1(MSUSY)2

g2(MSUSY)2

(
g2
0g2(MSUSY)2 + 3g2

0g3(MSUSY)2 − 4g2(MSUSY)2g3(MSUSY)2

11g2
0g1(MSUSY)2 + 5g2

0g3(MSUSY)2 − 16g1(MSUSY)2g3(MSUSY)2

)
,

(3.3)

where g0 is the common value of the gauge couplings at the unification scale MGUT.

The second invariant I2 in table 1 correlates µ parameter with gauge and Yukawa

couplings. From this one can determine µ at any scale Q ∈ [MSUSY,MGUT]:

µ(Q2) = µ(Q1)

(
ht(Q2)

ht(Q1)

)27/61 (
hb(Q2)

hb(Q1)

)21/61 (
hτ (Q2)

hτ (Q1)

)10/61

×

×
(

g3(Q1)

g3(Q2)

)256/183 (
g2(Q1)

g2(Q2)

)9/61 (
g1(Q2)

g1(Q1)

)73/2013

(3.4)

which makes it manifest that µ at any scale Q depends on the strong coupling g3 although

its RGE does not exhibit such a direct dependence at all. This exemplifies one interesting

aspect of the RG invariants: they make various otherwise implicit dependencies explicit.

By putting Q2 = MSUSY and Q1 = MGUT one finds that the ratio µ(MSUSY)/µ(MGUT),

which is one of the most crucial factors (together with the gluino mass) that determine

the amount of fine-tuning needed to achieve the correct value of the Z boson mass, is

entirely determined by the interplay between the IR and UV values of the rigid parameters.

In particular, (3.4) suggests that µ(MSUSY)/µ(MGUT) decreases with increasing tan β:

µ(MSUSY)/µ(MGUT) ' 0.96 for tan β = 5 and ' 0.3 for tan β = 60. Indeed, this ratio is

governed mainly by g3 at low tan β and by g3, hb and hτ for tan β ∼ mt/mb. Therefore,

the sensitivity of MZ to µ(MGUT) is greatly reduced at large tan β which itself requires a

great deal of fine-tuning to achieve though [23] (see [24] for a discussion of the fine-tuning

problems in large tan β domain when radiative corrections to Higgs potential are taken

into account).

The third line of table 1 shows that the ratio of the gaugino mass to fine structure

constant of the same group is an RG invariant. This invariance property guarantees that

Ma(Q2) = Ma(Q1)

(
ga(Q2)

ga(Q1)

)2

(3.5)

so that knowing two of the gaugino masses at a scale Q suffices to know the third if

gauge coupling unification holds — an important aspect to check directly the minimal-

ity of the gauge structure using the experimental data. This very relation also shows that

M3(MSUSY)/M3(MGUT) is much larger M1,2(MSUSY)/M1,2(MGUT) due to asymptotic free-

dom. In fact, in minimal superhravity for instance, typically gluino is the first superpartner

to decouple from the light spectrum.
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Number RG Invariant

I1
c1
g2

1

+ c2
g2

2

+ 33c1+5c2
15g2

3

I2 µ

(
g9

2
g
256/3

3

h27
t h21

b h10
τ g

73/33

1

)1/61

I3
Ma

g2
a

(a = 1, 2, 3)

I4 B − 27
61At − 21

61Ab − 10
61Aτ − 256

183M3 − 9
61M2 + 73

2013M1

I5 m2
eτR

− 2m2
eτL

− 3 |M2|2 + 1
11 |M1|2 − 6

13S

I6 m2
Hu

− 3
2m2

etR
+ 4

3 |M3|2 + 3
2 |M2|2 − 5

66 |M1|2 − 9
26S

I7 m2
Hd

− 3
2m2

ebR
− m2

eτL
+ 4

3 |M3|2 − 1
33 |M1|2 + 3

26S

I8 m2
etR

+ m2
ebR

− 2m2
etL

− 3 |M2|2 + 1
11 |M1|2 + 2

13S

I9 m2
euL

+ 1
198 |M1|2 + 3

2 |M2|2 − 8
9 |M3|2 − 1

26S

I10 m2
euR

+ 8
99 |M1|2 − 8

9 |M3|2 + 2
13S

I11 m2
edR

+ 2
99 |M1|2 − 8

9 |M3|2 − 1
13S

I12 m2
eeL

+ 1
22 |M1|2 − 3

2 |M2|2 + 3
26S

I13 m2
eeR

+ 2
11 |M1|2 − 3

13S

I14 m2
Hu

+ m2
Hd

− 3m2
etL

− m2
eτL

+ 8
3 |M3|2 − 3 |M2|2 + 2

11 |M1|2

I15 m2
Hd

− 3
2m2

ebR
− 3

2m2
eτL

+ 1
4m2

eτR
+ 4

3 |M3|2 − 3
4 |M2|2 − 1

132 |M1|2

I16 2m2
euL

+ m2
euR

+ m2
edR

+ 1
9 |M1|2 + 3 |M2|2 − 32

9 |M3|2

I17 m2
eeL

+ 1
2m2

eeR
+ 3

22 |M1|2 − 3
2 |M2|2

Table 1: The RG invariant combinations of rigid and soft parameters in the MSSM (c1 and c2

in I1 are arbitrary constants). Note that invariants pertaining to the first and second generations

generically involve a single sfermion mass-squared since trilinear couplings do not contribute to their

RGEs. In a sense, these are ’fundamental’ invariants derived directly from the RG flows of relevant

parameters. For obtaining RG invariants containing a specific set of parameters it is necessary to

form appropriate combinations of these tabulated ones, as exemplified in the text by a couple of

case studies. The quantity S appearing in some of the invariants is defined in equation (3.7).

The fourth line of table 1 correlates Higgs bilinear soft term B with trilinear couplings

and gaugino masses. Among various possibilities, by using this invariant one can express,

for instance, B at any scale Q in terms of other dimension-one soft masses:

B(Q2) = B(Q1) +
27

61
(At(Q2) − At(Q1)) +

21

61
(Ab(Q2) − Ab(Q1)) +

+
10

61
(Aτ (Q2) − Aτ (Q1)) +

256

183
M3(Q1)

(
g3(Q2)

2

g3(Q1)2
− 1

)
+

+
9

61
M2(Q1)

(
g2(Q2)

2

g2(Q1)2
− 1

)
− 73

2013
M1(Q1)

(
g1(Q2)

2

g1(Q1)2
− 1

)
(3.6)

after using (3.5). This equation expresses the IR value of the B parameter in terms of

the IR and UV values of the gaugino masses and trilinear couplings. The RGE of the B

parameter does not depend on the gluino mass explicitly (the dependence comes through

the trilinear couplings); however, (3.6) exhibits a rather strong dependence on M3: for

– 6 –
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Q2 = MSUSY and Q1 = MGUT the gluino contribution equals 2.6M3(MGUT) which is much

larger than other contributions (except possibly the GUT scale value of B). This very

fact proves the power of forming RG invariant observables as they make indirect effects

manifest.

Having completed the discussion of the rigid and dimension-one soft parameters of the

theory, we now start analyzing the scale-invariant combinations of the scalar mass-squareds.

They are listed in table 1 starting from line 5. The RGEs of the soft mass-squareds depend

on the quantity [21]

S = Tr
[
m2Y

]
= m2

Hu
− m2

Hd
+

(
m2

etL
− m2

etR

)
+

(
m2

ecL
− m2

ecR

)
+

(
m2

euL
− m2

euR

)
+

+
(
m2

ebR
− m2

etR

)
+

(
m2

esR
− m2

ecR

)
+

(
m2

edR
− m2

euR

)
−

−
(
m2

eτL
− m2

eτR

)
−

(
m2

eµL
− m2

eµR

)
−

(
m2

eeL
− m2

eeR

)
(3.7)

which comprises all of the soft mass-squareds. This quantity identically vanishes if they

are strictly universal at some given scale since then Tr[m2Y ] = m2 Tr[Y ] ≡ 0 thanks to the

absence of the gravitational anomaly. As the explicit solution

S(Q2) =

(
g1(Q2)

g1(Q1)

)26/33

S(Q1) (3.8)

also suggests, S(Q) vanishes at all scales if it does so at some given scale. That the

universality of the soft mass-squareds,

m2
Hu

= m2
Hd

= · · · = m2
eτR

= m2
0 , (3.9)

renders theory S–free is important in that experimental tests of whether S is vanishing

or not can give important information on if soft masses unify at ultra high energies. This

universality scheme, when supplemented by At(MGUT) = Ab(MGUT) = Aτ (MGUT) = A0

and M3(MGUT) = M2(MGUT) = M1(MGUT) = M , leads one to the minimal supergravity

configuration. One further notes that, the RGE of a scalar φ senses S via the contribution

Yφ(3/5)g2
1S; however, the RG invariants of the soft mass-squareds depend on S without

any g2
1 dressing.

The RG-invariant combinations of the soft mass-squareds can therefore be analyzed in

two groups: those that are sensitive to S (lines 5-13 of table 1) and those that are insensitive

to S (lines 14-17 of table 1). Clearly, one can construct new invariants by combining

these available ones. An accurate enough measurement (presumably at LHC ⊕ ILC) of

(all or part of the) soft mass-squareds will serve both as a testing ground for the internal

consistency of the model and a as tool for probing the ultra high energy behavior (whether it

is minimal supergravity or not within experimental error bounds) [19, 25]. More specifically,

by using these invariants one can (i) test the internal consistency of the model while fitting

to the experimental data; (ii) rehabilitate poorly known parameters supplementing the

well-measured ones; (iii) determine what kind of supersymmetry breaking mechanism is

realized in Nature; and finally (iv) separately examine the UV scale configurations of the

– 7 –
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trilinear couplings as they do not explicitly contribute to these invariants. We now want

to illustrate some of these useful aspects of these invariants by studying a few interesting

cases:

• The RG invariants provide useful constraints on the low-energy parameter space. For

illustrating this point let as consider, for example, the RG invariant I8 in table 1. If

the universality constraint (3.9) holds at some scale Q1 then one finds

m2
etR

(Q2) + m2
ebR

(Q2) − 2m2
etL

(Q2) = 3 |M2(Q1)|2
[(

g2(Q2)

g2(Q1)

)4

− 1

]
−

− 1

11
|M1(Q1)|2

[(
g1(Q2)

g1(Q1)

)4

− 1

]
(3.10)

after using equation (3.5). This equality establishes a relation between the stop

and sbottom masses right at the scale of measurement in a way involving the UV

values of the gaugino masses. Despite this, however, it shows that t̃L–t̃R plus b̃L–b̃R

mass splittings are entirely controlled by the isospin and hypercharge gaugino masses

rather than the gluino mass. This is an important aspect as it significantly reduces

sensitivity to the UV scale values of the gaugino masses. Indeed, by taking Q2 =

MSUSY and Q1 = MGUT the right-hand side of (3.10 reduces to −0.97M2(MGUT)2 +

0.08M1(MGUT)2 which does not exhibit any pronounced sensitivity to GUT scale

gaugino masses (unlike, for instance, (3.6)). One possible application of (3.10) among

many one can consider is that it establishes a relation between the stop and sbottom

mixing angles

∑

f=t,b

mf |Af − µ?Rf |
tan 2θ ef

' −0.5M2(MGUT)2 + 0.04M1(MGUT)2 − 0.04M2
Z , (3.11)

where Rf = cot β(tan β) for f = t(b). In estimating the right hand side we took

cos 2β ' −1 in accord with the LEP bounds which prefer fairly large values of tan β.

This simple formula may serve as a constraint in simulating the supersymmetric

parameter space as the experimental data accumulate. So far we have assumed that

the theory is S-free. What if it is not? In this case one automatically obtains a direct

sensitivity to all soft mass-squareds and neither (3.10) nor (3.11) can provide a signal

as clean as in the universal case.

• The RG invariants in table 1 can be combined to obtain new invariants that involve

solely the scalar mass-squareds in the theory. For instance, by taking MGUT to be

the UV scale with universal scalar masses the Higgs soft masses can be expressed as

m2
Hu

(Q) =
7

12
m2

0 +
5

12
m2

eeR
(Q) + m2

euL
(Q) − 21

12
m2

euR
(Q) − 3

4
m2

edR
(Q) +

3

2
m2

etR
(Q)

m2
Hd

(Q) = −15

4
m2

0 −
1

4
m2

eeR
(Q) − 3

(
m2

euL
(Q) − 1

2
m2

euR
(Q)

)
− (3.12)

− 3

(
m2

etL
(Q) − 1

2
m2

etR
(Q) − 3

4
m2

ebR
(Q)

)
+

3

2

(
m2

eτL
(Q) − 1

6
m2

eτR
(Q)

)
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which serve as a sum rule to correlate various soft masses with no contributions from

those of the gauginos. These expressions determine Higgs soft mass-squareds in terms

of the sfermion masses and the universal scalar mass at the GUT scale. Clearly, for

determining the Higgs soft mass-squareds it is necessary to know soft masses of all

three generations of sfermions if the gaugino sector is to be skipped (compare (3.12)

with the invariants I6, I7 and I14 in table 1).

The RG invariant I13 can prove useful for determining S from a minimal number of

measurements. Indeed, measuring meeR
and M1 at two distinct scales and taking the

difference determines if S is vanishing (if scalar masses attain a universal scheme as

in (3.9)) or not. However, given that a measurement of M1 requires exploration of

the neutralino sector, a more promising invariant is

m2
euR

− m2
edR

− 1

3
m2

eeR
+

4

13
S (3.13)

which involves only the first family sfermions which are simultaneous eigenstates of

mass, gauge, flavor and chirality (and thus, their experimental identification could

be easier than those of gauginos and third generation sfermions which undergo non-

negligible mixings).

• The RG invariants are highly useful probes of the mechanism that breaks the super-

symmetry. We illustrate their discriminative power by examining three well-known

supersymmetry breaking schemes: (i) no-scale supergravity models [26], (ii) dilaton-

dominated supersymmetry breaking [27] and (iii) flux-induced soft terms [28]. The

soft-breaking sectors of these models commonly exhibit the minimal supergravity

(constrained MSSM) configuration: m2
Hu

= m2
Hd

= · · · = m2
eτR

= m2
0, At(MGUT) =

Ab(MGUT) = Aτ (MGUT) = A0 and M3(MGUT) = M2(MGUT) = M1(MGUT) = M .

However, correlations among the parameters vary from model to model so does the

pattern of the RG invariants. In no-scale supergravity A0 = B(MGUT) = m0 = 0, in

dilaton domination m0 = M/
√

3, A0 = −M and B(MGUT) = 2M/
√

3, and in fluxed

MSSM m0 = M , A0 = −3M and B(MGUT) = −2M . The values of the soft-sector in-

variants are displayed in tables 2 and 3. One notices that, the only model-independent

invariant is I8 as it solely probes if soft mass-squareds and/or gaugino masses are uni-

versal or not. The other invariants differ from model to model. In case one invariant,

say I4, is determined by experiment with sufficient accuracy and if it agrees with

predictions of a specific model, say dilaton-dominated supersymmetry breaking, then

all one has to do is to check if rest of the invariants (to be determined as more and

more data accumulate) agree with the experiment. In this sense, the results displayed

in tables 2 and 3 (which can be expanded to include all possible breaking schemes

found in strings, supergravity, anomaly mediation, gauge mediation, etc.) can be

used as a look up table for checking/predicting which mechanism of supersymmetry

breaking is favored or realized in Nature. Clearly, RG invariance is not a requisite

property for an observable to probe supersymmetry breaking sector; however, if it is

RG-invariant it is not necessary to integrate the RGEs and it is possible to use results
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Mechanism I4/M I5/M
2 I6/M

2 I7/M
2 I8/M

2 I9/M
2

No-scale -3040/2013 -32/11 91/33 43/33 -32/11 61/99

Dilaton 2/
√

3-1126/2013 -107/33 57/22 53/66 -32/11 94/99

Fluxed -7462/2013 -43/11 149/66 -13/66 -32/11 160/99

Table 2: The patterns of the RG invariants (I4–I9) within no-scale [26], dilaton domination [27]

and fluxed MSSM [28] supersymmetry breaking schemes.

Mechanism I10/M
2 I11/M

2 I12/M
2 I13/M

2 I14/M
2 I15/M

2 I16/M
2 I17/M

2

No-scale -80/99 -86/99 -16/11 2/11 -10/33 19/33 -4/9 -15/11

Dilaton -47/99 -53/99 -37/33 17/33 -32/33 -1/132 8/9 -19/22

Fluxed 19/99 13/99 -5/11 13/11 -76/33 -155/132 32/9 3/22

Table 3: The same as in table 2 but for I10- I17.

of different experiments without RG scaling (irrespective of if they are obtained from

a reanalysis of LEP data or from Tevatron or from LHC).

• The RG invariants do have interesting implications also for chargino and neutralino

sectors of the model. For instance, from the product of two chargino masses one

immediately finds that the quantity

(
Mχ±

1

Mχ±

2

+ M2
W sin 2β

) (
g
256/3
3

h27
t h21

b h10
τ g113

2 g
73/33
1

)1/61

(3.14)

is an RG invariant observable of the model. Besides, sum of the neutralino masses

can be shown to be expressible in terms of the gauge couplings and gluino mass only,

as already derived in [19]. In the neutralino sector, one finds that

1

Mχ±

1

Mχ±

2

{
4∏

i=1

Mχ0

i
− tan2 θW sin 2βM2

W

(
Mχ±

1

Mχ±

2

+ sin 2βM2
W

)}
×

×
(

g9
2 g

256/3
3

h27
t h21

b h10
τ g

4099/33
1

)1/61

(3.15)

is an RG invariant. These invariants can be useful for determining the scale de-

pendence of certain parameters from a few measured ones, and also they manifestly

depict the correlation between the neutralino/chragino and gauge/Yukawa sectors.

Finally, one notes that under the rescalings

H̃u,d →
(

g9
2 g

256/3
3

h27
t h21

b h10
τ g

73/33
1

)−1/122

H̃u,d, B̃ → g1B̃, W̃ → g2W̃ (3.16)

the neutralino and chargino mass matrices become completely scale-invariant except

for SU(2)L⊗U(1)Y breaking terms which mix Higgsinos and gauginos. This property

could be useful in calculating and interpreting certain observables.

– 10 –



J
H
E
P
1
1
(
2
0
0
5
)
0
0
3

We have derived a number of RG invariants in the MSSM, and performed certain case

studies for highlighting their phenomenological relevance. These invariants, as also empha-

sized in Introduction, could be quite useful for determining the origin of supersymmetry

breaking, for testing the internal consistency of the model, and for obtaining certain sum

rules that enable the prediction of certain unknown parameters from the known ones.

4. The RG invariants in U(1)′ Model

The U(1)′ extension of the MSSM is based on SU(3)c × SU(2)L × U(1)Y × U(1)′ gauge

group with respective gauge couplings g3, g2, g1 and g′1. The Higgs sector is spanned by

Ĥu, Ĥd and Ŝ so that

ŴHiggs = hsŜĤuĤd (4.1)

is the unique superpotential comprising the Higgs superfields since U(1)′ invariance (i)

forbids the appearance of a bare µ parameter (as in the MSSM superpotential (3.1)), and

(ii) doeshat not allow for additional terms such as Ŝ3 (as in the NMSSM superpotential to

be discussed in the next section) [11, 12]. The full superpotential is obtained by adding (4.1)

to the fermionic part given in (2.2).

The soft-breaking terms pertaining to Higgs and gaugino sectors are given by

−LHiggs
soft = m2

Hu
H†

uHu + m2
Hd

H†
dHd + m2

SS†S + [hsAsSHu · Hd + h.c.] ,

−Lgaugino
soft =

1

2

∑

a=3,2,1,1′

[Maλaλa + h.c.] . (4.2)

A comparison of the superpotential and soft-breaking terms with their MSSM counter-

parts (3.1) and (3.2) shows clearly the way the MSSM limit is reached. Indeed, below the

U(1)′ breaking scale the effective theory resembles the MSSM (it just resembles because,

for instance, the neutralino sector of the MSSM is extended by U(1)′ gaugino and singlino

S̃ states) with the parameters

µeff ≡ hs〈S〉 , µeffBeff ≡ hsAs〈S〉 (4.3)

which are both stabilized at the weak scale as desired if the singlet develops a VEV 〈S〉 at

the same scale [11, 12]. In essence, as far as the Higgs sector is concerned, the naturalness

problem associated with the µ parameter of the MSSM is avoided as it is now generated

dynamically by U(1)′ breakdown [10].

The RGEs for model parameters are all listed in appendix A. For each quantity the

way to MSSM limit is also described. Similar to the MSSM in section 3, one can construct a

number of RG invariants by using the RGEs in appendix A. The invariants are tabulated in

table 4. The first invariant I ′1 is nothing but a direct generalization of the MSSM invariant

I1. It expresses the fact that a specific combination of the inverse gauge coupling-squareds

(with arbitrary c1, c2 and c3) is independent of the energy scale.

The U(1)′ model does not possess an exact RG invariant analogous to I2 in the MSSM.

The reason is that all four Yukawa couplings evolve with scale with their own RG equations;

it is not possible form a scale-invariant combination of the Yukawa-squareds in the absence
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Number RG Invariant

I ′1
3c3−c2−(33/5)c1

(6+ρλH ) g′
1

2 + c1
g2

1

+ c2
g2

2

+ c3
g2

3

I ′2 ≈ hs h
3/7
t h

−39/7
b h

8/7
τ g

64/7
3 g−9

2 g
5/77
1 g′1

−a′

I ′3
Ma

g2
a

(a = 1′, 1, 2, 3)

I ′4 ≈ As + 3
7At − 39

7 Ab + 8
7Aτ + 64

7 M3 − 9M2 + 5
77M1 − a′M ′

1

I ′5 I5 + ρ
6+ρλH

(Q2
E − 2Q2

L) |M ′
1|2

I ′6 I6 − 1
2m2

S + ρ
6+ρλH

(Q2
Hu

− 1
2Q2

S − 3
2Q2

U ) |M ′
1|2

I ′7 I7 − 1
2m2

S + ρ
6+ρλH

(Q2
Hd

− 1
2Q2

S − 3
2Q2

D − Q2
L) |M ′

1|2

I ′8 I8 + ρ
6+ρλH

(Q2
U + Q2

D − 2Q2
Q) |M ′

1|2

I ′9 I9 + ρ
6+ρλH

Q2
Q |M ′

1|2

I ′10 I10 + ρ
6+ρλH

Q2
U |M ′

1|2

I ′11 I11 + ρ
6+ρλH

Q2
D |M ′

1|2

I ′12 I12 + ρ
6+ρλH

Q2
L |M ′

1|2

I ′13 I13 + ρ
6+ρλH

Q2
E |M ′

1|2

I ′14 I14 − m2
S + ρ

6+ρλH
(Q2

Hu
+ Q2

Hd
− Q2

S − 3Q2
Q − Q2

L) |M ′
1|2

I ′15 I15 − 1
2m2

S + ρ
6+ρλH

(Q2
Hd

− 1
2Q2

S − 3
2Q2

D − 3
2Q2

L + 1
4Q2

E) |M ′
1|2

I ′16 I16 + ρ
6+ρλH

(2Q2
Q + Q2

U + Q2
D) |M ′

1|2

I ′17 I17 + ρ
6+ρλH

(Q2
L + 1

2Q2
E) |M ′

1|2

Table 4: The RG invariant combinations of rigid and soft parameters in U(1)′ models ( c1,...,3 are

arbitrary constants). Here I ′
2

and I ′
4

are approximate invariants derived in the text. The invariants

constructed from scalar mass-squareds are written in terms of the MSSM invariants in table 1. The

modifications are twofold: First, the MSSM invariants involving Higgs mass-squareds are shifted

by the singlet mass-squared. Next, each invariant receives new contributions proportional to |M ′

1
|2.

Note that invariants pertaining to the first and second generations generically involve a single

sfermion mass-squared since trilinear couplings do not contribute to their RGEs. For obtaining RG

invariants containing a specific set of parameters it is necessary to form appropriate combinations

of these tabulated ones, as exemplified in the text by a couple of case studies.

of a fifth equation that involves the same couplings (as d ln µ/dt does). However, it is still

possible to extract some important information about the UV/IR behaviors of the Yukawa

couplings from their RGEs. Indeed, one can show that

hs(Q2)

hs(Q1)
=

(
ht(Q1)

ht(Q2)

)3/7 (
hb(Q2)

hb(Q1)

)39/7 (
hτ (Q1)

hτ (Q2)

)8/7

×

×
(

g3(Q1)

g3(Q2)

)64/7 (
g2(Q2)

g2(Q1)

)9 (
g1(Q1)

g1(Q2)

)5/77 (
g′1(Q2)

g′1(Q1)

)a′

×

× exp

[
−186

7

∫ tQ2

tQ1

dt′ h2
b(t

′)

]
(4.4)

with a′ being a function of the U(1)′ charges

a′ =
ρ

42 + 7ρλH

(
39Q2

D − 8Q2
E + 24Q2

Hd
− 10Q2

Hu
− 8Q2

L + 36Q2
Q − 7Q2

S − 3Q2
U

)
, (4.5)
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where ρ and λH are defined in appendix A. The importance of (4.4) stems from the fact

that it explicitly expresses hs in terms of the gauge couplings and rest of the Yukawas. This

is important for both model building and phenomenological purposes since, in general, one

has no information about the IR and UV values of hs (in contrast to ht,b,τ whose values

at Q = MZ are known up to the ratio of the doublet VEVs). The ratio of the IR value

of hs to its UV value depends on all values of hb(t) in between because of the integration

over h2
b at the right-hand side. However, this dependence is an extremely weak effect in

low tan β domain where −(186/7)
∫ tQ2

tQ1

dt′ h2
b(t

′) ∼ 10−3. Presently, experiments have not

shown yet a preferred interval for tan β: it can range from 1 to mt/mb. However, in U(1)′

models (and also NMSSM to be discussed in the next section) large (and thus fine-tuned)

tan β regime is not particularly preferred or needed to agree with the LEP bounds [29].

In fact, as demonstrated in [30], the U(1)′ models with a secluded sector naturally realize

tan β ∼ O(1) with a heavy enough Z ′ gauge boson. Consequently, the lesson to be drawn

from (4.4) is that given IR and UV values of the gauge and Yukawa couplings then the

ratio hs(IR)/hs(UV) is completely determined to an excellent approximation (the validity

of which depends on how small tan β is). This conclusion enables us to introduce an

approximate RG invariant

I ′2 ≈ hs h
3/7
t h

−39/7
b h8/7

τ g
64/7
3 g−9

2 g
5/77
1 g′1

−a′

(4.6)

which exhibits a rather weak scale-dependence especially when the VEVs of the two Higgs

doublets are split within an O(1) factor. The invariant I ′2 given in table 4 is thus an

approximate (albeit almost exact in low tan β domain) RG invariant.

The U(1)′ models possess an invariant like I3 in the MSSM (see I ′3 in table 4). Indeed,

ratio of a gaugino mass to the same gauge group’s fine structure constant is an exact RG

invariant. As in the MSSM, such invariants enable one to determine and predict gaugino

mass of a given gauge group when others are given.

The RGEs of the trilinear couplings, given in appendix A, do not form an exact RG

invariant for the reasons valid for Yukawa couplings. However, one can still establish

correlations among the trilinears in order to extract information about their UV and IR

behaviors. For example, the difference between the UV and IR values of As is related to

those of the other parameters via

As(Q2) − As(Q1) = −372

7

∫ tQ2

tQ1

dt′ h2
b(t

′)Ab(t
′) +

3

7
(At(Q1) − At(Q2)) +

+
39

7
(Ab(Q2) − Ab(Q1)) +

8

7
(Aτ (Q1) − Aτ (Q2)) +

+
64

7
M3(Q1)

(
g3(Q2)

2

g3(Q1)2
− 1

)
− 9M2(Q1)

(
g2(Q2)

2

g2(Q1)2
− 1

)
+

+
5

77
M1(Q1)

(
g1(Q2)

2

g1(Q1)2
− 1

)
− a′M ′

1(Q1)

(
g′1(Q2)

2

g′1(Q1)2
− 1

)
(4.7)

which depends on all values of h2
bAb in between the UV and IR scales. This dependence,

however, is quite weak in low tan β domain (which is quite natural and does not pose
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any difficulty with experimental bounds for the model under concern), and one can safely

neglect this contribution. Then, to a good approximation (validity of which depends on

how small tan β is) one can form an RG invariant

I ′4 ≈ As +
3

7
At −

39

7
Ab +

8

7
Aτ +

64

7
M3 − 9M2 +

5

77
M1 − a′M ′

1 (4.8)

as is listed in table 4.

The RGEs for scalar soft mass-squareds depend on S = Tr[Y m2] and S′ = Tr[Qm2]

whose explicit expression is given in appendix A. In case soft masses are universal at

some scale Q then S vanishes at all scales dues to the absence of hypercharge-graviton-

graviton anomaly. In this sense, as was discussed in detail in Sec. 3 when analyzing the

MSSM RGEs, S is a viable probe of universality paradigm. These properties, however,

cannot be continued to S′ since even if the soft masses are universal S′ does not need to

vanish because U(1)′ charges are not guaranteed to cancel the gravitational anomaly of

Z ′ boson. Indeed, the U(1)′ model is generically anomalous in that even if gravitational

anomaly of U(1)′ is cancelled there remain all sorts of anomalies ( U(1)′3, U(1)′ SU(2)2,

U(1)′ SU(3)2c , . . .) to be cancelled. These anomalies cannot be cancelled unless one in-

troduces some exotic matter multiplets which necessarily disrupt the unification of gauge

couplings [12, 31]. (It is worthy of noting that the model proposed in [32] extends the

MSSM with a number of singlet chiral superfields, and determines the singlet U(1)′ charges

by imposing anomaly cancellation.) Another option, as has recently been pointed out, is

to introduce family non-universal U(1)′ charges for cancelling anomalies with minimal

matter content [33]. Both options are beyond the scope of this work which explores RG

invariant observables in minimal U(1)′ extension of the MSSM. Besides this, scale de-

pendence of S′ involves all soft masses, gaugino masses as well as trilinear couplings; it

is not as compact as (3.7). This continues to be true unless U(1)′ charges of opposite-

chirality same-flavor fermions obey the same ratios as the hypercharge. Moreover, U(1)′

charges of Higgs fields should exhibit a specific proportionality with their hypercharges.

In what follows, we leave aside the question of anomalies and specific representations for

U(1)′ charges, and simply take S′ ≡ 0 at all scales of interest. (Within specific U(1)′

models such as the ones coming from E(6) breaking or family non-universal U(1)′ models

the probing power of S′ can be analyzed explicitly.) With this simplifying assumption

the RG invariant combinations of the soft masses I ′5–I
′
17, in parallel and with respect to

those in the MSSM, are listed in table 4. The modifications in the MSSM invariants are

twofold: First of all, each invariant picks up an additional contribution proportional to

|M ′
1|2 (there would be an additional term from dS′/dt if S′ were not taken vanishing).

The proportionality constant involves U(1)′ beta function and a linear combination of

charge-squareds with coefficients identical to those of the soft mass-squareds relevant for

the invariant under consideration. The other modification in MSSM invariants concerns

the presence of Higgs mass-squareds. Indeed, if an MSSM invariant involves m2
Hu

or m2
Hd

then the corresponding U(1)′ invariant is necessarily shifted by −(1/2)m2
S . The reason for

this is the presence of terms proportional to h2
s in the beta functions of m2

Hu
, m2

Hd
and

m2
S .
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A couple of case studies can shed light on certain aspects of the RG invariants in

U(1)′ models. First, let us consider the RG invariant I ′8 in table 4. Similar to its MSSM

analogue (3.10), it gives rise to

m2
etR

(Q2) + m2
ebR

(Q2) − 2m2
etL

(Q2) = 3 |M2(Q1)|2
[(

g2(Q2)

g2(Q1)

)4

− 1

]
−

− 1

11
|M1(Q1)|2

[(
g1(Q2)

g1(Q1)

)4

− 1

]
+

+
ρ

6 + ρλH
(Q2

U + Q2
D − 2Q2

Q) ×

×
∣∣M ′

1(Q1)
∣∣2

[(
g′1(Q2)

g′1(Q1)

)4

− 1

]
(4.9)

when soft mass-squareds are all universal at some scale Q = Q1. This relation is indepen-

dent of the Higgs sector parameters; it is sensitive to only the isospin and Abelian group

factors. In fact, it feels whether the gauge sector is minimal or not by the inclusion of

the corresponding gaugino mass in the sum rule. Therefore, via the last term ∝ |M ′
1|2,

it obtains the potential of probing the existence of an additional U(1)′ gauge invariance

provided that one can perform precise measurements and consistency checks with other

sectors of the theory. Of course, (4.9) can be used to establish a relation between the stop

and sbottom mixing angles in the same spirit as (3.11).

One notices that it is not possible to construct an RG invariant which feels only the

extensions in the Higgs sector. The reason is that in a given sum rule each mass-squared pa-

rameter is accompanied by an additional term ∝ Q2|M ′
1|2 any attempt at cancelling terms

involving |M ′
1|2 necessarily ends up with cancelling m2

S contribution. Of course, within

a specific representation for U(1)′ invariance charges of various fields could be correlated

to cancel out without nullifying the coefficient of m2
S in the final sum rule. It was this

property of hypercharge symmetry that allowed us to arrive at (3.12) in the MSSM section

above. For instance, if Q2
E happens to be proportional to Q2

Hu
+ Q2

Hd
− Q2

S − 3Q2
Q − Q2

L

then I ′14 and I ′13 can be used to relate mass-squareds of Higgs fields to those of sfermions

and MSSM gauginos.

There exist certain RG-invariant combinations of the soft-mass squareds which depend

on extensions in neither the gauge nor the Higgs sectors. Invariants of this kind can be

easily constructed by linearly combining those in table 4. For instance,

I ′8 + 2I ′9 − I ′10 − I ′11 =
(
m2

etR
− m2

euR

)
+

(
m2

ebR
− m2

edR

)
− 2

(
m2

etL
− m2

euL

)
(4.10)

is an RG invariant in both MSSM and U(1)′ models. Clearly, this kind of quantities are

completely insensitive to modifications in the Higgs and gauge sectors; they exclusively

probe the sfermion sector.

In general, within specific string or supergravity models, the soft parameters exhibit

various interrelations which give rise to a spectrum of discriminative values for the RG

invariants. This can be used for predicting what specific model could be responsible for
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supersymmetry breaking. Indeed, as one recalls from discussions of the MSSM invariants

within no-scale supergravity, dilaton-domination and flux-induced soft terms, measure-

ments of RG invariants could be a useful tool for determining which high scale model is

operating as more and more data accumulate. For the U(1)′ model under concern it is

convenient to discuss the predictive powers of RG invariants with respect to the MSSM

ones tabulated in tables 2 and 3: first of all, if the UV scale model realizes a universal

gaugino mass M then each of I ′5/M
2–I ′17/M

2 is shifted by an amount

ρ

6 + ρλH

(
aXQ2

X + bY Q2
Y + cZQ2

Z + · · ·
)

(4.11)

if the invariant under concern is composed of aXm2
X + bY m2

Y + cZm2
Z + · · · If an invariant

does not contain Higgs soft mass-squareds or m0 = 0 for the model under concern then

this is the only modification in an RG invariant with respect to its MSSM value given in

tables 2 and 3. On the other hand, if an invariant consists of the Higgs masses, e.g. I ′6, I ′7,

I ′14, then departure from the MSSM expression occurs in both m2
0 and M2 directions. The

discriminative power of an RG invariant depends on its correlation with others for a given

GUT-scale configuration. Generically, if the mass-squareds of Higgs doublets are present

in an invariant so is that of the Higgs singlet.

The RG invariants do have interesting implications also for chargino and neutralino

sectors of the model. For instance, from the product of two chargino masses one immedi-

ately finds that the quantity

1

〈S〉
(
Mχ±

1

Mχ±

2

+ M2
W sin 2β

) (
h

3/7
t h

−39/7
b h8/7

τ g
64/7
3 g−11

2 g
5/77
1 g′1

−a′
)

(4.12)

is an approximate RG invariant. This RG invariant differs from its MSSM analogue (3.14)

by modifications in powers of the gauge and Yukawa couplings and by the presence of the

singlet VEV 〈S〉. The presence of the singlet VEV stems from the fact that the µ parameter

in the MSSM is generated dynamically by the singlet VEV: µeff = hs〈S〉.
The neutralino sector is sensitive to both the Higgs singlet and U(1)′ gaugino. First

of all, sum of the neutralino masses obey

6∑

i=1

Mχ0

i
= M ′

1 + M1 + M2 =
(
g′1

2
+ g2

1 + g2
2

) M1/2

g2
0

(4.13)

when the gaugino masses unify into M1/2 at the scale where gauge couplings do into g0. The

sum of the squared-masses of neutralinos depend on both M ′
1 and hs〈S〉. Therefore, a corre-

lated analysis of neutralino and chargino sectors provide important information on whether

the MSSM is extended by new gauge symmetries and/or new Higgs representations. The

neutralino sector admits several sum/product rules similar to (3.15) in the MSSM, and they

can be used to form novel RG invariant combinations of the chargino/neutralino parame-

ters in the same spirit as (4.13) and (4.12). One keeps in mind, however, that invariants

involving the Higgs singlet is always approximate in the sense of (4.4).

In this section we have derived a number of RG invariants in U(1)′ models, and per-

formed certain case studies for highlighting their phenomenological relevance. These in-

variants (albeit approximate for Yukawa couplings and trilinear soft terms) could be useful

for establishing gauge and/or Higgs extension with respect to the MSSM.
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5. The RG invariants in the NMSSM

The next-to-minimal supersymmetric model possesses no gauge extension with respect to

MSSM. Its Higgs sector is spanned by Ĥu, Ĥd and Ŝ so that

ŴHiggs = hsŜĤuĤd +
ks

6
Ŝ3 (5.1)

and

−LHiggs
soft = m2

Hu
H†

uHu + m2
Hd

H†
dHd + m2

SS†S +

[
hsAsSHu · Hd +

ks

6
AkS

3 + h.c.

]
,

−Lgaugino
soft =

1

2

∑

a=3,2,1

[Maλaλa + h.c.] , (5.2)

where the singlet cubic interaction in the superpotential is needed to generate a potential

for S ( this field does not have a D-term support to obtain a potential). The induction

of effective µ and B parameters are similar to those of the U(1)′ model given in (4.3).

The main difference from the U(1)′ model lies in the fact that the Ŝ is a pure singlet

(in both MSSM and NMSSM) so that it is allowed to develop a cubic interaction in the

superpotential.

The RGEs of the rigid and soft parameters of the model are all listed in appendix B. We

also discuss the MSSM limits of individual RGEs for easy comparison of the corresponding

RG invariants. The RG-invariant quantities in the model are listed in table 5. Obviously,

the RG invariant combinations of gauge couplings, I ′′1 , remain the same as in the MSSM.

In close similarity to U(1)′ models, the Yukawa couplings do not possess an exact RG

invariant. However, it is still possible to express one of the Yukawas in terms of the rest

and gauge couplings. For instance, the singlet cubic coupling is related to others via

ks(Q2)

ks(Q1)
=

(
ht(Q1)

ht(Q2)

)3/7 (
hb(Q1)

hb(Q2)

)15/7 (
hτ (Q2)

hτ (Q1)

)6/7 (
hs(Q2)

hs(Q1)

)3

×

×
(

g3(Q2)

g3(Q1)

)832/189 (
g2(Q2)

g2(Q1)

)27/7 (
g1(Q2)

g1(Q1)

)23/77

×

× exp

[
197

7

∫ tQ2

tQ1

dt′ h2
b(t

′)

]
. (5.3)

The importance of this relation stems from the fact that it explicitly expresses ks in terms

of the gauge couplings and rest of the Yukawas. This is important for both model building

and phenomenological purposes since, in general, one has no information about the IR and

UV values of both hs and ks (in contrast to ht,b,τ whose values at Q = MZ are known up to

the ratio of the doublet VEVs), and it is advantageous to know at least one’s value in terms

of the rest. The ratio of the IR value of ks to its UV value depends on all values of hb(t)

in between because of the integration over h2
b at the right-hand side. However, this depen-

dence is an extremely weak effect in low tan β domain where (197/7)
∫ tQ2

tQ1

dt′ h2
b(t

′) ∼ 10−3.

Presently, experiments have not shown yet a preferred interval for tan β: it can range from
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Number RG Invariant

I ′′1
c1
g2

1

+ c2
g2

2

+ 33c1+5c2
15g2

3

I ′′2 ≈ ks h
3/7
t h

15/7
b h

−6/7
τ h−3

s g
−832/189
3 g

−27/7
2 g

−23/77
1

I ′′3
Ma
g2

a
(a = 1, 2, 3)

I ′′4 ≈ Ak + 3
7At + 15

7 Ab − 6
7Aτ − 382

189M3 − 27
7 M2 − 23

77M1

I ′′5 I5

I ′′8 I8

I ′9 I9

I ′′10 I10

I ′′11 I11

I ′′12 I12

I ′′13 I13

I ′′16 I16

I ′′17 I17

Table 5: The RG invariant combinations of rigid and soft parameters in the NMSSM ( c1 and

c2 are arbitrary constants). Here I ′
2

and I ′
4

are approximate invariants derived in the text. The

invariants constructed from scalar mass-squareds are written in terms of the MSSM invariants

in table 1. The missing rows (with respect to table 1) indicate that there are no analogous RG

invariant combinations of the scalar soft mass-squareds (the ones that depend on the Higgs sector

parameters).

1 to mt/mb. However, in NMSSM large (and thus fine-tuned) tan β regime is not particu-

larly preferred or needed to explain the LEP limits [34]. Consequently, (5.3) implies that,

given IR and UV values of the gauge and Yukawa couplings, then the ratio ks(IR)/ks(UV)

is completely determined to an excellent approximation (the validity of which depends on

how small tan β is). This conclusion enables us to introduce an approximate RG invariant

I ′′2 ≈ ks h
3/7
t h

15/7
b h−6/7

τ h−3
s g

−832/189
3 g

−27/7
2 g

−23/77
1 (5.4)

which exhibits a rather weak scale-dependence especially when the VEVs of the two Higgs

doublets are split within an O(1) factor [34]. The invariant I ′′2 given in table 5 is thus an

approximate RG invariant.

The ratio of the gaugino masses to the corresponding fine structure constant, I ′′3 in

table 5, is an RG invariant, and it equals the corresponding invariant in the MSSM.

The behaviors of the trilinear couplings are similar to Yukawas. They do not admit

an exact RG invariant. However, one can correlate their UV and IR values as in the U(1)′

models. For example, the difference between the UV and IR values of Ak is related to those

of the other parameters via

Ak(Q2) − Ak(Q1) =
384

7

∫ tQ2

tQ1

dt′ h2
b(t

′)Ab(t
′) +

+
3

7
(At(Q1) − At(Q2)) +

15

7
(Ab(Q1) − Ab(Q2)) +
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+
6

7
(Aτ (Q2) − Aτ (Q1)) + 3 (As(Q2) − As(Q1)) −

− 382

189
M3(Q1)

(
g3(Q2)

2

g3(Q1)2
− 1

)
− 27

7
M2(Q1)

(
g2(Q2)

2

g2(Q1)2
− 1

)
−

− 23

77
M1(Q1)

(
g1(Q2)

2

g1(Q1)2
− 1

)
(5.5)

which depends on all values of h2
bAb in between the UV and IR scales. This dependence,

however, is quite weak in low tan β domain, and as experiments are not pushing for high

tan β regime for the NMSSM, this dependence on h2
bAb can safely be neglected. Then, in

low tan β regime, one can form an approximate RG invariant

I ′4 ≈ Ak +
3

7
At +

15

7
Ab −

6

7
Aτ − 382

189
M3 −

27

7
M2 −

23

77
M1 (5.6)

as listed in table 5.

As in the MSSM and U(1)′ models the soft squared-mass parameters do also form a

number of RG invariants. These are listed in table 5. Perhaps, the most interesting aspect

of the NMSSM is that its Higgs sector parameters do not admit any RG invariant. The

reason is that the RG running of m2
S is necessarily affected by the cubic singlet coupling

via (3m2
S + |Ak|2)k2

s whereas running of the squared-masses of other fields do not involve

terms ∝ k2
s . Hence, this term cannot be cancelled to form an invariant, and therefore, the

MSSM RG invariants I6, I7, I14, and I15 (which consist of the Higgs squared-masses) in

table 1 do not possess any analogue in table 5. Physically, this is related to the fact that

neither F terms nor soft terms generate operators of the form k2
s |S|2(|Hu|2, |Hd|2, |Q̃|2, . . .).

It is convenient to dwell on this point by examining one of the would-be invariants. For

instance, in the present model I14 in table 1 generalizes to

d

dt

(
I14 − m2

S

)
= −

(
3m2

S + |Ak|2
)

k2
s (5.7)

so that I14 −m2
S is not a scale-invariant observable; it exhibits a nontrivial RG flow unless

(i) ks = 0 or (ii) m2
S = −|Ak|2/3. The former is disfavored for it gives rise to a flat direction

for S [13]. The latter, however, represents a fixed point solution for m2
S in that at the scale

it holds m2
S is guaranteed to be negative and hence the theory below |Ak| generates the

MSSM as an effective theory. Clearly, if |Ak| ∼ O(TeV) the MSSM Higgs sector gets

correctly stabilized at the desired scale.

Looking from a different angle, (5.7) provides an experimental testing ground (pre-

sumably after LHC ⊕ ILC) for knowing if the model under concern is NMSSM or U(1)′

extension of the MSSM. Indeed, in U(1)′ models the right hand side of (5.7) is ∝ g′1
2|M ′

1|2
and it can be written as a total derivative to form the invariant I ′14 in table 4. Moreover, as

depicted in table 4 all RG invariants of soft mass-squareds systematically contain |M ′
1|2 so

that after sufficient number of precise measurements one can make sure if the model under

concern involves a new gaugino or not. In contrast to this, the right hand side of (5.7)

cannot be written as a total derivative; moreover, it shows up only in those would-be in-
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variants which include the Higgs soft-mass squareds. The rest of the invariants, as shown

in table 5, are identical to those in the MSSM. In this sense, non-invariance of the Higgs

sector parameters can provide a viable signal of NMSSM in future collider tests.

The RG-invariant combinations of the squared soft masses listed in table 5 give rise

to certain correlations or sum rules which are identical to those derived in the MSSM. For

instance, I ′′8 relates stop plus sbottom splittings to the isospin and hypercharge gaugino

masses in the same way as (3.10).

The RG invariant combinations of the chargino/neutralino systems are similar to ones

in U(1)′ models. Indeed, (4.12) now becomes

1

〈S〉
(
Mχ±

1

Mχ±

2

+ M2
W sin 2β

) (
h
−1/7
t h

−5/7
b h2/7

τ g
832/567
3 g

−5/7
2 g

23/231
1

)
(5.8)

is an approximate RG invariant in the sense of (5.3). The singlet VEV 〈S〉 arises due to

the dynamical origin of the MSSM µ parameter: µeff = hs〈S〉.
The neutralino sector is interesting in that sum of the neutralino masses satisfy

5∑

i=1

Mχ0

i
= M1 + M2 =

(
g2
1 + g2

2

) M1/2

g2
0

(5.9)

which is identical to the MSSM prediction. The NMSSM effects show up when we consider

sum of the neutralino mass-squareds or when we consider their products. Such quantities,

too, can be expressed in terms of the RG invariants at low values of tan β. Their validity

and construction are not different than (5.8).

In this section we have analyzed the RGEs of the NMSSM for determining RG invariant

combinations of the lagrangian parameters. Concerning the scale dependencies of the

Yukawa couplings and trilinear soft terms, the behavior is similar to U(1)′ model. On the

other hand, RG invariants made up of gauge couplings and scalar soft mass-squareds are

the same as in the MSSM. The model radically differs from the MSSM and U(1)′ model

due to the absence of RG invariants containing the Higgs mass-squareds.

6. Conclusion

In this work, using one loop RGEs, we have derived a number of scale-invariant observables

in softly-broken supersymmetric models, and illustrated their phenomenological implica-

tions by various case studies. We have first studied the MSSM and then its minimal

extensions, U(1)′ models and NMSSM, in a comparative manner.

In general, each supersymmetric model possesses RG invariants in gauge, Yukawa and

soft-breaking sectors. The invariants of the MSSM, of U(1)′ model and of the NMSSM

are listed in tables 1, 4 and 5, respectively. In general, RG invariants vary from model to

model though those associated exclusively with their common part, the sfermion sector,

may be combined to obtain invariants valid for all three models (see e.g. the combina-

tion 4.10).
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The RG-invariant combinations of the gauge couplings and gaugino masses are idetical

for the MSSM and NMSSM whereas additional gauge coupling and mass of the associated

gaugino introduces additional terms for the U(1)′ model. For phenomenological purposes,

such invariants prove particularly useful when gauge couplings and gaugino masses unify

at high scale.

The µ parameter, Yukawa couplings and gauge couplings combine to form an RG

invariant in the MSSM. This, however, is not the case in U(1)′ models and NMSSM. In

these models, the best one can do is to correlate one of the Yukawas in terms of the rest

so that an approximate RG invariant emerges within a specific domain of the parameter

space. In fact, I ′2 in table 4 and I ′′2 in table 5 serve as RG invariants only for low values of

tan β.

The Higgs bilinear soft mass B and sfermion-sfermion-Higgs trilinear couplings form

an exact RG invariant in the MSSM. However, for U(1)′ models and NMSSM there are no

such invariants, and as for the Yukawa sector, all one can do is to realize an approximate

invariant in a specific domain of the parameter space. In fact, I ′4 in table 4 and I ′′4 in table 5

behave as RG invariants only at low values of tan β.

The MSSM possesses a number of RG invariants containing the squared-masses of

the scalars. They can be grouped into two classes: The ones that are not sensitive to

whether the scalar masses attain a universal configuration and the ones that are sensitive

(via the quantity S) to such a configuration. Therefore, the S dependence of the invariants

serves as a tool for probing the UV scale correlations of the soft mass-squareds (as part

of the minimal supergravity configuration). Moreover, as shown in tables 3 and 4, the

invariants take on a specific set of values for each mechanism of supersymmetry break-

ing, and therefore, they can be used for determining the origin of supersymmetry break-

ing.

The RG invariants of scalar mass-squareds in the MSSM get modified by the U(1)′

gaugino mass and by the singlet mass-squared. In particular, those MSSM invariants

which depend on the Higgs mass-squareds are generically generically shifted by the singlet

mass-squared. It is possible to form new invariants that involve only the U(1)′ gaugino

mass. On the other hand, invariants that depend only on the singlet mass-squared cannot

be formed (unless one uses a specific representation for U(1)′ charges).

The situation in the NMSSM is interesting in that the Higgs mass-squareds cannot

be combined to form an invariant because of the presence of cubic singlet coupling in the

superpotential. This non-invariance itself can be useful for model identification at future

collider studies. On the other hand, mass-squareds of scalar quarks and leptons admit

RG-invariant configurations that are identical to those in the MSSM.

In general, the RG invariants are useful for both model-building and phenomenological

purposes as they make various indirect relations manifest. This enhances one’s knowledge

of various dependencies and correlations among the model parameters. Moreover, they give

rise to certain sum rules which can be quite useful for determining the underlying model

and origin of supersymmetry breaking as data accumulate at detectors. Various relations

require an accurate measurement of a subset of parameters which could be possible after

LHC⊕ILC.
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A. Renormalization group equations in U(1)′ model

In this appendix we list down the RGEs for U(1)′ models by extending [12] to cases with

finite bottom and tau Yukawas in a way including all three generations of sfermions. The

one-loop RGEs of the gauge couplings are given by

dg3

dt
= (2NF − 9) g3

3

dg2

dt
= (2NF − 5) g3

2

dg1

dt
=

(
2NF +

3

5

)
g3
1

dg′1
dt

= (2NF + ρλH) g′1
3
, (A.1)

where t ≡ (4π)−2 ln Q/MGUT, NF = 3, λH = Q2
Hd

+ Q2
Hu

+ 1
2Q2

S , and

ρ =
4

6Q2
Q + 3

(
Q2

U + Q2
D

)
+ 2Q2

L + Q2
E

(A.2)

which is obtained by requiring g2
a Tr[Q2] to be identical for all group factors. The U(1)′

charges QHu,...,E are family-universal. The corresponding MSSM RGEs are recovered by

setting g′1 = 0.

The evolutions of the superpotential parameters are given by

dht

dt
= ht

(
6h2

t + h2
b + h2

s −
16

3
g2
3 − 3g2

2 − 13

15
g2
1 − ρ

(
Q2

Hu
+ Q2

Q + Q2
U

)
g′1

2
)

dhb

dt
= hb

(
6h2

b + h2
t + h2

τ + h2
s −

16

3
g2
3 − 3g2

2 − 7

15
g2
1 − ρ

(
Q2

Hd
+ Q2

Q + Q2
D

)
g′1

2
)

dhτ

dt
= hτ

(
4h2

τ + 3h2
b + h2

s − 3g2
2 − 9

5
g2
1 − ρ

(
Q2

Hd
+ Q2

L + Q2
E

)
g′1

2
)

dhs

dt
= hs

(
4h2

s + 3h2
t + 3h2

b + h2
τ − 3g2

2 − 3

5
g2
1 − ρ

(
Q2

Hd
+ Q2

Hu
+ Q2

S

)
g′1

2
)

(A.3)

which reduce to the corresponding RGEs in the MSSM after setting g′1 = 0, identifying

d ln hs/dt with d ln µ/dt in the last equation, and taking hs = 0 everywhere else (since now

a dynamical field Ŝ does not exist at all).

The gaugino masses evolve as

dM3

dt
= (4NF − 18) g2

3M3
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dM2

dt
= (4NF − 10) g2

2M2

dM1

dt
=

(
4NF +

6

5

)
g2
1M1

dM ′
1

dt
=

(
4NF + ρ

(
2Q2

Hd
+ 2Q2

Hu
+ Q2

S

))
g′1

2
M ′

1 (A.4)

which reduce to the RGEs in the MSSM after setting M ′
1 = 0.

The RG evolutions of the trilinear couplings are given by

dAt

dt
= 2

(
6h2

t At + h2
bAb + h2

sAs

)
+

+ 2

(
16

3
g2
3M3 + 3g2

2M2 +
13

15
g2
1M1 + ρ

(
Q2

Hu
+ Q2

Q + Q2
U

)
g′1

2
M ′

1

)

dAb

dt
= 2

(
6h2

bAb + h2
t At + h2

τAτ + h2
sAs

)
+

+ 2

(
16

3
g2
3M3 + 3g2

2M2 +
7

15
g2
1M1 + ρ

(
Q2

Hd
+ Q2

Q + Q2
D

)
g′1

2
M ′

1

)

dAτ

dt
= 2

(
4h2

τAτ + 3h2
bAb + h2

sAs

)
+

+ 2

(
3g2

2M2 +
9

5
g2
1M1 + ρ

(
Q2

Hd
+ Q2

L + Q2
E

)
g′1

2
M ′

1

)

dAs

dt
= 2

(
4h2

sAs + 3h2
t At + 3h2

bAb + h2
τAτ

)
+

+ 2

(
3g2

2M2 +
3

5
g2
1M1 + ρ

(
Q2

Hd
+ Q2

Hu
+ Q2

S

)
g′1

2
M ′

1

)
, (A.5)

where RGEs of the corresponding quantities within the MSSM are obtained by g′1 = 0,

hs = 0 and As = B, B being the Higgs soft bilinear coupling.

The scalar soft mass-squared parameters evolve according to

dm2
Hu

dt
= 2

(
m2

Hu
+ m2

Hd
+ m2

S + |As|2
)

h2
s + 6

(
m2

Hu
+ m2

etL
+ m2

etR
+ |At|2

)
h2

t −

− 8

(
3

4
g2
2 |M2|2 +

3

20
g2
1 |M1|2 +

1

2
ρQ2

Hu
g′1

2 ∣∣M ′
1

∣∣2
)

+
3

5
g2
1S + ρQHug′1

2
S′

dm2
Hd

dt
= 2

(
m2

Hu
+ m2

Hd
+ m2

S + |As|2
)

h2
s + 2

(
m2

Hd
+ m2

eτL
+ m2

eτR
+ |Aτ |2

)
h2

τ +

+6
(
m2

Hd
+ m2

etL
+ m2

ebR
+ |Ab|2

)
h2

b −

− 8

(
3

4
g2
2 |M2|2 +

3

20
g2
1 |M1|2 +

1

2
ρQ2

Hd
g′1

2 ∣∣M ′
1

∣∣2
)
− 3

5
g2
1S + ρQHd

g′1
2
S′

dm2
S

dt
= 4

(
m2

Hu
+ m2

Hd
+ m2

S + |As|2
)

h2
s − 4ρQ2

Sg′1
2 ∣∣M ′

1

∣∣2 + ρQSg′1
2
S′

dm2
etL

dt
= 2

(
m2

etL
+ m2

Hd
+ m2

ebR
+ |Ab|2

)
h2

b + 2
(
m2

etL
+ m2

Hu
+ m2

etR
+ |At|2

)
h2

t −

−8

(
4

3
g2
3 |M3|2 +

3

4
g2
2 |M2|2 +

1

60
g2
1 |M1|2 +

1

2
ρQ2

Qg′1
2 ∣∣M ′

1

∣∣2
)

+
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+
1

5
g2
1S + ρQQg′1

2
S′

dm2
etR

dt
= 4

(
m2

etL
+ m2

Hu
+ m2

etR
+ |At|2

)
h2

t −

− 8

(
4

3
g2
3 |M3|2 +

4

15
g2
1 |M1|2 +

1

2
ρQ2

Ug′1
2 ∣∣M ′

1

∣∣2
)
− 4

5
g2
1S + ρQUg′1

2
S′
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)

+
2

5
g2
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2
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dm2
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(
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eτL
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Hd
+ m2
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)
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4
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3
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2
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(
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)
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τ −
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(
3

5
g2
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1

2
ρQ2
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1
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)

+
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2
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dm2
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(
4
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g2
3 |M3|2 +

3

4
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2 |M2|2 +

1
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g2
1 |M1|2 +

1

2
ρQ2

Qg′1
2 ∣∣M ′

1
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)

+

+
1

5
g2
1S + ρQQg′1

2
S′

dm2
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(
4
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g2
3 |M3|2 +

4
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g2
1 |M1|2 +

1

2
ρQ2

Ug′1
2 ∣∣M ′

1

∣∣2
)
− 4

5
g2
1S + ρQUg′1

2
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dm2
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(
4
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3 |M3|2 +

1
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1 |M1|2 +

1

2
ρQ2

Dg′1
2 ∣∣M ′

1

∣∣2
)

+
2
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1S + ρQDg′1

2
S′

dm2
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(
3
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2 |M2|2 +

3
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1 |M1|2 +

1

2
ρQ2

Lg′1
2 ∣∣M ′

1

∣∣2
)
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5
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1S + ρQHd

g′1
2
S′

dm2
eeR
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(
3

5
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1 |M1|2 +

1

2
ρQ2

Eg′1
2 ∣∣M ′

1

∣∣2
)

+
6

5
g2
1S + ρQEg′1

2
S′ , (A.6)

where the corresponding RGEs in the MSSM are obtained by setting g′1 = 0, hs = 0 and

m2
S = 0 everywhere. Since U(1)′ charges are family-universal the squared-masses of the

right-handed sfermions exhibit finite splitting only by their boundary values at MGUT (to

the extent their Yukawa couplings can be neglected). The beta functions of the scalar

mass-squareds depend on S defined in (3.7), and on

S′ = Tr
[
m2Q

]
= 2

(
QHum2

Hu
+ QHd

m2
Hd

+
1

2
QSm2

S

)
+

+ 6QQ

(
m2

etL
+ m2

ecL
+ m2

euL

)
+ 3QU

(
m2

etR
+ m2

ecR
+ m2

euR

)
+

+ 3QD

(
m2

ebR
+ m2

esR
+ m2

edR

)
+ 2QL

(
m2

τL
+ m2

µL
+ m2

eL

)
+

+ QE

(
m2

eτR
+ m2

eµR
+ m2

eeR

)
(A.7)

– 24 –



J
H
E
P
1
1
(
2
0
0
5
)
0
0
3

which vanishes if mass-squareds are universal provided that Z ′-graviton-graviton anomaly

cancels out i.e. Tr[Q] = 0.

B. Renormalization group equations in the NMSSM

In this appendix we list down RGEs for the NMSSM [20], for completeness. Since the

model exhibits no gauge extension with respect to MSSM, gauge couplings and gaugino

masses evolve precisely as in the MSSM (as mentioned below equations A.1 and A.4 in

appendix A). On the other hand, superpotential parameters and soft masses are modified

both in number and evolution, and below we provide explicit expressions for their beta

functions.

The evolutions of the superpotential parameters are given by

dht

dt
= ht

(
6h2

t + h2
b + h2

s −
16

3
g2
3 − 3g2

2 − 13

15
g2
1

)

dhb

dt
= hb

(
6h2

b + h2
t + h2

τ + h2
s −

16

3
g2
3 − 3g2

2 − 7

15
g2
1

)

dhτ

dt
= hτ

(
4h2

τ + 3h2
b + h2

s − 3g2
2 − 9

5
g2
1

)

dhs

dt
= hs

(
4h2

s + 3h2
t + 3h2

b + h2
τ +

1

2
k2

s − 3g2
2 − 3

5
g2
1

)

dks

dt
= ks

(
6h2

s +
3

2
k2

s

)
(B.1)

so that hs and ks exhibit a correlated RG running yet rest of the Yukawas remain as in

the U(1)′ model (with g′1 = 0, of course). The MSSM limit is achieved by putting ks = 0

and hs = 0 while identifying d ln hs/dt with d ln µ/dt.

The RG evolutions of the trilinear couplings are similar

dAt

dt
= 2

(
6h2

t At + h2
bAb + h2

sAs

)
+ 2

(
16

3
g2
3M3 + 3g2

2M2 +
13

15
g2
1M1

)

dAb

dt
= 2

(
6h2

bAb + h2
t At + h2

τAτ + h2
sAs

)
+ 2

(
16

3
g2
3M3 + 3g2

2M2 +
7

15
g2
1M1

)

dAτ

dt
= 2

(
4h2

τAτ + 3h2
bAb + h2

sAs

)
+ 2

(
3g2

2M2 +
9

5
g2
1M1

)

dAs

dt
= 2

(
4h2

sAs +
1

2
k2

sAk + 3h2
t At + 3h2

bAb + h2
τAτ

)
+

+ 2

(
3g2

2M2 +
3

5
g2
1M1

)

dAk

dt
= 2

(
6h2

sAs +
3

2
k2

sAk

)
, (B.2)

where the MSSM limit is obtained by putting hs = 0, ks = 0 everywhere and by identifying

As with the Higgs bilinear mixing mass B.
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Finally, the scalar mass-squared parameters run as follows

dm2
Hu

dt
= 2

(
m2

Hu
+ m2

Hd
+ m2

S + |As|2
)

h2
s + 6

(
m2

Hu
+ m2

etL
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etR
+ |At|2

)
h2
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(
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4
g2
2 |M2|2 +

3

20
g2
1 |M1|2

)
+

3

5
g2
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dm2
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= 2
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m2
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Hd
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etL
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Hd
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+
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3
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15
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)
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+
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(
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4
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3
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1 |M1|2

)
− 3
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g2
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dm2
eτR
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= 4

(
m2

eτL
+ m2

Hd
+ m2

eτR
+ |Aτ |2

)
h2

τ − 8

(
3

5
g2
1 |M1|2

)
+

6
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g2
1S

dm2
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(
4

3
g2
3 |M3|2 +

3

4
g2
2 |M2|2 +

1

60
g2
1 |M1|2

)
+

1
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1S
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= −8

(
4
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4
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1S

dm2
edR
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= −8

(
4

3
g2
3 |M3|2 +

1

15
g2
1 |M1|2

)
+

2

5
g2
1S

dm2
eeL
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= −8

(
3

4
g2
2 |M2|2 +

3

20
g2
1 |M1|2

)
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5
g2
1S

dm2
eeR
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= −8

(
3

5
g2
1 |M1|2

)
+

6

5
g2
1S , (B.3)

where evolution of m2
S is modified by the singlet cubic coupling whereas rest of the squared-

masses run as in the U(1)′ model with g′1 = 0.
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L.E. Ibáñez and G.G. Ross, Low-energy predictions in supersymmetric grand unified theories,

Phys. Lett. B 105 (1981) 439;

W.J. Marciano and G. Senjanovic, Predictions of supersymmetric grand unified theories,

Phys. Rev. D 25 (1982) 3092;

P. Langacker and N. Polonsky, Uncertainties in coupling constant unification, Phys. Rev. D

47 (1993) 4028 [hep-ph/9210235].
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B.C. Allanach, A. Brignole and L.E. Ibáñez, Phenomenology of a fluxed MSSM, JHEP 05

(2005) 030 [hep-ph/0502151].

[29] T. Han, P. Langacker and B. McElrath, The Higgs sector in a U(1)′ extension of the MSSM,

Phys. Rev. D 70 (2004) 115006 [hep-ph/0405244].

[30] J. Erler, P. Langacker and T.-j. Li, The z-z′ mass hierarchy in a supersymmetric model with

a secluded U(1)′-breaking sector, Phys. Rev. D 66 (2002) 015002 [hep-ph/0205001].

[31] J. Erler, Chiral models of weak scale supersymmetry, Nucl. Phys. B 586 (2000) 73

[hep-ph/0006051];

M. Aoki and N. Oshimo, A supersymmetric model with an extra U(1) gauge symmetry, Phys.

Rev. Lett. 84 (2000) 5269 [hep-ph/9907481].

[32] A.H. Chamseddine and H.K. Dreiner, Anomaly - free gauged U(1)′ in local supersymmetry

and baryon number violation, Nucl. Phys. B 447 (1995) 195 [hep-ph/9503454].

[33] D.A. Demir, G.L. Kane and T.T. Wang, The minimal U(1)′ extension of the MSSM, Phys.

Rev. D 72 (2005) 015012 [hep-ph/0503290].

[34] G.L. Kane and S.F. King, Naturalness implications of lep results, Phys. Lett. B 451 (1999)

113 [hep-ph/9810374];

M. Bastero-Gil, C. Hugonie, S.F. King, D.P. Roy and S. Vempati, Does lep prefer the

NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198].

– 30 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB324%2C52
http://xxx.lanl.gov/abs/hep-ph/9402254
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB134%2C429
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB247%2C373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB247%2C373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C145%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C145%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB312%2C451
http://xxx.lanl.gov/abs/hep-ph/9305262
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB422%2C125
http://xxx.lanl.gov/abs/hep-ph/9308271
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC74%2C157
http://xxx.lanl.gov/abs/hep-ph/9508258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB380%2C59
http://xxx.lanl.gov/abs/hep-ph/9601357
http://jhep.sissa.it/stdsearch?paper=12%282000%29026
http://xxx.lanl.gov/abs/hep-ph/0005260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB689%2C195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB689%2C195
http://xxx.lanl.gov/abs/hep-th/0311241
http://jhep.sissa.it/stdsearch?paper=05%282005%29030
http://jhep.sissa.it/stdsearch?paper=05%282005%29030
http://xxx.lanl.gov/abs/hep-ph/0502151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C115006
http://xxx.lanl.gov/abs/hep-ph/0405244
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C015002
http://xxx.lanl.gov/abs/hep-ph/0205001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB586%2C73
http://xxx.lanl.gov/abs/hep-ph/0006051
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C5269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C5269
http://xxx.lanl.gov/abs/hep-ph/9907481
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB447%2C195
http://xxx.lanl.gov/abs/hep-ph/9503454
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C015012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C015012
http://xxx.lanl.gov/abs/hep-ph/0503290
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB451%2C113
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB451%2C113
http://xxx.lanl.gov/abs/hep-ph/9810374
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB489%2C359
http://xxx.lanl.gov/abs/hep-ph/0006198

