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ABSTRACT 

 
YEAR-TO-YEAR DIFFERENTIATION OF BLACK TEA 
THROUGH SPECTROSCOPIC AND CHEMOMETRIC 

ANALYSIS 
 

In this study, the impact of the harvest year on various spectral profiles of black 

tea samples was examined, aiming to differentiate black tea samples from two harvest 

years. Utilizing the advantages of each methodology, the capabilities of mid-infrared, UV-

visible and fluorescence spectroscopy have been extensively studied in combination with 

multivariate statistical methods. 

Due to changing climate conditions and seasonal cycles, the composition of food 

products like tea has become more variable from one harvest year to the next, influencing 

the overall product quality. Therefore, mid-infrared, UV-visible, and fluorescence 

spectroscopy were used to examine 205 tea samples that were harvested in 2021 and 2022. 

Mid-infrared spectra were gathered for both infused and powdered sample forms, whereas 

only the infused samples were analyzed using the other spectroscopic methods. Partial 

least-squares discriminant analysis (PLS-DA), orthogonal partial least-squares 

discriminant analysis (OPLS-DA) and soft independent modeling of class analogy 

(SIMCA) models were developed to classify the samples by harvest year. Models based 

on mid-infrared data achieved correct classification rates of 93.33% for powdered 

samples and 90.33% for infused samples. Additionally, fluorescence and UV-visible 

spectral data yielded highly accurate results, with success rates of 98.3% and 100%, 

respectively. Although SIMCA showed lower performance compared to other 

multivariate methods, these findings suggest that integrating spectroscopic techniques 

with chemometric approaches can effectively monitor black tea across different years. 

This could contribute to improved quality control and classification processes in tea 

production. 

 
Keywords: Black tea, Infrared spectroscopy, Uv-visible spectroscopy, Fluorescence 

spectroscopy, Chemometrics 
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ÖZET 
 

 
SİYAH ÇAYIN SPEKTROSKOPİK VE KEMOMETRİK ANALİZLER 

YOLUYLA YILDAN YILA AYRIMININ YAPILMASI 

 
Bu çalışmada, hasat yılının s൴yah çayın çeş൴tl൴ spektral prof൴ller൴ üzer൴ndek൴ etk൴s൴ 

൴ncelenerek, ൴k൴ hasat yılından s൴yah çay örnekler൴n൴n ayırt ed൴lmes൴ amaçlanmıştır. Her 

metodoloj൴n൴n avantajlarından yararlanılarak, orta kızılötes൴, UV-görünür ve floresan 

spektroskop൴s൴n൴n yetenekler൴, çok değ൴şkenl൴ ൴stat൴st൴ksel yöntemlerle b൴rl൴kte kapsamlı 

b൴r şek൴lde ൴ncelenm൴şt൴r. 

Değ൴şen ൴kl൴m koşulları ve mevs൴msel döngüler neden൴yle, çay g൴b൴ gıda 

ürünler൴n൴n b൴leş൴m൴ b൴r hasat yılından d൴ğer൴ne daha değ൴şken hale gelm൴ş ve genel ürün 

kal൴tes൴n൴ etk൴lem൴şt൴r. Bu nedenle, 2021 ve 2022'de hasat ed൴len 205 çay örneğ൴n൴ 

൴ncelemek ൴ç൴n orta kızılötes൴, UV-görünür ve floresan spektroskop൴s൴ kullanılmıştır. Orta 

kızılötes൴ spektrumlar hem demlenm൴ş hem de toz örnek formları ൴ç൴n toplanırken, 

yalnızca demlenm൴ş örnekler d൴ğer spektroskop൴k yöntemler kullanılarak anal൴z 

ed൴lm൴şt൴r. Örnekler൴ hasat yılına göre sınıflandırmak ൴ç൴n PLS-DA, OPLS-DA ve SIMCA 

modeller൴ gel൴şt൴r൴lm൴şt൴r. Orta kızılötes൴ ver൴lere dayanan modeller toz örnekler ൴ç൴n 

%93,33 ve aşılanmış örnekler ൴ç൴n %90,33 doğru sınıflandırma oranlarına ulaşmıştır. Ek 

olarak, floresan ve UV-görünür spektral ver൴ler sırasıyla %98,3 ve %100 başarı 

oranlarıyla oldukça doğru sonuçlar verm൴şt൴r. SIMCA d൴ğer çok değ൴şkenl൴ yöntemlerle 

karşılaştırıldığında daha düşük performans gösterse de bulgular spektroskop൴k tekn൴kler൴n 

kemometr൴k yaklaşımlarla entegre ed൴lmes൴n൴n s൴yah çayı farklı yıllarda etk൴l൴ b൴r şek൴lde 

൴zleyeb൴leceğ൴n൴ böylece, çay üret൴m൴nde kal൴te kontrol ve sınıflandırma süreçler൴n൴n 

൴y൴leşt൴r൴lmes൴ne katkıda bulunab൴l൴r. 

 

Anahtar kel൴meler: S৻yah çay, İnfrared spektroskop৻s৻, Uv-görünür spektroskop৻s৻ 

Floresans spektroskop৻s৻, kemometr৻ 
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CHAPTER 1 
 

  INTRODUCTION 

 
Tea is the most consumed non-alcoholic beverage in the world after water. With a 

history spanning thousands of years, tea is consumed by more than three billion people 

in 160 countries worldwide (Pan et al., 2022). The popularity of tea dates back centuries. 

The first documented tea records date back to the 3rd century AD; however, it is known 

to have been consumed even before Christ (Sanlier et al., 2018). Since ancient times, tea 

has been mostly prepared by brewing the leaves of the Camelia sinensis plant with water 

or milk. In addition to its unique flavor, tea has also been used for medicinal purposes due 

to its therapeutic and antioxidant properties (Aaqil et al., 2023). Beneficial effects of tea 

on health such as its antioxidant qualities, heart health benefits, cerebral and cognitive 

function enhancements have been mostly associated with phenolic compounds (Naveed 

et al., 2018; Ruxton, 2009). These compounds in tea can vary depending on the type of 

tea, as different processing methods affect the levels of bioactive compounds found in 

tea. 

Tea can be classified according to its production processes. After harvesting, tea 

leaves usually go through withering, rolling, fermentation, and drying processes. Tea 

types are separated from each other, especially during fermentation, and gain their 

characteristic features during this process (Sharma and Rao, 2009). Black tea accounts 

for approximately 75% of tea consumption worldwide and is particularly popular in North 

America and Europe, followed by green tea at 22%, which is more popular in Asia (Zhang 

et al., 2019). Black tea is completely fermented, while green tea does not undergo 

fermentation. Throughout the fermenting phase, catechins are converted into theaflavins 

and thearubigins by oxidation and polymerization catalyzed by polyphenol oxidase (PPO) 

and peroxidase (POD). During these transformations, the color of the tea leaves changes 

from green to reddish brown (Chen et al., 2022).  

Conventional methods for assessing the quality of black tea such as sensory 

analysis, have the disadvantage that the evaluation results are greatly affected by human 

factors and are inevitably subjective even if the participants are professional and well-

trained before the assessment (Li et al., 2019). Since the differences in sensory properties 
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are indicative of changes in their chemical structures, it is also possible to notice structures 

in spectroscopic methods and can provide more accurate and reproducible results. 

Spectroscopic methods, also known for being non-invasive, fast, and generating minimal 

waste, are widely used in food analysis. Bioactive chemical compounds such as 

polyphenols, caffeine and pigments in tea can be determined quickly and objectively by 

spectroscopic methods and these methods are also quite suitable for monitoring quality 

changes.  

Additionally, as plant product quality may vary in harvest years due to the factors 

described earlier it is important to monitor annual changes in products. Raw materials 

may exhibit desirable or undesirable quality characteristics in certain harvest years and 

the initial determination of quality aspects allows the implementation of necessary 

measures throughout the processing stages. When acquiring raw materials, processors 

need to rapidly evaluate quality parameters and make swift decisions by utilizing the rapid 

analysis capabilities of spectroscopic methods. These methods, can serve as useful tools 

in studying how the harvest year influences tea characteristic, offering deeper insights 

into the quality parameters of product.  

Spectroscopic methods provide rapid results, and a single measurement can 

facilitate tea analysis process by replacing multiple chemical analyses. When the full 

range of spectroscopic measurements is evaluated, the resulting data provide a holistic 

perspective that incorporates multiple components into statistical analysis. This approach 

enables classification to be conducted by considering all these compounds collectively, 

thereby enhancing the success rate of the classification model. Chemometric methods 

have been used to construct statistical models to effectively interpret spectroscopic 

methods. This combination provides a more comprehensive understanding of the 

underlying chemical changes, leading to improved classification models and more 

accurate prediction of product quality. 

With this study, the capabilities of mid-infrared, Ultraviolet-Visible (UV-visible) 

and fluorescence spectroscopy were comprehensively investigated in combination with 

multivariate statistical methods by exploiting the strengths of each technique. The main 

objective of this research is to evaluate the effect of harvest year on black tea and to 

distinguish black samples from two harvest year by spectroscopic and chemometric 

methods. This may eventually lead to improved classification models and better quality 

control methods for tea production. 
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CHAPTER 2 
 

LITERATURE REVIEW 

 
2.1. Historical Overview and Global Market 

 
 Apart from water, tea is the most extensively consumed and affordable beverage 

worldwide. According to anthropologists, the discovery of native tea trees growing wild 

in the forests of southwestern China was made by prehistoric people around 2700 BC, 

making tea one of the oldest beverages in history (Heiss and Heiss, 2011; Pan et al., 2022). 

Tea leaves were likely discovered during the search for edible plants and found to provide 

an energizing effect when chewed. After learning how to make fire, people began to boil 

tea leaves with the other forest plants and obtained various stimulating drinks. Around 

1766-1050 BC, tea was used in this region for its medicinal purposes due to its therapeutic 

and antioxidant properties and was often mixed with the other herbs to treat ailments. 

Later, around 1122-256 BC, tea was first consumed by boiling it in water alone in the 

neighboring region, and it was transformed from a medicinal remedy into a bitter but 

stimulating drink (Heiss and Heiss, 2011). In the following centuries Turkish traders 

began transporting it westward. In the seventeenth century, it was first introduced in 

Russia. Later, it spread to the rest of Europe (Ahmed Klasra et al., 2007; Palacios-Morillo 

et al., 2013). As tea has traveled around the world via trade routes, its production has 

spread around the world and became a global market. The global tea market is expected 

to increase at a compound annual growth rate (CAGR) of 5.8% over the forecast period, 

reaching an estimated $70.19 billion by 2028 from $56.12 billion in 2024 (Ltd, 2024). 

Due to its growing global appeal, approximately 3 billion people are tea drinkers and tea 

plant grows over 60 nations across six continents (Pan et al., 2022).  

 The Food and Agriculture Organization (FAO) lists China, India, Kenya, Sri 

Lanka, and Türkiye as some of the few countries that control the majority of the global 

market for tea production. China, the birthplace of tea, leads as the world’s largest 

producer, accounting for nearly half of global tea production. India, the second-largest 



4 

producer of tea globally, leads the world in black tea production (FAO, 2024). In terms of 

output of black tea, Türkiye ranked fifth globally in 2022.  

Figure 2.1 shows the distribution by country of black tea production worldwide in 

2022, with the estimated production amounts in 2032. In terms of tea consumption, 

Türkiye ranked as the third largest consumer globally, held the top spot in per capita tea 

consumption, and placed 27th in exports in 2022 (Figure 2.2).  

 Given these statistics, the tea production of Türkiye meets a significant portion of 

domestic consumption and keeps the supply-demand balance stable and has an important 

place in daily life in Türkiye. For a tea plant to grow well, the ambient temperature range 

needs to be between 18 and 25°C (Aaqil et al., 2023). Due to seasonal suitability and 

abundant rainfall, the Black Sea region dominates the production of black tea in Türkiye. 

. 

 
Figure 2. 1. Global black tea production in 2022 and predicted production for 2032 

(Source: FAO, 2024). 
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Figure 2. 2. Tea consumption in 2022 (Source: FAO, 2024) 

 
Black tea is the most popular type of tea worldwide and in Türkiye, accounting 

for 75-78% of global tea production. Green tea follows with approximately 20%, while 

other varieties, such as yellow and oolong teas, make up the remaining 2-5% (Zhang et 

al., 2019). Western and some Asian countries consume more black tea, whereas eastern 

countries prefer other types of tea such as green and oolong (Naveed et al. 2018; Ren et 

al. 2023; Truong and Jeong 2021). Tea types are shaped based on the manufacturing 

methods applied after harvesting the fresh leaves of the Camellia sinensis plant. The 

chemical contents of tea types differ from each other due to the different processes that 

fresh leaves go through during production. 

 
2.2. Production Process of Black Tea 

 
Black tea undergoes full fermentation, unlike green tea. This fermentation process 

is the main factor behind the chemical and sensory characteristics of black tea, though 

other processing steps also contribute to its composition. Fermentation in tea 

manufacturing refers to the organic browning process catalyzed by enzymes in tea leaves 

and is an oxidation reaction as opposed to any other type of fermentation or an exogenous 
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process (Harbowy et al., 1997). The degree of fermentation is determined by the color 

changes of the tea leaves caused by oxidation (Kim et al., 2011). Following harvest, black 

tea undergoes a series of processes including withering, rolling, fermenting, and drying. 

Each step from plucking fresh tea leaves to making the product ready for consumption 

has a significant impact on characteristics and quality attributes of the product. 

 
2.2.1. Withering 

 
Withering is the process after the leaves are collected. In this step, the tea leaves are 

usually blown with air to reduce the moisture content of the leaves and to give them 

flexibility. At this stage, variables such as withering temperature and withering time affect 

the quality of the tea (Deb and Jolvis Pou, 2016). In the withering process, air is usually 

blown at 25-30 °C for about 12-16 hours (Macheka et al., 2022). In this method, the 

moisture content in the leaves drops from 80-70% relative humidity to 70-60% (Deb and 

Jolvis Pou, 2016). 

The reactions that form the basic characteristics of the finished product begin at 

this stage. When tea leaves wither, they undergo both chemical and physical changes. 

Proper withering is vital to enhance flavor, aroma and other characteristics. The physical 

change in tea consists of changes in its structure due to the loss of water in the leaf with 

controlled air flow in the environment. When the leaves lose some of their water content, 

the leaf becomes looser with the decrease in pressure. The tea leaves are more flexible 

after withering and following the breaking process, rolling, takes place. This process also 

leads to an increase in the sap concentration in the cells of the tea leaf (Aaqil et al., 2023).  

The chemical changes in tea begin immediately after the tea is picked; therefore, 

they are independent of moisture and dependent on temperature and time. During 

withering, the concentration of enzymes in the cell increases due to the decrease in cell 

sap. One of the most important enzymes whose concentration increases during this 

process is polyphenol oxidase (PPO). Activity of PPO fluctuates during the 

manufacturing period (Bortolini et al., 2021). As moisture decreases during withering, 

PPO activity increases, facilitating the oxidation of catechins into flavonoids and 

thearubigins. At the end of withering, PPO activity reaches a level, which is 2.9 times that 

of fresh leaf PPO activity (Zou et al., 2024). Another enzyme that becomes active is the 



7 

peptidase. The peptidase enzyme catalyzes the breakdown of some proteins into amino 

acids. Carbohydrates are also broken down like proteins and are converted into simple 

sugars that react with amino acids. Each of these reactions serves as a precursor for flavor 

formation (Deb and Jolvis Pou, 2016). 

 
2.2.2. Rolling 

 
During the withering process, tea leaves lose water, causing their cell walls to 

become flexible. The leaves are then shaped through the rolling process. After tea leaves 

undergo rolling process, the deformation of cell structure of tea initiates oxidation. There 

is no reaction prior to this step since the oxidase enzymes and substrates are in distinct 

media (Aaqil et al., 2023).  When the external physical force applied during rolling 

damages the tea leaves, the enzymes whose activity begins to increase during withering 

begin to come into contact with the substrates (Chiang et al., 2022; Zhang et al., 2023). 

In addition, the reduction of leaf size causes an increase in the surface area in contact with 

oxygen. As the tea leaves are bent and crushed while rolling, the cell sap is squeezed out 

and covers the leaf surface. Phenolic compounds, PPO and oxygen in the tea leaf damaged 

by external physical force come into contact in the same environment (Zhang et al., 2019). 

Polyphenol and oxygen contact is achieved at this stage. This action ensures that 

substrates and enzymes are thoroughly mixed, supporting the biochemical reactions 

necessary for tea oxidation. The PPO enzyme, which plays a critical role in oxidation, 

continues to increase its activity during the rolling process and reaches the highest level 

of activity in the entire production line (Chiang et al., 2022).  

 

2.2.3. Fermentation (Oxidation) 

 
During oxidation, which is one of the important processes in tea production, the 

components found in fresh tea leaves are oxidized and/or polymerized or undergo other 

changes during the process. At the end of this process, 80–85% of the leaves turn black. 

The oxidation process is one of the most vital processing procedures for tea because it is 

at this stage that the aroma and value of the tea are determined (Sharma and Rao, 2009). 
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The oxidation stage also separates different categories of tea. During fermentation, 

catechins oxidized into theaflavins (TF) followed by thearubigins (TR) through enzyme-

catalyzed reactions (Koch, 2020). 

In black tea production, two main enzymes play an important role during 

fermentation. One of these enzymes, PPO, oxidizes flavonoids (catechins) to compounds 

such as theaflavins and thearubigins (Samanta et al., 2015). 

The other enzyme, peroxidase (POD) is an enzyme that plays a role in oxidative 

processes by reacting with peroxides such as hydrogen peroxide (H2O2) formed by the 

action of PPO on some flavonoids. POD activity in fresh tea leaves is five times higher 

than the activity of PPO and increases during black tea processing (Abudureheman et al., 

2022).  

Catechins and caffeine in tea leaves play an important role in determining the 

quality of black tea. TFs determine the brightness, vibrancy and quality of the tea liquor, 

while TRs are responsible for the color, body and flavor of the tea. Proper fermentation 

ensures a balanced ratio between TF and TR compounds, resulting in ideal quality 

(Rahman et al., 2020). In addition, an optimum fermentation ensures a proper balance 

between TFs and TRs. On the other hand, the presence of catechins (flavonoids) and 

caffeine in tea leaves also play an important role in determining the quality of black tea 

(Ruxton, 2009). 

 

2.2.4. Drying 

 

After fermentation, the leaves are dried to stop the enzymatic oxidation processes. 

Drying is usually the final stage of tea processing. Leaves are exposed to a minimum of 

80°C to ensure aroma and flavor stability; however, temperatures above 110°C can 

negatively affect the quality (Temple et al., 2001).  During drying, chemical changes are 

driven by heat rather than enzymes, making temperature a crucial factor. This process 

influences the tea's appearance, flavor, and taste by altering and breaking down its original 

compounds (Guo et al., 2018; Zhang et al. 2019). First, depending on the type of tea, the 

leaves are dried at a high temperature of around 100°C and then dried at a lower 

temperature around 75°C (Sharma and Rao, 2009). The final moisture content in black 

tea drops to around 3%, which also ensures that the teas are preserved throughout their 
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shelf life. However, drying processes lead not only to water loss, but also to the reduction 

of some volatile substances, the combination of polyphenols with other compounds, the 

increase of carboxylic acids and the color change by the Maillard reaction (Sharma and 

Rao, 2009; Zhang et al., 2019). While many of these changes contribute positively to the 

quality of the tea, some can have undesirable effects. When PPO and POD enzymes are 

deactivated, biochemical reactions largely cease. In the early stages of drying, enzymes 

become active, and reactions accelerate as the temperature increases, but these processes 

cease when the temperature reaches a level where the enzymes become inactive (Aaqil et 

al., 2023). 

 
2.3. Chemical Compounds in Black Tea 
 

Tea is a widely preferred beverage worldwide for its stimulating and unique taste. 

Previous studies have confirmed that the majority of tea's nutritional benefits come from 

its bioactive compounds, such as flavonoids and phenolic acids. These compounds exhibit 

a range of biological functions, including antioxidant, antimicrobial, and anti-

inflammatory activities, immune function enhancement, cancer risk reduction, and 

protective effects against diabetes, hyperlipidemia, and obesity. (Bortolini et al., 2021; Li 

et al., 2013; Sharma and Rao, 2009; Suryoprabowo, 2024). In addition, these compounds 

are associated with tea’s astringency, bitterness, sweetness, and saltiness, and determine 

its sensory properties (Ren et al. 2023). Specifically, black tea contains flavonoids, 

phenolic acids, caffeine, carbohydrates, vitamins A, C, K and theanine (Li et al., 2013). 

Moreover, flavonoids have important potential in antioxidant regulation of apoptosis 

(Naveed et al., 2018). Apart from its numerous health advantages, tea is widely utilized 

in the food sector for food coloring, preparation of ready to drink products and edible 

coatings (Suryoprabowo, 2024).  

 

2.3.1. Catechins 
 

Catechins are colorless, water-soluble compounds that add astringency to infused 

samples. Catechins are a type of flavonoid and belong to the class of polyphenols, 
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specifically the flavan-3-ols. The basic structure of catechins is characterized by three 

rings: two benzene rings (A and B) and a dihydropyran ring (C) that carries a hydroxyl 

group. This core structure is also known as the C6-C3-C6 structure.  

There are four main catechins in fresh tea leaves (-)-epicatechin (EC), (-)-

epicatechin gallate (ECG, (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate 

(EGCG) and their chemical structures are presented in Figure 2.3 and Table 2.1. 

(Balentine et al., 1997; Sang, 2015).  

Tea catechins are prone to oxidation when exposed to enzymes, acids, and heat. 

During black tea production, the presence of PPO leads to the rapid oxidation of 

catechins, resulting in the formation of more complex theaflavins and thearubigins (Lee 

et al. 2016; Łuczaj and Skrzydlewska, 2005). Since catechins exhibit significant level of 

oxidation, concentration of catechins decreases with more processing, resulting in less 

catechin content for black tea compared to green tea (Bortolini et al., 2021; Vuong et al., 

2010). In a study conducted by Liang et al. (2003), supporting this information, the 

average EGCG concentration in black tea corresponds to 8.4% of the concentration in 

green tea. However, the overall polyphenol content of black tea is similar between the 

two (Tanaka and Matsuo, 2020). Four main catechins compose almost 30% of the dry 

weight of fresh tea leaves while in black tea extract, this ratio is around 10%. Along with 

this, theaflavins and thearubigins constitute between 10 and 30% of black tea extract 

(Abudureheman et al., 2022; Kuhnert, 2013; Yang and Liu, 2013).  

There are two types of catechins according to their chemical structure namely free 

and esterified forms. Free catechins (EC, EGC) have considerably less astringent and 

sweeter taste than esterified catechins (ECG, EGCG) (Vuong et al., 2010). During the 

complete breakdown and transformation of most catechins in black tea, especially during 

oxidation, gallic acid is released from the galloyl parts of these compounds (Lee et al., 

2016). As a result of this transformations, trans-catechins, which are more commonly 

found in green tea, are rarely found in black tea. Instead, in black tea main constituents 

are gallic acid, caffeine, and theaflavins which provide its distinctive flavor, color, and 

bioactivity (Zhang et al., 2019). According to the literature, epicatechin quinone further 

oxidizes the theaflavins formed during black tea fermentation, contributing to the 

synthesis of thearubigins (Lee et al., 2016). 
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Table 2.1. Four main catechins in black tea (Source: Sang, 2015) 
 

Catechin  R1  R2 
Epicatechin EC H  H 

Epicatechin-3-O-gallate ECG H 
 Galloyl 

Group 
Epigallocatechin EGC OH  H 
Epigallocatechin-3-O-
gallate EGCG OH 

 Galloyl 
Group 

 

 
Figure 2. 3. Main catechin structures found in black tea (Source: Kuhnert, 2013) 
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2.3.2. Theaflavins and Thearubigins 

 

The two main polyphenols, theaflavins and thearubigins, formed during oxidation 

of tea leaves are important regulators of apoptosis, cell proliferation, and aging in human 

cancer cell lines. They also have the potential to function as antioxidants (Naveed et al., 

2018). Moreover, it has been known for nearly half a century that theaflavin content is an 

important chemical compound in determining the quality of black tea (Liang et al., 2003). 

Thearubigins constitute the majority of the total flavonoids in black tea, accounting for 

50–60%, while theaflavins account for 10% (Zhang et al., 2019). These two compounds 

also play an important role in the sensory properties of black tea. Theaflavins give bright 

orange-red color while thearubigins give dark-brown color to tea (Abudureheman et al., 

2022; Lee et al., 2016). Furthermore, an optimal fermentation duration is crucial for 

preserving the quality and sensory properties of black tea. The theaflavins-to-thearubigins 

ratio should ideally range between 1:10 and 1:12 (Rahman et al., 2020). 

Theaflavins are dimerized catechins and conversion of catechins to theaflavins is 

a two-step process (Table 2.2 and Figure 2.3). Catechins found in fresh leaves are oxidized 

to quinones, which are already present in fresh leaves and whose activity increases during 

the process and they serve as substrates for subsequent transformations by the enzymes 

PPO and POD.  In the second step, the catechin quinones formed can interact with one 

another through various pathways.  

Theaflavins are formed by the polymerization reaction of EC or ECG quinones 

and EGC or EGCG quinones. The PPO enzyme is responsible for converting flavanols 

into theaflavins and thearubigins, whereas the POD enzyme oxidizes phenols to quinones 

using hydrogen peroxide. POD activity is typically higher in fresh tea leaves and increases 

further during the production process. However, the role of peroxidase in the synthesis of 

complex polyphenols in black tea has not yet been fully understood (Koch, 2020). As a 

result, the four major epicatechins are oxidized to four major theaflavins namely, 

theaflavin, theaflavin-3-gallate, theaflavin-3’-gallate and theaflavin-3,3’ gallate (Lee et 

al., 2016; Łuczaj and Skrzydlewska, 2005). It has been reported that in black tea infusions, 

theaflavins primarily enhance brightness, while theaflavin gallates contribute more to tea 

cream formation. Additionally, theaflavin content is associated with variations in tea 

flavor (Liang et al., 2003).  
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Table 2.2. Important theaflavins found in black tea (Source: Koch, 2020) 

 

Theaflavin  R1  R2  Monomers  
Percent 

(%) 
Theaflavin 

(TF1) OH OH EC+EGC 
18 

Theaflavin-3-gallate 
(TF2A) 

Galloyl 
Group OH EC+EGCG 

18 

Theaflavin-3'-gallate 
(TF2B) OH 

Galloyl 
Group EGC+EGC 

20 

Theaflavin-3,3'-
digallate 

(TF3) 
Galloyl 
Group 

Galloyl 
Group 

EGC+EGC
G 

40 

 

 
Figure 2.4. Main theaflavin structures found in black tea (Source: Pereira-Caro et al., 

2017) 

Thearubigins, the other important phenols in black tea, constitute the largest active 

ingredient portion of black tea. Therefore, it is known that most of the catechins are 

converted to thearubigins due to oxidation, however information about thearubigins is 
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limited and their chemistry is not sufficiently understood because of their high molecular 

weights (Zhang et al., 2019). In fact, the general opinion is that theaflavins are involved 

in the formation of thearubigins (Rahman et al., 2020; Truong and Jeong, 2021; Zhu et 

al., 2021). 

Various studies have reported that theaflavin reaches its highest level during 

fermentation and then begins to decrease. It is suggested that this decrease may be due to 

the degradation of theaflavins or their transformation into thearubigins (Aaqil et al., 2023; 

Lee et al., 2016). However, it is not possible to explain all thearubigin content solely 

through this transformation, indicating the involvement of other complex oxidation 

reactions during tea fermentation (Long et al., 2023). Thearubigins have been reported to 

exhibit several health benefits, including anti-cancer, cardiovascular disease reduction, 

antioxidant, and anti-inflammatory effects (Kuhnert, 2013). These polyphenolic 

compounds also contribute to the characteristic color, astringency, and body of black tea, 

enhancing its sensory attributes (Aaqil et al., 2023; Long et al., 2023). 

 
2.3.3. L-theanine 

 
Theanine, the major amino acid present both in green and black tea, is a non-

proteinogic amino acid specific to tea and comprises half of the amino acids in tea. It 

plays a significant role in contributing to the umami taste of black tea, enhancing its 

sensory profile (Guo et al., 2018; Li et al., 2013; Vuong, 2014). Previous studies have 

shown that theanine increases cognitive function, reduce anxiety and assist in managing 

obesity in humans (Sari and Velioglu, 2013).  

Consuming L-theanine, a key component in black tea, orally may have anti-stress 

benefits by inhibiting cortical neuron excitability, which reduces stress on the body and 

mind (Suryoprabowo, 2024). However, it has been determined that theanine content 

decreases throughout the tea processing due to oxidation and enzymatic reactions. 

Therefore, less theanine is detected in black tea compared to other tea types. Despite this 

decrease, theanine remains a bioactive compound that contributes to the health benefits 

of black tea consumption. (Bortolini et al. 2021; Sari and Velioglu, 2013). 
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2.3.4. Caffeine 

 
Caffeine is an alkaloid compound with the chemical formula C₈H₁₀N₄O₂. Its structure 

consists of a fused ring system with two rings: a purine skeleton known as xanthine 

(Figure 2.5). Caffeine is another important compound found in black tea that triggers fat 

burning and reduces mental fatigue, in addition to having a fat-soluble stimulant effect 

(Bortolini et al., 2021). As a member of the methylxanthine group, caffeine is the primary 

chemical that gives tea its stimulatory action (Sari and Velioglu, 2013). Caffeine is well 

known for its stimulant properties and its ability to improve cognitive abilities. Caffeine 

has been suggested to change dopaminergic transmission and boost serotonin release and 

it is also in charge of giving the black tea taste with theaflavin (Vuong, 2014). The 

temperature, brewing time, and leaf size all affect how much caffeine is in tea drinks. 

Additionally, the caffeine contents of black and green tea is the same, suggesting that 

caffeine remains highly stable throughout the fermentation process (Sang, 2015). 
 

 
Figure 2.5. Caffeine structure (Source: Sahoo, 2015) 

 

 

2.3.5. Gallic Acid  
 
 

Gallic acid, a naturally occurring polyphenolic compound, has the chemical 

formula C₇H₆O₅ and contains a benzene ring. It is a type of phenolic acid found in a 

variety of plants, teas, and fruits, known for its antioxidant and antimicrobial properties. 

During black tea production, nearly all catechins decrease, whereas gallic acid levels 
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increase, as catechins undergo an oxidation reaction during processing, their galloyl 

moieties are broken down, resulting in an increase in gallic acid content (Lee et al., 2016). 

The ester hydrolysis of the 3-galloyl catechins, during fermentation, greatly raises the 

amount of gallic acid in black tea (Li et al., 2013). Gallic acid can interact with oxidized 

catechins to generate the quinone form (Łuczaj and Skrzydlewska, 2005). In addition, 

gallic acid undergoes oxidation to create epitheaflavic acids, which then condense with 

theaflavins to generate thearubigins (Rahman et al., 2020). 

 
2.3.6. Other Components 

 
Fresh tea leaves also contain large molecules that do not dissolve in water, such 

as carbohydrates and proteins. Tea contains a significant amount of carbohydrates, with 

about one-third being cellulosic fiber. While tea leaves also have small amounts of free 

sugars, the majority of the carbohydrates are insoluble and do not dissolve in the brewed 

tea (Harbowy et al., 1997; Vuong, 2014). Tannins are a group of water-soluble 

polyphenols present in many plant-based foods. They represent a diverse class of 

compounds and offer a range of health benefits (Khasnabis et al., 2015). 

 
2.4. Features Affecting Black Tea Quality 

 
The elements that provide the rich aroma and taste of black tea are not limited to 

the processing alone. Also, the composition of the tea varies depending on the soil, 

seasonality of the plant, growth location, and agricultural practices, and potential taste 

and odor differences occur depending on these factors (Vuong, 2014). Especially in the 

last decades, changes in average precipitation and climate conditions due to global 

warming, and changes such as increasing surface temperature of the Earth have also 

reduced agricultural productivity. In a study conducted by Jayasinghe and Kumar (2021), 

it was reported that climate change has increased significantly in recent years and this 

situation will have unexpected effects on tea cultivation.  
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The changes in chemical properties of plant products from year to year have 

affected the quality of tea products. For instance, variations in climate-related factors such 

as seasonality, water availability, geographical conditions, light exposure, altitude, 

herbivore activity, microbial presence, temperature, and soil characteristics have been 

recognized as contributing to changes in secondary metabolites. These changes can cause 

the levels of these compounds to fluctuate, potentially increasing or decreasing by as 

much as 50% (Ahmed et al., 2019). Changing climate can threaten regional economies 

by causing changes in tea types (Jayasinghe and Kumar, 2021). Additionally, as plant 

product quality may vary in harvest years due to the factors described earlier it is 

important to monitor annual changes in products. Raw materials may exhibit desirable or 

undesirable quality characteristics in certain harvest years. 

Climate change can cause some changes in the quality of tea by affecting 

seasonality. It has been stated in previous studies that contents of compounds such as 

polyphenols, volatiles and caffeine vary according to the season (Ahmed et al., 2019; 

Jayasinghe and Kumar, 2021; Li et al., 2013). Previous studies have found that increasing 

carbon dioxide gas due to climate change reduces caffeine and free amino acids in tea 

leaves (Jayasinghe and Kumar, 2021; Wang et al., 2011; Wei et al., 2012).  

Changes in chemical composition are evident in the sensory properties. Sensory 

and physical and chemical component tests have long been preferred to determine the 

quality and content of tea. Even though the participants in sensory analysis are 

professional and well-educated, human factors are inevitably subjective. Moreover, in 

physical and chemical component analyses, there is a possibility of using toxic and 

hazardous chemicals and they can be time-consuming (Li et al., 2019; Ren et al., 2023). 

Rapid evaluation of tea quality is an essential element of supply chain management for 

this high volume of production and consumption (Panigrahi et al., 2016). Therefore, 

instead of these traditional methods, spectroscopic methods, known for being fast, non-

invasive, and producing minimum waste, have begun to be widely used in food analysis.  

 
2.5. Spectroscopic Methods 

 
Spectroscopy involves generating, measuring, and interpreting spectra that arise from 

the interaction between electromagnetic radiation and matter (Nielsen, 1994). A wide 
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range of spectroscopic techniques exists, each designed to address diverse analytical 

challenges. These techniques are applied in both qualitative and quantitative analysis of 

various tea products and are often combined with chemometric methods in order to 

classify, distinguish and interpret the results. For this reason, the combination of 

spectroscopic profiles with chemometrics has been used in the determination of quality 

parameters and variety separation in teas as well as in various foods. The concentrations 

of quality parameters, including phenolic and flavonoid compounds, pigments, caffeine, 

and pesticides, were assessed from coupling various and chemometric methods 

(Panigrahi et al., 2016; Wang et al., 2019). Near infrared (NIR) hyperspectral imaging 

technique was effectively used to distinguish black tea samples based on their storage 

years, while the effectiveness of both traditional machine learning methods and deep 

learning techniques to classify these tea samples was evaluated (Hong et al., 2021). In 

another study, NIR spectroscopic data was evaluated using multivariate statistical 

analysis techniques, leading to a classification based on tea varieties (Chen et al., 2020). 

NIR spectroscopy used to verify the authenticity of tea is another application field. This 

spectroscopic technique was used to examine the mixing of Darjeeling tea with other 

varieties of tea by analyzing the data using chemometric techniques (Firmani et al., 2019) 

In determining some properties of teas, more than one spectroscopic method has been 

used together. In a study conducted by Dankowska and Kowalewski (2019), it is shown 

that black, green, white, yellow, dark and oolong teas produced by different methods were 

characterized by using NIR, UV-visible and synchronous fluorescence spectroscopy 

together. In another study, the combination of Raman spectroscopy and Fourier transform 

infrared (FTIR) spectroscopy brought the feasibility of rapid tea catechin detection and 

verification for high-quality tea products (Xia et al., 2020). Using more than one 

spectroscopic method together can reduce the error rate and increase the reliability, and 

methods in different wavenumber ranges can complement each other (Arifah et al., 2022; 

Dankowska and Kowalewski 2019; Xia et al., 2020). 

In the current study, three different approaches were utilized which focused on 

different molecular properties and offered complimentary insights into the samples. 

Functional groups and bonds can be found via FTIR spectroscopy, which also provides 

precise molecular structures. Tea's primary quality indicators, pigments and phenolic 

chemicals, are especially sensitive to UV-visible spectroscopy. When it comes to 

identifying specific polyphenols and other fluorescent chemicals, fluorescence 

spectroscopy is highly effective and provides increased sensitivity for these substances. 
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Depending on the type of radiation-matter interaction observed, spectroscopy using UV-

visible radiation can be broadly classified into two types: absorbance spectroscopy and 

fluorescence spectroscopy and the infrared region of spectrum is great assistance for food 

product analysis, both quantitatively and qualitatively. (Nielsen, 1994). Spectroscopic 

techniques can also be helpful in examining how the harvest year affects tea, and the data 

obtained may help to clarify the product's quality standards. The findings obtained offer 

a comprehensive view that integrates several elements into statistical analysis when the 

full spectrum of spectroscopic techniques is assessed. This method increases the success 

rate of the classification model by enabling classification to be carried out by taking into 

account each of these compounds collectively 

 
2.5.1. FTIR Spectroscopy 

 
FTIR is one of the spectroscopic methods frequently used in the food industry for 

purposes such as adulteration detection and variety differentiation since samples can be 

analyzed quickly with high reliability. Infrared radiation, which is frequently used in food 

applications, is electromagnetic energy with wavelengths longer than visible light but 

shorter than microwaves and is divided into three groups: near-IR (12000-4000 cm-1), 

mid-IR (4000-670 cm-1), and far-IR (670-100 cm-1) (Nielsen, 1994). Infrared 

spectroscopy explores the vibrations of molecules by passing infrared radiation through 

a sample. Some of the radiation is absorbed, while the rest is transmitted. The fundamental 

vibrations of functional groups are correlated with distinctive infrared absorption bands 

that can be linked to them. Specific functional groups are linked to distinctive infrared 

absorption bands that correspond to their fundamental vibrations. Since no two molecular 

structures produce identical IR spectra, this technique is valuable for many analytical 

purposes (Berthomieu and Hienerwadel 2009; Dutta 2017). 

In FTIR spectroscopy, radiation is not dispersed; instead, all wavelengths reach 

the detector simultaneously. FTIR employs an interferometer, which splits and 

recombines a light beam (Figure 2.6). By adjusting the path length of one beam, the two 

beams can interfere constructively or destructively depending on their phase difference. 

This interferogram is then directed to the sample chamber. Here, the sample absorbs 

energy at specific frequencies in the interferogram. Depending on the chemical structure 
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of the sample, some frequencies are absorbed while others pass through. The detector 

records changes in light over time, revealing the frequencies of energy absorbed by the 

sample. Fourier transform software then processes the interferogram to obtain the 

sample's spectrum, which indicates the specific frequencies at which energy is absorbed 

and identifies the chemical bonds present (Berthomieu & Hienerwadel, 2009; Nielsen, 

1994). 
 

 
Figure 2.6. Basic set-up of FTIR spectroscopy (source: Nielsen, 1994) 
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Fourier-transform infrared (FTIR) spectroscopy was used to differentiate teas with 

respect to their types and geographical growth locations. In one study, FTIR spectroscopy 

combined with adaptive improved possibilistic c-means (AIPCM) clustering effectively 

classified tea varieties, achieving a prediction accuracy of 98.5% (Zhou et al., 2020). 

Another study employed FTIR spectroscopy with the partial least square (PLS) method 

and a self-organizing map neural network to analyze tea polysaccharides. Using the neural 

network approach, the study successfully classified common Chinese tea types with a 

100% accuracy rate (Cai et al., 2015). 

 
2.5.2. UV-Visible Spectroscopy 

 
UV-visible spectroscopy is based on the absorption of light in the ultraviolet (180-

380 nm) and visible light (380-780 nm) wavelengths (Pratiwi and Nandiyanto, 2022). The 

measurement of the amount of light absorbed from a reference beam as it passes through 

the sample solution provides the basis for the analysis. As the beam passes through the 

solution, the absorbing species absorbs photons, which causes the radiant power to drop. 

Therefore, the radiant power of the radiation entering the absorption cell will be 

substantially higher than that of the radiation exiting the cell from the opposite side 

(Nielsen, 1994). Absorbance generally shows a linear relationship between concentration 

and path length. Therefore, in most applications, absorbance is usually measured to 

determine the UV-visible spectrum of samples (Picollo et al., 2019).  

The wavelength of the absorbed light is the energy required to move an electron 

from a lower energy level to a higher energy level. In UV-Visible spectroscopy, light from 

a UV-Visible source is directed through a monochromator to select a specific wavelength 

range (Figure 2.7). This light then passes through the sample, where a particular 

wavelength is absorbed, before reaching the detector. The main components of a 

spectrophotometer include an energy source, a monochromator (which isolates a narrow 

range of wavelengths), a sample holder (cuvette), a detector, and a signal output that 

displays the results for the analyst. 
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Figure 2.7. Basic set-up of UV-visible spectroscopy (Source: Nielsen, 1994) 

 
UV-visible spectroscopy has been applied to differentiate infused tea samples 

based on their variety and geographical origin, leading to the conclusion that this 

technique may serve as an alternative method for assessing tea quality (Diniz et al. 2016). 

Another study also explored tea variety discrimination by combining UV-visible and 

FTIR spectroscopy, using various chemometric approaches with differing levels of 

success (Arifah et al., 2022). 

 

 



23 

 

2.5.3. Fluorescence Spectroscopy 

 
Fluorescence spectroscopy is a technique used to quantify trace amounts of 

inorganic, organic, and biomolecules. A small amount of compound can exhibit 

fluorescence, besides, there is an ideal wavelength of radiation for excitation and emission 

for every distinct molecular composition. In other words, no two substances have 

fluorescence spectra that are precisely the same.  Therefore, this method is an extremely 

sensitive and selective technique, and it can offer relatively large number of physical 

parameters (Dankowska and Kowalewski, 2019; Du et al., 2020; Nielsen, 1994). The 

concentration of the molecule under study is directly correlated with the fluorescence 

intensity of the emitted light at specific excitation and emission wavelengths (Sennaroglu, 

2006).  

In fluorescence spectroscopy, the measured signal comes from the 

electromagnetic radiation emitted by the analyte as it returns to its ground state from an 

excited electronic energy level. Initially the analyte gains energy and is excited to this 

higher energy level by absorbing radiation in the UV or visible range (Nielsen, 1994). 

During a fluorescence measurement, the activation and deactivation processes take place 

concurrently (Wehry, 1997). A molecule is excited by absorbing light of a certain 

wavelength and rises to a higher energy level. This energy level then drops again and 

emits light at a longer wavelength.  

The equipment utilized for UV-visible absorption spectroscopy and fluorescence 

spectroscopy are nearly identical. Fluorometers essentially require two wavelength 

selectors: one for the emission beam and one for the excitation beam. Figure 2.8 provides 

a visual representation of the basic set-up of fluorescence spectroscopy. 

Fluorescence spectroscopy is also used in the authentication of green tea, and 

differentiation of tea categories with respect to factors such as variety, geographic 

location, and fermentation degree (Hu et al., 2023; Seetohul et al., 2013). In a study, three-

dimensional fluorescence spectroscopy with distance discrimination was used to identify 

matcha tea’s producer and grade, highlighting fluorescence spectroscopy’s potential for 

precise origin and quality verification (Xu et al., 2023).  
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Figure 2.8. Basic set-up of fluorescence spectroscopy (Source: Nielsen, 1994) 

 
When sourcing raw materials, processors need to quickly evaluate quality 

parameters and make timely decisions. Spectroscopic methods provide rapid results, 

allowing a single measurement to substitute for multiple chemical analyses, thus 

simplifying the tea analysis process.  

Since variations in the quality of plant products can occur between harvest years 

due to previously discussed factors, it's essential to monitor year-to-year changes. Raw 

materials may possess either favorable or unfavorable quality traits in particular harvest 

years and recognizing these quality aspects early on allows for the implementation of 

necessary measures during the processing stages.  
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CHAPTER 3 

 
MATERIALS AND METHODS 

 
3.1. Materials 

 
The black tea samples used within the scope of the thesis were harvested in the cities 

of Rize and Trabzon in the East Black Sea region of Turkey. These two cities alone supply 

approximately 87% of the tea production in Türkiye (TEPGE, 2024). 100 tea samples 

were harvested in 2021, and 105 tea samples were harvested in 2022 were transferred to 

bags after their processing and shipped to the Food Engineering Department of the İzmir 

Institute of Technology.  

The tea samples were ground using a grinder (Renas Makina, Istanbul, Türkiye) then 

sieved (mesh 25) to become fine powder for analysis. 

 
3.2. Infusion of Tea Samples 
 
To prepare infused samples, 5 grams of powdered tea samples were transferred to tea 

filter bags (Prateaco, Turkiye). Tea filter bags were gently placed in 75 mL of distilled 

water (tea samples:water, 1:15, w/w) at 85°C. Infused tea samples were obtained by 

keeping them in a water bath for 15 minutes. These samples were analyzed after they 

were left to cool to room temperature. 

 
3.3. Methods 

 
In this section, analysis methods of infused and powdered form of tea samples were 

explained. 
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3.3.1. Fourier Transform Infrared Spectroscopy 
 

 

Mid-infrared spectroscopic profiles were obtained for both infused and powdered tea 

samples. Spectra of infused tea samples were collected using a Fourier Transform Infrared 

Spectrometer (FTIR) (Spectrum 100, Perkin-Elmer, Waltham, Massachusetts, USA). 

Horizontal zinc-selenium attenuated total reflectance (ATR) accessory and deuterated 

triglycine sulfate (DTGS) detector were utilized to evaluate the infused samples. After 

taking the spectra of air as background, 2 mL of undiluted infused tea samples were spread 

homogeneously on the ATR cell surface, leaving no gaps. The spectra were measured in 

the range of 4000–800 cm-1, with 96 scans at a resolution of 4 cm-1 and 1 cm/s per 

spectrum. The average of two spectra represents each sample. 

Spectra of powdered tea samples were obtained with the same spectrometer in 

transmission mode. 1.5 mg of powdered tea was mixed with 148.5 mg of KBr powder 

(1:99, w/w) after grinding with a mortar (50-mm, P/N 161-5050, Pike Technologies, 

Wisconsin, USA) at room temperature to prepare pellets. Tea and KBr were placed into 

the die set (13 mm pellets, Pike Technologies, Wisconsin, USA) and 20,000 kPa pressure 

was applied by the hydraulic press (Wir Sas, Camilla’95, Germany) for three minutes. 

The resulting pellet was removed from the die set and placed in the magnetic pellet holder 

(Perkin-Elmer, Waltham, Massachusetts, USA), and transmittance spectra were obtained 

with 64 scans at 4 cm-1 resolution. Average of four readings were taken for each. As 

background, spectra of air were collected at the same conditions before every sample 

measurement 

 
3.3.2. UV-Visible Spectroscopy 

 
Infused tea samples were transferred to a 96-well flat-bottom polystyrene plate 

(Isolab, Wertheim, Germany) by taking 75 μL of each sample at room temperature 

without any pretreatment and a cuvette was filled with 75 μL distilled water to serve as a 

blank. The absorbance spectra were obtained using a UV-visible spectrophotometer 

(Thermo Scientific Multiskan GO Microplate Spectrophotometer, Fisher Scientific, 
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Vantaa, Finland) within the wavelength range of 200 to 1000 nm.  The data analysis 

involved using the average of two spectra for each sample. 

 
3.3.3. Fluorescence Spectroscopy 

 

Infused tea samples (200 μL) were placed in a black 96-well flat bottom 

polystyrene plate (Isolab, Wertheim, Germany). Fluorescence spectra of the samples were 

obtained between 350 and 600 nm with a fluorescence spectrophotometer (Thermo 

Scientific Varioskan, Fisher Scientific, Vantaa, Finland) and subjected to excitation at 320 

nm. Slit width was set to 12 nm. The average of two spectra for each sample was used in 

the data analysis. 

 

3.3.4. Total Phenolic Content 

 

Total phenolic contents (TPC) were determined for infused tea samples as 

described by Fu et al. (2011) with minor modifications. 0.1 mL of infused tea samples 

were mixed with 0.9 mL distilled water in Eppendorf tubes (1.5 mL) to dilute the tea 

samples ten-fold. 50 μL of the diluted tea samples were transferred to other Eppendorf 

tubes and 250 μL of the Folin-Ciocalteu reagent (10%, v/v) were added then mixtures 

kept in the dark for 5 minutes. 

After adding 200 μL of sodium carbonate (7.5%, w/v) into tubes, they were stored 

for one hour in the dark. As a last step, 200 μL of the samples was transferred to the 96-

well flat-bottom polystyrene plate (Isolab, Wertheim, Germany) and absorbance was 

measured at 760 nm with a spectrophotometer (Thermo Scientific Multiskan GO 

Microplate Spectrophotometer, Fisher Scientific, Vantaa, Finland). As a reference, the 

absorbance of distilled water was measured as well. Two replicates were taken from each 

sample and the average of two readings was used.  

A gallic acid standard curve was constructed as described by Shirazi et al. (2014), 

with slight modifications. 1 g of gallic acid was dissolved in 100 mL methanol to get 1% 
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solution of gallic acid (10 mg/ml). A standard gallic acid curve was constructed by 

preparing the dilutions of (0.1, 0.5, 1.0, 2.5 and 5 mg/ml) in methanol from standard 

solution of gallic acid. The equation of the gallic acid curve was found to be y = 0.0011x. 

100 μL of each of these dilutions were mixed with  500 μL of water and then with 

100 μL of Folin-Ciocalteu reagent and allowed to stand for 5 minutes. Then, 1 mL of 

sodium carbonate (7.5 % w/v) and 500 μL of distilled water was added to the reaction 

mixture. The absorbance was recorded after one hour at 760 nm with a spectrophotometer 

(Thermo Scientific Multiskan GO Microplate Spectrophotometer, Fisher Scientific, 

Vantaa, Finland). All stages of the experiment were carried out at room temperature. 

The formula below was used to determine the TPC of the samples in terms of 

Gallic Acid Equivalent (mg GAE/L)  

 

Total Phenolic Content = ×10×  (3.1) 

 

where molecular weight of gallic acid: 170.12 g/mole, dilution factor: 10 and the slope of 

gallic standard curve: 0.0011. 

 

3.3.5. Soluble Solids Content 

 

As the first step of determining dry matter content of infused tea samples, petri 

plates were dried in a laboratory oven (Binder, Tuttlingen, Germany) at 105°C for 2 hours 

and then cooled in a desiccator until their weights do not change. Then, 25 mL of infused 

tea samples were spread onto petri plates and the samples dried at 70°C in a laboratory 

oven overnight. The following formula was used to calculate the dry matter content. 

Soluble-Solids Content  =                 (3.2) 
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3.3.6. Statistical Methods 

 

To assess whether there is a significant difference on the dry matter content and 

total phenolic content of infused tea samples between the two harvest years, Tukey’s Test 

was applied at 95% confidence interval (Minitab, v.19.1, Minitab Inc., Pennsylvania, 

USA).  

Spectral profiles were evaluated with chemometric methods to investigate the 

separation of tea samples from different harvest years. As the first step of multivariate 

statistical analysis, the data were treated with principal component analysis (PCA). A 

noticeable trend of differentiation was observed between harvest years in the score plot 

of the first and second principal components. PCA is used as an unsupervised recognition 

method and gives only the clustering tendency of the spectroscopic profiles of tea sample; 

therefore, it was decided to perform supervised multivariate statistical methods; partial 

least square-discriminant analysis (PLS-DA), orthogonal partial least square-discriminant 

analysis (OPLS-DA) and soft independent modeling of class (SIMCA) to separate black 

tea samples according to the harvest year.  

Preceding model fitting, data transformation methods were applied to the spectral 

data to eliminate the uninformative variables. These methods are First (FD), second (SD), 

and third derivatives (TD), standard normal variate (SNV), multiplicative scatter 

correction (MSC), Savitzky-Golay filtering (SGF), square transformation (SQ), 

FD+SNV, FD+MSC, SD+SNV, SD+MSC, TD+SNV and TD+MSC.  

In the next step, all 205 samples were divided into two as stated in the literature 

(Quansheng et al., 2009), 137 of which was used to build a model (calibration set) and 68 

of which were used to test the reliability of the generated models (validation set) using a 

stratified random sampling technique. Raw and transformed data obtained from all 

spectroscopic techniques were used to create chemometric models.  

OPLS-DA and PLS-DA analyses were conducted using the 'ropls package' 

(Version 3.12) within the R programming language (Thévenot et al., 2015).  R2, root mean 

square of error (RMSE), latent variable (LV), sensitivity, specificity, and correct 

classification rate for validation were used to test the performance of the models. Score 

plots were also created to check the success of the models. 
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Soft Independent Modeling of Class Analogy (SIMCA) is a chemometric method 

used for classification in multivariate data analysis and it is one of the most widely applied 

class modeling approaches used in the literature, SIMCA builds individual models for 

each class based on PCA. Each class is modeled independently, and each sample is 

assigned to the class where it best fits. SIMCA was applied to all spectral data by using 

the SIMCA statistical software program (version 14.1, Sartorius, Göttingen, Germany). 

Cooman’s plots were constructed to visually compare how well a sample fits into two 

different models (or classes). 

The results of the chemometrics analyses are reported by providing sensitivity, 

specificity and correct classification rate of the established models. Sensitivity indicates 

the proportion of samples from a category that are correctly accepted by the class, while 

specificity is the proportion of objects from other categories that are correctly rejected by 

the corresponding model (Firmani et al., 2019). The correct classification rate is expressed 

as the percentage of tea samples correctly predicted in the harvest year to all tea samples. 

Sensitivity, specificity and correct classification rate were calculated according to the 

definitions given in the literature (Cavdaroglu and Ozen 2023). 

Sensitivity was calculated as the ratio of the number of correctly identified 

samples harvested in 2022 to the total number of samples identified as harvested in 2022 

and its calculation is given below: 
 

    (3.3) 

where samples classified as true positive (TP) and false negative (FN),   

 

Specificity was measured as the ratio of correctly identified number of samples 

harvested in 2021 to number of all samples identified as harvested in 2021 and its 

calculation is given below: 

     (3.4) 

 

where samples classified as true negative (TN) and false positive (FP), 

Finally, the correct classification rate is defined by the percentage of all correctly 

classified tea samples to all tea samples. 
 

  (3.5) 
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CHAPTER 4 

 
RESULTS AND DISCUSSION 

 
4.1. Soluble Solids Content and Total Phenolic Content 

 
The dry matter of black tea, composed of components like polyphenols, caffeine, 

nitrogen, amino acids, carbohydrates, and vitamins, is a key factor in evaluating tea 

quality. These compounds are responsible for the tea's color, flavor, and brightness (Liang 

et al., 2003; Turkmen et al., 2009). Amounts of these compounds in tea depend on the 

growing conditions besides the other factors such as processing and storage conditions 

(Kowalska et al., 2021). 

The ranges and means of the total soluble solids content of black tea samples used 

in this study from two harvest years are listed in Table 4.1. Soluble solids of black tea 

samples varied between 0.032 and 0.175 g/g sample in 2021 while 0.003 and 0.146 g/g 

sample in 2022. Pairwise comparison for dry matters between two different harvest years 

was done using Tukey's Comparison test. A statistically significant difference was 

observed in the 95% confidence interval. 
 

Table 4.1. Soluble solids content of infused tea samples 
 

 
Harvest year 

 
Number of samples 

Soluble solids (g/g sample) 
Range Mean* 

2021 100 0.032-0.175 0.108a 
2022 105 0.003-0.146 0.071b 

*Different letters indicate a statistically significant difference at p<0.05. 
 

In addition to soluble solids content, total phenolic contents (TPC) of infused tea 

samples were also determined. Phenols, which play an important role in sensory 

properties, are quality indicators, as higher phenolic content is generally associated with 

stronger antioxidant activity. Therefore, the presence of polyphenols in tea is also 
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associated with a reduction in cardiovascular risk (Samadi and Fard, 2020). To determine 

the effect of harvest year, pairwise comparison test applied to TPC data.  

For tea samples harvested in 2021, the TPC values varied between 640.5-786.5 mg 

GAE/L, and for 2022 harvesting year, the TPC values varied between 647.7-790.1 mg 

GAE/L. TPC values of tea samples originated from two different harvest years did not 

significantly differ from each other. (p>0.05).  

Considering the solid/water ratio and infusing method in this study, TPC 

measurements were consistent with the values given in literature. In the study conducted 

by Erturk et al. (2010), TPC values of black tea infusions prepared using boiling water 

are reported as 555.53 and 999.927 mg GAE/L for 50 and 100 mg/mL concentration, 

respectively.  
 

Table 4.2. Total phenolic content of infused tea samples 
 

 
Harvest year 

 
Number of samples 

Total Phenolic Content (mg 
GAE/L) 

Range Mean 

2021 100 640.5-786.5 713.5a 

2022 105 647.7-790.1 718.9a 
*Different letters indicate a statistically significant difference at p<0.05. 

 
The fact that the change seen in soluble solids content is not seen in TPC suggests 

that this change might be due to components other than phenolics. Non-phenolic 

substances exist in black tea, such as carbohydrates, amino acids or other organic 

components, might be the cause of this change. 

 

4.2. Spectral Assignments of Tea Samples 

 
The components in black tea are distinctly reflected in their spectral patterns. 

These patterns contain unique spectral features that characterize the presence and 

composition of the chemical components in the tea (Arifah et al., 2022). Mid-IR spectra 

of powdered and infused tea and UV-visible and fluorescence spectra of infused tea 

samples are shown in Figure 4.1. 
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The functional group characteristics of tea samples could be identified by 

analyzing the spectra within the 4000-400 cm⁻¹ range. Moreover, the vibration 

frequencies of the FTIR spectra are divided into the fundamental frequency range of 

approximately 4000-1800 cm-1 and the fingerprint frequency range of 1800-400 cm-1. The 

fingerprint region is a crucial region for the recognition of inorganic and organic 

compounds since it encompasses the vibration frequencies of chemical bonds belonging 

to these compounds. Different functional groups have absorption bands that appear within 

this specific region, and these bands generally have consistent positions (Zhou et al., 

2020).  

Mid-IR spectral data of powdered tea samples could be seen in Figure 4.1a.  

Various peaks are observed in all samples between the wavenumber ranges of 3700-3300 

cm-1, 2950-2700 cm-1, 1750-1500 cm-1 and 1500-500 cm-1, indicating the presence of 

certain functional groups.  

The broad peak around 3300 cm-1 is attributed to O–H stretching vibrations 

originating from hydroxyl groups of phenols, alcohols, carboxylic acid and water 

(Muheddin et al., 2023). Absorption due to stretching vibrations of methyl group  occurs 

around 2930 cm-1 and 2850 cm-1 (Li et al., 2013). Peaks at 650 cm-1 and 1515 cm-1 are 

specifically attributed to the C=O stretching of catechins and flavonoids and the C=C 

stretching of alkenes in caffeine. In addition, peaks around 2930 cm-1, 1700–1460 cm-1, 

1400–1200 cm-1 and 800–500 cm-1 can be associated with tea polysaccharides. 

FT-IR spectra obtained for infused tea samples could be seen in Figure 4.1b.  The 

peaks in the infused tea spectra generally parallel with the powdered tea spectra. The most 

prominent peaks in spectra are observed around 3300 cm-1, 2200 cm-1, 1650-1630 cm-1, 

and within the 1550-800 cm-1 range. 

 As it is true for powder FTIR spectra, the broad peak of O–H stretching modes 

around 3600-3100 cm-1 is representative of the presence of many phenolic compounds in 

infused tea along with water (Arifah et al., 2022; Zhou et al., 2020;). Besides, in this range 

C–H vibrations of saturated and unsaturated fatty acids may also be present but masked 

by the broadness of the other peaks (Arifah et al., 2022). 

Triple and cumulative bonds exhibit stretching vibrations between 2500-2000 cm-

1; therefore, the peak around 2200 cm-1 might indicate a C≡C bond or a C≡N bond (Arifah 

et al., 2022; Zhou et al. 2020). The wavenumber ranges of the stretching vibrations of 

double bonds are around 2000–1500 cm-1 (Giorgini et al., 2024; Zhou et al., 2020). 

Specifically, C=O stretching associated with catechin, and flavonoids is seen around 
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1650-1630 cm-1. However, C=O peaks from other carbonyl groups might overlap in this 

region (Arifah et al., 2022). In addition, vibration of single bonds is around 1550-600 cm-

1.  For example, C-C and C-O bonds from caffeine and phenolic compounds in the spectra 

are located in 1550-830 cm-1 region.  

Water related peaks are predominant features of the infused tea spectra. The main 

reason for this is that these samples contain a significant amount of water as a result of 

infusion.  

By observing the spectra, peak around 3300 cm-1 is more evident compared to 

powdered tea spectra due to the -OH stretching vibrations from water. Moreover, infused 

tea samples exhibit weaker absorption peaks in 1500-800 cm-1 region.  

UV-visible spectroscopy, a method that measures the absorption of ultraviolet and 

visible light that interacts with the sample. The peaks encountered in UV-visible spectra 

are generally non-specific and broad (Arifah et al., 2022). In Figure 4.1c, spectra of 

infused black tea recorded in the 200-800 nm range is shown and broad peak in the 200-

400 nm range and a shoulder in the 250-300 nm range are observed. 

Peak observed in 200-400 nm region is assigned with the n → π electronic 

transition of phenolic compounds (Arifah et al., 2022). Shoulder that can be seen in 350-

380 nm range is associated specifically with theaflavins and thearubigins which are 

present in black tea but not in green tea as a result of the fermentation process of 

polyphenols. These compounds also have influence on the tea's sensory properties like 

color (Arifah et al., 2022; Palacios-Morillo et al., 2013). 

Fluorescence spectroscopy is the last spectroscopic technique used in the scope of 

this thesis, and spectra can be seen in Figure 4.1c. Fluorescence is a sensitive and selective 

method frequently used for the detection of chemical compounds even in small amounts. 

Therefore, fluorescence can be used complementary to other spectroscopic methods 

(Dankowska and Kowalewski, 2019; Du et al. 2020;). 

One major and a smaller peak were identified around 425 nm and 475 nm in 

fluorescence spectra of infused black tea samples as a result of excitation at 320 nm. Peaks 

in 300-500 nm region of fluorescence spectra are mainly attributed to tea polyphenols and 

phenolic compounds (Hu et al., 2023). 

The effective combination of spectroscopic methods and chemometric approaches 

has been frequently reported in literature. In a study, the ability of FTIR spectroscopy to 

categorize Chinese tea types based on tea polysaccharides were evaluated and 100% 

classification was obtained by PLS method (Cai et al., 2015). 
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 In other study, FTIR spectroscopy and adaptive improved probability c-means 

(AIPCM) clustering were used, and 98.5% accuracy rate was achieved in the prediction 

of tea varieties (Zhou et al., 2020). 

UV-visible spectroscopy also has an important application area in distinguishing 

tea varieties and their geographical location. Studies conducted show that this method can 

be an alternative in the evaluation of tea quality (Diniz et al., 2016), or could be used for 

differentiating black, green and Pu-erh tea types (Palacios-Morillo et al., 2013). In a study 

by Seetohul et al. (2013), a technique that used total luminescence spectroscopy and PCA 

data classification to distinguish teas from 11 different plantations in Sri Lanka was able 

to do so with 100% accuracy. 

Furthermore, literature includes studies using more than one spectroscopic 

method and complementary use of spectroscopic techniques with each other. In research 

using combination of UV-visible, synchronous fluorescence and NIR spectroscopy with 

data fusion techniques showed a good ability to classify tea samples according to their 

production processes (Dankowska and Kowalewski, 2019). 

It has been observed that spectroscopic methods provide very effective results for 

the classification and quality assessment of tea varieties. In addition, the enhancement of 

these methods with chemometric methods is used to characterize and control the quality 

of teas in both scientific research and industrial applications. Since chemometric methods 

are sufficient to recognize even very small deviations, entire ranges in all spectral data 

were used in statistical analyses to distinguish two harvest years 

 

 

4.3. Classification Using Soft Independent Modeling of Class Analogies 
(SIMCA) 

 
Spectral data obtained from infused and powdered tea samples were evaluated 

with SIMCA to differentiate two harvest years. SIMCA is a class modeling technique that 

emphasizes similarities among the samples by creating an individual model for each class. 

New samples are then assigned to the class whose model best represents their 

characteristics (Firmani et al., 2019). Several transformations were applied to the data 

prior to SIMCA analysis. Correct classification rates for calibration and validation sets 

and specificity and sensitivity for validation set were calculated.
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4.3.1. Application of SIMCA on FTIR Spectroscopic Data for Tea in 
Powder Form 

 
Considering transmission FTIR spectral data of tea in powder form, the best three 

pre-treatment methods are shown in Table 4.3. These methods include the first derivative, 

as well as the first derivative (FD) combined with SNV and MSC separately. The correct 

classification rates for these models range from 85.4% to 92.7% for the calibration set, 

and from 72.06% to 80.88% for the validation set. All three models show similar 

performance in terms of classification accuracy, sensitivity, selectivity, and efficiency. 

For the validation set, the specificity is calculated as the highest value (1) for both 

the FD and the FD combined with SNV, indicating that all tea samples from 2021 were 

correctly classified. Specificity is calculated as 0.88 in combination with the FD and 

MSC. However, this value does not extend to the 2022 harvest year, where the sensitivity 

ranges from 0.65 to 0.74. The highest sensitivity values, 0.73 and 0.74, are observed in 

the combinations of the FD with SNV and MSC, respectively. Efficiency, defined as the 

geometric mean of sensitivity and specificity, falls between 80.6% and 85.4% across the 

three methods, with the highest efficiency in the FD and SNV combination. Besides, 

model belonging to the combination of the FD and MSC explains 92.1% of the 2021 

harvest model, while the FD and SNV combination explains 88.72%. For the 2022 harvest 

year, these values are 88.9% and 81%, respectively. Based on these metrics, the 

combination of the FD and SNV was chosen as the suitable data preprocessing method in 

the analysis performed with SIMCA.  

Cooman's plot for the SIMCA model of the validation set after applying this pre-

treatment is shown in Figure 4.2. The horizontal and vertical dashed green lines indicate 

the threshold for acceptance by the individual class models. This threshold acceptance is 

1.2 for tea samples harvested in both 2021 and 2022. Since some samples from both years 

do not clearly belong to any one group, and most of the samples from both years are 

clustered closely together, this suggests that the data from both years share similar 

characteristics. 
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4.3.2. Application of SIMCA on FTIR Spectroscopic Data for Infused 
Tea Samples 

 

 

Data processing techniques were applied to the ATR-FTIR spectral data of infused 

tea samples as previously mentioned and the best three preprocessing methods for this 

data modeled with SIMCA are listed in Table 4.4. Given models have similar values for 

correct classification rate, sensitivity, selectivity, and efficiency. Efficiency was 

calculated by taking the geometric mean of sensitivity and specificity. Although 

sensitivity results of these models had the highest value specificity values vary from 0.73 

to 0.75 and correct classification rates for validation set change between 82.35 to 83.82%. 

The number of the principal component in the models established with the best 

three preprocessing methods are also close to each other and are between 4 and 6 for 2021 

and 5 and 7 for 2022. R2, which gives the model's fit to the calibration set, varies between 

0.743-0.954 and 0.709-0.984 for harvest years 2021 and 2022, respectively. The most 

suitable data processing method, MSC, was selected as the approach leading to the highest 

model statistics. In this model, sensitivity and specificity were calculated as 1 and 0.75, 

respectively. The high sensitivity of this model indicates that all teas harvested in 2022 

were correctly identified. However, the relatively low specificity indicates that 11 out of 

33 samples harvested in 2021 were incorrectly classified. This misclassification may be 

due to water-dominant peaks in the ATR-FTIR spectral profile, which may obscure 

critical differences.  

The Cooman's plot belonging to MSC transformed SIMCA model of the 

validation set is shown in Figure 4.3. Threshold acceptance is 1.119 for tea samples 

harvested in 2021 and 1.196 for samples harvested in 2022. The proximity of the 

threshold acceptances may mean that both models have similar performance. However, it 

is seen that some samples from 2022 harvesting year do not fit well into the defined 

classes of the SIMCA model.  Although there is a tendency for the two harvest years to 

differ from each other it can be said that the two harvest years are very close to the origin 

and there is significant overlap between the samples.  



 

41 

 
Ta

bl
e 

4.
4.

 S
IM

C
A

 re
su

lts
 o

f F
TI

R
-A

TR
 d

at
a 

fo
r t

he
 d

iff
er

en
tia

tio
n 

of
 b

la
ck

 te
a 

ac
co

rd
in

g 
to

 h
ar

ve
st

 y
ea

r 
 

        

*T
he

se
 v

al
ue

s c
or

re
sp

on
d 

to
 v

al
id

at
io

n 
se

t. 
 

D
at

a 
T

ra
ns

fo
rm

 
M

et
ho

d 

C
or

re
ct

 C
la

ss
ifi

ca
tio

n 
R

at
e 

(%
) 

Se
ns

iti
vi

ty
* 

Sp
ec

ifi
ci

ty
* 

E
ff

ic
ie

nc
y 

(%
) *

 

N
um

be
r 

of
 

R
2*

 
Pr

in
ci

pa
l 

C
om

po
ne

nt
s*

 

 
C

al
ib

ra
tio

n 
V

al
id

at
io

n 
 

 
 

20
21

 
20

22
 

20
21

 
20

22
 

1st
 

D
er

iv
at

iv
e 

86
.8

6 
82

.3
5 

1 
0.

73
 

85
 

4 
6 

0.
74

3 
0.

70
3 

 
 

 
 

 
 

 
 

 
 

SN
V

 
87

.5
9 

83
.8

2 
1 

0.
75

 
87

 
6 

5 
0.

95
4 

0.
97

9 
 

 
 

 
 

 
 

 
 

 
M

SC
 

86
.8

6 
83

.8
2 

1 
0.

75
 

87
 

6 
7 

0.
95

4 
 

0.
98

4 
 

 
 

 
 

 
 

 
 

 



 

42 

 

Fi
gu

re
 4

.3
. C

oo
m

an
’s

 p
lo

t o
bt

ai
ne

d 
fr

om
 S

IM
C

A
 a

na
ly

si
s o

f F
TI

R
-A

TR
 d

at
a 

fo
r t

he
 d

iff
er

en
tia

tio
n 

of
 b

la
ck

 te
a 

ac
co

rd
in

g 
to

 h
ar

ve
st

 y
ea

r 
(s

am
pl

es
 h

ar
ve

st
ed

 in
 2

02
1 

re
pr

es
en

te
d 

by
 o

ra
ng

e 
cy

cl
es

, s
am

pl
es

 h
ar

ve
st

ed
 in

 2
02

2 
re

pr
es

en
te

d 
by

 m
ar

oo
n 

ci
rc

le
s)



43 

4.3.3. Application of SIMCA on UV-Visible Spectroscopic Data for 
Infused Tea Samples 

 

 

As in other spectroscopic data evaluations, UV-visible spectroscopic data 

were also analyzed with SIMCA after various transformations. The data obtained 

from SIMCA modeling are given in Table 4.5. 

It was found that the correct classification rate was over 90% for all data 

processing methods in the calibration set and varied between 80.88% and 91.18% 

for the validation set. Sensitivity values were calculated between 0.84 and 0.94, 

while specificity results were between 0.78 and 0.94. The second derivative pre-

processing has the highest value for both parameters. It can be said that for this 

data transformation, the model performed quite well in correctly identifying the 

teas harvested in both years with a sensitivity and specificity of 0.94. Considering 

the correct classification rates and efficiency, the results obtained in this model 

are higher than the results obtained from the other spectral data. This model is 

effective in correctly classifying the samples and distinguishing different groups 

with a good level of reliability. Additionally, the R² value of 0.573 for the second 

derivative indicates that approximately 57.3% of the variance in the data is 

explained by the model, which is a fair fit. Although not a perfect fit, it does 

indicate that the model is able to explain a large portion of it. 

Figure 4.4 presents the Cooman's plot for validation set's second derivative 

transformed SIMCA model. Both models share the same threshold value of 1.212. 

A certain number of samples that were taken in both years are beyond model 

thresholds since they are not well explained by these models. However, most 

samples are highly grouped within the critical boundaries. 
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4.3.4. Application of SIMCA on Fluorescence Spectroscopic Data 
for Infused Tea Samples 

 

 

Similar to the evaluation of other spectroscopic data, fluorescence 

spectroscopic data were analyzed using SIMCA after various data 

transformations. Data transformation methods, SNV and SNV combined with the 

FD and SD resulted the highest performance indicators listed in Table 4.2. 

The correct classification rate of the calibration set varied between 67.88 

and 88.32%. This value was found between 73.53 and 88.24% for the validation 

set and the highest value for both sets was found in the combination of the SD 

with SNV. In the model created with this data transformation method, efficiency 

was found to be 88.5 and was selected as the best data pretreatment method. In 

the model obtained with the SD transformation of SNV, the number of principal 

components is 15 for both 2021 and 2022 harvest years and this model can explain 

approximately 80% of the harvested tea. 

Figure 4.5 shows the Cooman's plot for SIMCA model after 

transformation of validation set data with a combination of SD and SNV. 

Threshold acceptance is 1.245 for tea samples harvested in both 2021 and 1.237 

for those from 2022.  

The samples for this model have a wider distribution, with some falling 

outside the thresholds for both years indicating that these models do not fully 

explain the data. Moreover, some samples positioned between the two thresholds 

may reflect characteristics common to both models. This suggests that while the 

models capture the key aspects of the data, they may not be comprehensive 

enough to distinguish all the nuances between the tea samples from the two 

harvest years. 

 

. 
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4.4. Classification Using Partial Least-Square Discriminant (PLS-DA) 
and Orthogonal Partial Least-Square Discriminant Analyses (OPLS-
DA) 
 

Spectral data obtained from powdered tea and infused tea samples were also 

analyzed using PLS-DA and OPLS-DA to investigate whether classification by harvest 

year was possible. Discriminant classification refers to methods used to classify samples 

based on their significant differences. PLS-DA and OPLS-DA are effective when dealing 

with highly correlated variables such as in spectroscopic data (Firmani et al., 2019). 

Thirteen different data transformations, along with the raw data, were applied 

before model fitting. The classification models were built in three iterations, each time 

using a newly randomized dataset for calibration and validation. In each iteration, LV, R2, 

RMSE, sensitivity, specificity and efficiency were assessed for both calibration and 

validation models. The final models were selected based on their consistent and strong 

performances across all three iterations. This method aimed to reduce the impact of 

specific samples on model development (Cavdaroglu and Ozen, 2023). This approach 

was applied to data from all spectroscopic techniques examined in the study 

 

4.4.1. Application of OPLS-DA and PLS-DA on FTIR Spectroscopic 

Data for Tea Samples in Powder Form 

 
The top three models for FTIR powder spectra, along with results from the three 

iterations, are shown in Table 4.7. All three models consist of various combinations of SD 

preprocessing. The resulting models showed consistently high correct classification rate, 

sensitivity, specificity, and R² values, low RMSE values for both calibration and 

validation regardless of the sample used. As can be seen from Table 4.7, the correct 

classification rate for the validation set of these models was found to be higher than 90% 

for all of them and an average of 93.3%, the sensitivity was 0.9 on average, and the 

specificity was the highest for all models. All these values are the same and high in all 

models; therefore, the models show strong sample identification according to the harvest 

year of the samples.  
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Figure 4.6a displays the SD of black tea samples spectra, which is one of the 

transformations that generated a successful discriminating model. The spectra of the 

samples from different years differ visibly in the 1550–800 cm-1 region. The main 

components of this spectral region are pigments, phenolic compounds, caffeine and 

carbohydrates. Furthermore, chemometric analysis can uncover differences that might not 

be readily apparent. Figure 4.6b displays the score plot for the second derivative OPLS-

DA model. This plot shows that the data from 2021 and 2022 are clearly differentiated 

from one another in terms of the first latent variable (LV1). According to the established 

model, chemometric analysis and FTIR transmission data evaluation may successfully 

separate black tea samples based on the year of harvest. 

 

 

4.4.2. Application of OPLS-DA and PLS-DA on FTIR Spectroscopic 
Data for Infused Tea Samples 

 
The best models developed with the FTIR spectroscopic data obtained from 

infused tea samples along with the outcomes of three iterations are listed in Table 4.8. 

These models offer acceptable classification abilities with a high correct classification 

rate, sensitivity, and specificity, which range from 90.33 to 95%, 0.87 to 0.92, and 0.97 

to 1, respectively. Figure 4.7a shows the square transformed data, and Figure 4.7b 

displays the score plot for this model.  

The transformed spectra reveal noticeable differences in the peak corresponding 

to the 3600-3000 cm⁻¹ region. The score plot for the samples from the two harvest years 

shows some overlap. In comparison to the FTIR transmission spectra, water extracts from 

tea samples exhibit comparatively modest absorption peaks in the 1500–800 cm⁻¹ area.  

In certain spectral regions, water-related peaks are the most noticeable features. 

Nonetheless, useful models have been developed to accurately differentiate tea samples 

based on their harvest year.  

 
 



 

51 

  Ta
bl

e 
4.

7.
 S

ta
tis

tic
al

 p
ar

am
et

er
s o

f y
ea

r-t
o-

ye
ar

 d
is

cr
im

in
at

io
n 

ch
em

om
et

ric
 m

od
el

s o
f b

la
ck

 te
a 

in
 p

ow
de

r f
or

m
 fo

r F
TI

R
-T

ra
ns

m
is

si
on

 
da

ta
 

 

                  
*T

he
se

 v
al

ue
s c

or
re

sp
on

d 
to

 v
al

id
at

io
n 

se
t. 

 

D
at

a 
T

ra
ns

fo
rm

 a
nd

 
A

na
ly

si
s 

M
et

ho
d 

L
V

* 
R

2*
 

R
M

SE
* 

C
or

re
ct

 
C

la
ss

ifi
ca

tio
n 

R
at

e 
(%

) *
 

Se
ns

iti
vi

ty
* 

Sp
ec

ifi
ci

ty
* 

 
 

 
 

 
 

 
2nd

 d
er

iv
at

iv
e 

+ 
SN

V
/ P

LS
-D

A
 

7 6 7 

0.
99

0 
0.

98
4 

0.
99

3 

0.
05

0 
0.

06
4 

0.
04

2 

95
 

90
 

95
 

0.
92

 
0.

85
 

0.
92

 

1.
00

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 

2nd
 d

er
iv

at
iv

e 
+ 

M
SC

/ P
LS

-D
A

 
7 6 7 

0.
99

2 
0.

98
5 

0.
99

2 

0.
04

4 
0.

06
3 

0.
04

6 

95
 

90
 

95
 

0.
92

 
0.

85
 

0.
92

 

1.
00

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 

2nd
 d

er
iv

at
iv

e/
 

O
PL

S-
D

A
 

1+
3 

1+
4 

1+
4 

0.
92

3 
0.

99
0 

0.
99

0 

0.
14

0 
0.

05
0 

0.
05

0 

95
 

90
 

95
 

0.
92

 
0.

85
 

0.
92

 

1.
00

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 



52 

 
 

Fi
gu

re
 4

.6
. a

. S
ec

on
d 

de
riv

at
iv

e 
FT

IR
-T

ra
ns

m
itt

an
ce

 sp
ec

tra
 o

f b
la

ck
 te

a 
le

av
es

, b
. S

co
re

 p
lo

t o
f O

PL
S-

D
A

 m
od

el
 o

bt
ai

ne
d 

fr
om

 se
co

nd
 

de
riv

at
iv

e 
FT

IR
- T

ra
ns

m
itt

an
ce

 b
la

ck
 te

a 
sp

ec
tra

 fo
r t

he
 d

iff
er

en
tia

tio
n 

of
 tw

o 
ha

rv
es

t y
ea

rs
 (s

am
pl

es
 h

ar
ve

st
ed

 in
 2

02
1 

re
pr

es
en

te
d 

by
 re

d 
cy

cl
es

, s
am

pl
es

 h
ar

ve
st

ed
 in

 2
02

2 
re

pr
es

en
te

d 
by

 b
la

ck
 c

irc
le

s

a.
 

b.
 



 

53 

  Ta
bl

e 
4.

8.
 S

ta
tis

tic
al

 p
ar

am
et

er
s o

f y
ea

r-t
o-

ye
ar

 d
is

cr
im

in
at

io
n 

ch
em

om
et

ric
 m

od
el

s o
f i

nf
us

ed
 b

la
ck

 te
a 

fo
r A

TR
-F

TI
R

 d
at

a 
 D

at
a 

T
ra

ns
fo

rm
 

an
d 

A
na

ly
si

s 
M

et
ho

d 

L
V

* 
R

2*
 

R
M

SE
* 

C
or

re
ct

 
C

la
ss

ifi
ca

tio
n 

R
at

e 
(%

) *
 

Se
ns

iti
vi

ty
* 

Sp
ec

ifi
ci

ty
* 

Sq
ua

re
 

tra
ns

fo
rm

ed
/ 

O
PL

S-
D

A
 

1+
11

 
1+

11
 

1+
11

 

0.
80

7 
0.

84
5 

0.
82

2 

0.
23

0 
0.

20
7 

0.
21

9 

95
 

95
 

95
 

0.
92

 
0.

92
 

0.
92

 

1.
00

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 

Sa
vi

tz
ky

-G
ol

ay
 

fil
te

rin
g/

 P
LS

-D
A

 
11

 
15

 
14

 

0.
70

6 
0.

90
4 

0.
88

9 

0.
28

2 
0.

16
5 

0.
17

4 

90
 

90
 

95
 

0.
91

 
0.

85
 

0.
92

 

0.
90

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 

3rd
 d

er
iv

at
iv

e/
 

PL
S-

D
A

 
6 6 6 

0.
98

9 
0.

98
8 

0.
98

8 

0.
05

4 
0.

05
7 

0.
05

5 

86
 

95
 

90
 

0.
83

 
0.

92
 

0.
85

 

0.
89

 
1.

00
 

1.
00

 
 

 
 

 
 

 
 

 *T
he

se
 v

al
ue

s c
or

re
sp

on
d 

to
 v

al
id

at
io

n 
se

t  



 

54 

 

Fi
gu

re
 4

.7
. a

. S
qu

ar
e 

tra
ns

fo
rm

ed
 F

TI
R

 sp
ec

tra
 o

f b
la

ck
 te

a 
in

fu
si

on
s, 

b.
 S

co
re

 p
lo

t o
f O

PL
S-

D
A

 m
od

el
 o

bt
ai

ne
d 

fr
om

 sq
ua

re
 

tra
ns

fo
rm

ed
 F

TI
R

 b
la

ck
 te

a 
in

fu
si

on
 sp

ec
tra

 fo
r t

he
 d

iff
er

en
tia

tio
n 

of
 tw

o 
ha

rv
es

t y
ea

rs
 (s

am
pl

es
 h

ar
ve

st
ed

 in
 2

02
1 

re
pr

es
en

te
d 

by
 re

d 
cy

cl
es

, s
am

pl
es

 h
ar

ve
st

ed
 in

 2
02

2 
re

pr
es

en
te

d 
by

 b
la

ck
 c

irc
le

s

a.
 

b.
 



55 

4.4.3. Application of OPLS-DA and PLS-DA on UV-Visible 
Spectroscopic Data for Infused Tea Samples 

 
The UV-visible spectroscopic data were analyzed using PLS-DA and OPLS-DA 

after applying various transformations. Overall, the statistical models developed were 

quite successful; however, the models highlighted in Table 4.9. stand out as the best due 

to their high R² values and low RMSE, along with strong classification rates, sensitivity, 

and specificity. One of the transformed spectra, specifically the first derivative-SNV 

transformation, is displayed in Figure 4.8a, indicates clear differences in the 200-300 nm 

range. Additionally, the score plot from the OPLS-DA model using the FD-SNV 

transformation demonstrates a clear separation of the infused tea samples along the first 

latent variable (LV) in Figure 4.8b. 

 This separation suggests that there are significant differences in the pigment 

composition of the black tea samples from the two harvest years, as UV-visible 

spectroscopy primarily detects color compounds. 

 
4.4.4. Application of OPLS-DA and PLS-DA on Fluorescence 
Spectroscopic Data for Infused Tea Samples 

 

 

Among the best models for using fluorescence spectra to differentiate black tea 

depending on harvest year are the PLS-DA and OPLS-DA analyses of the raw data, as 

well as the OPLS-DA of the FD transformed data which are listed in Table 4.10. The FD 

transformed OPLS-DA model achieved a correct classification rate of 98.33%, with a 

sensitivity of 1 and specificity of 0.97. The spectra from this transformation are illustrated 

in Figure 4.9a, while the score plot is shown in Figure 4.9b.  

Notable differences can be observed throughout the spectral range of the samples 

from different harvest years. Additionally, the score plot demonstrates a strong separation 

of the samples corresponding to the different harvest years along the first latent variable 

(LV). 
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There are previous studies combining various spectroscopic methods with 

chemometrics to determine different properties of tea. In the study conducted by (Diniz 

et al., 2016), various multivariate statistical analyses including PLS-DA and SIMCA were 

performed on UV-visible spectra of tea infusions in order to distinguish geographical 

origin and variety. In another study, UV-visible and FTIR data were investigated to 

distinguish between black and green tea types and it was concluded that these two 

spectroscopic methods can be used for this purpose (Arifah et al., 2022). Furthermore, 

combination of UV-Vis, NIR and fluorescence spectroscopy were used with the help of 

different chemometric methods for the classification of tea samples (Dankowska and 

Kowalewski, 2019). Combination of near and mid infrared spectroscopy has also been 

used to determine the dry-matter content in tea with chemometric methods, including PLS 

(Li et al., 2013). Fluorescence spectroscopy is aimed to determine the catechin content in 

tea rapidly (Du et al., 2020). 

Previous studies combining spectroscopic methods with SIMCA and PLS 

analysis-based techniques also exist. In the study by Firmani et al. (2019), NIR 

spectroscopy with PLS-DA and SIMCA methods were used to detect the adulteration of 

black tea. Although both methods were successful in distinguishing these authentic 

samples from adulterated samples, the PLS-DA method proved to be a highly effective 

method for this type of studies by correctly classifying 138 out of 140 test samples. In 

another study, SIMCA method was used to rapidly identify tea varieties using spectral 

data obtained from NIR spectroscopy, and only one of the four tea varieties was predicted 

with 80% accuracy, while the remaining three varieties were predicted with 100% 

accuracy. In the same study, PLS was used to estimate the caffeine and total polyphenol 

content in tea (Chen et al., 2006). 

 The criteria used to construct models is the most important difference between 

PLS analysis-based techniques and SIMCA. While PLS finds directions in the data space 

that discriminate against classes directly, PCA sub-models in SIMCA are computed with 

the objective of capturing variations within each class. As a result, in these situations, 

SIMCA classification consistently provides lower results compared to PLS analysis-

based techniques (Firmani et al., 2019; Galtier et al., 2011).  Although studies in literature 

have proven that spectroscopic and chemometric methods are effective in rapid and 

effective food analysis and predicting content in food substances, as far as our knowledge 

goes, no investigation has performed for tea harvested in different years until this study.  



61 

This study utilized FTIR, UV-visible, and fluorescence spectroscopy combined 

with chemometric models to classify black tea samples by harvest year. Each technique 

offers shared benefits, including non-destructiveness, rapid analysis, and minimal sample 

preparation, while also demonstrating unique strengths and limitations. 

FTIR spectroscopy effectively captured chemical details, especially for phenolic 

compounds, and delivered high classification accuracy for both powdered and infused 

samples. Its sensitivity to specific molecular structures (e.g., -OH, C=O, C-H) enables 

detailed chemical profiling, aiding in year-based differentiation. The slightly reduced 

accuracy for infused samples may result from water interference. 

UV-visible spectroscopy provided insights into pigment composition, particularly 

theaflavins and thearubigins, yielding the highest classification accuracy for infused 

samples. While effective for pigments and UV-visible absorbing compounds, its scope is 

narrower than FTIR. 

Fluorescence spectroscopy excelled in identifying phenolic compounds, 

achieving the highest classification rate. It distinguished samples by detecting minor 

compositional shifts in fluorescent compounds, such as tea polyphenols, with peak 

intensities around 425 nm and 475 nm highlighting harvest-year differences. 

Preprocessing methods, like SNV, MSC, and derivatives, enhanced model 

performance by reducing noise. Among chemometric models, PLS-DA and OPLS-DA 

performed well, with OPLS-DA showing slightly better differentiation by excluding 

uncorrelated variation. 

Despite promising results, the study’s limitations include the complexity of 

chemometric models for practical applications and limited geographic scope. Future 

research could broaden geographic sampling and span more years to capture year-to-year 

variability, strengthening the generalizability and robustness of findings. 

These spectroscopic techniques hold promise for routine quality control in the tea 

industry. Their ability to classify tea by harvest year enables rapid assessment of batch 

consistency and identification of compositional deviations due to environmental factors. 

UV-visible and fluorescence spectroscopy are especially valuable for monitoring phenolic 

compounds and pigments, key to flavor and quality. Implementing these methods at 

critical points can help producers ensure consistent quality, aligning with consumer 

expectations.  
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CHAPTER 5 

 

CONCLUSION 

 

Spectroscopic analyses offer the advantages of speed, accuracy, and 

environmental friendliness. Consequently, numerous spectroscopic methods and studies 

on tea— the world’s most consumed beverage after water, valued for its unique flavor, 

therapeutic benefits, and antioxidant properties— are readily available in literature. 

However, most of the literature on the application of various spectroscopic techniques in 

tea primarily focuses on classifying the product by its variety, geographical origin, or 

identifying specific compounds. Whereas the extensive capabilities of spectroscopic and 

chemometric methods can also be effectively and easily applied to monitor changes in tea 

quality across different harvest years. Monitoring changes in tea quality is important since 

plants are critically affected by factors such as seasonality, water availability, 

geographical conditions, light exposure, altitude, microbial presence, temperature and 

soil properties related to climate. In addition to these critical factors, changes in average 

precipitation and climate conditions due to global warming, especially in recent years, 

and changes such as increasing Earth's surface temperature have also reduced agricultural 

productivity. Therefore, it is vital for both producers and future research to be able to 

quickly and easily determine annual and seasonal changes with spectroscopic methods. 

Results of spectroscopic and chemometric techniques provide a comprehensive 

perspective, and the information collected can help clarify quality criteria of the product. 

In this study, the FTIR, UV-visible and fluorescence spectral profiles, together with the 

help of multivariate statistical analyses PLS-DA, OPLS-DA, and SIMCA, proved that a 

total of 205 tea samples harvested in two different years, correctly distinguished black tea 

according to the harvest year. Combination of spectroscopic methods with multivariate 

statistical analysis, can support the evaluation process of new harvests, enable the 

development of efficient products in the following years, and enable healthier decisions 

to be made during quality control. Finally, it can allow for a better understanding of the 

effects of the above-mentioned factors on plants. Future research should aim to broaden 

sample range by incorporating diverse geographical regions and processing conditions, 

enhancing the validation and generalizability of these models for wider applications. 
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