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Abstract

This paper is devoted to the semiclassical limit of the one-dimensional Schr€oodinger equation with current nonlin-
earity and Sobolev regularity, before shocks appear in the limit system. In this limit, the modified Euler equations are

recovered. The strictly hyperbolicity and genuine nonlinearity are proved for the limit system wherever the Riemann

invariants remain distinct. The dispersionless equation and its deformation which is the quantum potential perturbation

of JNLS equation are also derived.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, in the study of one-dimensional condensed matter systems with quantum wires and Hall edge states, a new

version of the nonlinear Schr€oodinger equation (JNLS equation for short)
* Co

E-m

0960-0

doi:10.
i�hwt þ
�h2

2
wxx þ kjðx; tÞw ¼ 0 ð1:1aÞ
with current nonlinearity
j ¼ �h
2i
ð �wwwx � w �wwxÞ ¼ �hImð �wwwxÞ; ð1:1bÞ
(m ¼ 1) has been derived in [2]. This model that appears in the above works is obtained from a very interesting

dimensional reduction from 2þ 1 dimensional model of anyons, the Chern–Simons gauged nonlinear Schr€oodinger model
(the Jackiw–Pi model) [11,12], taking into account the dynamically active gauge field component A2 ¼ B. The model
(1.1a,b) admits novel chiral soliton solution, moving only in one direction, whose mass formula justifies the interpre-

tation of a soliton as a bounded state of elementary particles of the quantized theory in the weak coupling limit [2,3,10].

Evidently, the chiral solitons found in these works may play important role within the context of the practical quantum

Hall effect, where chiral excitations are known to appear. Unfortunately it does not pass the Painlev�ee test [4] and seems
not to be integrable in the sense of inverse scattering. Integrable extension of the model admitting N soliton solution

appears if one adds the cubic nonlinearity term corresponding to three-particle interaction of bosons [9,25]. But the price

for integrability is the lack of chiral solitons. It is why any analytical results related to Eq. (1.1a,b) would be important.
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Particularly in the semiclassical limit, when one could expect creation of the shock wave and interesting properties for

chiral solitons and anyons. Therefore, the study of the vanishing Planck number limit is of particular interest.

In this paper we consider the Cauchy problem for JNLS equation (1.1a,b) subject to the rapid oscillating initial

condition
wðx; 0Þ ¼ w0ðxÞ ¼ A0ðxÞ exp
i

�h
S0ðxÞ

� �
; ð1:2Þ
where S0 2 HsðRÞ for s large enough, and A0 is a function, polynomial in �h, with coefficients of Sobolev regularity in x.
We will study the behavior of solutions of the problem (1.1a,b) and (1.2) as �h! 0 and �1 < x < 1, 06 t6 T , i.e.,
within an arbitrary finite time T . The corresponding asymptotic limit is the so-called semiclassical or WKB limit which

is to determine the limiting dynamics of any function of the field w of the JNLS equation (1.1a,b) as �h! 0. The Cauchy

problem for a class of nonlinear Schr€oodinger equations with coupling of derivative type have been studied by Ozawa in
[26] using the idea of gauge equivalent.

For defocusing nonlinear Schr€oodinger equation, the semiclassical limit for initial data with Sobolev regularity in

short time has been studied by Grenier [8]. In this limit, the Euler equations for an isentropic compressible flow are

recovered. This was proved rigorously by Jin et al. [13] in one dimension using the inverse scattering technique. For

derivative nonlinear Schr€oodinger equation (DNLS for short), the limit behavior is described by the modified Euler

equation [5,6,17,21].

The semiclassical limit of the JNLS equation (1.1a,b) can be discussed in the same strategy as Grenier�s [8] for NLS
equation (see also [5,6,17] for DNLS equations and [19,20] for Schr€oodinger–Poisson system). Similar to the derivative
nonlinear Schr€oodinger equation [5–7,23], the k term in JNLS equation (1.1a,b) is not invariant under Galilean trans-

formation, and it flips sign under parity (x! �x), i.e., the JNLS equation does not possess parity and Galilean in-

variance and therefore the canonical momentum is not conservative [15–17,21,22]. To obtain the conservation law of

momentum, we have to introduce the noncanonical momentum which is indeed the conservative quantity of the JNLS

equation (see (2.12) below). Although JNLS equation is similar to the DNLS equation, they are quit different from each

other. For DNLS equation, even the MNLS equation [6,7,17], the associated Riemann invariant forms are given by

simple and beautiful formulas. However, for JNLS equation we need to solve a fourth order equation, the associated

Riemann form are ugly. This also explains JNLS�s lack of integrability.
The rest of the paper is organized as follows. In Section 2 we reformulate the model (1.1a,b) in the Madelung

hydrodynamics form and derive the conservative quantities and their conservation laws. The conservation laws can be

obtained from the action principle. We also find the formal semiclassical or dispersionless limit of the model (1.1a,b), in

the wave equation form as perturbed by so called quantum potential JNLS equation. In Section 3, we study the local

smooth solutions of JNLS equation (1.1a,b) and their semiclassical limit based on the modified Madelung�s transfor-
mation and the classical theory of quasilinear hyperbolic systems. Section 4 is devoted to estimation of the shock wave

appearance in the semiclassical limit system. The strict hyperbolicity and geniune nonlinearity is proved for the limit

system whenever the Riemann invariants R	 remain distinct by applying Lax�s theory [14,24]. A Riccati equation is

found for the evolution of oxR	 along the associated characteristic and breaking are discussed [18,31].
2. Hydrodynamical structure of JNLS equation

The semiclassical limits are the dynamics obtained by letting �h! 0 for the initial value problem (1.1) and (1.2).

However, it is not clear directly from (1.1a,b) what form such a dynamics might take. Insight into this question can be

gained by considering the conservation laws associated with the JNLS equation. Therefore, this section is devoted to the

hydrodynamical structure of the JNLS equation (1.1a,b). We write the complex-valued wave function
wðx; tÞ ¼ Aðx; tÞ exp i

�h
Sðx; tÞ

� �
ð2:1Þ
in terms of the phase and amplitude. This transformation is usually called Madelung�s transformation and was orig-
inally introduced in the context of the linear Schr€oodinger equation for quantum mechanics. After substitution in the

JNLS equation (1.1a,b) and separation of the real and imaginary parts of the equation, one obtains
At þ 1
2
ðASxx þ 2AxSxÞ ¼ 0; ð2:2Þ

St þ
1

2
ðSxÞ2 � kSxA2 ¼

�h2

2

Axx
A

: ð2:3Þ
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In terms of new hydrodynamical variables, the fluid density q and the local velocity u, defined as
q ¼ A2 ¼ jwj2; u ¼ Sx ð2:4Þ
we get
qt þ ðquÞx ¼ 0; ð2:5aÞ

ut þ uux � kðquÞx ¼
�h2

2

ð ffiffiffi
q

p Þxxffiffiffi
q

p
� �

x

: ð2:5bÞ
This system describes the Madelung fluid and is a perturbation (by the quantum potential) of modified compressible

Euler equations
qt þ ðquÞx ¼ 0; ð2:6aÞ

ut þ
1

2
u2

�
� kqu

�
x

¼ 0 ð2:6bÞ
while in terms of the velocity potential S given by (2.4), interpreted as the classical action, we obtain the Hamilton–

Jacobi equation
St þ 1
2
ðSxÞ2 � kSxq ¼ 0 ð2:7aÞ
supplied with the Liouville�s one
qt þ ðqSxÞx ¼ 0: ð2:7bÞ
The reader is cautioned that, even if not explicitly indicated, the solution of the above equations actually is a member of

a family of solutions parametrized by �h through its dependence on the initial data. The difference between the modified
compressible Euler equations and the Eqs. (2.5a,b) lies in the quantum correction term of order Oð�h2Þ on the right hand
side of (2.5b). This density dependent term can be interpreted as internal self-potential
�h2

2

ð ffiffiffi
q

p Þxxffiffiffi
q

p
� �

x

ð2:8Þ
the so-called Bohm quantum potential [1,30].

Multiplying (2.5b) by q and using (2.5a) we find the current density (or canonical momentum) j satisfies
jt þ
jjj2

q

 !
x

� kqjx ¼
�h2

4
oxðqo2x log qÞ; ð2:9Þ
which is not a local conservation law except when k ¼ 0. This is due to the lack of Galilean symmetry. On the other

hand, from the continuity equation we also find
k
2
q2

� �
t

þ kqjx ¼ 0: ð2:10Þ
Adding (2.9) and (2.10) together yields
o

ot
j

�
þ k
2

q2
�
þ o

ox
jjj2

q

 !
¼ �h2

4

o

ox
ðqo2x log qÞ: ð2:11Þ
Denoting the density of the noncanonical momentum M by
M � jþ k
2

q2 ð2:12Þ
the system (2.5a,b) can be rewritten in terms of q and M as
o

ot
q þ o

ox
M
�

� k
2
q2
�

¼ 0; ð2:13aÞ
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o

ot
M þ o

ox
M2

q

�
� kqM þ k2

4
q3
�

¼ �h2

4

o

ox
ðqo2x log qÞ: ð2:13bÞ
The local conservation laws (2.13a,b) comprise a closed system governing q and M which have the form of a pertur-

bation of the modified compressible Euler equations. Similar to the barotropic compressible Euler equation we rewrite

(2.13b) as
o

ot
M þ o

ox
M2

q

� �
� o

ox
ðkqMÞ þ o

ox
PðqÞ ¼ �h2

4

o

ox
ðqo2x log qÞ; ð2:13b0 Þ
where P ðqÞ is the pressure which is related to the potential energy UðqÞ ¼ ðk2=8Þq3 by
P ðqÞ � qU0ðqÞ � UðqÞ ¼ k2

4
q3: ð2:14Þ
Thus, the third term on the left hand side of (2.13b0), �kqM , can be interpreted as the noncanonical pressure created by
the background fluid.

The hydrodynamical structure also implies the conservation laws of the JNLS equation (1.1a,b).

Theorem 2.1. Let bar denote the complex conjugate. The following quantities are conservation integrals of the JNLS
equation (1.1a,b);
Z 1

�1
qdx ¼ constant ¼ C1; ð2:15aÞZ 1

�1
udx ¼ constant ¼ C2; ð2:15bÞZ 1

�1
M dx ¼ constant ¼ C3; ð2:15cÞZ 1

�1
Edx ¼ constant ¼ C4; ð2:15dÞ
where the hydrodynamic variables q, u, M and E are given in terms of the wave function w as follows;
q � jwj2 ¼ jAj2; ð2:16aÞ

u � Sx ¼
j
q
¼ �h
2i

wx
w

 
�

�wwx
�ww

!
; ð2:16bÞ

M � jþ k
2
q2 ¼ �h

2i
ð �wwwx � w �wwxÞ þ

k
2
jwj4; ð2:16cÞ

E � M2

2q

�
þ k2

8
q3
�
þ k
2

qM þ �h2

4
� q2x
2q

¼ �h2

2
jwxj

2 þ kjwj2 �h
2i
ð �wwwx � w �wwxÞ þ

k2

2
jwj6: ð2:16dÞ
Proof. We only need to prove (2.15d) and (2.16d). The energy is decomposed into classical, noncanonical and quantum

parts respectively. Each part propagates according to
o

ot
M2

2q

�
þ k2

8
q3
�
þ o

ox
M2

2q

��
þ k2

8
q3 � k

2
qM þ k2

4
q3
�
�M

q

�
þ k
2

M2

q
qx �

3k3

8
q3qx ¼

�h2

4

M
q

o

ox
ðqo2x log qÞ; ð2:17aÞ

o

ot
ðqMÞ þ o

ox
qM
��

þ 1

2
qM � kq3

�
�M

q

�
�M

2

q
qx þ

3k2

4
q3qx ¼

�h2

4
q
o

ox
ðqo2x log qÞ ð2:17bÞ
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and
o

ot
q2x
2q

� �
þ o

ox
q2x
2q

�M
q

� �
þ k
2

o

ox
ð2q2x � qqxxÞ ¼

o

ox
qxxM

q

�
� qxMx

q

�
�M

q
o

ox
ðqo2x logqÞ � k

2
q
o

ox
ðqo2x logqÞ

ð2:17cÞ
respectively. Therefore the local conservation law of energy is derived by (2.17a)þðk=2Þ (2.17b)þð�h2=4Þ (2.17c);
o

ot
E þ o

ox
M2

2q

��
þ k
4
qM � k2

8
q3 þ �h2

4

qx
2q

�
�M

q

�
þ k�h2

8

o

ox
ð2q2x � qqxxÞ ¼

�h2

4

o

ox
qxxM

q

�
� qxMx

q

�

or
o

ot
E þ o

ox
E
��

� PðqÞ � k
4

qM
�
�M

q

�
þ k�h2

8

o

ox
ð2q2x � qqxxÞ ¼

�h2

4

o

ox
qxxM

q

�
� qxMx

q

�
ð2:18Þ
where the total energy E is given by (2.16d). Therefore, when fields decrease rapidly at spatial infinity, the energy is time-
independent. This completes the proof. �

The conservative quantities of the JNLS equation (1.1a,b) may be recast from the action principle from which it is

easier to identify the Hamiltonian (energy), momentum and other constants of motion. In contrast to the NLS

equation, JNLS equation (1.1a,b) does not possess a local Lagrangian formulation directly in terms of the field w.
Consider the action
S ¼
Z Z

Ldxdt ¼
Z Z

i�h �WWWt

"
� �h2

2

o

ox

�



 � i
k
2�h

q

�
W





2
#
dxdt ð2:19Þ
the Euler–Lagrange equation that follows can be easily shown to be
i�hWt ¼ � �h2

2

o

ox

�
� i

k
2�h

q

�2

W � k
2
JW ¼ � �h2

2
Wxx þ ik�hqWx þ

3k2

8
q2W: ð2:20Þ
In Eqs. (2.19) and (2.20), q represents the density �WWW, while
J ¼ �h
2i

�WW
o

ox

��
� i

k
2�h

q

�
W � W

o

ox

�
þ i

k
2�h

q

�
�WW

�
ð2:21Þ
is the corresponding current and the two are linked by the continuity equation
oq
ot

þ oJ
ox

¼ 0: ð2:22Þ
Next, we redefine the gauge transformation
Wðx; tÞ ¼ wðx; tÞ exp i
k
2�h

Z x

�1
jwðy; tÞj2 dy

� �
ð2:23Þ
which bring Eq. (2.20) into a different, yet equivalent expression
i�hwt �
k
2

Z x

�1
otjwðy; tÞj2 dy

� �
w ¼ � �h2

2
wxx � kjw: ð2:24Þ
Applying the continuity equation (2.22) and using the identity, q ¼ jWj2 ¼ jwj2, the resulting equation is just (1.1a,b).
The invariance of the action S under space/time translations reflects itself into the presence of the conservative

quantities;
M ¼ �hImð �WWWxÞ ¼
�h
2i
ð �WWWx � �WWxWÞ ¼ jþ k

2
q2; ð2:25aÞ

E ¼ �h2

2

o

ox

�



 � i
k
2�h

q

�
W





2 ¼ �h2

2
jwxj

2 þ kjwj2 �h
2i
ð �wwwx � w �wwxÞ þ

k2

2
jwj6 ð2:25bÞ
the momentum and energy respectively (comparing with (2.16c,d)). The associated momentum and energy fluxes are

given respectively by
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eMM ¼ �h2
o

ox

�



 � i
k
2�h

q

�
W





2 � �h2

4

o2

ox2
q; ð2:26aÞ

eEE ¼ � �h2

2
�WWt

o

ox

��
� i

k
2�h

q

�
W þ Wt

o

ox

�
þ i

k
2�h

q

�
�WW

�
ð2:26bÞ
and they verify the continuity equations
o

ot
M þ o

ox
eMM ¼ 0;

o

ot
E þ o

ox
eEE ¼ 0 ð2:27Þ
which are equivalent to (2.13b) and (2.18) respectively. Notice that Eq. (2.12) or (2.25a) shows that M possesses the

dynamical contribution ðk=2Þq2 in addition to the usual kinematical term j; therefore JNLS (1.1a,b) is not Galileo-

invariant.

Furthermore, we can reformulate the JNLS equation (1.1a,b) as a linear dispersive perturbation of a symmetric

hyperbolic system with the help of the modified Madelung�s transformation. Indeed, we will look for solutions w�h of the

form
w�hðx; tÞ ¼ A�hðx; tÞ exp i

�h
S�hðx; tÞ

� �
; ð2:28Þ
where the complex-value function A�h ¼ a�h þ ib�h represents the amplitude and the real-valued S�h represents the phase.
Unlike the usual WKB method to look for solution of the form w�hðx; tÞ ¼ A�hðx; tÞ exp i

�h Sðx; tÞ

 �

, where S is independent
of �h, we allow S�h to depend on �h. Now insert (2.28) in JNLS equation (1.1a,b), we obtain
i�hA�h
t � A�hS�ht þ

�h2

2
A�h
xx �

1

2
A�hðS�hx Þ

2 þ i�h
2
ðA�hS�hxx þ 2A�h

xS
�h
x Þ þ kjA�hj2A�hS�hx ¼ 0
then we split into
S�ht þ
1

2
ðS�hx Þ

2 � kjA�hj2S�hx ¼ 0;

iA�h
t þ

i

2
ðA�hS�hxx þ 2A�h

xS
�h
x Þ þ

�h
2
A�h
xx ¼ 0:

ð2:29Þ
Considering the change of variable w�h ¼ S�hx and using the fact that A
�h ¼ a�h þ ib�h we have the equivalent form;
a�ht þ w�ha�hx þ
1

2
a�hw�h

x ¼ � �h
2
b�hxx; ð2:30aÞ

b�ht þ w�hb�hx þ
1

2
b�hw�h

x ¼
�h
2
a�hxx; ð2:30bÞ

w�h
t � 2ka�hw�ha�hx � 2kb�hw�hb�hx þ ðw�h � kðða�hÞ2 þ ðb�hÞ2ÞÞw�h

x ¼ 0 ð2:30cÞ
with initial data
a�hðx; 0Þ ¼ a�h0ðxÞ; b�hðx; 0Þ ¼ b�h0ðxÞ; w�hðx; 0Þ ¼ w�h
0ðxÞ ð2:30dÞ
satisfying
ða�h0ðxÞÞ
2 þ ðb�h0ðxÞÞ

2 ¼ jA�h
0ðxÞj

2
; w�h

0ðxÞ ¼
d

dx
S�h0ðxÞ: ð2:30eÞ
This system can be written in the vector form
U �h
t þAðU �hÞU �h

x ¼ �h
2
LðU �hÞ; U �h ¼ ða�h; b�h;w�hÞt; U �hð0; xÞ ¼ U �h

0 ðxÞ ¼ ða�h0ðxÞ; b�h0ðxÞ;w�h
0ðxÞÞ

t
; ð2:31Þ
where
AðU �hÞ �
w�h 0 1

2
a�h

0 w�h 1
2
b�h

�2ka�hw�h �2kb�hw�h w�h � kðða�hÞ2 þ ðb�hÞ2Þ

0B@
1CA ð2:32Þ
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and
LðU �hÞ ¼
0 �o2x 0
o2x 0 0

0 0 0

0@ 1A a�h

b�h

w�h

0@ 1A ¼
�b�hxx
a�hxx
0

0@ 1A ð2:33Þ
is an antisymmetric matrix.

In addition to the linear dispersive perturbation of the quasilinear symmetric hyperbolic system nature, the modified

Madelung transformation also give us more information about the phase transportation. Since A�h is complex-valued,

we introduce the polar coordinates:
A�h ¼ a�h þ ib�h ¼
ffiffiffiffiffi
q�h

p
ei#

�h
: ð2:34Þ
Apply the chain rule to obtain
a�hb�hxx � a�hxxb�h ¼ oxðq�h#�h
xÞ ð2:35Þ
then from (2.30a–c) we derive the system
q�h
t þ ðq�hw�h þ �hq�h#�h

xÞx ¼ 0; ð2:36aÞ

#�h
t þ w�h#�h

x þ
�h
2
j#�h
x j
2 ¼ �h

2

ð
ffiffiffiffiffi
q�h

p
Þxxffiffiffiffiffi

q�h
p ; ð2:36bÞ

w�h
t þ w�hw�h

x � kðq�hw�hÞx ¼ 0: ð2:36cÞ
The quantum effect in this system is of order Oð�hÞ not Oð�h2Þ as (2.5b). Note the transport equation for q�h has an extra

term of order Oð�hÞ comparing with the typical equation of continuity. Formally letting �h! 0, we have
qt þ ðqwÞx ¼ 0; ð2:37aÞ

ht þ whx ¼ 0; ð2:37bÞ

wt þ wwx � kðqwÞx ¼ 0: ð2:37cÞ
Since (2.37b) is the pure transport equation then h ¼ 0 for the trivial initial data, thus we have the same limit system as

(2.5a,b).
3. Semiclassical limit, dispersionless wave equation and its deformation

Consider the family, parameterized by �h > 0, of solutions w�hðx; tÞ to the JNLS equation
i�hw�h
t þ

�h2

2
w�h
xx þ kj�hðx; tÞw�h ¼ 0 ð3:1aÞ
with current nonlinearity
j�hðx; tÞ ¼ �h
2i
ð �ww�hw�h

x � w�h �ww�h
xÞ ð3:1bÞ
with rapidly oscillating initial data
w�hðx; 0Þ ¼ w�h
0ðxÞ ¼ A0ðxÞ exp

i

�h
S0ðxÞ

� �
; ð3:1cÞ
where the (nonnegative) amplitude A0ðxÞ and (real) phase S0ðxÞ are assumed to be smooth and independent of �h. The
initial conserved densities are then
q�hðx; 0Þ ¼ jA0ðxÞj2;

M�hðx; 0Þ ¼ jA0ðxÞj2oxS0ðxÞ þ
k jA0ðxÞj4:

ð3:2Þ

2
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The semiclassical limit is then to determine the limiting behavior of any function of the field w�h as �h! 0. Arguing

formally, it is natural to conjecture that the Oð�h2Þ dispersive term appearing in (2.13a,b) is negligible as �h! 0, and the

limiting densities q and M satisfy the modified compressible Euler system
o

ot
q þ o

ox
M
�

� k
2
q2
�

¼ 0; ð3:3aÞ

o

ot
M þ o

ox
M2

q

�
� kqM þ k2

4
q3
�

¼ 0 ð3:3bÞ
with initial condition inferred from (3.2) given by
qðx; 0Þ ¼ jA0ðxÞj2;

Mðx; 0Þ ¼ jA0ðxÞj2oxS0ðxÞ þ
k
2
jA0ðxÞj4:

ð3:3cÞ
In this case the limiting energy density will be given by
E ¼ M2

2q

�
þ k2

8
q3
�
þ k
2

qM ð3:4Þ
and satisfies
o

ot
E þ o

ox
M2

2q

��
þ k
4

qM � k2

8
q3
�
� M

q

�
¼ 0: ð3:5Þ
This argument is self-consistent only if the solution of the modified Euler system (3.3a,b) remains classical. Equiva-

lently, we can employ (2.30a–c) or (2.31,33) to discuss the semiclassical limit of the JNLS equation (1.1a,b). First, the

matrix AðU �hÞ can be symmetrized by
SðU �hÞ ¼
�4kw�h 0 0

0 �4kw�h 0
0 0 1

0@ 1A ð3:6Þ
which is symmetric and positive if �kw�h > 0, for all U �h. Thus, we write (1.1a,b) as a dispersive perturbation of a

quasilinear symmetric hyperbolic system:
SðUÞUt þfAAðUÞUx ¼
�h
2
fLLðUÞ; ð3:7Þ
wherefAA ¼ SA is symmetric (we omit �h for convenience). The importance of symmetry is that it leads to simple L2 and
more generally Hs estimates which are often related to physical quantities like energy or entropy. The antisymmetric

operator ð�h=2ÞfLL ¼ ð�h=2ÞSL reflects the dispersive nature of the equations. Moreover, the classical energy estimate

shows that this term contributes nothing to the estimate, i.e., the singular perturbation does not create energy.

Therefore, the existence of the classical solutions and its semiclassical limit proceed along the lines of the classical theory

of quasilinear symmetric hyperbolic systems (with some modifications). First, we have the existence and uniqueness of

the classical solution of the dispersive perturbation of the quasilinear symmetric system (2.30a–d).

Theorem 3.1. Assume the initial data U �h
0 ¼ ða�h0; b�h0;w�h

0Þ
t 2 Hs � Hs � Hs; s > ð1=2Þ þ 2 satisfies the uniform bound
kU �h
0 kHs ¼ ka�h0kHs þ kb�h0kHs þ kw�h

0kHs < C1 ð3:8Þ
and
�kw�hðx; tÞ > 0; ðx; tÞ 2 R � ½0;1Þ: ð3:9Þ
Then there is a time interval ½0; T � with T > 0, so that the quasilinear symmetric hyperbolic system (2.30) or (2.31) has a
unique classical solution U �h ¼ ða�h; b�h;w�hÞt;
ða�hðx; tÞ; b�hðx; tÞÞ 2 ðC1ðR � ½0; T �Þ ^ C1ð½0; T �;C2ðRÞÞÞ2

w�hðx; tÞ 2 C1ðR � ½0; T �Þ:
ð3:10Þ
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Furthermore,
U �h 2 Cð½0; T �;HsÞ ^ C1ð½0; T �;Hs�2Þ ð3:11Þ
and T depends on the bound C1 in (3.8) and in particular, not on �h. The solution U �h ¼ ða�h; b�h;w�hÞt satisfies the estimate
kU �hkHs ¼ ka�hkHs þ kb�hkHs þ kw�hkHs < C2 ð3:12Þ
for all t 2 ½0; T �. The constant C2 is also independent of �h. In addition, if q�h
0ðxÞ ¼ ða�h0Þ

2 þ ðb�h0Þ
2
> 0 then q�hðx; tÞ > 0 for all

tP 0; if q�h
0 has a compact support, then q�hð�; tÞ does too for any t 2 ½0; T � and
Rfq�hðt; �Þg6Rfq�h
0g þ ð1þ �hÞC2T ;
where Rfug � supfjxj : uðxÞ 6¼ 0g for u 2 C.

Proof. To show that q�hðx; tÞ ¼ ða�hðx; tÞÞ2 þ ðb�hðx; tÞÞ2 > 0 for all 06 t < 1, we will employ the polar coordinates;

A�h ¼ a�h þ ib�h ¼
ffiffiffiffiffi
q�h

p
ei#

�h
. Applying the chain rule to obtain
a�hb�hxx � b�ha�hxx ¼ ðq�h#�h
xÞx
then from (2.30a,b) we derive the continuity equation for q�h
o

ot
q�h þ o

ox
ðq�hw�h þ �hq�h#�h

xÞ ¼ 0
which has an extra term of order Oð�hÞ comparing with the usual continuity equation. Let ðn; sÞ be an arbitrary fixed
space–time point in X � ½0; T �. Since w�h þ �h#�h

x 2 C1ðR � ½0; T �Þ, the well-known theorem for ordinary differential

equations guarantees that the problem
dx
dt

¼ w�hðx; tÞ þ �h#�h
xðx; tÞ; xjt¼s ¼ n
has a unique solution x ¼ WðtÞ 2 C1ð½0; T �;RÞ. The continuity equation implies

d

dt
q�hðWðtÞ; tÞ ¼ � o

ox
ðw�h þ �h#�h

xÞq�h:
Integrating over ½0; s� we have
q�hðn; sÞ ¼ q�hðWð0Þ; 0Þ exp
�
�
Z s

0

o

ox
ðw�hðWðtÞ; tÞ þ �hh�h

xðWðtÞ; tÞÞdt
�
:

Thus q�hðn; sÞP 0 if q�hðWð0Þ; 0Þ ¼ q�h
0ðWð0ÞÞP 0. If q�hðn; sÞ 6¼ 0 then q�h

0ðWð0ÞÞ 6¼ 0 so that jWð0Þj6Rfq�h
0g, and
jnj ¼ jWðsÞj ¼ Wð0Þ




 þ

Z s

0

w�hðWðtÞ; tÞ þ �hrh�hðWðtÞ; tÞdt






6 jWð0Þj þ
Z s

0

jw�hj1 þ �hjrh�hj1 dt6Rfq�h
0g þ ð1þ �hÞC2s: �
Theorem 3.2. Under the same assumption of Theorem 3.1. In addition, suppose ðA�h
0; S

�h
0Þ 2 Hs � Hsþ1. The initial value

problem of the JNLS equation (3.1a–c) has a unique classical solution in C1ð½0; T � � XÞ ^ C1ð½0; T �;C2Þ of the form
w�hðx; tÞ ¼ A�hðx; tÞ exp i

�h S
�hðx; tÞ


 �
on the time interval ½0; T �. Moreover, A�h and S�hx are bounded in L1ð½0; T �;HsÞ.

Proof. Since A�h ¼ a�h þ ib�h and w�h ¼ S�hx it follows from (3.10)–(3.12) that
A�h 2 Cð½0; T �;HsÞ ^ C1ð½0; T �;Hs�2Þ;
S�h 2 Cð½0; T �;Hsþ1Þ ^ C1ð½0; T �;HsÞ
and thus
A�h 2 C1ðX � ½0; T �Þ ^ C1ð½0; T �;C2Þ;
S�h 2 C1ð½0; T �;C2Þ
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by Sobolev embedding theorem. Due to the expression of w�h in the short wave form (2.28), w�hðx; tÞ ¼
A�hðx; tÞ exp i

�h S
�hðx; tÞ


 �
, w�h has the same regularity as A�h thus
w�h 2 Cð½0; T �;HsÞ ^ C1ð½0; T �;Hs�2Þ
hence
w�h 2 C1ð½0; T � � XÞ ^ C1ð½0; T �;C2Þ:
For classical solution, the JNLS equation (1.1a,b) is equivalent to the dispersive quasilinear hyperbolic system (2.30a–c)

or (2.31)–(2.33). Applying this equivalent relation the theorem follows immediately by Theorem 3.1. �

The limiting system of (2.30) or (2.31) is the quasilinear symmetric hyperbolic system (formally letting �h! 0)
Ut þAðUÞUx ¼ 0; Uðx; tÞ ¼ ða; b;wÞt; ð3:13aÞ

Uðx; 0Þ ¼ U0ðxÞ ¼ ða0ðxÞ; b0ðxÞ;w0ðxÞÞt; ð3:13bÞ
which is equivalent to (3.3a–c) as long as the solutions are smooth. It is possible to pass to the limit �h! 0 in (2.30) or

(2.31). Indeed, by the classical compactness arguments, Arzela–Ascoli theorem (applied in the time variable), the

Rellich lemma (applied in space variable) and using the fact that LðU �hÞ is uniformly bounded in Hs we have the

following corollary.

Corollary 3.3. Given U �h
0 ;U0 2 Hs � Hs � Hs, s > 1

2
þ 2 and U �h

0 ðxÞ converges U0ðxÞ in Hs as �h tends to 0. Let ½0; T � be the
fixed time interval determined in Theorem 3.1. Then as �h! 0 there exists Uðt; xÞ 2 L1ð½0; T �;HsÞ so that
U �hðx; tÞ ! Uðx; tÞ; in Cð½0; T �;Hs��Þ; 8� > 0:
The function Uðx; tÞ belongs to Cð½0; T �;HsÞ ^ C1ð½0; T �;Hs�1Þ and is a classical solution of (3.13a,b) with initial data
Uðx; 0Þ ¼ U0ðxÞ.

Concerning the Cauchy problem at finite time, we also give sufficient conditions for the well-posedness in Sobolev

space Hs; sP 3. Indeed, to ensure the strong convergence of w�h to a classical solution of the modified Euler system

(3.3a–c) we require the hypothesis that we are near the JNLS equation (1.1a,b) initially.

Theorem 3.4. Let ðq;MÞ be a solution of the quasilinear hyperbolic system (3.3a–c) for 06 t6 T . Then there exists a
critical value of �h, �hc, and a constant C > 0 such that under the assumption

(1) A�h
0ðxÞ converges strongly to A0 in Hs as �h tends to 0,

(2) kq0kHs < 1; kM0kHs < 1; sP 3,
(3) 0 < �h < �hc,

the IVP for the Eq. (3.1a–c) has a unique classical solution of the form w�hðx; tÞ ¼ A�hðx; tÞ exp i
�h S

�hðx; tÞ

 �

on ½0; T �.
Moreover, A�h and S�hx are bounded in L1ð½0; T �;HsÞ uniformly in �h.

Proof. We consider the difference of (2.31) and (3.13). Setting V �h ¼ U �h � U then we have
V �h
t þAðU þ V �hÞV �h

x ¼ F �h; ð3:14Þ
where
F �h ¼ �h
2
ðLðV �hÞ þLðUÞÞ � ðAðU þ V �hÞ �AðUÞÞUx: ð3:15Þ
Once the symmetrizer SðU þ V �hÞ is positive definite for all �h, the energy estimates of the quasilinear hyperbolic theory
is applicable to (3.14) and (3.15). The matrix AðU þ V �hÞ is symmetrizable. The energy associated with (3.14) is
kV �hðtÞk2E�h �
Z

hSðU þ V �hÞV �h; V �hidx ð3:16Þ
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and the associated energy equality is
d

dt
kV �hðtÞk2E�h ¼

Z
hC�hV �h; V �hidxþ 2

Z
hSðU þ V �hÞF �h; V �hidx; ð3:17Þ
where
C�h ¼ o

ot
ðSðU þ V �hÞÞ þ o

ox
ðSðU þ V �hÞAðU þ V �hÞÞ: ð3:18Þ
We will estimate separately. First from the antisymmetry of L we have
�h
2

Z
hSðU þ V �hÞLðV �hÞ; V �hidx ¼ 0:
The Cauchy–Schwarz inequality implies
�h
2

Z
hSðU þ V �hÞLðUÞ; V �hidx6 �hCkUkH2kV �hkL2 ;Z

hSðU þ V �hÞðAðU þ V �hÞ �AðUÞÞUx; V �hidx6CkV �hk2L2 :
By applying Gronwall inequality and the strict positivity of SðU þ V �hÞ, we deduce the energy inequality
kV �hkL2 6Cð�hÞ
with Cð�hÞ ! 0 as �h! 0. This completes the proof of the theorem. �

Next, the bounds uniform in �h on the solution w�h also allow us to justify the WKB expansion on the same time

interval ½0; T Þ. We look for formally asymptotic solutions of (2.31) in the form
U �h ¼ U ð0Þ þ �hU ð1Þ þ �h2U ð2Þ þ � � � þ �hNU ðNÞ þ � � � ð3:19Þ
The hierarchy now reads
U ð0Þ
t þAðU ð0ÞÞU ð0Þ

x ¼ 0; ð3:20aÞ

U ð1Þ
t þAðU ð0ÞÞU ð1Þ

x þA0ðU ð0ÞÞU ð0Þ
x ¼ 1

2
LðU ð0ÞÞ; ð3:20bÞ

U ð2Þ
t þAðU ð0ÞÞU ð2Þ

x þA0ðU ð0ÞÞU ð1Þ
x þA00ðU ð0ÞÞU ð0Þ

x ¼ 1
2
LðU ð1ÞÞ; ð3:20cÞ

U ðNÞ
t þAðU ð0ÞÞU ðNÞ

x þA0ðU ð0ÞÞU ðN�1Þ
x þ � � � þAðNÞðU ð0ÞÞU ð0Þ

x ¼ 1
2
LðU ðN�1ÞÞ: ð3:20dÞ
We consider the zeroth order first. It follows from the Theorem 3.1 that ðA�h;w�hÞ is bounded in Cð½0; T �;HsÞ ^
C1ð½0; T �;Hs�2Þ thus, applying the Arzela–Ascoli theorem, there exists ðAð0Þ;wð0ÞÞ such that
ðA�h;w�hÞ ! ðAð0Þ;wð0ÞÞ in Cð½0; T �;Hs��Þ; 80 < � < 2
and satisfies the quasilinear hyperbolic system
Að0Þ
t þ wð0ÞAð0Þ

x þ 1
2
Að0Þwð0Þ

x ¼ 0; ð3:21aÞ

wð0Þ
t þ wð0Þwð0Þ

x � kðjAð0Þj2wð0ÞÞx ¼ 0: ð3:21bÞ
The initial condition is complemented by
Að0Þðx; 0Þ ¼ lim
�h!0

A�h
0ðxÞ; wð0Þðx; 0Þ ¼ oxS0ðxÞ: ð3:21cÞ
We can also discuss the first order approximation. For convenience we set
eUU �h
1 � 1

�h
½U �h � U ð0Þ�: ð3:22Þ
Since U ð0Þ is bounded in Cð½0; T �;HsÞ ^ C1ð½0; T �;Hs�2Þ. The energy estimate implies that
eUU �h
1 is bounded in Cð½0; T �;Hs�2Þ ^ C1ð½0; T �;Hs�4Þ ð3:23Þ
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hence
 eUU �h
1 ! U ð1Þ in Cð½0; T �;Hs�2��Þ ð3:24Þ
by passing to a subsequence in �h. Taking the limit of the equation of eUU �h
1 , we deduce that U

ð1Þ is the unique solution of
the linearized equation (3.20b) with initial condition
U ð1Þðx; 0Þ ¼ lim
�h!0

U �hðx; 0Þ � U ð0Þðx; 0Þ
�h

: ð3:25Þ
Notice that no extraction of subsequence is needed for ~UU �h
1 due to the uniqueness. In fact, the whole sequence converges

to U ð1Þ. Similarly, the N -th order approximation is obtained as follows. Suppose the first N � 1 terms have been ob-

tained, we can define
~UU �h
N � 1

�hN
U �h
�

� ðU ð0Þ þ �hU ð1Þ þ � � � þ �hN�1U ðN�1ÞÞ
�
; ð3:26Þ
where (k ¼ 0; 1; . . . ;N � 1)
U ðkÞ 2 Cð½0; T �;Hs�2kÞ ^ C1ð½0; T �;Hs�2k�2Þ ð3:27Þ
then by the energy estimate again;
~UU �h
N is bounded in Cð½0; T �;Hs�2N Þ ^ C1ð½0; T �;Hs�2N�2Þ ð3:28Þ
as soon as the initial data ~UU �h
N ðx; 0Þ is bounded in Hs�2N . Therefore, there exists U ðNÞ such that
~UU �h
N ! U ðNÞ in Cð½0; T �;Hs�2N��Þ ð3:29Þ
and satisfies (3.20d) with initial data
U ðNÞðx; 0Þ ¼ lim
�h!0

1

�hN
U �hðx; 0Þ
�

� ðU ð0Þðx; 0Þ þ � � � þ �hN�1U ðN�1Þðx; 0ÞÞ
�
: ð3:30Þ
Thus, we have proved the following theorem.

Theorem 3.5 (WKB expansion). Under the assumption of Theorem 3.1, suppose the initial amplitude A�h
0ðxÞ admits the

following expansion;
A�h
0ðxÞ ¼

XN
k¼0

�hkAðkÞ
0 ðxÞ þ RinN ðx; �hÞ�hN ; ð3:31Þ
where
lim
�h!0

kRinN ðx; �hÞkHr ¼ 0 ð3:32Þ
for N 2 N and r > 2N þ 2þ 1
2
, then the solutions of the JNLS equation (1.1) can be represented as
w�hðx; tÞ ¼ A�hðx; tÞ exp i

�h
S�hðx; tÞ

� �
¼
XN
k¼0

�hkAðkÞðx; tÞ exp i

�h
Sðx; tÞ

� �
þ �hNRN ðx; t; �hÞ ð3:33Þ
and where
lim
�h!0

kRN ðx; t; �hÞkCð½0;T �;Hr�2N��Þ ¼ 0; 8� > 0: ð3:34Þ
There are different formulations of the semiclassical limit of the JNLS equation (1.1a) when the solutions are

smooth. We will look at the typical Hamilton–Jacobi equation (2.7a) and the Liouville one (2.7b) which is the dis-

persionless wave equation associated with JNLS equation (1.1a). Introducing the new wave function
vðx; tÞ ¼ Aðx; tÞ expðiSðx; tÞÞ ð3:35Þ
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we can rewrite the system (2.7a,b)
ivt þ
1

2
vxx þ kjðx; tÞv ¼ 1

2

jvjxx
jvj v; ð3:36aÞ

j ¼ 1

2i
ð�vvvx � v�vvxÞ; ð3:36bÞ
as perturbed by quantum potential (QP) JNLS (1.1a,b). The quantum potential contribution to the r.h.s. with fixed

strength completely compensates U(1) gauge invariant contribution to dispersion on the l.h.s. [1]. This potential, the so-

called Bohm potential or internal self-potential was introduced by de Broglie and explored by Bohm to make a hidden-

variable theory and is responsible for producing the quantum behavior, so that all quantum features are related to its

special properties. The role of the quantum potential is to change the dispersion of the JNLS equation (1.1a,b) [27,28].

If the strength of the QP deviates from the critical value as given in dispersionless Eq. (3.36a,b), then we have the

deformed wave equation [29]
ivt þ
1

2
vxx þ kjðx; tÞv ¼ ð1� �h2Þ 1

2

jvjxx
jvj v; ð3:37Þ
which is equivalent to the original JNLS equation (1.1a,b).

Theorem 3.6. The Hamilton–Jacobi and the Liouville equations (2.7a,b) can be converted into (3.36a,b) which is the
quantum potential perturbation of the JNLS equation (1.1a,b) through the wave function (3.35). Furthermore, the same
wave function applied to deform (3.36a,b), the equivalent formulation of JNLS equation (1.1a,b), into (3.37) such that
(3.36a,b) is its formal dispersionless limit.
4. Semiclassical limit and shock formation

As mentioned in Section 2, the JNLS equation (1.1a,b) has four integrals of motion. There, it has to appear that the

canonical momentum
Z 1

�1
jdx ð4:1Þ
is not conserved quantity due to the lack of Galilean symmetry. The velocity cannot be arbitrarily reduced. Instead of

this, the modified momentum
Z 1

�1
j

�
þ k
2

q2
�
dx ð4:2Þ
is conserved [10]. Therefore, we discuss the semiclassical limit with the system (2.13a,b) in terms of ðq;MÞ rather than
ðq; uÞ. The semiclassical limit of (2.13a,b) as �h! 0 is given by (3.3a–c). This system has the form
Vt þ BVx ¼ 0; V ¼ ðq;MÞt ð4:3Þ
with
B ¼ �kq 1

� M2

q2 � kM þ 3k2

4
q2 2M

q � kq

� �
ð4:4Þ
and can be represented in the Riemann invariant form. First, the eigenvalues and the associated right eigenvectors of B
are given respectively by
l	 ¼ �kq þM
q
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2

4
q2 � kM

s
; ð4:5Þ

r	 ¼ 1;
M
q

0@ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2

4
q2 � kM

s 1At

: ð4:6Þ
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Consider the Riemann invariants R	ðq;MÞ corresponding to l	. We know that it satisfies the equation
rR	 � r	 ¼ 0;
where the gradient is taken with respect to ðq;MÞ; hence
oR	

oq
þ M

q

0@ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2

4
q2 � kM

s 1A oR	

oM
¼ 0: ð4:7Þ
We can solve this first order differential equation by characteristic:
dq
1

¼ dM

M
q 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2

4
q2 � kM

q ¼ dg
g
q � k

ffiffiffi
g

p þ 3
4
k2q

; ð4:8Þ
where
g ¼ 3k2

4
q2 � kM : ð4:9Þ
Eq. (4.8) can be rewritten as ðg :¼ q2f2Þ

dq
2q

¼ fdf

k2 � ðf 	 k
2
Þ2

¼ fdf
3k
2
	 f


 �
k
2
� f


 � ; ð4:10Þ
i.e.,
dq
2q

¼ fdf
3k
2
þ f


 �
k
2
� f


 � ¼ � 3

4

df
3k
2
þ f

þ 1

4

df
k
2
� f

;

dq
2q

¼ fdf
3k
2
� f


 �
k
2
þ f


 � ¼ 3

4

df
3k
2
� f

� 1

4

df
k
2
þ f

:

Integration yields
1

2
log q þ 3

4
log f

�
þ 3k

2

�
þ 1

4
log f

�
� k
2

�
¼ constant;

1

2
log q þ 3

4
log f

�
� 3k

2

�
þ 1

4
log f

�
þ k
2

�
¼ constant:
Therefore the Riemann invariants can be chosen as (after taking the exponential)
R	 ¼ q2k4 n4
�

	 4n3 þ 9

2
n2 � 27

16

�
; ð4:11Þ
where n � f=k. We also have
l	 ¼ 1

kq

�
� n2 	 n � 1

4

�
: ð4:12Þ
From (4.11) we have
kq ¼ n�3=2

2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ � R�

2

r
ð4:13Þ
and for n we have the fourth order algebraic equation
n4 � 4
Rþ þ R�

Rþ � R�
n3 þ 9

2
n2 � 27

16
¼ 0 ð4:14Þ
which fortunately according general theory of algebraic equation has solution in radicals. Introducing
Qþ ¼ Rþ þ R�; Q� ¼ Rþ � R�;

gþ ¼ lþ þ l�; g� ¼ lþ � l�:
ð4:15Þ
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Then we find four equations from (4.11) and (4.12) correspondingly
Qþ ¼ 2q2k4 n4
�

þ 9

2
n2 � 27

16

�
; ð4:16aÞ

Q� ¼ 8q2k4n3; ð4:16bÞ

gþ ¼ � 2

kq
n2
�

þ 1

4

�
; ð4:16cÞ

g� ¼ 2

kq
n: ð4:16dÞ
Substituting n2 þ 1=4 from (4.16c) to (4.16a) we obtain the quadratic equation for gþ
ðkqÞ2g2þ � 8ðkqÞgþ � 11� 2Qþ

q2k4
¼ 0: ð4:17Þ
Solving this equation and choosing only one root (according to the sign in (4.16c)) we obtain
gþ ¼ 1

kq
ð4� sÞ; s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 2Qþ

q2k4

s
: ð4:18Þ
This root�s existence also pose constraint on the Riemann invariant
Qþ > � 27

2
q2k4 ð4:19Þ
which also follows immediately from (4.16a). (Only in this case exist solution of the problem.) Eq. (4.16d) can be written

in terms of gþ and g� as
Q� ¼ �k5q3ð1þ 2kqgþÞg� ð4:20Þ
from which substituting for gþ in (4.17) above we obtain
g� ¼ �Q�

k5q3ð9� 2sÞ
: ð4:21Þ
Thus from (4.16d) and (4.21) we have
n ¼ �Q�

2k4q2ð9� 2sÞ
: ð4:22Þ
Since n and Q� have the same sign (from (4.16b)) we have a stronger constraint then (4.19)
Qþ > � 27

8
q2k4 ð4:23aÞ
or (since Rþ > R�)
Rþ > � 27

16
q2k4: ð4:23bÞ
Later on we will have stronger constraint then (4.23a,b) in the following theorem. Due to the fourth algebraic equation

has solution by radical, we can represent all related parameters in terms of R	 explicitly. Thus
lþ ¼ lþðRþ;R�Þ ¼ 1
2
ðgþ þ g�Þ; ð4:24aÞ

l� ¼ l�ðRþ;R�Þ ¼ 1
2
ðgþ � g�Þ ð4:24bÞ
which shows that l	 can be represented explicitly (radically) in terms of the Riemann invariants R	. We rewrite the

system (4.3) in the Riemann invariant form
otRþ þ lþoxRþ ¼ 0; ð4:25aÞ

otR� þ l oxR� ¼ 0 ð4:25bÞ
�
with l	 given above.
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Theorem 4.1. Subject to the ordering condition
Q� ¼ Rþ � R� > 0 () n > 0 ð4:26Þ
and
Qþ >
1

2

27þ
ffiffiffiffiffiffiffiffi
170

p

4

 !2
24 � 27

35q2k4; Q� >
85

16
q2k4 ð4:27Þ
then for k > 0 the system (4.25a,b) is strictly hyperbolic, with the characteristic speed ordered as
lþðRþ;R�Þ > l�ðRþ;R�Þ ð4:28aÞ
and genuinely nonlinear, with
olþ
oRþ

< 0 and
ol�
oR�

< 0: ð4:28bÞ
Proof. Define s the same as (4.18) by s ¼ ð27þ ð2Qþ=q2k
4ÞÞ1=2. Since oQþ=oRþ ¼ oQþ=oR� ¼ oQ�=oRþ ¼ 1,

oQ�=oR� ¼ �1 and os=oQþ ¼ 1=q2k4s we have
olþ
oRþ

¼ 1

2

ogþ
oRþ

�
þ og�
oRþ

�
¼ 1

2

ogþ
oQþ

�
þ ogþ
oQ�

þ og�
oQþ

þ og�
oQ�

�
¼ � 1

2k5q3s
� A

q2k4ð9� 2sÞ2
;

where
A ¼ q2k4 2s2
�

� 27sþ 81þ 2jQ�j
q2k4

�
:

Denote D the discriminant, D ¼ 85� ð16jQ�j=q2k4Þ, then by (4.27) we conclude that D < 0 hence A > 0. Thus

olþ=oRþ < 0. Similarly
ol�
oR�

¼ 1

2

ogþ
oR�

�
� og�
oR�

�
¼ 1

2

ogþ
oQþ

�
� ogþ
oQ�

� og�
oQþ

þ og�
oQ�

�
¼ � 1

2k5q3s
�

eAA
q2k4ð9� 2sÞ2

;

where
~AA ¼ q2k4 2s2
�

� 27sþ 81� 2jQ�j
q2k4

�
:

The discriminant, ~DD ¼ 85þ ð16jQ�j=q2k4Þ > 0. Let s1 and s2 be the two real roots
s1 ¼
1

4
27

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
85þ 16Q�

q2k4

s #
; s2 ¼

1

4
27

"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
85þ 16Q�

q2k4

s #
:

Since we already have s > 4 and s > 9=2. Thus if we require (using (4.27)2)
s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27þ 2Qþ

q2k4

s
> s1 ¼

1

4
27

"
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
85þ 16Q�

q2k4

s #
>
1

4
ð27þ

ffiffiffiffiffiffiffiffi
170

p
Þ

which turns out to be (4.27)1 then for k > 0 we conclude
ol�
oR�

¼ � 1

2k5q3s
� ðs� s1Þðs� s2Þ

q2k4ð9� 2sÞ2
< 0: �
Since the system (4.25a,b) is genuinely nonlinear, the Riemann invariant, Rþ or R�, may in a finite time develop

an infinite spatial derivative at a point while maintaining the ordering condition (4.26). To study the breaking of so-

lutions to the Riemann invariant equations given by (4.25a,b), we can show that Z	 ¼ oxR	 satisfies the Riccati

equation.
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Theorem 4.2. Let ðRþ;R�Þ be a solution of (4.25a,b) subject to the ordering condition (4.26). There exist h	 such that
Z	 ¼ oxR	 satisfies the Riccati equation
ðot þ l	oxÞ
Z	
e�h	

� �
þ e�h	

ol	
oR	

� �
Z	
e�h	

� �2

¼ 0; ð4:29Þ
where h	 ¼ h	ðRþ;R�Þ satisfies
h0þ ¼ olþ
oR�

� R0
�

lþ � l�
; _hh� ¼ ol�

oRþ
�

_RRþ

l� � lþ
; ð4:30Þ
where 0 and the dot ‘‘�’’ denote the differentiation in the lþ-characteristic and l�-characteristic directions respectively
h0þ ¼ othþ þ lþoxhþ;
dxþ
dt

ðtÞ ¼ lþðxþðtÞ; tÞ; ð4:31aÞ

_hh� ¼ oth� þ l�oxh�;
dx�
dt

ðtÞ ¼ l�ðx�ðtÞ; tÞ: ð4:31bÞ
Proof. We start from the Riemann invariant form (4.25a,b);
R0
þ ¼ otRþ þ lþoxRþ ¼ 0; ð4:32aÞ

_RR� ¼ otR� þ l�oxR� ¼ 0: ð4:32bÞ
Differentiate (4.32a) with respect to x and set Zþ � oxRþ we have
ðot þ lþoxÞZþ þ olþ
oRþ

Z2þ þ olþ
oR�

oxR�Zþ ¼ 0: ð4:33Þ
From (4.32b) we deduce that
R0
� ¼ otR� þ lþoxR�
hence
oxR� ¼ R0
�

lþ � l�
: ð4:34Þ
Substituting this relation into (4.33) we obtain
Z 0
þ þ olþ

oR�

R0
�

lþ � l�
Zþ þ olþ

oRþ
Z2þ ¼ 0: ð4:35Þ
Multiplying (4.35) by ehþ and using the first identity of (4.30) leads to the Riccati equation
ðot þ lþoxÞ
Zþ
e�hþ

� �
þ e�hþ

olþ
oRþ

� �
Zþ
e�hþ

� �2

¼ 0: ð4:36Þ
Similarly, we also have the Riccati equation for Z� � oxR�. This complete the proof of the theorem. �

For convenience, we write the Riccati equation (4.29) as
q0þ þ kþq2þ ¼ 0; _qq� þ k�q2� ¼ 0; ð4:37Þ
by using the abbreviation
q	 � eh	Z	 ¼ eh	oxR	; k	 � ol	
oR	

e�h	 : ð4:38Þ
The solution of (4.37) is given by
q	ðx; tÞ ¼
q0	

1þ q0	K	ðtÞ
; q0	 ¼ q	ðxð0Þ; 0Þ; ð4:39Þ
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where
K	ðtÞ ¼
Z t

0

k	ðs; x	ðsÞÞds ð4:40Þ
the integration along the l	-characteristic. By the genuine nonlinearity assertion (4.28) of Theorem 4.1, the coefficient

of the quadratic term in the Riccati equation (4.37) is nonnegative. So q	 is a strictly increasing quantity along the

characteristic provided Z	 6¼ 0 because eh	 > 0. Now if Z	 ¼ oxR	 < 0, the only way to have Z	 ! �1 in finite time is

for e�h	 ! 1 such that q	 is increasing. But if the ordering condition (4.26) holds, continuity implies e�h	 must

bounded above. Thus, we conclude:

Corollary 4.3. If joxR	j becomes unbounded in finite time along the l	-characteristic, then either

(a) oxR	 > 0, or
(b) the ordering condition (4.26) is violated in finite time.

Moreover, the detail study of the Riccati equation also leads to the break-time tb.

Theorem 4.4. The break-time tb for (3.3a–c) can be estimated in the following way:
tb ¼ minftþ;b; t�;bg; ð4:41Þ
where
t	;b6 inf
x02X	

ft : G	ðt; x0Þ ¼ 0g; X	 ¼ fx0 : oxR	ðx0Þ6 0g ð4:42Þ
with
G	 ¼ 1þ eh	ðx
0
	ÞoxR	ðx0	Þ

Z t

0

K	ðx	ðsÞ; sÞds ð4:43Þ
and particle path x	 ¼ x	ðtÞ satisfies the differential equation
dx	
dt

¼ l	ðRþ;R�Þ; x	ð0Þ ¼ x0	: ð4:44Þ
Proof. It follows immediately from (4.39) that at initial time if
oxR	ðx	ð0Þ; 0Þ ¼ oxR	ðx0	Þ < 0;
i.e., q0	 < 0 then q	ðx; tÞmust become unbounded in finite time. This means that q	ðx; tÞmust blow up at some later time

t, where
1þ q0	K	ðtÞ ¼ 0:
Therefore, the break tb can be estimated by the following rules. Let t	;b satisfy (4.42) and (4.43). The particle path

x	 ¼ x	ðtÞ satisfies x	ð0Þ ¼ x0	 and the differential equation (4.44). �

Remark 4.5. It is interesting to mention that when k ! 0 the semiclassical limit of the JNLS equation reduces to

(formally let k ¼ 0 in (2.6a,b))
qt þ ðquÞx ¼ 0; ð4:45aÞ

ðquÞt þ ðqu2Þx ¼ 0: ð4:45bÞ
This system of conservation laws arising in the model of adhesion particle dynamics, more precisely, the system of free

particles which stick under collision. It was proposed by Zeldovich [32] that a possible model for the description of large

scale dynamics of the mass distribution, in the early stage of evolution of the universe. For smooth solutions, (4.45a,b)

is equivalent to the dispersionless Burgers equation
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ut þ
u2

2

� �
¼ 0 ð4:46aÞ
together with a scalar transport equation
qt þ ðquÞx ¼ 0: ð4:46bÞ
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