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ABSTRACT

CLASSIFICATION AND TRACKING OF VEHICLES WITH HYBRID CAMERA
SYSTEMS

The integrated usage of several vision systems is especially important for surveil-

lance applications. In case of a hybrid system combining an omnidirectional and a PTZ

(pan-tilt-zoom) camera, the omnidirectional camera provides 360◦ horizontal FOV (Field

of View) with a low resolution per viewing angle whereas the PTZ camera provides high

resolution at a certain direction. In this thesis work, we introduce a hybrid system com-

bining the powerful aspects of both camera types and aims a wide angle high resolution

surveillance for traffic scenes. The hybrid system provides real-time object classifica-

tion and high resolution tracking. The omnidirectional camera detects the moving objects

and then it performs an initial classification by using shape-based features. Concurrently,

the PTZ camera classifies the objects in detail by using HOG (Histogram of Oriented

Gradients)+SVM (Support Vector Machine) pair. The object types we worked on are

pedestrian, motorcycle, car and van. In the experiments, we compared the classification

accuracy of omnidirectional camera, PTZ camera and hybrid system. Aiming high reso-

lution tracking, the PTZ camera tracks the objects belonging to the user defined class and

detected by using the omnidirectional camera.
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ÖZET

HİBRİT KAMERA SİSTEMLERİ İLE TAŞIT SINIFLANDIRMA VE TAKİBİ

Görme sistemlerinin entegre kullanımı, özellikle gözetleme uygulamaları için

önemlidir. Bir tümyönlü kamera, bir de PTZ (Pan-Tilt-Zum) kamerayı birleştiren bir

hibrit sistemi ele alırsak, tümyönlü kamera yatay eksende 360◦ düşük çözünürlüklü görüş

açısı sağlarken PTZ kamera belirli yönde yüksek çözünürlük sağlar. Bu tez çalışmasında,

her iki kamera türünün güçlü yönlerini birleştiren ve geniş açılı yüksek çözünürlüklü

gözetleme amaçlayan bir hibrit sistem tanıttık. Bu hibrit kamera sistemi, gerçek za-

manlı sınıflandırma ve takip sağlıyor. Hibrit sistem sınıflandırması için, tümyönlü kamera

hareketli nesneleri tespit eder, şekil tabanlı öznitelikler kullanarak ilk kademe sınıflandır-

ma yapar. Eş zamanda, PTZ kamera HOG (Yönlü Gradyan Histogramı)+SVM (Destek

Yöney Makinesi) çifti ile ikinci kez sınıflandırma yapar. Çalıştığımız nesne türleri yaya,

motosiklet, araba ve dolmuş. Tümyönlü kamera, PTZ kamera ve hibrit sistem ile yapılan

sınıflandırmaların başarılarını karşılaştırdık. Yüksek çözünürlüklü takip modülünde ise,

PTZ kamera, kullanıcı tanımlı sınıfa ait ve tümyönlü kamera tarafından tespit edilen nes-

neyi sürekli çerçeve içerisinde tutar.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

An omnidirectional camera is a stationary camera providing 360◦ FOV (Field of

View) in the horizontal plane with a low resolution per viewing angle. A PTZ (Pan-

Tilt-Zoom) camera, on the other hand, provides high resolution at narrow angle and its

viewing direction and zoom value can be remotely controlled. Two sample images of a

scene with a motorcycle, captured by an omnidirectional and PTZ camera are shown in

Figures 1.1a and 1.1b, respectively.

(a) (b)

Figure 1.1. Photos of the motorcycle were taken with an omnidirectional camera (1.1a)
and PTZ camera (1.1b)

A hybrid system combining the powerful aspects of both camera types aims a

wide angle and high resolution surveillance. In the rest, the term ‘hybrid system’ will

refer to a camera system including an omnidirectional and a PTZ camera. This powerful

combination can be used in many application areas including robot navigation [1], 3D

1



reconstruction [3] and surveillance. Pointing the PTZ camera to a moving object detected

by the omnidirectional camera is a typical surveillance task employing a hybrid camera

system [22],[36], [17],[14].

A hybrid system for traffic scenes can provide the following benefits:

• Consider a scenario where the detection and tracking of a certain vehicle type is

required. In such a scenario, the omnidirectional camera can make a rough classi-

fication of the vehicles in the scene. Then, the PTZ camera oriented by the omni-

directional camera will be able to track only the objects that are potentially in the

target class. First elimination mentioned is very important for the cases where there

are different types of objects moving and PTZ camera cannot handle tracking all

objects in the scene.

• PTZ cameras can obtain high resolution images of the tracked object. The images

can be used for detailed classification or recorded only for surveillance. At the same

time the omnidirectional camera can continue with its monitoring and classification

tasks. In this way, monitoring traffic and acquiring high resolution images of target

vehicle types can be done in parallel.

• Besides, an omnidirectional-PTZ camera pair can perform the tasks which other-

wise would require many standard FOV cameras.

1.2. Related Works

This section reviews some past research regarding shape-based and gradient-based

classification as divided into two subsections for which are standard FOV and omnidi-

rectional cameras. Besides, the literature review on detection and tracking with hybrid

systems is also presented in another subsection.

1.2.1. Object Detection and Classification with Standard FOV

Cameras

Shape-based features are computed by using the blobs extracted based on a back-

ground subtraction algorithm such as adaptive background algorithm. As an example of

2



shape based features from PTZ or standard cameras, a feature containing length, bounding

box dimensions is used to separate car and truck [15]. Another example, Morris et al. [27]

derives ten features that are area, bounding box (width and height), convex area, ellipse,

extent, solidity, perimeter from the blob tracked with Kalman Filter whose prediction

states used for data association. Then including tracking information, the classification of

the vehicle is done within Sedan, Semi, Truck+SUV+Van with weighted kNN (k-Nearest

Neighbors) after having applied LDA (Linear Discriminant Analysis) to remove redun-

dancy. Kumar et al. [24] proposed a framework that the classification of the vehicles

is done based on the size, shape, velocity, and position of the vehicle using a Bayesian

network. Buch et al. [5] conducted vehicle detection and classification using 3D mod-

els based on the manufactured dimensions of vehicles projected onto the image plane for

obtaining a silhouette match measure.

Instead of using shape based features, it is possible to extract image-based features

for object detection. For instance, all pixels of the image of tracked vehicle were used

as features after the image had been resized [27]. Another example for this purpose is

in human detection [10] which object appearance and shape are characterized as HOG

(Histogram of Oriented Gradients) features extracted with the sliding window approach,

and new samples were classified with linear SVM (Support Vector Machine). Considering

its overwhelming time complexity, it is necessary to obtain a region of interest based on

background subtraction on video for HOG features extraction as we applied on this thesis

work.

1.2.2. Object Detection and Classification with Omnidirectional

Cameras

Shape based and gradient based features were used in omnidirectional cameras as

well. Khoshabeh et al. [22] classified the vehicles as large (truck, bus, etc.) or small (car,

motorcycle, etc.) by only the covered area in the image.

Karaimer et al. [20] extracted shape based measurements which are convexity,

elongation, rectangularity and Hu moments, from average silhouettes of the largest blobs

in predetermined range. Firstly, convexity filtered out the poor detections that might not

belong to vehicle classes. Then, if the object was passed from the filter, it was classified

as motorcycle, car or van by using SVM with the other features.

3



As an example of a classification with SVM using HOG features, Cinaroglu et

al. detected car, van and pedestrian with HOG computation adopted mathematically to

omnidirectional camera [8], [9].

Other examples are usage of HOG features computed from recorded videos [13],

[21]. For instance, Gandhi et al. [13] extracted HOG features as labeled the bottom center

of the vehicles manually by using their virtual perspective views from omnidirectional

camera. This method, however, is not applicable for real-time system. Karaimer et al.

[21] extracted HOG features onto bounding rectangles obtained based on background

subtraction.

1.2.3. Detection and Tracking with Hybrid Systems

To cooperatively use a hybrid system such as ours, the geometric relation between

the omnidirectional camera and the PTZ camera should be extracted. Only after that, it is

possible to direct the PTZ camera to the object of interest detected in the omnidirectional

camera. There are several major approaches to solve this geometric problem.

The first one is performing a complete external calibration of the hybrid system

without restricting the rotation and translation between the camera pair. This allows all

degrees-of-freedom but usually it is not practical and highly time consuming. For in-

stance, a large pattern on the floor is required for the method in [7] and [16]. In [11],

the rotation and translation between the cameras are extracted via 3D Euclidean recon-

struction of scene points following projective reconstruction by factorization which is

computationally expensive due to using non-linear minimization techniques.

A second group of studies make assumptions about the camera setup to be able

to use some geometric constraints for a practical external calibration. One of the most

common assumptions is that the optical axes of the two cameras coincide [25] (i.e. one is

on top of the other). In this approach, intrinsic parameters of the omnidirectional cameras

are extracted beforehand. Then, the distance between an object and the center of the om-

nidirectional image is used to compute tilt (vertical) angle of the PTZ camera. Pan angle

is found by defining the reference zero position of PTZ camera in the omnidirectional

image. In some other studies [32],[2], less restrictive assumptions were made where the

cameras can move almost anywhere but their optical axes should be perpendicular to the

ground. Solving geometric equations by using only two scene points it was possible to

4



extract rotation and translation parameters.

Another major group do not estimate any external parameters of the hybrid system,

but directly estimate the relation between the pixels of the omnidirectional camera frame

and the pan/tilt angles of the PTZ camera. I.e. What should be the PTZ camera pan/tilt

values for a given pixel in the omnidirectional image? This is called spatial mapping

and based on data collection and fitting (interpolation). The method called homography

calibration in [6] falls into this category. In [30] and [33] where hybrid surveillance and

tracking systems were proposed, tilt angle of the PTZ camera is estimated by interpola-

tion of several points, whereas pan angle is computed by using the zero reference point.

In [18], a similar approach is used for the presented hybrid face detection and tracking

system.

1.3. Contributions

We have implemented an intelligent hybrid system providing real-time object clas-

sification and tracking. The object types we have worked on are pedestrian, motorcycle,

car and van. The hybrid system consists of two modules, one for classification and the

other for tracking.

In the first module, the omnidirectional camera performs rough classification based

on shape-based features of the detected object. In parallel, PTZ camera classifies the ob-

ject in detail by using its gradient-based features. For the classification in PTZ camera,

we have designed pedestrian-motorcycle SVM with 1764 HOG features and car-van SVM

with 4788 HOG features, which provides less computation and minimum storage. To se-

lect which of the mentioned SVMs is employed for a detected object, we implemented

two different approaches. The first one is using height/width ratio of the blob detected by

the PTZ camera, the other one is using the result of the omnidirectional camera classifi-

cation.

The procedures done in the omnidirectional camera part of the first module are

applied to the second module as well. The user defines a class of the object to be tracked.

The omnidirectional camera eliminates the objects which do not belong to the defined

class, and determines the candidate object for tracking. Then, the PTZ camera is con-

trolled by defining pan/tilt/zoom values of the object detected with omnidirectional cam-

era in order to get high resolution frames. We tested our system for detecting a target class
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object in the omnidirectional camera and steering the PTZ camera for high-resolution

tracking.

1.4. Organization of Thesis

The organization of this thesis is as below:

Chapter 2: This chapter gives the information on procedures done with the omni-

directional camera. The algorithms related to the background subtraction, data association

and tracking are given. Then, how we extract the shape-based features and perform the

classification is explained.

Chapter 3: This chapter describes the tasks on the PTZ camera. Background

Subtraction with PTZ camera is described. Then, the extraction of HOG features and

classification with SVM are explained.

Chapter 4: In this chapter, we explain how the omnidirectional and PTZ cameras

are used cooperatively. Spatial mapping in between and calculation of pan, tilt, and zoom

parameters are described.

Chapter 5: The implementation of the environment for the experiments is briefly

explained. The results of the experiments on classification and tracking are evaluated.

Chapter 6: Future works and conclusions are given.
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CHAPTER 2

OBJECT DETECTION, TRACKING AND

CLASSIFICATION WITH THE OMNIDIRECTIONAL

CAMERA

This chapter presents the methodology for the tasks of the omnidirectional camera

in the proposed hybrid system. As the flow diagram is illustrated in Figure 2.1, where the

procedures performed with the omnidirectional camera are divided into three core steps

which are object detection, tracking and classification. To explain briefly, the first stage

in the system is that the blobs of the moving objects at the scene are detected with back-

ground subtraction algorithm and the noise is removed from the blobs with morphological

operations. The following steps are tracking the blobs in the frames with Kalman Filter

and data association between the blobs in current frame and previously detected blobs

with Hungarian Algorithm. Concurrently, the camera checks the centroid of the object. If

the object is about to pass through the classification region of the PTZ camera, the omni-

directional camera signals the PTZ camera for starting detection and classification. At the

final step, while the angle of the object is in the range of predetermined angles, the object

is being classified with kNN classifier, and as soon as it passes the range, its final class is

determined.

Following sections provide the description of the algorithms and how the algo-

rithms are used for the system is explained.

Figure 2.1. System diagram of proposed hybrid classification
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2.1. Background Subtraction

Background subtraction is a process to segment moving objects from the back-

ground in an image sequence. The simplest approach is the subtraction of the current

frame from the previous frame. Despite its simplicity, it is not often applicable in real

environments [29]. On the other hand, there are robust and basic background subtraction

algorithms, also adaptive to change in environment, in the literature. The evaluation of

the background subtraction algorithms from basic to complex is presented by [31]. ABL

(Adaptive Background Learning) which can be considered one of the fast algorithms in

this evaluation has been employed for silhouette extraction in omnidirectional video. In

this algorithm, simply, a background model is updated with a learning rate for each frame

and then foreground objects are detected by the subtraction between the input frame and

updated background model. After silhouette extraction, a series of morphological opera-

tions are applied to clean the silhouettes. The silhouette examples for each class are given

in Figure 2.2.

Figure 2.2. Examples of the silhouettes based on ABL background subtraction along
with morphological operations. The images were cropped from the omni-
directional images for better visualization. The silhouettes at top-left: van,
top-right: pedestrian, down-left: motorcycle, down-right: car.

The extraction of the silhouette with ABL algorithm involves the following steps:

1. Initially, if the background model is empty, the input frame is copied as a back-

ground model.

2. The foreground image is obtained by computing the absolute difference between

input image and background model.
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3. The background model is updated with the formulation given in Equation 2.1,

where B is the background model, I is the input frame and a is the background

updating factor.

4. The foreground image is converted to binary image by applying threshold.

The steps 2-4 are repeated for incoming frames.

B(x, y, t) = (1 − a)B(x, y, t− 1) + aI(x, y, t) (2.1)

Morphological operations, closing followed by opening with disks, are applied to the

foreground image to remove small holes and small objects. After morphological opera-

tion, the contour area is computed and the object is assigned as a candidate for tracking.

Applying an area threshold, which is the below of the minimum area value of the train-

ing dataset, the candidate object higher than the threshold is assigned as detected object.

Then, the centroid and the contour of the detected object are used for tracking and classi-

fication in the following phases.

2.2. Kalman Filter and Hungarian Algorithm

Kalman Filter estimates the state of a dynamic system by using a form of feedback

control. The filter is very powerful for refining the observations if the system is in noisy

environment. Kalman Filter equations fall into two groups: time update equations and

measurement update equations. Time update equations compute the predicted states and

the predicted state is updated from the observation with the measurement update equations

[34].

Kalman filter design depends on the system. It is characterized with a state transi-

tion matrix, control input matrix, state variables and measurements. If the noise is taken

into account, process noise covariance matrix, measurement noise covariance matrix are

defined as well. Prediction and measurement phase are same in all of the systems. The

following three core phases were taken for Kalman Filter process:

• Preliminary: Initially, the system model is built as a 4x4 state transition matrix

with state variables which are position, velocity. State transition matrix is denoted

by A where dt variable is elapsed time between the states:
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A =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


~s is a vector containing state variables:

~s =
[
x, y, Vx, Vy

]
Measurements are fed with the centroids of the silhouettes and are defined as entries

of ~m vector:

~m =
[
x, y

]
A 4x4 process noise covariance matrix, Q, is defined assuming acceleration is pro-

cess noise, na:

Q =


na × dt4

4
0 na × dt3

2
0

0 na × dt4

4
0 na × dt3

2

na × dt3

2
0 na × dt2 0

0 na × dt3

2
0 na × dt2


Measurement noise and process noise are independent from each other. Therefore,

2x2 measurement noise covariance matrix is defined as R where nx and ny are

measurement noise in x and y directions:

R =

[
nx 0

0 ny

]
• Prediction: This phase predicts the kth state of the signal s and prior error co-

variance matrix P− by using the equations 2.2 and 2.3. C and u are input control

matrix and input control signal, respectively. There is no actuator such as motor in

the system, hence the control input signal is zero and C is neglected.

~sk = A ~sk−1 + C ~uk (2.2)

P−k = APk−1A
T +Q (2.3)
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• Updating: After prediction phase, the estimations are corrected with updating

phase. In the updating phase, the first step is computation of the Kalman gain,Kk in

Equation 2.4. The estimation of the sk is updated with measurementmk as Equation

2.5. In the final step, the posterior error covariance is calculated with Equation 2.6.

Kk = P−k H
T (HP−k H

T +R)−1 (2.4)

~sk = ~sk
− +Kk( ~mk −H ~sk

−) (2.5)

Pk = (I −KkH)P−k (2.6)

The prediction and updating phases are recursively repeated. The source codes for

Hungarian Algorithm and Kalman Filter1 have adopted to the system.

The omnidirectional camera is located at the region where several objects can

appear concurrently at the scene. Assigning the largest blob as the silhouette belonging

to the moving object for the classification [20] is inapplicable for this case. The object

should be tracked and data association should be performed if a new object appears or

multiple objects exist at the scene for preventing data confusion. Hungarian Algorithm

and Kalman Filter together provide a solution for multiple target problems. One example

based on Hungarian Algorithm and Kalman Filter using an omnidirectional camera is

given in [12], which aims simultaneous localization and mapping.

Hungarian Algorithm (also referred to as Kuhn-Munkres algorithm) is a global

method solving assignment and transportation problems in polynomial time [23],[28].

The implementation of the algorithm for the system is based on the following steps:

1. A cost matrix is created which has the number of rows as the length of the detection

vector and the number of columns as the length of the tracks vector. Each cell of

the matrix is initialized with the Euclidean distance between the centers of each

detection and each track.
1https://github.com/Smorodov/Multitarget-tracker (accessed 15 April 2015).

11



2. For each row of the matrix, the smallest element is subtracted from the each entry

in its row.

3. The elements which are zero in the resulting matrix are marked as a starred zero if

there is no other starred zero in their rows or columns.

4. The colomns which contain starred zero are covered. If the total of covered columns

is equal to minimum count between the number of the detections and tracks, it skips

to the last step.

5. A noncovered zero is found and marked as a primed zero. Unless there isn’t starred

zero in its row, it skips to step 6. Otherwise, the column containing starred zero

is uncovered and the row is covered. This step is repeated until uncovered zeros

remain. At last, the smallest uncovered value is saved.

6. Until column of the primed zero does not contain any starred zero, each starred zero

is unstarred, primed ones are starred. After all primes are erased and every line is

uncovered, it returns to step 4.

7. The smallest uncovered value found in Step 4 is added to all entries of each covered

row, and it is subtracted from the entries of each uncovered column.Then, it skips

to step 5.

8. Lastly the identities of track and pedestrian, designated with the position of the

starred zeros, are matched and stored in an assignment vector. For each assignment,

if the cost is above predetermined distance, it is removed from the vector.

2.3. Extraction of Shape Based Features

The objects within a class show similar patterns. These patterns are character-

ized as the features. The most important process for implementing an automated system

for object classification is the feature selection. The features should provide the system

grouping new data with high cohesion and loose coupling. As the represent of patterns

in vehicles, the shape based features such as rectangularity, elongation etc. can fulfill

the requirement for vehicle classification with omnidirectional cameras [20]. The shape
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based features were employed for the classification via the omnidirectional camera in our

system as well.

To select features from a pool, which primarily contains area, elongation, rectan-

gularity, convexity and height-width ratio, their potentials of separation were analyzed.

Rectangularity and convexity do not have enough variation to discriminate between vehi-

cle classes. Therefore, area, elongation and height-width ratio were included in the feature

vector used for classification. The calculation of them is based on contours (silhouettes).

The description of each feature is as follows:

1. Area: It is a one dimensional feature giving the silhouette area. It can separate

small vehicles from the large ones [22].

2. Elongation: It is calculated by using the Equation 2.7 [35]. In the equation: E is

elongation, S is the short and L is the long edge of the minimum rotated bounding

rectangle. It discriminates motorcycles and pedestrians from the other classes.

E = 1 − (S/L) (2.7)

3. Height-width Ratio: Height-width ratio, Ratio, is calculated by using Equation 2.8

where H, W are height and width of the minimum contour rectangle, respectively.

Since the ratio of the pedestrian larger than 1 and the other ones are smaller than

1, it can be discriminative parameter to separate the pedestrians from the others.

There are cases that motorcycle and pedestrian have elongation values which does

not differ from each other. In such cases, height-width ratio distinguishes between

motorcycle and pedestrian (an example is given in Figure 2.3).

Ratio = H/W (2.8)

To illustrate the combination of the features, 2D normalized features are plotted in

Figure 2.4. As can be observed, if the elongations of the samples are approximately same,

area can separate van-car from pedestrian-motorcycle, and height-width ratio separates

pedestrians from other classes.
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(a) (b)

Figure 2.3. Silhouette examples of a motorcycle (left) and a pedestrian (right) whose
elongation values are close to each other (0.42 and 0.41, respectively) but
height-width ratios are quite different (0.65 for motorcycle, 1.63 for pedes-
trian). H and W denote the height and width of the non-rotated bounding
rectangle (Equation 2.8).

2.4. kNN Classification

Classification of the vehicles is the final stage in this part of the system. While the

angle of the object is in the range of predetermined angles (in the system, this range is set

as [-30◦,30◦] assigning 0◦ is the angle that the camera is the closest to the road), firstly

features of the object is being extracted and then it is being classified using the features.

Each time the object is classified by, the assigned class is voted. Once it passes the range,

the most voted class is assigned as the object’s final class. An example of this procedure

given in 2.5.

kNN classification is the approach employed to the system. It is a non-parametric

algorithm that stores all labeled training dataset and decides the class of the object by

looking k nearest ones of the dataset with the distance measurement. This approach has

been applied by using features extracted from either single silhouettes (e.g. [27],[26]) or

multiple silhouettes [19].

Before the implementation of the classifier, the samples in training dataset were

labeled and their features were normalized by using rescaling method given in Equation

2.9 where x is a value of the feature, x′ is its normalized form and the denominator is the

difference between the maximum value and minimum value of the corresponding features

in the training dataset.

x′ =
x−min(x)

max(x) −min(x)
(2.9)

The features of the test data were also rescaled. If the value of the feature is upper

1, it is assigned to 1. Similarly, if the value of the feature is below 0, it is assigned to 0.

The objects are classified by using the normalized features.
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Figure 2.4. 2D normalized shape-based features of samples in our dataset.
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(a) (b)

(c) (d)

Figure 2.5. Example of hybrid system classification. (a) The objects are not in the
target angle range yet, so not classified, they are labeled as ‘UNKNOWN’.
(b) Classification of the car is done since it passed through the angle range.
(c) The tracking of the classified object is continued with its new label
‘CAR’. (d) The result of the PTZ camera classification. Due to the delay
in the PTZ camera, this frame was captured after the object was classified
by the omnidirectional camera. The classification result of omnidirectional
camera can be used for the PTZ camera classification while choosing the
SVM classifier.
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CHAPTER 3

OBJECT DETECTION AND CLASSIFICATION WITH

THE PTZ CAMERA

This chapter presents the methodology we employed for the PTZ camera of the

proposed hybrid system. PTZ camera, controlled by the omnidirectional camera, is only

sufficient enough to keep the moving objects in the frame of PTZ camera. Exact location

of the object cannot be estimated since the IP cameras are not synchronized due to the

delays that occur while acquiring frame from them and control of the PTZ camera. There-

fore, moving object is detected based on background subtraction with the PTZ camera as

well. The object detection and classification starts when the PTZ camera is positioned at

the desired location where side view of the vehicle is seen, and the PTZ camera is not

moved while detection and classification are being done.

Stages of the classification after background subtraction and morphological oper-

ation on PTZ camera are shown in Figure 3.1. First stage extracts the silhouette which is

the largest blob in PTZ frame. Second stage finds the minimum bounding rectangle and

calculates the height-width ratio. In third stage, an SVM decider chooses the classifier to

which the object is sent by using height-width ratio (low height-width ratio indicates it is

a car or a van). After the classifier is selected, the rectangle is enlarged and the region

on the enlarged rectangle rescaled to fit into the defined height-width ratio (1:1 for pedes-

trian/motorcycle, 1:2.5 for car/van). As a final step, the object is classified by using SVM

with HOG features computed on the region.

The details of background subtraction and classification performing on the PTZ

camera are given in subsections 3.1 and 3.2, respectively.

3.1. Background Subtraction

HOG features are generally used for object detection in an image via sliding win-

dow approach. Since this is a time consuming process, in a real-time system a region

which encloses the object should be automatically defined by a background subtraction
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Figure 3.1. Operations done with PTZ camera. Minimum bounding rectangle enclos-
ing the silhouette is obtained and the SVM classifier is determined using
height-width ratio. The rectangle is enlarged and the window is cropped
(the ratio of the window is 1:1 for motorcycle and pedestrian, 1:2.5 for
van and car). The classification of the object is performed based on HOG
features.

algorithm. In this step, MOG2 (Improved Mixture of Gaussians) background subtraction

algorithm is deployed to the system [37]. We observed that MOG2 is better than ABL in

noise and shadow robustness for PTZ frames and it generates better windows enclosing

the silhouettes. A pair of examples obtained with both background subtraction algorithms

are given in Figure 3.2.

In MOG2 algorithm, a background model is estimated as parametric Gaussian

mixture probability density from a training dataset. Any pixel which does not meet the

model is assumed foreground pixel, others are deemed to be background pixel. MOG2

selects needed Gaussian components per pixel automatically and for each new sample,

the training dataset is updated periodically by online clustering algorithm that if the object

remains stable for a long time, it is added to the training set discarding old ones and hence

the background model is reestimated. We computed average processing time of MOG2

algorithm processed in GPU (Graphics Processing Unit) by repeating 1000 times, and

found 6 msec as the average processing time which is appropriate for real-time process

capability of the hybrid system.
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Figure 3.2. Examples of the silhouettes based on MOG2 background subtraction along
with morphological operations. The images were cropped from the PTZ
images for better visualization. The silhouettes at top-left: van, top-right:
pedestrian, down-left: motorcycle, down-right: car.

3.2. SVM Classification with HOG Features

HOG is a feature descriptor based on oriented histograms, proposed for pedestrian

detection and classification [10]. It provides information on object shape and appearance.

SVM classifier is a supervised learning method used for binary classification. Moving

object seen from the PTZ camera is classified at coarse level by using HOG+SVM pair

in the hybrid system. We trained two different SVM classifiers for this purpose. Pedes-

trian/motorcycle SVM was trained with 1764 HOG feature values from 120x120 (1:1

ratio) pixels detection window. Car/van SVM was trained with 4788 HOG feature val-

ues from 120x300 (1:2.5 ratio) pixels detection window. Pedestrian/motorcycle SVM is

trained as pedestrian images are positive samples, motorcycles are negative samples. In

the same manner, car/van SVM is trained as car images are positive samples, vans are

negative samples.

Following steps describe how HOG descriptors are computed [10]:

1. As a first step, gradient values are computed with a 1D centered derivative mask
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(a) (b)

(c) (d)

Figure 3.3. Comparison between ABL and MOG2 background algorithms. The sil-
houettes at the left column are extracted with ABL (a-c), the ones at the
right colomn (b-d) are the MOG2 background subtraction algorithm [37].

defined as [-1, 0, 1] applying to image in vertical and horizontal directions. Gradi-

ent values are unsigned. This step extracts the information of the object about its

contour, silhouette and texture.

2. In the second step, the detection window is divided into cells each of which is 15x15

pixels with a rectangle shape. Gradient values computed in the first step within a

cell are placed into a 9-bin histogram. Since the gradient values are unsigned,

histogram channels range from 0◦ to 180◦. Each pixel within a cell has a vote

weighted with magnitude of the corresponding gradient value. These votes define

the contribution of the gradient to the histogram.
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3. Third step groups the adjacent cells and normalizes the histogram. Group of cells

are described as blocks. 30x30 pixels blocks are defined for that purpose. As de-

scribing 15x15 pixels block stride, it provides the blocks 50% overlaping. The set

of normalized histograms represent a HOG descriptor.

Apart from using height-width ratio of the silhouette detected with PTZ camera,

the object’s class detected with omnidirectional camera can be used to choose the SVM

classifier, result of which is given in Section 2.1. To do this, we should ensure that the

same object instance is classified in both cameras. PTZ camera uses the side-views of the

objects since the training is performed with images seeing the vehicles from one side. Po-

sition of the vehicle in the omnidirectional camera is used to guarantee that the vehicle is

in the FOV of the PTZ camera. This can be considered as the hybrid system classification

since both cameras are involved. A visual example of such classification given in Figure

2.5d.
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CHAPTER 4

HIGH RESOLUTION TRACKING WITH HYBRID

CAMERA SYSTEM

The cameras are located in place where more than one objects can exist in the

scene. PTZ camera is able to track only one object when such an event occurs. Therefore,

we propose a cooperative object tracking system that PTZ camera tracks only an object

which belongs to the target class (specified by the user) and detected by the omnidirec-

tional camera. This chapter describes the computation of pan, tilt and zoom values to be

sent to the PTZ camera and the procedures of the cooperative object tracking system.

4.1. Pan and Tilt Angle Calculation

The positions of the cameras were not aligned. To achieve a relation between

pan/tilt angles and the coordinates of the omnidirectional camera, we simply built up

look-up table. For the look-up table, we put a grid pattern on the omnidirectional image

plane shown in Figure 4.1 and for each grid point on the grid; we collected corresponding

pan and tilt angles of the PTZ camera. Two samples from the look-up table are shown in

Figure 4.2.

For the intermediate locations (between the grid points), pan/tilt values are es-

timated with bilinear interpolation given in Equation 4.1 where the points are shown in

Figure 4.3. In Equation 4.1, (x,y) = P is the location of the object, to be interpolated and its

neighborhood are denoted by Qij = (xij,yij). Function f finds corresponding pan or tilt an-

gle of given coordinates. Other coordinates of the object where are out of or on boundary

of the grid world are assigned as outliers and any command is sent to PTZ camera.

f(x, y) = 1/(x2 − x1)(y2 − y1)[f(Q11)(x2 − x)(y2 − y)+

f(Q21)(x− x1)(y2 − y)+

f(Q12)(x2 − x)(y − y1)+

f(Q22)(x− x1)(y − y1))]

(4.1)
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Figure 4.1. Grid points of the omnidirectional camera used in look-up table. Red dots
are not seen from PTZ camera or not the region of our interest, so they
were neglected. Constructed look-up table contains the pan/tilt pairs of the
green circles.

4.2. Zoom Calculation

To obtain high resolution images of the object, we need to zoom in when the object

covers a small part of the PTZ camera frame. We relate the area of the minimum bounding

rectangle of the object in the omnidirectional image to the zoom value of PTZ camera by

collecting samples of an object moving it close and far away from the camera. In a sense,

we perform spatial mapping for the zoom value. As a result, red circles in Figure 4.4 are

obtained. To satisfy those points, we derived Equation 4.2 which is depicted in Figure

4.4.
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(a)

(b)

Figure 4.2. Samples from the look-up table (a-b). Images on the left side are from the
omnidirectional camera, the rest is from the PTZ camera. Red circles on
the omnidirectional camera correspond to grid coordinates, As for the ones
on PTZ camera, they are centers of the corresponding points.

z(x) =

maxzoom if x < thresholdarea

(1 − x−thresholdarea
1000−thresholdarea ) ×maxzoom if x ≥ thresholdarea

(4.2)

In this equation, maximum value for zooming in object is denoted by maxzoom. If

the area of the minimum bounding rectangle of the object is smaller than thresholdarea,

then we do not zoom in more and use the maxzoom value. If the area is larger, than the best

zoom value is computed. As can be observed from Figure 4.4, thresholdarea is around

200 pixels, and if the area is more than 1000 pixels, no more zoom out is possible.

24



Figure 4.3. Bilinear Interpolation. Qij are grid points, and P is the point to be interpo-
lated (The courtesy of wikipedia.org).

4.3. Object Tracking

The steps of the cooperative object tracking are as illustrated in Figure 4.5. First,

object detection, tracking and classification are performed on omnidirectional camera. If

the class of the object is the specified class defined by user and PTZ camera does not track

another object at that time, pan and tilt values are calculated by using the location of the

object and zoom is determined by the area of the object on omnidirectional camera.

Even though the position estimate of Kalman Filter is able to track detected ve-

hicle on the omnidirectional camera, it is not sufficient to catch the vehicles due to the

delays occurred during steering the PTZ camera. To solve this problem, the position is

modified by using Equation 4.3 and then pan-tilt values, to be sent to the PTZ camera,

are calculated by using this modified position. The block diagram of these procedures is

shown in Figure 4.6. In Equation 4.3, (XPTZ ,YPTZ) denotes the modified position to be

used for calculating pan and tilt angles, (Xkalman, Ykalman) is the prediction of the centroid

computed by Kalman Filter, ∆Xkalman, ∆Ykalman are the centroid displacements between

consecutive frames and β is the variable which enables us to direct the PTZ camera ahead

in the predicted course. β is defined at the range between -120◦ and 120◦ and it gets its

maximum value at 0◦ (cf. Figure 2.5a) where change in displacement is maximum for a

fixed speed, and it linearly decreases from 0◦ to the boundaries (-120◦ and 120◦).

XPTZ = Xkalman + ∆Xkalman · (1 + β), YPTZ = Ykalman + ∆Ykalman · (1 + β) (4.3)
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Figure 4.4. Graph of area vs. zoom. X axis is the area of bounding rectangle (in pixel),
y axis is the zoom value of the PTZ camera (1200 refers to 24x zoom))
Red circles were obtained by the experiment; green lines are obtained by
the Equation 4.2 which we used for the zoom calculation.
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Figure 4.5. System diagram of proposed cooperative object tracking

Figure 4.6. Block diagram for modifying position to calculate pan and tilt angles
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CHAPTER 5

EXPERIMENTAL RESULTS

Oncam Grandeye 360◦ with fisheye lens as an omnidirectional camera, and Sam-

sung SNP-3500 as a PTZ camera were used for the experiments. The cameras were

mounted at the front side of a building where there is comparatively more traffic circu-

lation rather than other buildings, at Izmir Institute of Technology. The resolution of the

frames acquired from omnidirectional camera are 528x480 pixels, ones sampled from

PTZ camera are 1024x768 pixels. The system has been coded with C/C++ in Visual

Studio 2013. OpenCv 3.0 Library with CUDA [4] was used as library for adaptation to

real-time image processing. The experimental results are summarized under three subsec-

tions that are classification with omnidirectional camera, classification with hybrid system

and tracking performance.

5.1. Classification with Omnidirectional Camera

96 motorcycle, 125 car, 100 van and 102 pedestrian samples of single silhouettes

were collected as dataset for kNN classification and their shape-based features were ex-

tracted. We implemented kNN classifier (cf. 2.4) where k = 5, using this dataset.

Another set was constructed for testing (94 vans, 113 cars, 71 motorcycles and 83

pedestrians). An important property of this set is that the same vehicles (and pedestrians)

were also captured with the PTZ camera (Some PTZ captures are shown in Figure 5.1). In

this way, we were able to observe the classification accuracy of the hybrid system for the

same samples. After the features had been extracted, samples in test set were classified

with this kNN classifier. Table 5.1 shows the confusion matrix, per class accuracies and

the overall accuracy (97.51%).
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Table 5.1. Confusion matrix of the experiment with test data and accuracy of classifier
on omnidirectional camera.

Sample Predicted Classes
Number Van Car Motorcycle Pedestrian Accuracy

Real Van 94 90 4 0 0 95.74%
Classes Car 113 1 112 0 0 99.12%

Motorcycle 71 0 0 71 0 100%
Pedestrian 83 0 0 4 79 95.18%

Accuracy 97.51%

5.2. Classification with Hybrid Camera System

As described in more detail in Chapter 3, moving objects are classified using HOG

features and SVM. 94 motorcycle, 126 car, 101 van and 104 pedestrian samples, each one

of them is single frame, collected and their bounding boxes were labeled for the purpose

of using as training set. Samples of cars and vans were scaled to 120x300 (1:2.5 ratio)

pixels, the samples of other classes were scaled to 120x120 (1:1 ratio) and then their HOG

features were computed. The dataset was augmented 12 times by shifting the bounding

boxes left, right, up, and down and by zooming in and out. This provides a more robust

training, since in the test phase the bounding boxes after background subtraction may be

at the ideal position and scale within the PTZ camera frame.

Table 5.2 gives information on the accuracy of the PTZ classification when the

SVM is selected in accordance with height-width ratio of the rectangle. For the heigh-

width ratio, we analyzed the samples in the dataset, and determined 0.65 as the threshold

which yields good performance in separation of motorcycles/pedestrians from cars/vans.

In the table, it can be observed that approximately 91% of samples was classified cor-

rectly. This is lower than the omnidirectional camera classification accuracy given in

Table 5.1. The majority of the misclassified samples are the ones sent to the wrong SVM

classifier. We also tried kNN method to see whether the height-width ratio of the sam-

ple is closer to motorcycles/pedestrians or cars/vans, we obtained a similar performance

shown in Table 5.3. Therefore, choice of SVM classifier made by height-width ratio is

not good enough.

The experiment was repeated so that the SVM classifier is selected according to

the final class of the object determined by the omnidirectional camera. In other words, if
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Table 5.2. Accuracy of PTZ camera classification when SVM is selected according
to the height-width ratio of bounding rectangle

False PTZ Classifier
Class Sample SVM True False

Number Number Classification Classification Accuracy
Van 94 9 83 2 88.30%
Car 113 7 106 0 93.81%

Motorcycle 71 13 57 1 80.28%
Pedestrian 83 0 83 0 100%

Accuracy 91.14%

Table 5.3. Accuracy of PTZ camera classification when SVM is selected based on
kNN classifier using height-width ratio as feature

False PTZ Classifier
Class Sample SVM True False

Number Number Classification Classification Accuracy
Van 94 9 83 2 88.30%
Car 113 8 105 0 92.92%

Motorcycle 71 12 58 1 81.69%
Pedestrian 83 0 83 0 100%

Accuracy 91.14%

the kNN classification result of an object is a car or a van, HOG features of that object in

the PTZ camera are evaluated by car/van SVM classifier. This can be considered as the

hybrid camera system classification since both cameras are involved. Table 5.4 provides

the results of this experiment. As is observed, the accuracy of the classification increased

from approximately 91% to 99%. The system had biggest improvement in motorcycle

class whose accuracy rose to 98.59%. False SVM choices were completely resolved.

Misclassified examples of motorcycle and van are illustrated in Figure 5.2.
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Table 5.4. Accuracy of PTZ camera classification when SVM is selected according
to the classification result from omnidirectional camera

False PTZ Classifier
Class Sample SVM True False

Number Number Classification Classification Accuracy
Van 94 0 92 2 97.87%
Car 113 0 113 0 100%

Motorcycle 71 0 70 1 98.59%
Pedestrian 83 0 83 0 100%

Accuracy 99.17%

5.3. High Resolution Object Tracking

We tested the tracking module described in Chapter 4.3 by experiments. Figure

5.3a shows a case where there is only one object in the scene, which was previously clas-

sified as ‘pedestrian’ and that object is tracked until it leaves the scene. In the tracking

scenario, it is reasonable to assume that there is a target class (e.g. pedestrian) and the

PTZ camera is directed to the objects that are classified as the target class by the omnidi-

rectional camera. There may be more than objects in the scene, one of them belonging to

the target class. An example is given in Figure 5.3b. In this case, the PTZ camera tracks

the target object as other objects enter or leave the scene (Figure 5.3c). Figure 5.4 and

Figure 5.5 show the examples of the car and van tracking.

Our tracking experience revealed that there is a delay while PTZ is adjusting zoom

and this delay could cause missing faster objects such as car, motorcycle. On the other

hand, the system, described in 4.3, is capable of tracking pedestrians even there are several

objects in the scene and PTZ camera could zoom in or out the object keeping desired sizes.
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Figure 5.1. Test samples for the SVMs

Figure 5.2. Misclassified examples of motorcycle and van.
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(a)

(b)

(c)

Figure 5.3. (a) : Pedestrian tracking when there is only one moving objects in the
scene, which was previously classified as ‘pedestrian’ and tracked as it
moves. (b,c) : Pedestrian tracking when the omnidirectional camera de-
tects multiple objects in the scene. PTZ camera stays with the pedestrian
in a later frame.
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Figure 5.4. Example of van tracking. Purple circles indicate the location after updated
with the formula given in Equation 4.3.
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Figure 5.5. Example of car tracking. Purple circles indicate the location after updated
with the formula given in Equation 4.3.
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CHAPTER 6

CONCLUSION

We proposed a hybrid system containing an omnidirectional and a PTZ cameras.

The hybrid system is capable of real-time co-operative classification and tracking provid-

ing wide angle and high resolution surveillance for traffic scenes.

For the co-operative classification, we employed a module for omnidirectional

camera frames that provides multiple object detection and classification simultaneously.

The omnidirectional camera classified the objects by using kNN classifier with shape-

based features which are elongation, height-width ratio and area. Concurrently, the PTZ

camera applied coarse level classification by using SVM classifier with HOG features. We

implemented two different SVMs in order to have less computation and storage. One of

the SVMs is pedestrian/motorcycle SVM, the other one is car/van SVM. We applied two

different approaches for decision of which SVM classifying the object. The first approach

was that height-width ratio of the silhouette extracted from PTZ frame decides the SVM.

The other approach was that the decision based on the result of omnidirectional camera

classification. The results showed that although the PTZ camera didn’t classify the objects

satisfactorily standalone, accuracies of the omnidirectional camera and the hybrid system

classification were similar.

For the co-operative tracking, while the omnidirectional is classifying the objects,

corresponding pan/tilt/zoom values of the target object whose class is user-defined are cal-

culated and sent to the PTZ camera. The results indicated that the hybrid system showed

good performance on pedestrian tracking. In this way, the PTZ camera can monitor the

pedestrians, and take high resolution their images. Then, the images can be analyzed for

tasks such as object recognition.

As a future work, we will detect the objects which are not included in current

classification pool. For instance, moving objects such as dog can be observed the scenes,

and they are classified mostly as motorcycle at present system. We will expand the system

in order to classify that kind of objects as undefined type. Additionally, we will find a

more effective solution for the problem of synchronization between the cameras.
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