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ABSTRACT 

 
DESIGN OF TRANSFORMABLE DOUBLY CURVED SURFACE 

COMPOSED OF SCISSOR LINKAGE MECHANISMS 
 

This study focuses on obtaining multi-loop scissor linkages capable of defining 

doubly curved surfaces that can transform from an initial form to a desired final form. A 

review of the existing literature reveals a limited number of studies addressing curvature 

transformation between different states. Most transformable designs are restricted to 

planar movements, while three-dimensional forms are typically achieved through the 

translational repetition of planar scissor linkages. Additionally, when scissor linkages are 

arranged in a grid, they often exhibit multiple degrees of freedom, making controlled 

transformations challenging. To address these limitations, this research introduces a novel 

geometric design method for multi-loop planar scissor linkages that enables 

transformation between predefined curves. The proposed approach utilizes quadrilateral 

loops to construct planar scissor linkages capable of achieving distinct curved forms. 

Furthermore, the study extends this concept to spatial scissor linkages that can 

dynamically alter their curvature between predefined surface geometries. The research 

employs simulation and modeling as primary methods. Computer simulations are used to 

develop the proposed models, while 3D-printed prototypes are produced to analyze their 

geometric behavior. These tools facilitate a comprehensive investigation of the 

transformability and structural performance of the designed mechanisms. 
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ÖZET 

 
MAKAS ÇUBUK MEKANİZMALARDAN OLUŞAN BİÇİM 

DEĞİŞTİREBİLEN ÇİFT EĞRİLİKLİ YÜZEYLERİN TASARIMI 
 

Bu çalışma, başlangıç formundan istenen nihai forma dönüşebilen ve çift eğrilikli 

yüzeyler tanımlayabilen, çok döngülü makas mekanizmaları elde etmeye 

odaklanmaktadır. Mevcut literatür incelendiğinde farklı durumlar arasındaki eğrilik 

dönüşümünü ele alan sınırlı sayıda çalışma ortaya çıkmaktadır. Tek serbestlik derecesine 

sahip dönüştürülebilir tasarımların çoğu düzlemsel hareketlerle sınırlı iken üç boyutlu 

formlar ise genellikle düzlemsel makas mekanizmalarının ötelemeli tekrarı yoluyla elde 

edilebilmektedir. Buna ek olarak, düzlemsel makas mekanizmalarıyla ızgarada düzeninde 

bir yüzey tanımlayabilen formlar oluşturulduğunda, genellikle birden fazla serbestlik 

derecesine sahip olmaktadır ve bu da form dönüşümlerinin kontrolünü zorlaştırır. Bu 

tezde, belirtilen eksikliklerden yola çıkarak, önceden tanımlanmış eğriler arasında 

dönüşüme olanak tanıyan düzlemsel makas mekanizmaları için yeni bir geometrik 

tasarım yöntemi sunulmaktadır. Önerilen yaklaşım, farklı kavisli formlar elde edebilen 

düzlemsel makas mekanizmalarını oluşturmak için dörtgen döngülerden 

yararlanmaktadır. Bu çalışma, belirtilen yöntemden yola çıkarak, önceden tanımlanmış 

yüzey geometrileri arasında eğriliklerini dinamik olarak değiştirebilen uzaysal makas 

mekanizmalarını bu konsepte dahil etmektedir. Araştırma, birincil yöntemler olarak 

simülasyon ve modellemeyi kullanmaktadır. Önerilen modelleri geliştirmek için 

bilgisayar simülasyonları kullanılırken, geometrik davranışlarını analiz etmek için 3 

boyutlu yazdırılmış prototipler üretilmiştir. Bu araçlar, tasarlanan mekanizmaların 

dönüştürülebilirliğinin ve yapısal performanslarının kapsamlı bir şekilde incelenmesini 

kolaylaştırmaktadır. 
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CHAPTER 1 
 

 

1. INTRODUCTION 
 

 

Deployable and transformable structures have gained attention due to 

advancements in construction technology, robotics, architectural computing, and 

material science. This interest stems from a growing demand for structures with 

enhanced functional flexibility, adaptability, sustainability, and structural performances.  

Transformable structures could be able to alter their shape and adapt in response 

to a variety of circumstances, such as shifting environmental conditions, climatic 

conditions, functional requirements, and emergency scenarios. Temmerman (2012) 

distinguishes transformable structures as deployable and demountable structures. 

Deployable structures are those prefabricated structures that include kinematic 

mechanisms that enable them to extend from a compact configuration to a 

predetermined, expanded form in which they are stable and carry loads (Gantes 1991).  

Scissor mechanisms are the most commonly used mechanisms for deployable 

structures. In the early 1960s, Piñero pioneered a scissor mechanism that made it 

possible to create surfaces with deployable structures with his design Travelling Theatre 

(Teatro Ambulante) (Castanon and Ramos 2023). After him, many researchers, 

especially Escrig, Valcarcel, Hoberman, Gantes, and Pellegrino, worked on deployable 

scissor structures. Deployable scissor structures change their form only between open 

and closed states.  

In the present study, different from deployable scissor linkages, transformable 

scissor linkages are investigated in terms of their ability to change their form from 

concave to convex vice versa. 
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1.1.  Problem Statement 
 

 

In the literature, there are various studies based on scissor linkage mechanisms. 

Most of these studies have focused on deployable structures Along with the planar 

studies, there are both synclastic and anticlastic studies that define spatial doubly curved 

surfaces (Escrig 1985; Escrig and Valcárcel 1987). On the other hand, transformable 

studies with scissor linkage mechanisms are limited in the literature (Zhang et al. 2016; 

Yar et al. 2017; Gür, Korkmaz, and Kiper 2019; Maden, Ölmez, et al. 2019; Sarısayın 

et al. 2022). Existing studies have not been able to go beyond the planar forms. For 

example, Zhang et. al. (2016) presented a new classification of scissor units. He 

produced planar models that can transform from a given shape to the target shape. Yar 

et al.(2017), Gür, Korkmaz, and Kiper (2017), Gür et al. (2018), Maden, Ölmez, et al. 

(2019), Maden, Akgün, et al. (2019), Gür, Korkmaz, and Kiper (2019) took a different 

approach, which is obtaining planar scissor linkages with quadrilateral loops. They have 

obtained transformable planar scissor linkages that can change their form between 

convex and concave forms consisting of a rhombus, parallelogram, antiparallelogram, 

and dart loops. 

The main research problem of this study is to design spatial scissor linkages by 

changing the curvature to define a transformable surface. In order to solve this problem, 

the condition that the planar scissor linkages should be able to change their form 

between the two predefined curves must be proved. It can be observed that planar scissor 

linkages transform between circular concave and convex curves as a result of the loop 

assembly method. But, the existing method is not useful to obtain scissor linkages that 

can transform predefined curves (Kiper et al. 2022). In this direction, a new geometric 

loop assembly method is presented in this study to solve this problem. Then, the design 

of transformable spatial scissor linkages is presented. 
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1.2.  Objectives of the Research 
 

 

The main objective of this thesis is to propose a new design methodology for 

generating transformable scissor linkages that can change its form between concave and 

convex. To reach this objective, a new geometric construction method is developed 

based on the loop-assembly method, which enables planar transformable multi-loop 

scissor linkages that can transform between two predefined curves. After obtaining 

planar scissor linkages, it is aimed to design transformable surfaces that can change their 

form between two desired states. 

 

 

1.3.  Methodology 
 

 

The study contains both architectural, geometrical, and mechanical aspects. At 

the beginning of the research, it is essential to understand geometrical and kinematic 

properties and motion characteristics of scissor mechanisms. In this way, a detailed 

literature survey is conducted to indicate the geometrical properties of starting from one 

scissor unit to deployable scissor linkages. Additionally, the basic surface geometries 

literature is examined in detail to understand the transformation of surface profiles. 

During the research, simulation, and modeling are used. Both planar animated drawings 

and solid models are studied in computer environments with Solidworks®. Following 

these steps, models are produced using the 3D printer Ultimaker2+. 

 

 

1.4.  Organization of the Thesis 
 

 

The first chapter of this thesis introduces the study, describes the main concerns 

it tries to answer, indicates the scope, and presents the methodology. The thesis 

continues with a literature review of the main areas which construct the foundation of 

the thesis.  
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Chapter 2 gives a correlated literature review of scissor structures and surface 

geometries of scissor structures.  

Chapter 3 continues with the basic principles of scissor linkages, such as scissor 

units, geometrical construction methods of scissor linkages, and their motion 

characteristics.  

Chapter 4 addresses essential geometrical definitions needed to describe the 

form and surface geometry of scissor linkages.  

Chapter 5 contains the geometrical background of the surface profile, which is 

based on conic sections. Scissor linkages obtained with loop assemblies based on frieze 

patterns are examined according to their result motion characteristics and geometrical 

aspects. 

Chapter 6 presents a new geometrical construction method to overcome the 

missing part of surface profile transformations. In addition, transformable scissor 

linkages are presented. 

Chapter 7 concludes the dissertation with main achievements and 

recommendations for future work. 
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CHAPTER 2  
 

 

2. REVIEW OF LITERATURE 
 

 

This chapter provides a literature review of scissor linkages in both planar and 

spatial aspects. Existing studies are examined in terms of surface geometries. 

 

 

2.1.  Review of the Scissor Structures 
 

 

Scissor linkages are one of the most common types of deployable and 

transformable structural mechanisms due to their simple geometries and easy design 

techniques. That's why we see them in applications from engineering to architecture. 

The idea of using scissors mechanisms in deployable structures goes back to Piñero. He 

created domes and space grids using this concept in the early 1960s. (Piñero 1961a; 

1961b; 1962). Since then, many people have built on Piñero's work, creating new scissor 

units and structures. Researchers have also studied the key geometric, kinematic, and 

structural principles of various scissor structures. 

In this section, all studies related to scissor elements existing in the literature 

will be examined under two sections: planar and spatial. This literature review aims to 

examine the studies made with scissor systems based on form changes. In addition, 

planar and spatial studies will be divided into subheadings within themselves to classify 

the literature properly. 

 

 

2.1.1. Planar Scissor Linkages 
 

 

In this section, planar scissor linkages are investigated under two headings: open 

chain and closed chain planar scissor linkages.  
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2.1.1.1.  Open Chain Planar Scissor Linkages 
 

 

Chuck Hoberman's discovery of angulated elements in 1990 changed how we 

design scissor mechanisms. These elements, made of two connected angled bars, let 

structures deploy radially from the center to the edge with a single degree of freedom 

(DoF). Hoberman used the loop-assembly method to construct open-chain linkages 

(Figure 2.1 and Figure 2.2) (Hoberman 1990). 

 

 

 

 
Figure 2.1. Rhombus loop assembly in a direction and resulting scissor linkage 

(Source: Hoberman, Demaine, and Rus 2013) 

 

 

 
Figure 2.2. a) Hinged rhombs on an arc b) Open and deployed forms of resulting linkage 

(Source: Hoberman, Demaine, and Rus 2013) 

 

 

Kokawa's Cable Scissor Arch study (1997) focused on a planar open chain 

scissor structure. Its key feature is the ability to change curvature without changing the 

span. The structure uses two scissor assemblies and zigzag cables with pulleys. Figure 

2.3 shows its deployment sequence. 
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Figure 2.3. Transformation sequence of Cable-scissor arch 

(Source: Kokawa 1997) 

 

 

The Hoberman Arch is a 72x36 foot changing curtain used at the 2002 Winter 

Olympics. It's made of rigid panels on six rings of angled pieces. The panels slide over 

each other by attaching to the angled elements. (Figure 2.4). 

 

 

 
Figure 2.4. Hoberman Arch in the 2002 Winter Olympics  

(Source: © Hoberman 2021) 

 

 

Mele et al. (2010) designed a foldable roof for a tennis court (Figure 2.5). They 

used scissor-like arches with angled parts. Instead of one arch, they used two halves 

pinned to the seating areas and connected in the middle when closed. The arches work 

with a foldable membrane. Cables and pulleys control the change from one shape to 

another. 

 
 



 

8 
 

 
Figure 2.5. A scissor-hinged retractable membrane roof for a tennis arena  

(Source: Mele et al. 2010) 

 

 

Bouleau and Guscetti (2016) used angulated scissor elements to design a 

transformable bridge called Jet d’Eau movable footbridge in Geneva. They aimed to 

create a curved shape that can change into a flat one. (Figure 2.6). 

 

 

 

 
Figure 2.6. Jet d’Eau movable footbridge  

(Source: Bouleau and Guscetti 2016) 
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Yar et al. (2017) proposed planar scissor linkages that can transform between 

convex and concave configurations by changing the curvature. These linkages are 

obtained by kite and dart loop assemblies. (Figure 2.7). 

 

 

  
a)                                                                  b) 

Figure 2.7. Transformable scissor linkages obtained with a) kite and b) dart loops 
(Source: Yar et al. 2017) 

 

 

Similar to Yar et al. (2017), Gür, Korkmaz and Kiper (2019) presented 

deployable and transformable planar structural mechanisms using loop assembly 

method and anti-parallelogram loops (Figure 2.8). To be able to produce arrays 

methodically, they used symmetry operations. 
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Figure 2.8. a) transformable linkage consists of angulated links, b) transformable 

linkage consists of ternary and quaternary links, c) transformable linkage 
consists of polar scissor units (Source: Gür, Korkmaz, and Kiper 2019) 

 

 

2.1.1.2.  Closed Chain Planar Scissor Linkages 
 

 

In addition to open chain examples explained before, Hoberman (1990) also 

proposed closed-chain examples with the “loop-assembly” method (Figure 2.9). In a 

lecture at MIT in 2013, he proposed that regular and irregular closed-chain deployable 

scissor linkages can be obtained with this method (Hoberman, Demaine, and Rus 2013). 

 

 

 
Figure 2.9. Forming hinged rhombi from open to closed chain  

(Source: Hoberman, Demaine, and Rus 2013) 



 

11 
 

You and Pellegrino (1997) studied angulated scissor units in detail. Building on 

Hoberman's work, they found that angulated parts (made from equal or similar triangles 

with any number of parallelograms between) always open at the same angle. (Figure 

2.10). 

 

 

 
Figure 2.10. Foldable ring linkage formed by identical angulated rods with a kink angle 

of 135°. (a) "Expanded" and (c) "retracted" configurations  
(Source: You and Pellegrino 1997) 

 

 

They also found that using rods with multiple angles decreases the number of 

components and makes the connections simpler (Figure 2.11). 

 

 
Figure 2.11. Model structure built from 24 identical three-segment, multi-angulated rods 

(Source: You and Pellegrino 1997) 

 

 

Bai et al. (2014) developed a method to create mechanisms for scaling polygons. 

They used four types of tetragon elements (rhombus, kite, parallelogram, and general 

tetragon element). With these elements, one can easily build mechanisms to scale 

polygons. They provided a table that shows how to use these elements to create scaling 

mechanisms quickly. Zhang et al. (2016) developed a method to design scissor-like 
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linkages on a flat surface that transforms a starting shape into a target shape with high 

accuracy. (Figure 2.12). 

 

 

 
Figure 2.12. Photos of the real objects fabricated by 3D printing with SLA material 

(Source: Zhang et al. 2016) 

 

 

Gür, Korkmaz, and Kiper (2019) also showed how to build deployable planar 

scissor structural mechanisms using a loop assembly method and anti-parallelogram 

loops (Figure 2.13). They used symmetry operations to create arrays in a systematic 

way. 

 

 

 
Figure 2.13. Deployable ring-like linkage consists of angulated links.  

(Source: Gür, Korkmaz, and Kiper 2019) 
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2.1.2. Spatial Scissor Structures 
 

In this section, spatial scissors structures are investigated according to their 

surfaces as monoclastic, synclastic and anticlastic. 

 

 

2.1.2.1.  Monoclastic Scissor Structures 
 

 

The geometric condition for the deployability of scissor mechanisms composed 

of translational and polar scissor-like elements (SLE) was demonstrated by Escrig 

(1985). The study showed how to modify the intermediate hinge's location inside the 

scissor units to produce curvature in the grid. Later, Escrig and Valcárcel (1987; 1993) 

showed how to create three-dimensional structures. They placed scissor units facing 

different directions on a grid to achieve this. They presented two-way and three-way 

cylindrical grids with two-way and three-way spherical grids. As a result of two-way 

cylindrical and spherical grids, they obtained a monoclastic, single curvature, scissor 

structure as shown in Figure 2.14 and Figure 2.15. Escrig and Sánchez (2006) 

demonstrated conditions for adapting a deployable mesh to these grids. 

 

 

 
Figure 2.14. Sequence two-way cylindrical grid with translational unit  

(Escrig and Valcárcel 1987) 
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Figure 2.15. Two examples of the three-way spherical grid with translational units  

(Escrig and Valcárcel 1987) 

 

 

Langbecker (1999) expanded on Escrig's foldability conditions for SLEs. He 

studied how different scissor structure shapes (translational, cylindrical, spherical) could 

be deployed. Langbecker also created many models of curved, foldable structures like 

barrel vaults and synclastic shapes using the right SLEs, as in Figure 2.16 (Langbecker 

and Albermani 2000). 

 

 

 
Figure 2.16. Single-curved foldable barrel vault. 

(Langbecker and Albermani 2000) 

 

 

A well-known use of scissor units is the deployable roof for the San Pablo Sports 

Centre swimming pool in Seville, Spain, designed by Escrig and Sánchez (2006). The 

roof has two matching curved rhomboid structures made of equal SLE grids covered in 

a thin fabric. It opens from a folded to an unfolded state (Figure 2.17). 
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Figure 2.17. Deployable roof structure composed of SLEs in Seville  

(Source: Escrig and Sánchez 2006) 

 

 

Rippmann (2007) designed a scissor unit with adjustable hinge points (Figure 

2.18). His design allows for various shapes by repositioning the hinges. While appearing 

flexible, the system is single-DoF; units must be fully disassembled and rebuilt to 

change shapes. 

 

 

 
Figure 2.18. Scissor unit with various hinge points and the structure constructed with. 

(Source: Rippmann 2007) 
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Alegria Mira, Thrall, and Temmerman (2014) introduced a concept for a 

foldable scissor shelter, including design, analysis, and testing of a full-scale prototype 

(Figure 2.19). They shared the conceptual design and analysis using a parametric finite 

element method. The prototype was tested to assess deployment, support, and stiffening. 

For the final design, they presented a single curved shelter structure with scissor 

elements and a membrane that can meet the requirements of the European Standards. 

 

 

 
Figure 2.19. The conceptual design for a 4-person shelter comprised of deploying 

scissor arches with a membrane.  
(Source: Alegria Mira, Thrall, and Temmerman 2014) 

 

 

Roovers and Temmerman (2014a) provided an overview of single-curvature 

deployable scissor grids. They classified single-curved double-layer scissor grid 

structures by grid cell geometry and listed parameters for scissor units, grids, and 

kinematic behavior (Figure 2.20). 
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Figure 2.20. Three types of triangulated single curved scissor grids consisting of:  

a) polar units; b) polar and plane-translational units; c) plane- and curved-
translational units Source: Roovers and Temmerman 2014a).  

 

 

Maden, Ölmez et. al. (2019) designed a dynamic shelter that can change form to 

adapt to different needs. Here's how they created it: First, they used a loop assembly 

method to build the structure. Next, they created a customizable model in Grasshopper® 

to study the loops' geometry and create a flexible design tool. They analyzed the 

geometry to develop the structure. The shelter can transform into various shapes, 

specifically from flat to S-shapes and reverse S-shapes. (Figure 2.21). 
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Figure 2.21. The transformation process of dynamic shelter structure. 

(Source: Maden, Ölmez, et al. 2019) 

 

 

2.1.2.2.  Synclastic Scissor Structures 
 

 

Escrig and Valcarcel (1987; 1993) designed spherical scissor structures with 

two-way and three-way grids. Many curved geometric models were proposed for these 

grids (Figure 2.22, Figure 2.23, Figure 2.24, Figure 2.25). Later, Escrig and Sánchez 

(2006) studied two-way grids on a sphere's surface. These grids need crossbars or cables 

to stabilize them when they open due to non-triangulation instability. 

 

 

 
Figure 2.22. Top view and side elevation of a two-way spherical grid with identical 

polar units (Source: Escrig and Valcárcel 1987) 
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Figure 2.23. Top view and side elevation of a three-way spherical grid with polar units 

(Source: Escrig and Valcárcel 1987) 

 

 

 
Figure 2.24. Top view and side elevation of a geodesic dome with polar units  

(Source: Escrig and Valcárcel 1987) 

 

 

 
Figure 2.25. Top view and side elevation of a lamella dome with identical polar units 

(Source: Escrig and Valcárcel 1987) 
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By using the angulated elements, Hoberman (1990) used angulated elements to 

create expanding synclastic structures like the Geodesic Dome (Figure 2.26), Sphere, 

Icosahedron, and Iris Dome. 

 

 

 
Figure 2.26. Hoberman’s kinetic sculpture: Expanding Geodesic Dome.  

(Source: © Hoberman 2021) 

 

 

Another example is the Iris Dome (collapsible dome), made up of interconnected 

spirals that can pull back toward the edges (Figure 2.27) (Hoberman 1993). 

 

 

 
Figure 2.27. Iris Dome  

(Source: © Hoberman 2021) 

 

 

Charis Gantes (1996; 2001) has done extensive research on deployable 

structures that can lock into place in two different positions. He has created design 
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methods for flat and curved grids, as well as structures with any shape. He studied how 

to scissor structures can "snap-through" into place due to differences in member lengths 

at certain angles. He developed ways to design these structures to be deployed and 

expanded smoothly without stress(Gantes et al. 1993). 

Hoberman’s concepts encouraged researchers to take things a step further and 

conduct thorough research on angulated scissor structures. You and Pellegrino (1997) 

created a multi-angulated rod design that simplified the structure and its joints by 

reducing the number of parts. In order to create a deployable structure that is installed 

on pinned columns, Kassabian, You, and Pellegrino (1999) employed multi-angulated 

parts (Figure 2.28).  

 

 

 
Figure 2.28. Deployable structure composed of multi-angulated elements. 

(Source: Kassabian, You, and Pellegrino 1999) 

 

 

In addition to monoclastic studies, Langbecker and Albermani (2000) presented 

synclastic scissor structures with translational elements, as in Figure 2.29.  
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Figure 2.29. Double-curved synclastic scissor structure. 

(Source: Langbecker and Albermani 2000) 

 

 

Kokawa (2000) presented 3-dimensional multi-angulated scissor element as the 

main structural element of a new type of called “Retractable Loop-Dome”. He describes 

the geometry of the 3-dimesional multi-angulated scissor element determined by cutting 

a sphere with a plane passing through the apex. In order to provide double curved, 

synclastic shell-like behavior of the structure, he adds an expandable ring consisting of 

expandable rods that form a regular polygon to both the inner and outer circles of the 

dome (Figure 2.30). 

 

 

 
Figure 2.30. Model of retractable loop-dome and its outer and foundation rings 

(Source: Kokawa 2000) 

 

 

Based on polar units, Roovers and Temmerman (2017b) studied the geometry of 

both spherical and non-spherical scissor grids (Figure 2.31). They developed a way to 
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adapt spherical scissor grids into non-spherical ones without changing how they move. 

The shape and motion of these modified scissor units and grids were explained by the 

researchers. In addition, they produced a joint model that maintains the geometry's 

compatibility. 

 

 

 
Figure 2.31. An example of the generalization of a spherical foldable scissor grid with 

a lamella rhomboid pattern, which is translated into an ellipsoidal grid with 
the same pattern and foldable deployment behavior.  
(Source: Roovers and Temmerman 2017b)  

 

 

Roovers and Temmerman (2017a) presented new proposals together with the 

existing ones in the literature in order to form an overview of the geometric potential 

and kinematic behavior of deployable scissor grids consisting of translational scissor 

units. The team examined deployable scissor grids with one or two curves, built from 

translational scissor units (Figure 2.32). They also developed a technique for creating 

inwardly and outwardly (double) curved anticlastic scissor grids. The scissor designs 

could be extended with joints in a variety of ways without compromising their ability to 

open and close. 
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Figure 2.32. Various double-layer grids of translational units generated by tiling the 

scissor units of multiple planar linkages along a pattern: a) hexagonal 
tiling; b) rhombille tiling; c) truncated square tiling.  
(Source: Roovers and Temmerman 2017a)  

 

 

2.1.2.3.  Anticlastic Scissor Structures 
 

 

Hoberman created two deployable anticlastic constructions with angulated 

components in addition to synclastic models. One is the Expanding Helicoid from 1998 

(Figure 2.33). Its surface is composed of two spiral forms, like the double helix of DNA. 

Later, a kinetic version was built for Discovery World's biotech exhibit in Milwaukee. 

When completely expanded, it unfolds from a bundle to a spiral that is 12 meters tall 

and 3.6 meters broad. 

 

 

 
Figure 2.33. Expanding Helicoid  

(Source: © Hoberman 2021) 
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Hoberman's Expanding Hypar for the California Science Center is another 

anticlastic example (Figure 2.34). Using angulated parts for such anticlastic structures 

was a new idea in deployable frames. However, none have been used in structures due 

to their complex mechanics and structure (Hoberman 2021). 

 

 

 
Figure 2.34. Expanding Hypar  
(Source: © Hoberman 2021) 

 

 

Mohamad Alkhayer (2007) studied how to use angulated elements for 

deployable curved shapes. They suggested many types of deployable hyperboloids 

(Figure 2.35) by using regular and semi-regular tessellation patterns. 

 

 

 
Figure 2.35. Deployable polygonal hyperboloids  

(Source: Alkhayer 2007) 
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Langbecker and Albermani (2000) created several single DoF anticlastic 

structures shaped like hyperbolic paraboloids using compatible scissor units that can 

move together (Figure 2.36), in addition to single-curve foldable barrel vaults and 

double-curve synclastic structures. 

 

 

 

 

Figure 2.36. Double-curved anticlastic hypar structure.  
(Source: Langbecker and Albermani 2000) 

 

 

Petrova (2008) explored how to create double-curved structures with any type 

of curve. She studied different types of curvature to design more complex shapes for 

modern buildings. Petrova developed a method to create freely shaped double-curved 

surfaces that can be folded up. Using rhombic scissor units, she created many anticlastic 

structures where the surface shape and curvature can be freely chosen. (Figure 2.37). 

 

 

 
Figure 2.37. Arbitrary double-curved translational structures  

(Source: Petrova 2008) 
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Akgün (2010) used a novel kind of SLEs to develop new transformable 

structures. By putting revolute joints at various locations along a bar, he produced three 

distinct kinds of modified SLE (M-SLE). Using six scissor arches, Akgün also created 

an adaptable roof for an exhibition hall (Figure 2.38). The design allows for a wide range 

of shape changes, transforming from arches to various curves. 

 

 

 
Figure 2.38. Adaptive roof structure composed of scissor arches.  

(Source: Akgün et al. 2010) 

 

 

As another transformable example, Akgün also created a 4-DoF spatial scissor 

structure. It consists of 25 spatial SLEs (S-SLEs), 4 modified spatial SLEs (MS-SLEs), 

20 hybrid spatial SLEs (HS-SLEs), and 8 special SLEs (Figure 2.39) (Akgün et al. 

2011). 
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Figure 2.39. Perspective and top view of the proposed scissor-hinge shell structure 

(Source: Akgün et al. 2011) 

 

 

Roovers, Alegria Mira and Temmerman (2013) explored new geometric shapes 

to find innovative uses for angulated elements. They studied Hoberman's Expanding 

Helicoid instead of simple curved surfaces like cylinders or spheres. The researchers 

developed a method to convert any continuous surface into an angulated scissor grid. 

After testing various surfaces, they created a single DoF deployable catenoid structure. 

(Figure 2.40). 

 

 

 
Figure 2.40. Deployable catenoid  

(Source: Roovers, Alegria Mira, and Temmerman 2013) 
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Roovers and Temmerman (2017a) reviewed existing and new proposals to 

understand the geometric potential and movement of deployable scissor grids made up 

of translational scissor units. They looked at both single and double curved grids (Figure 

2.41). The researchers also developed a method for double curved anticlastic scissor 

grids. They suggested ways to add joints to the line models without changing how they 

deploy. 

 

 

 
Figure 2.41 Various double-layer grids of translational units generated by tiling the 

scissor units of multiple planar linkages along a pattern: a) hexagonal 
tiling; b) rhombille tiling; c) truncated square tiling.  
(Source: Roovers and Temmerman 2017a) 

 

 

2.2.  Surface Based Evaluation of Scissor Structures 
 

 

When Table 2.1 is examined, it is inferred that the studies in the literature are 

concentrated on monoclastic and synclastic surfaces, especially cylindrical surfaces on 

monoclastic surfaces and spherical surfaces on synclastic surfaces. It is seen that there 

are fewer studies on anticlastic surfaces compared to monoclastic and synclastic 

surfaces. The most preferred form is hyperbolic paraboloid on anticlastic surfaces. 

In the next  

Table 2.2 brief description of the distinguished studies based on different surface 

morphologies by using scissor structures are given. 
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CHAPTER 3 
 

 

3. BASIC PRINCIPLES OF SCISSOR LINKAGES 
 

 

3.1. Basic Scissor Units 
 

 

All scissor linkages are made up of the serial or parallel multiplication of 

identical, various, or random scissor units. A scissor unit is composed of links hinged 

with an intermediate joint (Figure 3.1). Scissor units are connected by two pairs of 

hinges. According to the literature, there are different identifications of scissor units. 

Some researchers gave a specific name to scissor units, while some of them did not. 

First, Piñero (1965), Zeigler (1976), and You and Pellegrino (1997) simply describe 

rods. Then scissor units are defined as struts (Clarke 1984; Escrig 1985), scissors (Atake 

2000), pantograph (Hanaor and Levy 2001), and mostly scissor-like elements (Gantes 

1991; Temmerman 2007; Mele 2008; Akgün et al. 2011; Maden, Korkmaz, and Akgün 

et al. 2011; Zhang et al. 2016). 

In most of the studies, basic scissor units are classified into three main types: 

translational unit, polar unit, and angulated unit as in the Figure 3.1. The imaginary line 

passing through hinges is called as unit line (Temmerman 2007). Both translational and 

polar units comprise straight links. The translational unit has an intermediate joint in the 

middle of the links, while the polar unit has an intermediate joint away from the middle 

of the link. The angulated unit has kinked links that are less than 1800. According to this 

classification, it is observed that unit lines, for translational units, are parallel to each 

other, for polar unit and angulated units, are intersecting. But this explanation is 

insufficient to express geometrical motion characteristics of scissor linkages (Maden, 

Akgün, et al. 2019). 
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                             a)                                     b)                                         c) 

Figure 3.1. Basic scissor unit a) Translational unit b) Polar unit c) Angulated unit 
(Reproduced from: Maden, Akgün, et al. 2019) 

 

 

There are different classifications and definitions for the geometry of the primary 

scissor units. However, in this study, definition of Zhang et al. (2016) is taking 

consideration. The imaginary line joining two hinges on one side is called a “normal 

line” passing through the side of the polygon that linkage defines. There are three 

particular types of scissor units to construct scissor linkages. They are classified by the 

angles between their two normal lines that are parallel (Figure 3.2a), isogonal (Figure 

3.2b) and symmetric (Figure 3.2c). A parallel unit has parallel normal lines; and during 

the motion, they remain parallel to each other. An isogonal unit has intersecting normal 

lines but the angle between them does not change during the motion. A symmetric unit 

consists of two symmetric arms. It has intersecting normal lines too and during the 

motion the angle between normal lines changes. 

 

 

unit  

lines 
hinge 

scissor hinge 
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         a) parallel unit                     b)isogonal unit                       c)symmetric unit 

Figure 3.2. Three types of basic scissor units  
(Reproduced from: Zhang et al. 2016) 

 

 

Although there are lots of studies in the literature that classify scissor units as 

transformable, polar and angulated (Temmerman 2007; Maden, Korkmaz, and Akgün 

2011), this is not an exact classification that can meet the motion characteristics of 

scissor structures formed with these units. Such as, the resulting motion of the polar 

scissor units can give us translational motion (Figure 3.3). 

 

 

 
Figure 3.3. Polar scissor unis forming a linkage making translational movement 

(Reproduced from: Maden, Akgün, et al. 2019) 
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3.2. Geometric Construction Methods of Scissor Linkages 
 

 

Scissor linkages are basically formed by repeating units or loops along a 

direction by connecting them from their end joints. There are two main methods to 

design scissor linkages: 1) unit assembly method, 2) loop assembly method. 

 

 

3.2.1. Unit-Assembly Method 
 

 

In literature, most of the studies about scissor linkages are based on unit-

assembly method. According to the unit-assembly method, scissor linkages are formed 

by attaching scissor units to each other along a direction. This method is based on the 

aforementioned scissor units that are translational, polar, and angulated. And it is based 

on deployability of scissor linkages. 

There are some deployability constraints for foldability of planar scissor linkages 

composed of translational and polar units revealed by Escrig (1985). In the compact 

form it is desired to be capable of being stored of the scissor linkage. Theoretically, 

scissor linkage will have one dimension in compact form based on the equation: ai + bi 

= ai+1 + bi+1. According to this equation, the sum of the lengths of bars on both sides of 

the unit line should be equal in order to provide the deployability (Figure 3.4). However, 

Escrig’s equation can be only applied to units composed of straight bars, and not to those 

of angulated bars. 

 

 

 
Figure 3.4. Deployability of scissor linkage  

(Reproduced from: Maden, Korkmaz, and Akgün 2011) 
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bi 
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bi+1 
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Deployability conditions of scissor linkages composed angulated units are 

examined by You and Pellegrino (1997). They classified angulated scissor units into 

three groups: Hoberman’s angulated element, Type-I generalized angulated element 

(GAE) and Type-II GAE. General type of Hoberman's element is formed by identical 

angulated rods: AE = DE, BE = CE, = , ADE and BCE are similar isosceles triangles 

(Figure 3.5). 

 

 

 
Figure 3.5. General type of Hoberman's element  

(Source: You and Pellegrino 1997) 

 

 

Simplest Type I GAE is formed by angulated rods with equal semi-length but 

different kink angles: AE = DE, BE = CE, ≠  ADE and BCE are isosceles triangles 

(Figure 3.6) 

 

 

 
Figure 3.6. Simplest Type I GAE  

(Source: You and Pellegrino 1997) 
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Simplest Type II GAE is formed by angulated rods with proportional semi-

lengths and equal kink angles AE/DE = CE/BE, =  ADE and BCE are similar triangles 

(Figure 3.7). 

 

 

 
Figure 3.7. Simplest Type II GAE  
(Source: You and Pellegrino 1997) 

 

 

They analyzed these three types of scissor units and their assemblies. A 

generalized angulated element consists of linked angulated rods forming a chain of 

parallelograms, ending in either isosceles triangles (Type I GAE) or similar triangles 

(Type II GAE). An assembly of generalized angulated elements provides a constant 

angle as the linkage is folded or expanded. Although they used scissor units to form a 

scissor linkage, they needed to consider loops emerging between units to provide the 

deployability towards the center of a perimeter (Figure 3.8) (You and Pellegrino 1997). 

 

 

 
Figure 3.8. Assembly of Type I GAEs left and assembly of Type II GAEs right.  

(Source: You and Pellegrino 1997) 
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3.2.2. Loop-Assembly Method 
 

 

Loop assembly method is another method to form scissor linkages in the 

literature. Briefly, it is the method of obtaining the scissor linkages, whose desired form 

is given, by assembling 4-bar loops to each other at their vertex (Maden, Akgün, et al. 

2019). 

“Loop assembly” is defined by Hoberman (1990) for the first time in his patented 

work. After that, in a lecture at MIT in 2013, he presented scissor linkages obtained 

from hinged rhombi both in regular and irregular geometries (Figure 3.9) (Hoberman, 

Demaine, and Rus 2013). The simplest linkage, which is a lazy-tong mechanism, is 

formed by repeating rhombi on a line. Repeating rhombi on a curve results in radially 

deployable linkage. In addition, repeating rhombi on an arbitrary geometry results 

scaling deployable closed loop linkage. 

 

 

   

   
Figure 3.9. a) Rhombi on a line b) rhombi on an arc c) rhombi on a circle d) rhombi on 

an irregular geometry (Source: Hoberman, Demaine, and Rus 2013) 

 

 

It can be observed that all scissor linkages comprise of 4-bar loops that are 

rhombus, parallelogram, and kite (Figure 3.10). Kite and parallelogram loops are convex 

a)

b)

c)

d)
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quadrilateral. The shapes can be either convex or concave. A convex shape is usually 

called a kite (Figure 3.11a). A concave kite is known as a dart (Figure 3.11c), and a 

concave parallelogram is called an anti-parallelogram (Figure 3.12c) (Usiskin et al. 

2008). 

 

 

 
Figure 3.10. a) Rhombus loop, b) Parallelogram loop, c) Kite loop.  

(Reproduced from: Usiskin et al. 2008) 

 

 

When quadrilaterals are viewed as a 4-bar loop, both kite and dart shapes can be 

seen as different forms of the same 4-bar loop. In a special configuration (Figure 3.11b) 

where the two shorter sides are aligned, a kite can transform into a dart, just as a 

parallelogram can change into an anti-parallelogram (Figure 3.12b). 

 

 

 
Figure 3.11. Assembly mode change of a kite loop (a) into a dart loop (c) through the 

singular configuration (b) (Reproduced from: Usiskin et al. 2008) 

 

 

In the dead center position, where all links are aligned, a parallelogram can 

switch to an anti-parallelogram. An anti-parallelogram has two equal short sides and 

(a) (b) (c)

(a) (b) (c)
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two equal crossing long sides. This linkage has four hinges at the ends but none at the 

crossing point. It has one line of symmetry passing through the crossing point (Figure 

3.12). 

 

 

 
Figure 3.12. Assembly mode change of a parallelogram loop (a) into a antiparallelogram 

loop (c) through the singular configuration (b)  
(Reproduced from: Usiskin et al. 2008) 

 

 

There are limited studies about loop assembly method in the literature. First, 

Hoberman (1990) revealed this method in his patent. He describes his invention as “a 

method for constructing reversibly expandable truss-structures that provides for an 

extremely wide variety of geometries”. He also mentioned this method during a lecture 

at MIT as identical hinged rhombs to construct scaling deployable structures 

(Hoberman, Demaine, and Rus 2013). Then, You and Pellegrino (1997) mentioned 

about constructing angulated scissor linkage with parallelogram loops. They did not 

exactly use the loop assembly method, but their study brought a new perspective by 

considering parallelograms. Liao and Li (2005) examined scalable planar graph design. 

Also, Kiper and Söylemez (2010) made a contribution with using Cardan motion for 

scaling arbitrary polygonal forms. Bai et al. (2014) used four basic tetragon elements 

that are rhombus, parallelogram, kite and general tetragon element, to synthesize 

polygon-scaling mechanisms. Recently, in the scope of the Horizon 2020 project, this 

method was worked out in detail (Yar et al. 2017; Gür, Korkmaz, and Kiper 2017; Gür 

et al. 2018; Maden, Ölmez, et al. 2019; Maden, Akgün, et al. 2019; Gür, Korkmaz, and 

Kiper 2019). As a contribution to the literature, they dealt with not only rhombus or 

parallelogram loops but also antiparallelogram, kite, and its concave version dart loop. 

They discovered both angular and scalable deployable linkages with antiparallelogram, 

kite, and dart loops and linkages that can transform between convex and concave forms 

with antiparallelogram, kite, and dart loops. 

(a) (b) (c)
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3.3. Motion Characteristics of Planar Scissor Linkages 
 

 

According to the literature, it is better to define geometry of motion of scissor 

linkages according to the transformation of the curve that the linkage represents rather 

than defining based on units. In this context, the type of transformation should be 

defined according to how the curvature changes. Change of the curvature can be 

observed according to relative positions of normal lines related to the curve during the 

motion. 

In the literature, it is observed that there are three types of motion for scissor 

linkages: scaling deployment, angular deployment and transformation (Maden, Akgün, 

et al. 2019). 

 

 

3.3.1. Scaling Deployment 
 

 

In a scaling deployment, curves of linkages, both in compact and deployed 

forms, are identical but only differ in a scale. Scaling deployment can be examined in 

two situations: First is the radial deployment (changing the radius) (Figure 3.13). The 

second one is translational deployment (changing the span) which is scaling through a 

direction (Figure 3.14). In both situations, the angle between normal lines does not 

change during the deployment. For the translational deployment, normal lines remain 

parallel to each other. Thus, the angle between normal lines approach to zero, in other 

words radius tends to go infinity c. 
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Figure 3.13. Radial deployment. 

 

 
Figure 3.14. Types of linear deployment. 

 

 

3.3.2. Angular Deployment 
 

 

During angular deployment, the initial and final radii can remain the same. 

While the radius changes slightly during movement, the main difference is in the angle. 

The angle between normal lines changes during the motion, depending on it also the 

length of circle arc changes as in the Figure 3.15. 

 

 

Stowed state

Deployed state

Stowed stateDeployed stateStowed state

Stowed state Deployed state Deployed stateStowed state
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Figure 3.15. Angular deployment. 

 

3.3.3. Transformation 
 

 

Literature examples show that deployable scissor linkages often have similar 

compact and deployed forms. Therefore, there are scaling and angular deployable 

linkages. Linkages with different compact and deployed forms are called transformable 

(Maden, Akgün, et al. 2019). Transformable linkages are capable of transforming 

between an initial curve and another desired curve (Figure 3.16). 

 

 

 
Figure 3.16. Transformation  

(Source: Maden, Akgün, et al. 2019) 

 

  

Deployed stateStowed state
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CHAPTER 4 
 

 

4. CURVATURE OF SURFACES 
 

 

It is essential to understand the surface geometry that has an important role in 

constructing and defining scissor linkages. This section concerns some geometrical 

definitions necessary to describe the geometry of form and motion of scissor linkages. 

In this scope, first, it needs to be concentrated on basic geometrical definitions and 

representation tools. Terms of curve and surface will be clarified. Then, the term 

curvature will be examined in detail. 

In surface geometry, curves and surfaces are the two main inseparable 

components used to define a surface in geometrical aspects. In detail, the curves could 

be described as profiles to build surfaces. In other words, the form of the profile curve 

usually affects the final shape of the emerging surface strongly. 

As a result, once the curves are investigated, it simultaneously leads to the 

understanding of surfaces unambiguously. Mathematically, there are two concepts: 

tangent plane and surface normal. They are complementary approaches for describing 

surfaces and curves (Figure 4.1) (Blaauwendraad and Hoefakker 2014). 

 

 

 
Figure 4.1. The tangent plane provides insight into the characteristics of surfaces.  

(Source: Blaauwendraad and Hoeafkker 2014) 
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4.1.  Introduction of Curves and Surfaces 
 

 

4.1.1. Curve and Curve Tangent 
 

 

A curve can be thought of as a connected one-dimensional series of points. 

Different parts of a curve could be covered by the mentioned points. For instance, all 

points of a circle lie in a plane, and these kinds of curves are called planar curves as 

opposed to spatial curves (Figure 4.2) (Pottmann et al. 2007).  

 

 

 
Figure 4.2. Comparison of circle (planar curve) and helix (spatial curve) 

(Source: Pottmann et al. 2007) 

 

 

A smooth curve c (Figure 4.3) can be approximated by a tangent line T at a point 

p. This line l can be found by connecting two close points p and q on the curve c or by 

using a limit process or the first derivative. The normal intersects the curve at a right 

angle. 
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Figure 4.3. a) A tangent T touches a curve c, b) The normal of a planar curve intersects 

the curve at a right angle. (Source: Pottmann et al. 2007) 

 

 

Variations in the tangent vector impact the length of the arc along the curve 

(Hyde et al. 1997). Curvature measures how much the tangent direction changes when 

one slightly moves the point on the curve. One needs to choose the right parametrization 

to define curvature using a standard parametrization of the curve. (Lastra 2021). 

 

 

4.1.2. Discretizing of Curves 
 

 

We can use a simple approach to understand how curves work. Instead of using 

complicated calculus, we can break down a curve into a series of connected line 

segments, like the sides of a polygon. This is shown in Figure 4.4. Let's call the polygon 

"P" and its vertices (the corners of the polygon) c1, c2, c3, and so on. We also say that 

all the sides of the polygon have the same length, L. Given a smooth curve "c" and a 

length "L", we can create a polygon P where all the vertices lie on the curve. This 

polygon is also called a discrete curve. In many real-world situations, curves are actually 

treated as polygons (Pottmann et al. 2007).  
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Figure 4.4. Evaluation of a discrete curve. 

(Source: Pottmann et al. 2007) 

 

 

4.1.3. Curvature of Surface 
 

 

In the middle of the 17th century, Isaac Newton discovered that the idea of 

curvature extended from Newtonian calculus. Significant calculus difficulties like 

figuring out the area under curves and the perimeter of planar curves were solved by the 

concept of curvature. In particular, the previously stated innovative method helped to 

calculate the "quadrature" or area of a circle. As a useful metric, Newton defined 

"crookedness" (also known as curvature) as the radius of the circle of greatest fit to any 

given planar curve at all points on the curve. (Figure 4.5) (Hyde et al. 1997). 

 

 

 
Figure 4.5. The curvature of a planar curve at a point P. 

(Source: Hyde et al. 1997) 

 

 

Basically, curvature means the amount by which a curve or a surface deviates 

from being straight or flat, respectively. A curve in the plane, the simplest case of 

curvature, could vary at every point along the curve but may be quantified at each point 
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as the inverse of the radius (K = 1/r) of the circle that most closely fits the curve locally 

at that point (Hyde et al. 1997). 

The curvature of the surface is a complex entity but can be understood as a 

generalization of the curvature of planar curves. At a specific location on the surface, 

the principal curvatures, k1, and k2, might be used to implement surface curvature. As 

seen in Figure 4.6 the principal curvatures represent the highest and minimum values of 

all the normal curvatures at that location. The principal directions are those that match 

these principal curvatures (Hyde et al. 1997). 

 

 

 
Figure 4.6. Measures of 3D surface curvature represent the greatest and lowest normal 

curvatures k1 and k2 using orthogonal unit vectors X1 and X2  
(Source: Nabavi and Fossen 2021) 

 

 

The most efficient approach to describe how the surface curves around a point 

on the surface is to use the principal curvatures and directions. It is important to note 

that the umbilical point (where all normal curvatures are equal) is where the major 

curvatures cannot be individually established. In differential geometry of three-

dimensional surfaces, locally spherical points on a surface are referred to as umbilicus 

or umbilical points (Figure 4.7). At specific points, the normal curvatures are equal in 

all directions. Hence, both principal curvatures are equal, making every tangent vector 
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a principal direction. Only two surfaces, the plane and the sphere, are entirely made up 

of these points (Hyde et al. 1997; Hilbert and Cohn-Vossen 1990). One can calculate 

the mean curvature H by averaging the principal curvatures H= (k1 + k2)/2 

A flat plane has a mean curvature (H) of 0 since all its normal curvatures are 0. 

However, if the plane is bent into a wavy shape, H becomes non-zero in some areas 

because one of the principal curvatures is no longer 0 (Callens and Zadpoor 2018). 

 

 

 
Figure 4.7. Umbilical point  

(Source: Nabavi and Fossen 2021) 

 

 

Another important metric, in addition to median curvature, is the "Gaussian 

curvature K." The principal curvatures are multiplied to find it: K= k1 * k2 

Mean, and Gaussian curvatures provide distinct perspectives on the curvature of 

the surface. The mean curvature of a surface is extrinsic, meaning it is determined by 

the surface's location in 3D space from an external viewpoint. The Gaussian curvature 

is an inherent property that solely relies on measurements made within the surface. 

Therefore, a two-dimensional resident could ascertain it (Hilbert and Cohn-Vossen 

1990; Calladine 1983). To interpret the difference between the Gaussian and mean 

curvature, a surface that is extrinsically curved but remains intrinsically flat would be a 

good example. First, imagine bending a flat plane into a wavy shape. Then, the surface 

now has non-zero mean curvature, but its Gaussian curvature is still zero because one 

of the principal curvatures is zero. This shows that bending a surface without stretching 

doesn't change its Gaussian curvature, unlike mean curvature (Pressley 2010). A 
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developable surface is the special name shown in Figure 4.8 has zero Gaussian curvature 

everywhere. Developable surfaces are those that have zero Gaussian curvature because 

their intrinsic curvature stays zero even when it's bent to change their extrinsic 

curvature. Figure 4.8 shows three types of developable surfaces: generalized cylinders, 

generalized cones, and tangent developable to a space curve. These surfaces are formed 

by bending a flat plane (two-dimensional) without stretching or tearing (Nabavi and 

Fossen 2021). This is feasible because Gaussian curvature doesn't change when a 

surface is bent (Hilbert and Cohn-Vossen 1990; Toponogov and Rovenski 2006; Callens 

and Zadpoor 2018). 

 

 

 
Figure 4.8. Three classes of developable surfaces (a) generalized cylinder(b) generalized 

cones (c) tangent developable (Source: Nabavi and Fossen 2021) 

 

 

The Gaussian curvature of a surface can be defined in two ways: extrinsically 

(based on how it curves in 3D space) or intrinsically (based on measurements within the 

surface itself). The intrinsic approach can be visualized by considering an imaginary 

triangle drawn on the various surfaces. In detail, in Figure 4.8, three types of developable 

surfaces are based on just bending, which can be flattened into the plane through 

bending again. For a developable surface (like a cylinder, cone, or tangent developable 

all in K=0), this triangle would behave as if drawn on a flat plane, with angles summing 

to 180 degrees. These surfaces can be bent into a plane without stretching. Intrinsically 

curved surfaces (like a sphere K > 0, saddle K < 0, or vase varying K) can't be flattened 

without stretching. On these, the sum of a triangle's angles is more or less than 180 

degrees (Weeks 2001; Calladine 1983; Toponogov and Rovenski 2006). This shows the 
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surface has positive, negative, or zero curvature. (Weeks 2001). Measuring angles in a 

triangle tells you the Gaussian curvature of the surface, but it can't distinguish a flat 

plane from a cylinder, as both have zero intrinsic curvature (Callens and Zadpoor 2018). 

Bending without stretching or shrinking is called an isometric deformation so 

that it leaves the metric unaffected. The metric is the short version of the term metric 

tensor that describes the distances between the neighboring points on a surface (Sharon 

and Efrati 2010). In the case of a flat plane, the metric tensor known as “Euclidean 

metric” could be represented physically as an imaginary regular grid consisting of 

equally spaced and perpendicular lines (Marder, Deegan, and Sharon 2007; Kamien 

2007). As opposed to the previously mentioned situation in Figure 4.8, when the flat 

plane is subjected to pure bending, the grid is not distorted if the plane is deformed into, 

for example, a bell-shaped surface, meaning the distances and angles on the surface 

change, making the metric "non-Euclidean". Changing the Gaussian curvature of a 

surface requires changing its metric, which can't be done by bending alone. You need 

to stretch or shrink the surface. (Callens and Zadpoor 2018). 

There are two methods to conceptualize surface curvature: intrinsic (Gaussian 

curvature) and extrinsic (mean curvature). Certain surfaces, such as a sheet of paper 

curled into a tube, may appear curved from the outside but flat on the inside, known as 

a developable surface. To make a flat surface have extrinsic curvature, one can simply 

bend it without stretching or shrinking it. But to give a surface intrinsic curvature, 

bending alone is insufficient; one needs to change the distances between points on it, 

which means stretching or shrinking it (Callens and Zadpoor 2018). 

 

 

4.2.  Types of Surfaces 
 

 

Surface classes use a simple "kinematic" method. This involves smoothly 

moving a profile curve. This section will examine the types of surfaces and their 

generation. According to their generation methods, they will first be analyzed in three 

groups: rotational, translational, and ruled surfaces, as in Figure 4.9 (Blaauwendraad 

and Hoefakker 2014). 
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Figure 4.9. Illustrations of rotational surface, translational surface, and ruled surface.  

(Source: Blaauwendraad and Hoefakker 2014) 
 

 

This classification considers the profile curve's shape, grouping curved surfaces 

into three types: single curvature, double curvature, and freeform. 

Rotational surfaces are obtained by rotating planar or spatial curve (c) about an 

axis (A). They are also called surfaces of revolution. Every point (p) on generating curve 

(c) defines a circle (cp) through the surface. These circles lie on supporting planes (Sc) 

orthogonally to the axis (A) thus they parallel to each other (Figure 4.10) (Pottmann et 

al. 2007). 

 

 
Figure 4.10. Rotational surface  
(Source : Pottmann et al. 2007) 

 

 

The intersection of the rotational surface and the orthogonal plane (M) passing 

through the axis of rotation (A) gives meridian curves (m). Orthogonal planes intersect 

at right angle with supporting planes. This means meridian curves and parallel circles 

also intersect at right angles (Pottmann et al. 2007). 

It is better to define the final shape of the rotational surface with meridian curves 

rather than arbitrarily generating curves. Meridian curves are symmetric to the rotational 

axis. The same rotational surface can be obtained by rotating the half meridian 360 
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degrees while rotating to the entire meridian 180 degrees (Figure 4.11) (Pottmann et al. 

2007). 

 

 

               
 

         
 

      
 

Figure 4.11. Examples of rotational surfaces (a) cylinder, (b) cone, (c) sphere, (d) one-
sheet rotational hyperboloid, (e) rotational paraboloid, (f) oblate rotational 
ellipsoid, (g) two-sheet rotational hyperboloid, (h) torus, (i) prolate 
rotational ellipsoid. (Generated with CalcPlot3D). 

 

 

Translational surfaces are generated by translating a profile curve (k) along the 

path curve (l). Thus, a translational surface contains a set of parallel curves (kp) that are 

congruent with the profile curve (k). The same translational surface can be generated by 

changing the roles of profile and path curves (Figure 4.12). 

 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



 

61 
 

 
Figure 4.12. Translational surface  

(Source: Pottmann et al. 2007) 

 

 

The simplest version of translational surfaces is cylinder. With cylinder, elliptic 

paraboloid and hyperbolic paraboloid could be generated as translational surfaces 

(Figure 4.13). 

 

 

 
Figure 4.13. Hyperbolic paraboloid and ellipsoid as translational surface.  

(Source: Pottmann et al. 2007). 

 

 

Ruled surfaces are created by moving a straight line (g) along a curve (c1) at a right 

angle. They contain many straight lines called generators. The direction of the straight-

line segment should be indicated (d). The direction can vary continuously when moving 

along the directrix curve (c1). Ruled surfaces can also be generated by joining points on 

two parametrized curves (Figure 4.14). All defined ruled surfaces are generated with 

this method (Pottmann et al. 2007). 
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Figure 4.14. Free form ruled surfaces generated by a) moving line segment a long 
directrix, b) joining two points on parametrized curves.  

 (Source: Pottmann et al. 2007) 

 

 

Cylinder, cone, one-sheet hyperboloid, and hyperbolic paraboloid have straight 

lines on them, so they can be made as ruled surfaces (Figure 4.15). 

 

 

  
Figure 4.15. One-sheet rotational hyperbolic paraboloid and conoid.  

(Source: Pottmann et al. 2007) 

 

 

4.2.1. Single Curvature Surfaces 
 

 

Single curvature surfaces are ruled surfaces created by moving a curve along a 

straight line (Türkçü 2017). All developable surfaces are ruled, but not all ruled surfaces 

are developable. A developable surface is one that can be flattened into a plane without 

stretching or shrinking (Figure 4.16). This means its Gaussian curvature is zero 

everywhere, so it's also called a single-curved or monoclastic surface (Pottmann et al. 

2007).  



 

63 
 

There are three kinds of developable surfaces: cylinders, cones, and surfaces 

made by touching curves in space. These are special kinds of ruled surfaces because 

they have a tangent plane along the entire line, not just at one point. That's why they are 

called developable ruled surfaces. Also, these surfaces have no curvature, so their image 

on a sphere is just a line. So, points on a developable surface are either parabolic or flat 

(Pottmann et al. 2007).  

 

 

 
Figure 4.16. Cylinder and cone as developable surfaces.  

(Source: Pottmann et al. 2007) 

 

 

4.2.2. Double Curvature Surfaces 

 

According to Siegel's classification, double curvature surfaces can be classified 

into two types: synclastic and anticlastic. (Türkçü 2017). 

Synclastic surfaces have positive Gaussian curvature. These surfaces are not cut 

by their tangent planes. They are classified into two groups based on how they are 

created: rotation or translation (Türkçü 2017). Examples of rotational synclastic surfaces 

include spheres, paraboloids, ellipsoids, two-sheet rotational hyperboloids, and the outer 

face of a torus (Figure 4.17). These surfaces, especially spheres and parts of spheres, are 

often used in architecture. The term "dome" refers to a sphere (Türkçü 2017). An elliptic 

paraboloid is an example of a translational synclastic surface. It is created by translating 

one parabola along another parabola. Both parabolas must be open to the same side and 

have parallel axes. The axis of an elliptic paraboloid is where the two symmetry planes 

intersect (Pottmann et al. 2007).  
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Figure 4.17. Examples of synclastic surfaces  
(Generated with CalcPlot3D) 

 

 

Anticlastic surfaces have negative curvature. They can be categorized into three 

types based on their creation: rotational, translational, and ruled surfaces (Türkçü 2017). 

Examples of rotational anticlastic surfaces (Figure 4.18) include the one-sheet 

hyperboloid, catenoid, and the inner side of a torus. Translational anticlastic surfaces 

are saddle-shaped, like hyperbolic sections and paraboloids. The one-sheet hyperboloid, 

hyperbolic paraboloid, and conoid are examples of ruled anticlastic surfaces. 

 

 

     
 

Figure 4.18. Rotational anticlastic surfaces  
(Generated with CalcPlot3D) 

 

 

A conoid is created by a movable line that always stays parallel to a specific 

plane (the director plane) and slides along two end curves called directrices. The most 

common conoid shapes happen when one of the directrices is a straight line, like in 

Figure 4.19. We usually picture the straight-line directrix and the plane holding the 

curved directrix as both being at the right angles of the director plane. We also assume 

the curved directrix is symmetrical around its vertical axis. The type of curve used as 

the directrix determines whether one can get a parabolic, circular, or catenary conoid. 

Parabolic conoids are the most common. Architects like conoidal surfaces because they 

Sphere Paraboloid Prolate ellipsoid Oblate ellipsoid Outer face 
of torus 

Two-sheet 
hyperboloid 

One-sheet 
hyperboloid 

Catenoid Inner face 
of Torus 
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let in lots of natural light while keeping structural costs low. Plus, the formwork for this 

type of surface is easy to make with straight planks (Türkçü 2017). 

 

 

 
Figure 4.19. All rulings of a conoid are parallel to the director plane (D) and intersect a 

straight line c1 and, c2 are directrices (Source: Pottmann et al. 2007) 

 

 

All surfaces are summarized in Figure 4.20 below. 
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CHAPTER 5 
 

 

5. CONIC SECTIONS AND TRANSFORMATIONS OF 

LOOP ASSEMBLIES 
 

 

When the studies carried out so far are examined, it is seen that three types of 

motions have been carried out in the literature. These are scaling deployment, angular 

deployment, and transformation (Maden, Akgün, et al. 2019). In the literature, some 

spatial examples exist besides the planar examples for the first two motion types. 

However, studies that can evolve to the spatial for transformation are insufficient. For 

this purpose, in this study, it is aimed to design spatial linkages that can pass from 

convex form to concave form. In this direction, it should start with planar linkages that 

have the potential to reach the desired spatial forms. The loop-assembly method is used 

to observe the motion types in the scissor linkages easily. 

 

 

5.1.  Conoid Surface and Conic Sections as a Surface Profile 
 

 

Conic sections are used to describe the surface geometry. Conic sections are 

obtained as a result of the intersection of a plane and a double right circular cone. A line 

or a curve can be obtained by cutting a surface with a plane. By changing the angle and 

location of the intersection plane but not passing through the vertices of the cone, 

different types of conic sections can be produced, as follows in Figure 5.1a below. If 

α<β≤90°, then the plane intersects the vertex precisely at a point; (b) If α=β, when the 

plane is parallel to the edge of the cone, an intersection of the plane with a cone forms 

a straight line, (c) If 0≤β<α, when the plane passing through the vertex, the intersection 

being formed is a crossed pair of straight lines, (d) If β=90° when the plane is parallel 

to the base plane of the cone, the conic section being formed is a circle. (e) If α<β<90° 

the conic section is an ellipse; (f) If α=β, when the plane is parallel to the edge of the 
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cone but not passing through the vertex, the conic section being formed is a parabola, 

(g) If 0≤β<α the plane intersects both nappes and the conic section which is known as a 

hyperbola. 

 

 

 
Figure 5.1. Conic sections  

(Reproduced from: Lastra 2021) 

 

 

Catalan surfaces, named after the Belgian mathematician Eugène Charles 

Catalan, are ruled surfaces with rectilinear generatrixes parallel to any fixed plane, 

which is called the directrix plane of the surface (Figure 5.2). In the case when both 

directrix lines are curved, a cylindroid can be obtained; when one directrix is a straight 

line, a conoid can be obtained (Krivoshapko and Ivanov 2015). 

 

 

 

α

β β

β

α

β β

(a) (b) (c)

(d) (e) (f) (g)

α α α

α α
β
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axis
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Figure 5.2. Typical examples of Catalan surfaces, respectively from the left to right: a 

cylindroid, a conoid; a hyperbolic paraboloid (Source: Dzwierzynska 2019) 

 

 

A conoid is a ruled surface that can be defined by three elements: plane p, 

straight line a (axis of the conoid), and curve c. The conoid is then formed by all straight 

lines (rulings) which are parallel to the plane p and intersect axis a and curve c. If a and 

p are perpendicular to each other, then the conoid is called the right conoid (Figure 5.3). 

Therefore, all forming rulings of the surface are perpendicular to axis a. It also means 

that if axis a and control curve c have been specified, there is no need to specify control 

plane p, because it must be perpendicular to axis a and its absolute position is not 

important (Dolezal 2011). 

 

 

 
Figure 5.3. Illustration of a) general, and b) right conoid  

(Source: Dolezal 2011) 
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5.2.  Loop Assemblies Based on Conic Sections and Frieze Patterns 
 

 

Sections taken from the conoid surface perpendicular to the director plane give 

curved directrix. Starting from the conic sections, while one of the directrix of a conoid 

is a straight line, the other one can be half circle, parabola, ellipse, or S-shaped curve. 

Possible transformations of directrices of a conoid one another are illustrated in Figure 

5.4: 

 

 

 
Figure 5.4. Transformations of conic section profiles. 

 

 

From this point of view, planar mechanisms that can give the directrix forming 

the conoid with antiparallelogram loops has been examined. According to Figure 5.4 

starting from top to the bottom, linear to linear, linear to circular arc, linear to elliptical 

arc, linear to parabolic arc, linear to S-shaped curve and circular arc to circular arc that 

is derived from linear to circular arc, are the cases which was accomplished successfully 

as a result of loop assemblies. Whereas the rest of the cases elliptical arc to elliptical 

arc, parabolic arc to parabolic arc, circular arc to elliptical arc, circular to parabolic arc, 

and elliptical arc to parabolic arc in Figure 5.4 need to be considered with different 

approach.  

 

b) 

c) 

d) 

e) 

a) 
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Assuming that there are three generalized cases, they are: 

 Linkages that maintain its linear form (Figure 5.4a), 

 Linkages that can form linear to concave and/or convex arcs (Figure 5.4 b, c, d), 

 Linkages starting with linear form to where convex and concave states transform 

into each other (S-shaped) (Figure 5.4 e). 

There should be a systematic way to assemble antiparallelogram loops to each 

other on a line or on a curve (Kiper et al. 2022). For this reason, frieze patterns are used 

to classify the outputs of anti-parallelogram loop assemblies (Figure 5.5). Frieze patterns 

are the patterns along a line, and they are obtained as combination of translation 

operation (T) with other symmetry operations: identity (I), half turn (or 180° rotation) 

(R), horizontal reflection about the line (H), vertical reflection about a normal to the line 

(V) and glide reflection (G) operations (Conway, Burgiel, and Goodman-Strauss 2008). 

 

 

 
Figure 5.5. a) Basic isometry operations, b) the first four frieze patterns, c) long-short 

diagonal connections (Source: Kiper et al. 2022) 

 

 T  G  H  V  R 

a) 

TI 

b) 

TG 

TV TR 

c) 

TC TCC 

TCH TCCH 
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5.2.1. Antiparallelogram Loop Assemblies in Linear Direction 
 

 

The cases where antiparallelogram loops are multiplied on a straight line are 

examined. Frieze patterns are used as the basis for the reproduction process. The scissor 

linkages illustrated in Table 5.1 are obtained by Translation+Glide Reflection (TG) and 

Translation+180° Rotation (TR) patterns which give the same results. There are three 

cases according to the way the loops are assembled as seen in the middle column in 

Table 5.1. Scissor units consisting of straight arms are obtained from the way the loops 

are connected. The resulting linkages are identical with each other in the way they can 

make translation movements along a direction. Thus, normal lines are parallel to each 

other during motion. 

 

 

Table 5.1. Antiparallelogram loop assemblies from linear-to-linear forms 

Pattern Type Loop Assembly Deployment Process 

TG, TR 
 

 

TG, TR 
 

 

TG, TR 
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5.2.2. Antiparallelogram Loop Assemblies from Linear to Circular 

Concave and Convex Forms 
 

 

When the loops are multiplied based on the Translation+Identity (TI) and 

Translation+Vertical Reflection (TV) patterns, the same results are obtained. There are 

two linkages that can transform from concave to convex seen in the Table 5.2 obtained 

by TI and TV frieze patterns. In Linkage 1, a scissor unit consisting of angulated 

elements is obtained from the way the loops are connected. It is observed that the angle 

between the normal lines remains constant when the linkage comes to a position to form 

a semicircle arc in concave and convex forms. However, the radii of the circular arcs 

are not equal. 

For the Linkage 2, scissor units are composed of angulated arms. The radii are 

equal at the intermediate positions for the concave and convex forms. Angles between 

normal lines differ for concave and convex cases that define a semicircular arc. The 

Radii are also not the same. It is seen that the angles in the loops for the two cases are 

not the same when the radii in the intermediate states are equal. 

The scissor linkages obtained by Translation+Glide Reflection (TG) and 

Translation+180° Rotation (TR) patterns are illustrated as 3, 4 and 5 in Table 5.2. They 

define circular arcs with the same values for both concave and convex forms. While the 

radii are the same in the intermediate cases, the angles within the loops are the same 

depending on their positions for both inside and outside of the curve. In the case of 

concave and convex, the radii have the same values when they define a semicircular arc. 

Normal lines intersect at the origin of the circle. The angles between the normal lines 

are also the same. 

In addition to Frieze patterns, antiparallelogram loops can be multiplied by 

connecting the long and short diagonals (LS) of the loop. Such combinations are 

obtained by rotating the loop clockwise (C) or counterclockwise (CC), or by combining 

the rotation with a horizontal reflection. When the long-short diagonal connections are 

combined with the Translation (T) operation, four possible patterns emerge: TC, TCC, 

TCH, and TCCH. (Kiper et al. 2022).  

From how loops are connected, Linkage 6 consists of a scissor unit made up of 

angulated arms. In the concave and convex forms of linkage 6, it is observed that the 
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angle between the normal lines is the same when concave and convex states define the 

semicircular forms. However, the radii of the circular arcs are not equal to each other. 

In linkages with equal radii in the intermediate states, it is seen that the angles in the 

loops for the two states are not the same. 

Cross-rectangle version of antiparallelogram loop assemblies based on TC and 

TCC patterns gives the same result with TI and TV patterns can be seen as Linkage 2 in 

the Table 5.2. For the concave and convex forms, the radii are equal at the intermediate 

positions. Angles between normal lines differ for concave and convex forms that define 

a semicircular arc. Radius values are also not the same. 

As an outcome of TCH/TCCH patterns, scissor linkages 7 and 8 are formed. The 

linkage 7 has scissor units consisting of one angulated and one straight arms. Convex 

and concave forms define curves with different radii but the same angles between 

normal lines. For the linkage 8, there are scissor units consisting of angulated arms. 

Concave and convex forms define different semi-circles with different radii and angles 

between normal lines. In addition, the cross-rectangle version of antiparallelogram loop 

assemblies based on TCH and TCCH patterns gives the same result with TG and TR 

patterns, which can be seen as Linkage 5 in the Table 5.2. For the concave and convex 

forms, the radii are equal at the intermediate positions. The radii and angles between 

normal lines are the same for concave and convex forms where they define a 

semicircular arc. 
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Table 5.2. Antiparallelogram loop assemblies from linear to circular concave/convex 
forms 

Pattern 

Type 
Loop Assembly Deployment Process 

TI 

TV  
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Table 5.2. (cont.) Antiparallelogram loop assemblies from linear to circular 
concave/convex forms 

TI 

TV 

TC 

TCC 
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TG 

TR  
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Table 5.2. (cont.) Antiparallelogram loop assemblies from linear to circular 
concave/convex forms 
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66°

66°

66°

59 °
74°

59° 75°75°
59°

74°

59°

59°
74°

59°

75°

103°

38°

95°

43°
38°

103°

43°

95°

103°

38°95°

43°

30°30°
30°

30° 30°
30°

138,85,

138,85,

RR

R

95°9

38°

43°

103°
38 °°

95°

43°

103°03

38°
95°°

43°

59 °

74° 59°

75°
59°

74°

59°

59°

59°

75°

75°

74°

66°

66°

66°

66°

59 °
74°

59° 75°75°
59°

74°

59°

59°
74°

59°

75°

103°03°

38°8

95°°

43°
38°3

103°

43°

95°9

103°03

38°95°9

43°

30°30°
30°

30° 30°
30°
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Table 5.2. (cont.) Antiparallelogram loop assemblies from linear to circular 
concave/convex forms 

TC 

TCC  

 
(6) 

TCH 

TCCH  

 
(7) 

continue on next page 

155,98

114,53

R

R
43°

95°

163°

7°

38°

94°

43° 22°
131° 94° 43°

22°
131°

30°
30° 30°

30°
30°

30°

148° 73°
61°

14°

117°29° 117° 29°

38°
103°

145°
16°

155,98,

114,53,

R

R
43°4

95°

163°

7°77°

38°3 °

94°4°

43°° 22°
131°131°° 94° 43°3°°

22°22222
131°131

30°
30° 30°

30°
30°

30°

148°°8 73°3°73°
61°6161°

14°114°14

117°729° 117° 29°

38°°
103°3

145°145
16°16

R

R
R2,500

R1,600

19° 19°
19°19°

19°

19° 19°

19°

101° 39°

149°

14°
14°

149°

127°

39°101° 101°

24°

39°

92° 45°

51°

84°
51°

84°

R

R
R2RR

,,500

R1RR
,,6066 0

19° 19°
19°19°

19°

19° 19°

19°

101°° 39°3

149°1449°

14°1414°
14°14°

149°4

127°127°

39°3101° 101°

24°24°

39°°

92° 45°4

51°

84°
51°

84°
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Table 5.2. (cont.) Antiparallelogram loop assemblies from linear to circular 
concave/convex forms 

TCH 

TCCH 

(8) 

132,89

107,68

R

R

41° 97°

18°
139°

105°

36°
36°

105°

128°

23°

23°
128°

143°

17°

17°

143°

64° 69°

82°

52°

52°

82°

33° 33°

36° 36°

132,89,

107,68,

R

R

41° 97°

18°8
139°139°

105°

36°3
36°

105°10

128°128°

23°

23°23°
128°128°

143°43°

17°77°7°

17°17

143°143°

64° 69°

82°

52°

52°

82°

33° 33°

36° 36°
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In the Table 5.3 the first linkage has a different transformation capability from 

all discussed linkages. Unlike other linkages, it consists of binary and quaternary links. 

Concave and convex forms of the assembly are different from each other. Angles 

between normal lines are also different from each other. In concave form, it is observed 

that the linkage bends inward. 

The second linkage, unlike other linkages, is obtained by connecting the long 

sides of the antiparallelogram loop. In this linkage, binary and quaternary links are 

revealed. When we want to define a circle passing through three points in concave and 

convex form, this circular arc does not hold the corners of all antiparallelogram loops. 

The normal lines of the loops intersect at a different point than the center of the circle. 

The convex and concave forms of the linkage are equivalent to each other. 
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Table 5.3. Antiparallelogram loop assemblies by connecting the long side of the 
antiparallelogram loops. 

Loop Assembly Deployment Process 

 

 

 

 

28°

26 °

24 °

19 °

8°

29 °

28°

27°

25°

22 °

29° 29°

33 °

35°

39° 46°

55°

43°

51°

63°

76°
73°

89°

99 °

106 °

111°
89 °

29 °

28°

26 °6

24 °4

19 °19

8°8°8

29 °

28°

27°27

25°

22 °2 °

29° 29°

33 °

35°

39° 46°

55°

43°

51°

63°

76°
73°

89°9

99 °

106 °106

111°111
89 °

29 °

136,18

87°

90°
96°

104°

118°

87°

49°90°

46°
42°

96°
37° 104°

118°

29°

49°

46°

42° 37°

29°

21°

25°
31° 40°

40° 31°
25°

21° 136,18

136,,18

87°8

90°9
96°9

104°

118°1

87°87

49°90°°

46°
42°

96°
37° 104°1

118°818

29°

49°°

46°

42° 37°

29°2

21°

25°
31° 40°

40° 31°
25°2

21° 136,,18
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5.2.3. Antiparallelogram Loop Assemblies from Linear to S-shaped 

Forms 
 

 

So far, scissor linkages that can transform from linear to convex and concave 

circular geometry have been examined. It is observed that scissor linkages transforming 

concave to convex forms are able to provide S shaped geometries from line. Combining 

two identical modules with straight scissor arms at the connection point provides the 

motion from line to S form. All possible scissor linkages are illustrated in Table 5.4. 

The first scissor linkage is formed based on TI/TV frieze patterns. It consists of 

a combination of two identical modules. In linear form, the modules are symmetrical to 

each other. The cases at the top and bottom of the Linkage 1 in Table 5.4 define circular 

arcs of the same radius. For both top and bottom cases, antiparallelogram loops have 

identical configurations. The second linkage can be obtained from both TI, TV, TC, and 

TCC patterns. 

The third and fourth linkages are formed using TG/TR frieze patterns. Different 

from the previous linkages, in linear form, the modules are identical. They have similar 

characteristics due to their symmetrical features. For both Linkage 3 and Linkage 4, the 

top and bottom cases describe circular arcs of the same radius. They are symmetrical to 

each other. For both top and bottom cases, antiparallelogram loops have identical 

configurations. The only difference between Linkages 3 and 4 is that antiparallelogram 

loops attach with long diagonals in Linkage 3, while antiparallelogram loops attach with 

short diagonals in Linkage 4. 

Linkage 5 is not only formed based on TG/TR but also TCH/TCCH frieze 

patterns. In both top and bottom cases, there are linkages with identical semicircles with 

the same radii. 

Linkage 6 is formed based on TC/TCC frieze patterns. Modules are composed 

of antiparallelogram loop assemblies with long-short diagonal connections. The top and 

bottom cases have different loop forms at the same radius value. 

Linkages 7 and 8 are formed based on TCH/TCCH frieze patterns. TCH/TCCH 

patterns provide two conditions: the Linkage 7 is composed of one straight and one 

angulated scissors arm, while the Linkage 8 is composed of both angulated scissors 

arms. For both linkages, deployment capacity is different between the two positions. 
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Table 5.4. Antiparallelogram loop assemblies from linear to S forms. 

Pattern 

Type 
Loop Assembly and Deployment 

TI 

TV 

 
(1) 

continue on next page 

  

  

  

  

  

  

  

  

  

  

R1,800

R1,800

R1,800

R1,800

R1,,800

R1RR ,,800

R1RR ,,800

R11RR ,,8800
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TI 

TV 

TC 

TCC 

(2) 

 continue on next page 

  

  

  

  

  

  

  

  

  

R0,886

R0,853

R0,853

R0,886

R0RR ,,00886

R00RR ,,0008588 3

R0RR ,,00853

R0RR ,,00886
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TG 

TR 

 
(3) 

 continue on next page 

  

  

  

  

  

  

  

  

  

  

R2,004

R2,004

R4,644

R4,644

R2RR ,,004

R2RR ,,004

RR4RR ,,6644

R4RR ,,644
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TG 

TR 

 
(4) 

 continue on next page 

  

  

  

  

  

  

  

  

  

  

  

R1,517

R1, 517

R1,5
17

R1
,51

7

R1,,517

R1,, 517

R1,5
17

R1
,51

7
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TG 

TR 

TCH 

TCCH 

 
(5) 

 continue on next page 

  

  

  

  

  

  

  

R0,977

R0,977

R1,136

R1,136

R0,977,

R0,977

R1,,136

R1RR ,,136
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TC 

TCC 

 
(6) 

 continue on next page 

  

  

  

  

  

R1,797

R1,797

R1,161

R1,161

R1RR ,797

R1RR ,,797

R1RR ,,161

R1RR
,,161
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

TCH 

TCCH 

 
(7) 

 continue on next page 

  

  

  

  

  

  

  

  

  

  

  

R3,233

R3,233

R1
,5

82

R1
,57

9
R3RR ,233

R3RR ,,233

RR1RR
,,55

88228888

R1
,,57

9
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Table 5.4. (cont.) Antiparallelogram loop assemblies from linear to S forms. 

 

 
(8) 

 

Common features of these linkages are: 

 They have two symmetrical linkage modules formed by the identical 

antiparallelogram loops, 

 These linkage modules are connected to each other by parallel units, 

 During the motion, linkage modules become concave and convex states of each 

other. 

  

R1,005

R1,005

R1,956

R1,956

R1RR ,005

RR11,,000055

R1RR ,,956

R1,,956
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CHAPTER 6 
 

 

6. PROPOSED SPATIAL TRANSFORMABLE SCISSOR 

LINKAGES 
 

 

This chapter gives the methods for obtaining transformable scissor linkages and 

design principles. First, a novel geometrical loop assembly method is presented to form 

transformable multi-loop planar scissor linkages. Then, transformable monoclastic and 

synclastic scissor linkages are presented. The design process of a single degree of 

freedom transformable linkage is explained in phases, starting from a module and 

ending with the entire spatial linkage. 

 

 

6.1. A Novel Geometrical Loop Assembly Method of Transformable 

Planar Multi-Loop Linkages 
 

 

Transformable linkages are capable of transforming from the initial curve to 

another desired curve. Until so far, loops were replicated using frieze patterns, and the 

results were observed (Yar et al. 2017; Gür, Korkmaz, and Kiper 2019; Kiper et al. 

2022; Sarısayın et al. 2022; Atlamaz et al. 2022). In examples that could move from one 

curve to another, the curve given by the linkages was always a circular curve. In order 

to obtain multi-loop planar scissor linkages that enable two different curves to transform 

into each other, a new perspective was required instead of multiplying the loops using 

frieze patterns and examining the results to be obtained. In addition, while creating 

multi-loop planar scissor linkages according to the given curves, a tool is required that 

allows them to take their final forms simultaneously and interconnectedly.  

For this purpose, a novel geometrical construction method is performed in 

Solidworks® with an algorithmic arrangement. SolidWorks® is a convenient modeling 

tool to apply this method because it can animate two-dimensional drawings. So as to 
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model multi-loop planar scissor linkages that can transform from one given curve to 

another in Solidworks®, the step-by-step implementation of this method is given in 

Table 6.1 with their illustrations. 

 

 

6.1.1. Algorithmic Explanation of the Proposed Method 
 

 

Algorithms are the fundamental components of computation, forming the 

backbone of the digital age. They are systematic, well-defined procedures or sets of 

instructions that are employed to address specific problems or carry out particular 

computational tasks. Algorithms provide the foundational structure for diverse 

computational operations and serve as the core elements that power the effective 

functioning of modern digital technologies (Cormen et al. 2009). 

Algorithms can also be regarded as mechanisms for addressing well-defined 

computational problems. The problem statement outlines the desired input-output 

relationship in general terms, while the algorithm specifies a particular computational 

procedure for realizing that relationship. Algorithms can take on a variety of forms, from 

simple step-by-step instructions for daily tasks to complex mathematical procedures for 

solving engineering problems (Cormen et al. 2009).  

To model multi-loop planar scissor linkages that can transform from one given 

curve to another in Solidworks®, the proposed method is explained in the Table 6.1 

below in the simplest and most general way. First, it is necessary to decide which 

patterned linkage will be obtained. Table 6.1 shows the example of the steps to be 

followed to obtain TG / TR patterned linkage.  
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Additional information about the steps of the method: 

Step 1: Any two desired curves can be determined for the initial final states. The 

curvatures of these two curves in the initial state do not have to be the same. 

Step 2: The number of segments must be equal for both states. Because the 

number of loops they will have in the following stages will also be the same, however, 

the dimensions of the segments do not have to be equal in themselves or mutually. 

Step 3: Here, it starts with a segment that can be accepted as the center but can 

be started from the desired segment. 

Step 4: When drawing the circles that will define the short side of the loops, if it 

is desired that all the short sides are equal, the circles can be determined equal to each 

other. In Table 6.1 circles are drawn randomly. 

Step 5: In this step, larger circles are drawn randomly to define the long side of 

the loops. If it is desired that all the long sides are equal, the circles can be determined 

equal to each other. It should be noted that CS < CL. 

Steps 6 & 7: While applying these steps, the Frieze pattern of the linkage to be 

obtained should be considered. Short arms of loops are obtained with radii of CS1, CS2, 

…, and CSn. Long arms of loops are obtained with radii of CL1, CL2, …, CLn. 

Step 9: With the help of the cosine theorem, the kink angle of one angulated arm 

is defined for both initial and final states. In this step of the Table 6.1 rL2 and rS3 and rL2’ 

and rS3’ form one of the angulated arms for initial and final states. Assuming that an 

angulated arm is the two sides of a triangle, the imaginary third side should be equal for 

both initial and final states (l1 and l1’). 

It has been observed that when curves are moved from the points where they can 

be manipulated, the two situations mutually adapt to each other and take new forms. 
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6.1.2. Implementation of the Proposed Method for Transformable 

Planar Scissor Linkages 
 

 

At first, there are two given curves. Segments where the loops will be placed are 

drawn on curves arbitrarily (Sn, Sn′) (Figure 6.1). 

Circles that will define the short arm of the loops (CSn, CSn′) are drawn centered 

on the corners of these segments. Also, bigger circles (CLn, CLn′) that will define the 

long arm of the loops are drawn, taking the corner points of these segments as centers 

(Figure 6.1). 

The short arm of one of the loops is drawn from the center of the small circle to 

its periphery. Likewise, the long arm of the loop is drawn from the center of the same 

bigger circle to its periphery. At this point, one short arm and long arm of a loop coincide 

with their endpoints. So, the smaller circle of the short arm and the bigger circle of the 

long arm intersect at this point (Figure 6.1). 

 

 

 
Figure 6.1. Forming antiparallelogram loops by matching the parameters for two cases. 
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The cosine theorem is used to ensure that the kink angle between the short and 

long arms that will form the angulated element is mutually equal for all situations. In 

this direction, a third arm (an) is drawn, forming a triangle with the arms forming the 

angulated element (Figure 6.2). 

 

 

 
Figure 6.2. Equalization of kink angles of angulated elements. 

 

 

The same procedures are applied to other circles. For each curve, smaller and 

larger circles are mutually equalized for concave and convex forms. As a result, we can 

obtain multi-loop planar scissor linkage composed of angulated elements that can 

change their form between concave and convex curves (Figure 6.3). 
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Figure 6.3. Planar scissor linkage is obtained with antiparallelogram loops that can 

define concave and convex conic curves. 

 

 

When the linkages obtained with the loop-assembly method are examined, it is 

seen that transformable scissor linkages are formed with antiparallelogram, kite, and 

dart loops (Kiper et al. 2022). According to the loop assembly method, the result form 

is a circular curve. Using this new loop assembly method, linkages defining concave 

and convex parabola and ellipse curves are obtained with both antiparallelogram, kite, 

and dart loops. While loops with different long and short arm lengths can be obtained 

by using circles of various sizes, short and long arms, each in equal sizes within 

themselves, can be obtained by equalizing the circles to each other concave and convex 

forms. It can be seen that this condition is valid for antiparallelogram, kite, and dart 

loops. (Figure 6.4 and Figure 6.5). 
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Figure 6.4. Transformation of a planar linkage composed of antiparallelogram loops 

from linear to parabola. 
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Figure 6.5. Transformation of a planar linkage composed of kite loops concave to 

convex conic curves. 

 

 

Concave and convex forms can be matched mutually via this new method 

perfectly for rhombus and parallelogram loops in SolidWorks® as seen below in Figure 

6.6. 
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Figure 6.6. Concave and convex forms of planar scissor linkage that are formed with 

parallelogram loops. 

 

 

However, when the linkage is modeled from the assembly, the desired 

transformation cannot be achieved. As seen in Figure 6.7 opposite respective angles of 

sides a2, a3, and a4 in the convex form are opposite to those in concave form. To achieve 

this transformation, assembly mode change is required for the linkage. As it is 

understood, this method cannot be applied to rhombus and parallelogram loops. 
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Figure 6.7 Concave and convex forms of parallelogram loop assemblies on a conic 

curve. 
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6.2.  Proposed Transformable Scissor Linkages 
 

 

In this section, the design methods of transformable spatial scissor linkages are 

examined under two headings according to the formation of monoclastic and synclastic 

surfaces. 

 

 

6.2.1. Design of Transformable Monoclastic Scissor Linkages 
 

 

According to the Table 2.1 in chapter 2, there is no study about conoid surfaces, 

with both deployable and transformable scissor structures. In this section, models to 

create the conoid surface are mentioned. 

The section taken from the conoid surface perpendicular to the director plane (yz 

plane in Figure 6.8), gives curved directrix. Based on this, planar scissor linkages are 

assumed as a directrix of the surface. As seen in the Figure 6.8while one scissor linkage 

defines the axis of a conoid the other linkage defines the directrix of a conoid.  

 

 

 
Figure 6.8 Scissor linkages defining a conoid axis and directrix. 



 

106 
 

Based on the aforementioned information, some models were tried to construct 

a conoidal surface. The first model can be seen in Figure 6.9. Two planar scissor 

linkages are connecting with middle-hinged straight bars where joint axes are 

perpendicular to xz plane. They are connected by a hinge which has joint axes on both 

y and z axes. The resulting form is vault which is monoclastic surface. 

 

 

 

 
Figure 6.9 A model composed of planar linkages connecting with middle hinged straight 

bars a) flat position, b) convex vault, c) concave vault. 

 

 

The second model can be seen in Figure 6.10. Telescopic middle bars are hinged 

with a joint. They are connecting two parallel scissor linkages with universal joints. 

Although having universal joints, the model defines a vault when it moves because 

telescopic bars hinged to each other with R joint.  

 

x y 

z 

R R 

x y 

z 

a) 

b) c) 
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Figure 6.10 A model composed of planar linkages connecting with lazy-tong 

mechanisms 

 

 

The third model can be seen in Figure 6.11. In flat position scissor linkages are 

parallel to each other. In the middle, there are lazy-tong mechanisms. Scissor linkages 

and lazy tong mechanisms connect with a hinge which has joint axes on both x and z 

axes. Lazy-tong mechanisms keep connection opposite joints by getting longer and 

shorter. This model can create both synclastic and anticlastic surfaces. However, it is 

more than one degree-of-freedom linkage, so it is hard to control and protect the desired 

form.  
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Figure 6.11 A model composed of planar linkages connecting with telescopic middle 

bars.  

 

 

The last trial for conoid surface is seen in Figure 6.12. For this model, in the 

middle, instead of lazy-tong mechanisms prismatic joints are used. Scissor linkages and 

middle bars are connected with a hinge which has joint axes on both x and z axes. This 

joint allows middle bars to rotate on yz plane as scissor linkages move. Prismatic joints 

keep the connection opposite joints by getting longer and shorter. This model can create 

both synclastic and anticlastic surfaces. However, it is more than one degree-of-freedom 

linkage, so it is hard to control and protect the desired form. 
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Figure 6.12 A model composed of planar linkages connecting with telescopic middle 

bars. 

 

 

6.2.2. Design of Transformable Synclastic Surface with Multiloop 

Linkage Mechanisms 
 

 

A spatial scissor linkage can be formed by a network of kinematic linkages of 

loop assemblies. Different types of scissor units can be obtained as a result of these loop 

assemblies. There are imaginary lines defining motion characteristics of a scissor unit. 

These are called normal lines (Kiper et al. 2022). The position of the normal lines can 

give information about the motion characteristics of a scissor unit. In Figure 6.13, there 

are two types of scissor units composed of angulated arms. The first one (Figure 6.13a) 

indicates the motion sequence of a unit that belongs to the deployable system. It can be 

seen that this scissor unit is obtained as a result of rhombus loop assembly. The second 

one (Figure 6.13b) shows the motion sequence of a unit that belongs to the transformable 

system. In Figure 6.13a, it can be observed that the angle between normal lines is fixed, 

and the scissor unit moves between them. But the other unit, that is obtained as result of 

antiparallelogram loops, can move from concave to convex. At first normal lines are 
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parallel to each other, but for both concave and convex cases they intersect with each 

other which means the angle between normal lines change during the motion.  

 

 

    
Figure 6.13 Motion sequence comparison of two types of scissor units composed of 

angulated arms: a) deployable type of scissor unit, b) transformable type of 
scissor unit. 

 

 

TG/TR/TCH/TCCH patterned scissor linkage, as mentioned in Table 5.2 Model 

5, in chapter 4, is chosen to create one module of a proposed linkage. It is a planar scissor 

linkage that can transform between concave and convex forms. The 3D-printed version 

of the model is in Figure 6.14.  

 

a) b) 

Normal line 
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Figure 6.14. 3D Printed model of a scissor linkage with its motion sequence. 

 

 

As shown in Figure 6.15, by connecting three identical kinematic linkages, one 

module is constructed with spatial RRR chains. Each linkage that constructs a module 

is planar. Therefore, the R joint axes in a linkage are parallel to each other. At the 

connection points where two linkages articulate to each other the axes of the adjacent R 

joints are perpendicular to each other. As illustrated in  the module can transform 

between concave – flat – convex states.  
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Figure 6.15 A triangular module constructed with antiparallelogram loops can transform 

concave to convex.  

 

 

 
Figure 6.16. The motion sequence of a triangular module transforming concave to 

convex from left to right. 

 

 

The 3D-printed version of the module can be seen in Figure 6.17. The model of 

the module is formed with three 3D-printed planar scissor linkages. The module defines 

a planar surface in its flat form. It can be observed that the module defines a synclastic 

surface such that R joint axes of connection points intersect at one point in space for 

both concave and convex forms.  

R 
R 

R 

x 

y z 

R R 
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Figure 6.17 3D-printed model of the module with its motion sequence top to bottom 

concave, flat, and convex. 

 

 

Spatial scissor linkage is constructed by connecting the planar scissor linkages 

together in a three-way grid. In order to define a surface in a flat configuration, the 

structure should be modeled starting from the center to the periphery in a three-way grid 

order. Planar scissor linkages obtained as a result of loop assemblies have only revolute 

joints and a single degree of freedom. In order to construct the model, revolute joints 

are used to assemble the scissor linkages in three directions. Revolute joint axes are 

simplified in Figure 6.18, where red dots represent the direction of the axis pointing out 

of the xy plane, and where the dashed lines represent the direction of the axis on xy 

plane. 
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Figure 6.18 Top view of the network constructed scissor linkage. 

 

 

The linkage modeled in Solidworks is shown in Figure 6.19. In flat form, each 

module is equilateral triangles. In the center of the linkage, the top hub is fixed, and it 

connects six modules to each other with the bottom hub. (Figure 6.19b). When the 

bottom hub is moved towards the fixed joint the whole linkage moves simultaneously; 

in other words, the linkage has a 1 degree-of-freedom. The linkage can change its form 

between concave and convex forms. 

x 

y 
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                                a)                                                                          b) 

Figure 6.19 a) Top view of the linkage, b) Flat form of the linkage. 

 

 

3D printed model of the linkage can be seen in Figure 6.20 to Figure 6.22. The 

model contains six central and six peripheral linkages. There are two hubs in the center 

to which the central linkages are connected. The model is animated with the motion of 

one of the central hubs, as it is seen in Figure 6.21 and Figure 6.22.  
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Figure 6.20 3D Printed model of the transformable linkage when it is flat position. 
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Figure 6.21. 3D-Printed model of the transformable linkage in a concave position 
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Figure 6.22. 3D Printed model of the transformable linkage when it is convex position. 
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7. CHAPTER 7 
 

 

CONCLUSION 
 

 

The aim of the study was to design transformable scissor linkages that can 

change their form between concave and convex forms. The starting point of this 

dissertation focused on the surface geometry of linkages could have. The main idea was 

the transformation of the lines and curves into each other as a surface profile. 

At first, comprehensive geometric definitions were made, and then the curvature 

of surfaces was explained in detail. In light of these, surfaces were classified and 

explained based on their curvature. Then, the literature on scissor structural mechanisms 

was examined thoroughly based on previous literature survey on geometrical properties. 

The review of the existing scissor structural mechanisms was investigated in two 

subcategories: planar scissor linkages and spatial scissor structures.  

Examination of planar scissor linkages revealed three types of motion 

characteristics: scaling deployment, angular deployment, and transformation. Next, the 

scissor structures in the literature were analyzed according to their surface geometries 

as monoclastic, synclastic, and anticlastic scissor structures. Then, they were explained 

based on this classification (Table 2.1).  

The basic scissor unit types were also examined as being a component to form 

scissor linkages. In addition, existing geometrical construction methods of planar scissor 

linkages were investigated.  

According to Table 2.1, in the literature, it was seen that transformable scissor 

structures defining conoid surface were not studied as the surface that defines the surface 

of a scissor structure. In this context, one of the aims of the present study was to design 

transformable conoidal surfaces by transforming the two curves and forming the conoid 

surface into each other. To do this, scissor linkages obtained as a result of loop 

assemblies used as a surface profile. 
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7.1.  Achievements and Main Findings of the Study 
 

 

Planar scissor linkages obtained by the loop assembly method, which duplicates 

a loop in a certain order, could give three different results in terms of movement types. 

These are scalable (linear or radial) deployment, angular deployment, and 

transformation. When the result forms of transformable planar scissor linkages were 

examined, they always defined a circular curve. 

Considering the planar scissor linkage as a directrix of the ruled surface, we can 

define the forms with conic sections that the planar scissor linkage can take. When a 

section taken from a conic surface is examined, line, circle, ellipse, parabola, and 

hyperbola are obtained. It is thought that transformable planar scissor linkages can take 

ellipse, parabola, or free-form curves as well as circular curves. However, a new 

approach was needed since the existing loop assembly method was insufficient to obtain 

scissor linkages that could meet these conditions. This problem could be solved with a 

new geometric construction method. 

In this novel geometric construction method explained in Chapter 4, the desired 

initial and final forms of the planar scissor linkage could be formed in SolidWorks®. In 

general, one side of a loop is considered as the radius of a circle. All loops were obtained 

by mutual matching for initial and final forms. The intended results were achieved both 

with a kite and its concave form dart and antiparallelogram loops. In addition to the 

circle-to-circle transformations, other cases, such as parabola-to-parabola and ellipse-

to-ellipse, were also tested separately for three loops, and they were successfully 

applied. The resulting models can transform between concave and convex forms with 

this novel method.  

After that, models were produced to create the conoid surface, which is a ruled 

surface. Scissor linkages were assumed as directrix of a conoid surface, and between 

these linkages, some connection details were tried. If a linkage has one degree of 

freedom, the resulting surface is a vault, which is a monoclastic surface rather than a 

conoid. When a model was formed to define a conoid surface, linkage was hard to 

control due to having more than one degree-of-freedom. 

So as to overcome the difficulties mentioned above and create a one degree-of-

freedom transformable linkage, the linkage was formed with a network of one module, 
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which is composed of three scissor linkages. When one module of the scissor linkage 

was investigated, it was observed that three linkages could transform between concave 

and convex forms simultaneously. Creating a network of this module concluded with a 

synclastic linkage that can successfully change its form between concave and convex 

forms in accordance with the primary purpose of this study. 

 

 

7.2.  Recommendations for the Future Studies 
 

 

As a result of this study, the transformable scissor linkage was modeled 

successfully. The resulting surface of the linkage was a synclastic surface with a circular 

section. In addition to circles, other synclastic surfaces whose surface profile is an 

ellipse, or parabola can be studied for further studies. Moreover, linkages defining 

anticlastic surfaces can be studied.  

In this study antiparallelogram loops were taken into consideration only. Along 

with antiparallelogram loop, kite and dart loops are also used to model transformable 

scissor linkages. Like the proposed linkage in this dissertation, a module and network 

possibilities can be studied for kite and dart loops for future studies. 
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