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ABSTRACT

ALGEBRAIC STRUCTURES FOR CLASSICAL KNOTS, SINGULAR
KNOTS AND VIRTUAL KNOTS

The purpose of this thesis is to establish algebraic structures on knots. Knot theory
is a field in mathematics that investigates the properties and structures of knots. The main
objective is to define knot invariants for the purpose of classifying knots. In order to
do this, the thesis first provides some fundamental definitions of knots and links. Then
we define the colorability of the knot, which we can use as a knot invariant. To further
elaborate on this subject, we give definitions of the algebraic structures known as quandle,
singquandle, and bondle. Using these determined structures, we provided variables for
classifying the circuit topology. Circuit topology refers to a mathematical method used
to classify the categorizes of connections between contacts. This thesis aims to classify
the structure of proteins using circuit topology and knot theory. Consequently, we define
an invariant for the circuit topology. At the end, the thesis determines these structures on
virtual knots. In addition, it offers a definition and an example instance of this topic.
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ÖZET

Klasik Düğümler, Singüler Düğümler ve Sanal Düğümler İçin Cebirsel
Yapılar

Bu tezin amacı, düğümler üzerine cebirsel yapılar kurmaktır. Düğüm teorisi,
düğümlerin özelliklerini ve yapısını araştıran matematik dalıdır. Ana hedefimiz, düğüm-
lerin sınıflandırılmasını anlamak için düğüm değişkenlerini tanımlamaktır. Bunu gerçek-
leştirebilmek için, ilk olarak temel düğümleri tanımlarını sunacağız. Daha sonra, bir
düğüm değişmezi olan renklendirilebilirlik kavramını açıklayacağız. Bu konuyla ilgili
daha detaylı bilgi sağlamak amacıyla, quandle, singquandle ve bondle olarak bilinen ce-
birsel yapıların tanımlarını vereceğiz.

Bu cebirsel yapılar, biyoloji alanında proteinlerle ilgili çalışmalara olanak sağlar.
Bu yapılar sayesinde, düğüm teorisinde kullandığımız singüler yapılar ile protein yapıları
arasında bir ilişki kuruyoruz. Proteinlerin yapılarını ve proteinlerin birbirine bağlanma
süreçlerini inceliyoruz. Devre topolojisi, proteinlerin birbirine bağlanmalarını açıklar.
Kurduğumuz bu yapılar ile devre topolojisi için değişmezler tanımlayacağız. Son olarak,
bu yapıları daha da geliştirmek amacıyla sanal düğümler üzerine çalışmalar yapacağız.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. FUNDAMENTAL NOTIONS OF KNOTS AND LINKS . . . . . . . . . . . . 3

CHAPTER 3. COLORABILITY OF KNOTS AND LINKS . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1. Tricolorability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Fox n-Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. The coloring matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 4. ALGEBRAIC STRUCTURE FOR KNOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1. Kei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Quandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1. Alexander Quandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3. Singquandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1. A Review of singular knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2. Singquandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4. Bondles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 5. CIRCUIT TOPOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1. A Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2. Coloring invariant for circuit topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

CHAPTER 6. VIRTUAL KNOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1. A Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1. A Review of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.2. A Review of Gauss codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2. Virtual Singquandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

CHAPTER 7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



LIST OF FIGURES

Figure Page

2.1 Unknot and trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Examples of link: Unlink, Hopf link, Whitehead link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Self-intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Classical Reidemiester Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 An example of a polygonal knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.7 An example of polygonal link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.8 The elementary isotopy Δ-move and Δ−1-move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.9 The move Δ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.10 The move Δ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.11 The move Δ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.12 The move Δ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.13 Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.14 The four types of oriented first Reidemeister move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.15 The four types of oriented second Reidemeister move . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.16 The eight types of oriented third Reidemeister move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.17 Generate oriented Reidemeister Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.18 Crossing number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.19 Shared crossings are 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.20 Positive and negative crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.21 Hopf link with two different orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.22 Whitehead link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.23 Oriented Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Two colored diagrams of trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Colored Reidemester moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Colorable trefoil and non colorable figure eight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Unknot colored with one color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Two regular projections of the trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Labelled arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Fox-n coloring Reidemeister move 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Fox-n coloring Reidemeister move 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Fox-n coloring Reidemeister move 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

viii



3.10 Trefoil knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Figure eight knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Operation on crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Kei Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Relation of the Kei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Labelled a diagram of trefoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Examine two crossings for Hopf Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Labelled a diagram of figure eight knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Quandle coloring at a positive and negative crossing respectively . . . . . . . . . . . . . . . 33
4.8 Quandle Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Alexander quandle relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Figure eight knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.11 Two examples of singular knot and link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12 Singular Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.13 Quandle coloring at a positive, negative, and singular crossing respectively . . . . 40
4.14 Singquandle Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.15 Parallel and anti-parallel strands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.16 Bondle Reidemeister Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 These represent circuit topology, generalized circuit topology, and knot theory

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Structure of a protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Structure and topology figuration general, series, parallel and cross relation . . . 46
5.4 Series, parallel, and cross contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 h-contact and s-contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Two h-contacts for series arrangement, S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Two h-contacts for parallel arrangement, P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Two h-contacts for cross arrangement, C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Oriented Bondle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 Crossings and virtual crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Virtual Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Virtual knot on the torus and its projection on the plane . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Trefoil and Hopf link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Virtual quandle coloring at a virtual crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.6 Virtual Reidemeister moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7 Virtual Singquandle Reidemeister move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



6.8 Three types crossing: classical crossings, virtual crossing, and singular cross-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



CHAPTER 1

INTRODUCTION

A knot, in the subject of topology, is a closed, non-self-intersecting curve that is
embedded in three-dimensional space. The basic purpose of knot theory is to study and
classify these knots. What are the conditions for two knots to be classified as equal or not
equal? How can these two knots deform each other under ambient isotopy? The purpose
of classifying two knots is to define the invariant of knots. It can be said that two knots
are equivalent if and only if they can be transformed into each other by finite Reidemeister
moves(Reidemeister, 1926). Those who provide these moves are invariants of the knots.
This thesis, will specifically focus on some invariants. It will explain the colorability that
is invariant. Colorability is the main idea under the other defined invariant in this thesis.
The fundamental idea of coloring a knot involves assigning colors to each arc of a knot
diagram according to rules, which remain invariant under Reidemeister moves (Dixon,
2010), (Livingston, 1993), (Carter et al., 2014). This coloring helps classify different
knots and provides information on their structural properties. However, coloring cannot
be sufficient to classify all knots. Define different invariants, which are the main idea of
colorability ared defined in this thesis. These are algebraic structures for classical knots,
singular knots, and virtual knots. This algebraic structure be shown in four different ways:
quandle, singquandle, bondle, and virtual singquandle.

A quandle is an algebraic structure for classical knots (Kauffman and Manturov,
2004), (Elhamdadi and Nelson, 2015),(Joyce, 1982). It is defined by a set with a binary
operation that is invariant under Reidemeister moves. Quandles are important for under-
standing knot invariants because they provide a way to explain and label the crossings and
interactions on a knot diagram. The axioms of the quandle provide coloring information
for the knot. This information gives some equations and calculations for knots. All of
these provide us with a more comprehensive classification of knots. After the quandle
structure, the singquandle structure is defined for singular knots (Ceniceros et al., 2021),
(Adams et al., 2020), (Ceniceros et al., 2021),(Joyce, 1982). Singular knots have a singular
crossing that has a double crossing (self-intersection) in at least one crossing(Juyumaya
and Lambropoulou, 2009). We use these crossings because the other aim this thesis has
is to study protein structure. In mathematics, a singular knot structure is similar to the
structure of proteins. Due to this, we define a quandle structure for singular knots called a
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singquandle. Singquandles extend the structure of quandles. This structure is a connection
between quandles and bondles. We expand the singular crossing with a bond, and we will
get a better understanding of the protein structure with the bondle structure. This study
provides the natural flow of proteins with the bondle structure.

Bondles are another algebraic structure in knot theory (Adams et al., 2020),
(Ceniceros et al., 2021). Bondles help develop invariants that can distinguish between
knots and, similarly, quandles and singquandles. This study falls under circuit topol-
ogy. Circuit topology analyses connections in biology, electrical engineering, and graph
theory(Golovnev and Mashaghi, 2020), (Mashaghi et al., 2014). By representing them
as circuits, researchers can find much information about knots. This interdisciplinary
approach offers new methods for exploring knot theory and protein structure. Therefore,
bondle gives an invariant in circuit topology.

Finally, the quandle structure is defined on virtual knots(Kauffman and Manturov,
2004). Virtual knots expand the classical knot theory by including virtual crossings.
Virtual crossings provide a more comprehensive classification of knots and present a
new study field. These structures defined by virtual knots give us an invariant. In this
section, the aim is combine virtual knots with singular knots. So, the structure of a virtual
singquandle was defined in the study. This gives us an invariant for a knot that includes
three different crossings.

The thesis is organized as follows. In Section 2, we give the basic definitions and
properties of knots and links. In Section 3, we define tricolorable, Fox-n coloring, and
coloring matrix. In Section 4, we give algebraic structures for knots. In Section 5, we will
define the circuit topology. In Section 6, first define virtual knots, then we define virtual
quandles and virtual singquandles.
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CHAPTER 2

FUNDAMENTAL NOTIONS OF KNOTS AND LINKS

Mathematicians have been trying to classify and categorize all conceivable knots
since the late 1800s, when the first knot tables were produced. Peter Guthrie Tait, a
Scottish physicist, aimed to systematically classify knots by their crossing number, taking
inspiration from Lord Kelvin’s "Vortex Theory of the Atom." After the addition of Rev-
erend Thomas P. Kirkman from England and mathematician Charles Newton Little from
America, a table was constructed that listed all prime alternating knots with up to 11 cross-
ings and prime non-alternating knots with up to 10 crossings. While there were important
developments in the first half of the 20th century, such as the development of Reidemeister
moves and the Alexander polynomial, the most significant developments occurred in the
second half. Moreover, these developments continue through expansion. This section
will give fundamental definitions (Adams, 1994),(Kauffman, 1987), (Kauffman, 2001),
(Rolfsen, 2003).

Definition 1 A knot is a loop that is non self-intersecting. It is embedded in a three-
dimensional Euclidean space, represented as R3.

Definition 2 The simplest knot is the trivial knot or unknot, which is just an unknotted
circle.

The other simplest knot is called a trefoil knot. In the next figure, unknot and
trefoil can be seen.

Figure 2.1. Unknot and trefoil

Definition 3 A link is a disjoint union of knots. We denote a link by an L. Each knot
3



forming an L is referred to as the components of L.

Figure 2.2. Examples of link: Unlink, Hopf link, Whitehead link

Definition 4 Let two knots 𝐾1,𝐾2 in R3. These are ambient isotopy of R3 taking 𝐾1 to
𝐾2 is a smooth map ℎ is from R3 × [0,1] to R3, such that

• ℎ(𝑥, 𝑡0) is a diffeomorphism from R3 to R3 for all 𝑡0 in [0,1]

• ℎ(𝑥,0) : R3 → R3the identity map and ℎ(𝐾1,1) = 𝐾2.

Definition 5 Let 𝐾1 and 𝐾2 be two knots in three-dimensional Euclidean space. 𝐾1 and
𝐾2 are considered equal, represented by 𝐾1 ∼ 𝐾2, if there is an ambient isotopy that
transforms 𝐾1 into 𝐾2.

Definition 6 A Knot diagram or projection is a planar projection of a knot in R2 with
extra over/under information endowed at each self-intersection of the projection curve.

Figure 2.3. Self-intersection Figure 2.4. Projection

Theorem 1 Reidemeister Theorem (Kurt Reidemeister,1927) Two link diagrams in 𝑆3

constitute the same ambient isotopy class if and only if they can be transformed into each
other by a finite number of Reidemeister moves Reidemeister (1926).
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Figure 2.5. Classical Reidemiester Moves

Proof The Reidemeister Theorem extends to polygonal knots and links.
Firstly, some definitions will be provided for the purpose of presenting proof.

Definition 7 A polygonal knot 𝐾 is a representation of a knot in three-dimensional space.
It is composed of a finite sequence of straight line segments, or edges, which do not have
self-intersections. Each edge is connected to its neighboring edges at vertices, creating a
continuous and complete loop. A polygonal link in R3 is a collection of polygonal knots
that are limited in number and do not intersect each other.

Example 2.1 We have two examples of polygonal knots and links.
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Figure 2.6. An example of a polygonal knot

Figure 2.7. An example of polygonal link

Definition 8 An elementary isotopy refers to the process of replacing an edge of a link 𝐿
in R3 with two edges of a triangle that are not in contact with the other edges of 𝐿. An
elementary isotopy generated by two moves.

Figure 2.8. The elementary isotopy Δ-move and Δ−1-move

Proof Theorem 1. In order to demonstrate that two link diagrams in 𝑆3 belong to
the same ambient isotopy class, it is necessary and sufficient to prove that they can be
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transformed into each other by a finite number of Reidemeister moves. We prove only if
part induction.
First we start with one strand, no strand intersecting in Δ0-move

Figure 2.9. The move Δ0

For one strand, one strand intersecting in Δ1-move

Figure 2.10. The move Δ1

For two strands, one strand intersecting in Δ2 - move

Figure 2.11. The move Δ2
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For three strands in Δ3 - move

Figure 2.12. The move Δ3

The moves shown in figures 2.9, 2.10, 2.11, and 2.12 are essentially fundamental
moves that connect with classical Reidemeister moves. When there are n strands in the
Δ-moves, we use subdivision. This can be seen in figure 2.13.

Figure 2.13. Subdivision

Thus, we can show that for n strand, completing the proof. □

Definition 9 An oriented link diagram is one in which each arc is directed in such a way
that the oriented crossings.

We can apply Reidemeister moves for oriented link diagrams Polyak (2010). There are
four different types for the first Reidemeister move.
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Figure 2.14. The four types of oriented first Reidemeister move

Again, there are four different types for the second Reidemeister move.

Figure 2.15. The four types of oriented second Reidemeister move

Finally, there are eight different types for the third Reidemeister move.
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Figure 2.16. The eight types of oriented third Reidemeister move

Theorem 2 (M.PolyakPolyak (2010)) Let 𝐿1 and 𝐿2 be two oriented link diagrams. These
diagrams are the same oriented link. There exists a pass from 𝐿1 to 𝐿2 with a finite series
of four oriented Reidemeister moves. We see these moves in the figure 2.17.
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Figure 2.17. Generate oriented Reidemeister Moves

Definition 10 A knot invariant is a function defined as map 𝐼 knot diagrams go to𝑀 where
𝑀 is a mathematical set such that if 𝐾1 and 𝐾2 are ambient isotopic then 𝐼 (𝐾1) = 𝐼 (𝐾2).

Definition 11 The crossing number 𝑐𝑟 (𝐾) of a knot𝐾 , is the smallest number of crossings
of any diagram of the knot K.

Example 2.2 We have two knots: unknot and trefoil.

Figure 2.18. Crossing number

The unknot has 𝑐𝑟 (𝐾) = 0 while the trefoil knot has 𝑐𝑟 (𝐾) = 3.

Theorem 3 The crossing number is an invariant of the knot.

Proof Assuming that the diagram of 𝐾1 has minimum a regular diagram 𝐷1. It is a
diagram of 𝐾1 that has a minimum number of crossings. Let 𝐾2 is equal to 𝐾1 and suppose
that 𝐷2 is the minimum regular diagram. We assume 𝐾1 and 𝐾2 are equivalent. Then 𝐷2
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as a regular diagram of 𝐾1. We can write these inequalities,

𝑐𝑟 (𝐷1) ≤ 𝑐𝑟 (𝐷2). (2.1)

Also, since (𝐷2) is a diagram of K2, it follows from the definition that

𝑐𝑟 (𝐷2) ≤ 𝑐𝑟 (𝐷1). (2.2)

So, we combine these inequalities,

𝑐𝑟 (𝐷1) = 𝑐𝑟 (𝐷2). (2.3)

That is, (𝐷1) is the minimum number of crossing points between all knots that are
equivalent to K. Therefore, it is a knot invariant. □

Definition 12 L be a link diagram. A crossing c of L is called shared if it is shared by
two components of L.

Figure 2.19. Shared crossings are 2 and 3

Definition 13 The linking number of ®𝐿 defines this formula,

𝐿𝑘 ( ®𝐿) =
1
2

∑︁
sign of shared crossings. (2.4)

Choose an orientation for each of the two components in the link and for every positive
crossing, we count +1, and for every negative crossing, we count -1.
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Figure 2.20. Positive and negative crossings

Example 2.3 There are two Hopf links with different orientations, 𝐿 and 𝐿′, both crossings
are shared. Therefore, the computation includes every crossing. When we have a positive
crossing in 𝐿, we find that the linking number is equal to 1. However, when there are
negative crossings in 𝐿′, we find the linking number is -1.

Figure 2.21. Hopf link with two different orientations

Thus, we find 𝐿𝑘 ( ®𝐿) = 1 and 𝐿𝑘 ( ®𝐿′) = −1.

Example 2.4 We have a Whitehead link, 𝐿”. There are four shared crossings. However,
we have that a crossing is not a shared crossing. We show it with a red circle in 2.22. This
crossing is not a contribution to the linking number.
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Figure 2.22. Whitehead link

Thus, we find 𝐿𝑘 ( ®𝐿′′) = 0.

Theorem 4 The linking number is an invariant of oriented links.

Proof We need to verify that the linking number is preserved under oriented Reide-
meister moves.

Figure 2.23. Oriented Reidemeister moves

For the first Reidemeister move, there is no shared crossing. It does not contribute
to the linking number. In the second Reidemeister move, it has no crossing, so the linking
number is 0. When applying the rule, two crossings are shared crossings, and we calculate
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a linking number that is equal to 0. Finally, the third Reidemeister move contribution is -1
for the linking number. The linking number does not change under the third Reidemeister
move. Thus, the linking number is invariant under Reidemeister moves. □

We have seen two of the knots to be invariant so far in Chapter 3, we will see the
details of another knot invariant 3-colorable and fox n-coloring.
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CHAPTER 3

COLORABILITY OF KNOTS AND LINKS

In this chapter, we examine colorability of knots and links. We will first define a
tricolorability of knots. Then we will define a fox-n coloring and we find a coloring matrix
for knots. In this section, from (Dixon, 2010), (Livingston, 1993) and (Carter et al., 2014)
are used for definitions and examples..

3.1. Tricolorability

Definition 14 A knot is tricolorable if each strand shown in the knot diagram can be
colored with a different color as long as the rules below are followed:

1. A minimum of two colors must be used; and

2. At every intersection, the three strands are either some color or distinct colors.

Figure 3.1. Two colored diagrams of trefoil

Theorem 5 Tricolorability is a knot invariant under Reidemeister moves.

Proof We want to show this by analyzing each of the three Reidemeister moves.
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Figure 3.2. Colored Reidemester moves

Since each Reidemeister move can be colored with rules, tricolorability is knot
invariant. □

Example 3.1 This rule is explained with two knots: trefoil and figure eight.

Figure 3.3. Colorable trefoil and non colorable figure eight

Theorem 6 The unknot is not tricolorable.

Proof The unknot is a closed loop with no crossings. So, when this knot is to be colored,
only one color can be used because there is only a single strand. Therefore, the unknot is
not tricolorable since it does not satisfy at least two different color conditions.
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Figure 3.4. Unknot colored with one color

□

Theorem 7 If a knot is tricolorable, then it is not equivalent to the unknot.

Proof A knot 𝐾 that is colorable is taken. Then assume 𝐾 is equal to unknot. It is
a contradiction because we now have a tricolorable knot, and if a knot is colorable, then
every projection of a knot is colorable. At the same time, it is known that the unknot is
not tricolorable, which can be seen in figure6. Thus, these knots are not equal to some
knots. □

Theorem 8 Trefoil is not equivalent to a trivial knot.

Proof First, suppose that the trivial knot is not tricolorable, as it is an unknot, which
has no crossings. Therefore, we cannot use at least two distinct colors. It has only a single
strand so we can use just one color. Also, the trefoil has tree crossings. There are three
strands, and these can use three distinct colors. This means that the trefoil is tricolorable.
Thus, it shows that trefoil is not equivalent to a trivial knot. □

Let K be a knot diagram. If K is colorable, then either every regular projection of
a knot must be tricolorable, or if K is not colorable, every projection of a knot must be
non-tricolorable.

Example 3.2 Every projection of the trefoil knot is tricolorable.

Figure 3.5. Two regular projections of the trefoil
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3.2. Fox n-Coloring

After the definition of tricolorable, we will see the fox-n coloring definition. We
will find out how many colors can be colored for non-tricolorable knots.

Definition 15 A knot diagram can be labeled mod 𝑛 if each edge can be labeled with
𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛,

Figure 3.6. Labelled arcs

where 𝑥1 is the label on the overcrossing and 𝑥2 and 𝑥3 are the other two labels. At each
crossing the relation

2𝑥1 − 𝑥2 − 𝑥3 = 0𝑚𝑜𝑑 (𝑛). (3.1)

Theorem 9 Fox n-coloring is a knot invariant.

Proof In order to be an invariant, the Fox n-coloring must be provided by Reidemeister
moves. So, we will examine the crossing relation under Reidemeister moves.
The first Reidemeister move has a one-crossing relation. This gives a relation,

2𝑥1 − 𝑥1 − 𝑥1 = 0𝑚𝑜𝑑 (𝑛). (3.2)
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Figure 3.7. Fox-n coloring Reidemeister move 1

The second Reidemeister move has two crossing relations.

Figure 3.8. Fox-n coloring Reidemeister move 2

This gives the following relations,

2𝑋1 − 𝑋2 − 𝑋3 = 0 (𝑚𝑜𝑑𝑛) (3.3)

2𝑋1 − 𝑋3 − 𝑋4 = 0 (𝑚𝑜𝑑𝑛) (3.4)

𝑋2 = 𝑋4 (𝑚𝑜𝑑𝑛) (3.5)

(3.6)

And find 𝑥2 = 𝑥4
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Figure 3.9. Fox-n coloring Reidemeister move 3

The third move has three crossing relations. This gives the following relations,

2𝑋1 − 𝑋2 − 𝑋3 = 0 (𝑚𝑜𝑑𝑛) (3.7)

2𝑋1 − 𝑋5 − 𝑋6 = 0 (𝑚𝑜𝑑𝑛) (3.8)

2𝑋3 − 𝑋4 − 𝑋6 = 0 (𝑚𝑜𝑑𝑛) (3.9)

2𝑋1 − 𝑋2 − 𝑋3 = 0 (𝑚𝑜𝑑𝑛) (3.10)

2𝑋1 − 𝑋4 − 𝑋7 = 0 (𝑚𝑜𝑑𝑛) (3.11)

2𝑋2 − 𝑋5 − 𝑋7 = 0 (𝑚𝑜𝑑𝑛) (3.12)

Hence, it can be shown that n-colorability is a knot invariant under the Reidemester moves.
□

3.3. The coloring matrix

Definition 16 Let K be a knot and M be a coloring matrix of K. The matrix form is
K, 𝑛× 𝑛, such that each column represents an arc in the projection of K and each row
represents a crossing in K. There are 𝑛 crossings in K. Then we find the 𝑛 equation for
K. Each equation becomes with this rule: First, we label all the arcs. The over strand
multiplies 2 and the under two strands multiply -1 for each crossing.

Example 3.3 Consider the trefoil knot. We aim to determine a coloring matrix for it. The
trefoil knot has three crossings, each corresponding to a distinct crossing relation.
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First, label each arc and crossing.

Figure 3.10. Trefoil knot

Then find all the equations for each crossing.

𝑎;2𝑋2 − 𝑋1 − 𝑋3 = 0 (3.13)

𝑏;2𝑋1 − 𝑋2 − 𝑋3 = 0 (3.14)

𝑐;2𝑋3 − 𝑋1 − 𝑋2 = 0 (3.15)

These equations give;


2 −1 −1
−1 2 −1
−1 −1 2

 (3.16)

As a result, we obtain linearly dependent rows. When the determinant is calculated, the
result received equals to zero. Therefore, we need to make an additional application. We
remove one column and one row of the matrix. The remaining matrix form becomes our
coloring matrix. Then, the result of the determinant tells us how many colorable these
knots can be with. We get this matrix;

[
2 −1
−1 2

]
(3.17)
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𝐷𝑒𝑡 (𝐾) is free of the choice of the deleted row and column. We conclude with a
proposition. We calculate the determinant of this matrix, which equals 3. Therefore, it is
possible to say that the trefoil is tricolorable.

Example 3.4 In this example, we will focus on the figure eight knot. In one of the previous
sections, we determined that the figure eight knot is not tricolorable. The main objective
here is to find its coloring matrix and calculate its determinant. The result will reveal the
colorability of the figure eight knot.

The figure eight knot has four crossings and four arcs, resulting in four relations.
Let us start by labeling each arc and crossing.

Figure 3.11. Figure eight knot

Then find all the equations for each arc.

𝑎;2𝑋1 − 𝑋2 − 𝑋3 = 0 (3.18)

𝑏;2𝑋3 − 𝑋1 − 𝑋4 = 0 (3.19)

𝑐;2𝑋4 − 𝑋1 − 𝑋2 = 0 (3.20)

𝑑;2𝑋2 − 𝑋3 − 𝑋4 = 0 (3.21)

These equations give;


2 −1 −1 0
−1 0 2 −1
−1 −1 0 2
0 2 −1 −1


(3.22)
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Again, we obtain linearly dependent rows. We remove one column and one row
from the matrix. The remaining matrix form becomes the coloring matrix. Then, the
result of the determinant tells how many colorable these knots can be with.
The matrix below is obtained:


2 −1 −1
−1 0 2
−1 −1 0

 (3.23)

We calculate the determinant of this matrix, which is equal to 5. So we can say
that the figure eight knot color with five colors.

Theorem 10 The determinant is a knot invariant.

Proof The reader can find the sketch of the proof in (Livingston, 1993). □

In the following chapter, we see a generalization of the colorable idea to the
algebraic structure: quandles.
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CHAPTER 4

ALGEBRAIC STRUCTURE FOR KNOTS

In this chapter, we give definitions of kei, quandles, singquandles, and bondles.
Then we give some examples.
Quandle theory is a developing subject in abstract algebra that has applications to various
other areas of mathematics, such as knot theory. Quandle theory dates back to the 1940s,
when Mituhisa Takasaki introduced the notion of kei. The quandle theory was introduced
in the doctoral dissertation of David Joyce in 1990. The Quandle variations ideas have been
studied by Conway, Brieskorn, Matveev, and Kauffman, Nelson see these papers, (Joyce,
1982)(Kamada, 2002), (Carter, 2010), (Kauffman and Manturov, 2004), (Elhamdadi and
Nelson, 2015).

4.1. Kei

In this section, we define the kei for non-oriented knots. Mituhisa Takasaki chose
the term "Kei".

Definition 17 Consider a set 𝑋 with the binary operation ∗ : 𝑋 × 𝑋 → 𝑋 . This structure
is called a Kei if the following axioms hold for any elements 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

1. 𝑥 ∗ 𝑥 = 𝑥 (idempotent)

2. (𝑥 ∗ 𝑦) ∗ 𝑦 = 𝑥 (involution)

3. (𝑦 ∗ 𝑧) ∗ 𝑥 = (𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥) (right self-distributive)

The first kei axiom is known as idempotency. This can be explained as the
following: there is a matrix 𝐴 that is idempotent if 𝐴2 = 𝐴, a projection map onto a
coordinate axis. This axiom can mean that every element acted like 0, since operations
like addition. The second axiom means that elements affect other elements through
involutions. It can be explained as having a function 𝛽𝑦 : 𝑋 → 𝑋 that has its own inverse
defined by 𝛽𝑦 (𝑥) = 𝑥 ∗ 𝑥. The last axiom is self-distributive. Similar multiplication
distributes over addition.
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Figure 4.1. Operation on crossings

The fundamental idea of this structure is colorability. One can consider each
element of set X as the color assignment of a knot diagram. We have a diagram and arcs.
We define an operation as ∗. The 𝑥 ∗ 𝑦 operation corresponds to one arc x passing under
another arc y to become 𝑥 ∗ 𝑦. A new arc 𝑥 ∗ 𝑦 is present.
Now, we see Reidemeister moves with kei axioms;

Figure 4.2. Kei Reidemeister moves
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There is one arc, 𝑥. Twisting is applied on an arc in the first Reidemeister move.
There is one crossing in the first move. The crossing gives us 𝑥 ∗ 𝑥 = 𝑥. In the second
Reidemeister move, there are two arcs, then pass one arc over or under another arc. After
this move, we result obtained is (𝑥 ∗ 𝑦) ∗ 𝑦 = 𝑥. In this part, the twice quandle operation
is applied. The third Reidemeister move is the right self-distributive one. When we apply
the quandle operation, we find (𝑦 ∗ 𝑧) ∗ 𝑥 = (𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥).

We have an example,

Example 4.1 Takasaki kei is a different term that describes the kei operation, which is
also known as cyclic kei or dihedral quandle. Let 𝑋 = Z and define

𝑥 ∗ 𝑦 = 2𝑦− 𝑥. (4.1)

To demonstrate that this ∗ operation is indeed a kei operation, one needs to confirm
that it satisfies all three kei axioms.
In first axiom : 𝑥 ∗ 𝑥 = 𝑥, and we apply Takasaki kei,

𝑥 ∗ 𝑥 = 2𝑥− 𝑥 = 𝑥. (4.2)

In second axiom : (𝑥 ∗ 𝑦) ∗ 𝑦 = 𝑥, and there is;

(𝑥 ∗ 𝑦) ∗ 𝑦 = (2𝑦− 𝑥) ∗ 𝑦 = 2𝑦− (2𝑦− 𝑥) = 2𝑦−2𝑦 + 𝑥 = 𝑥. (4.3)

In third axiom: (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧), and there is;

(𝑥 ∗ 𝑦) ∗ 𝑧 = (2𝑦− 𝑥) ∗ 𝑧 = 2𝑧− (2𝑦− 𝑥) = 2𝑧−2𝑦 + 𝑥, (4.4)

(𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = (2𝑧− 𝑥) ∗ (2𝑧− 𝑦) = 2(2𝑧− 𝑦) − (2𝑧− 𝑥), (4.5)

4𝑧−2𝑦−2𝑧+ 𝑥 = 2𝑧−2𝑦 + 𝑥. (4.6)
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Therefore, the fact that Takasaki Kei satisfies the Kei axioms are proved.

Definition 18 Let K be a knot, link, or tangle that has a corresponding associated kei
called the fundamental kei, denoted by K(𝐾). This fundamental kei can be obtained from
a diagram of K using principal universal algebra.
Let 𝐾 be a set, where the elements of 𝑋 = {𝑥1, . . . , 𝑥𝑛} are called generators.

Now, consider 𝑋 = {𝑥1, . . . , 𝑥𝑛} to be a set containing one element for each arc in
a knot diagram, 𝐾 . All crossings in our diagram 𝐾 yield an equation, referred to as a
crossing relation, representing Kei form 𝑥 ∗ 𝑦 = 𝑧.

Figure 4.3. Relation of the Kei

𝐾 be a knot, and the fundamental kei of the knot can be defined as the set of
equivalence classes of elements in the kei on 𝑋 , where the crossing relations determine
equivalence. Usually, one represents this using a kei presentation that describes the
components of 𝑋 , referred to as generators, along with the crossing relations.

Definition 19 Let K(𝐾) be the fundamental kei, which is constant regardless of the
chosen diagram of 𝐾 . The set of all kei homomorphisms can be identified by counting the

number of colorings of every diagram of 𝐾 using a kei 𝑋 .
We have 𝑓 (𝑥 ∗ 𝑦) = 𝑓 (𝑥) ∗ 𝑓 (𝑦) and,

Hom(K(𝐾), 𝑋) = { 𝑓 : K(𝐾) → 𝑋 | 𝑓 (𝑥 ∗ 𝑦) = 𝑓 (𝑥) ∗ 𝑓 (𝑦)} (4.7)

The cardinality of this set is

Hom(K(𝐾), 𝑋). (4.8)
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This equation means the kei counting invariant is a computable link invariant.

Example 4.2 Consider the trefoil knot. The aim is to determine a fundamental kei
presentation for it. The trefoil knot has three crossings, each corresponding to a distinct
crossing relation.

Figure 4.4. Labelled a diagram of trefoil

K(𝐾) = ⟨𝑥, 𝑦, 𝑧 | 𝑥 ∗ 𝑦 = 𝑧, 𝑦 ∗ 𝑧 = 𝑥, 𝑧 ∗ 𝑥 = 𝑦⟩. (4.9)

Example 4.3 Take the Hopf link with the Takasaki kei Z4. And the relations 𝑅1 and 𝑅2

are 𝑥 ∗ 𝑦 = 𝑥 and 𝑦 ∗ 𝑥 = 𝑦 for crossings. Let us calculate the kei counting invariant for the
Hopf link.
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Figure 4.5. Examine two crossings for Hopf Link

First, the crossings are called 𝐶1 and 𝐶2. The 𝐶1 crossing gives the 𝑦 ∗ 𝑥 = 𝑦
relation, while 𝐶2 gives us the 𝑥 ∗ 𝑦 = 𝑥 relation. The four elements Takasaki kei Z4 are
used for relations. This can be explained as follows: 𝑦 ∗ 𝑥 = 𝑦 provides 2𝑥 − 𝑦 = 𝑦, and
𝑥 ∗ 𝑦 = 𝑥 provides 2𝑦− 𝑥 = 𝑥 according to the elements of Z4.

In the table, the column represents 𝑥, while the line represents 𝑦. We take 3 for
𝑥 and 1 for 𝑦 and calculate with 𝑥 ∗ 𝑦 = 𝑥; this relation must result 3 ∗1 = 3 according to
the table. Calculated with Takasaki kei, 2∗1−3 = −1 and −1 = 3𝑚𝑜𝑑 (4). We find all the
results in the table.

∗ 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

(4.10)

When we analyze the table, we want to see if the relations 𝑦 ∗ 𝑥 = 𝑦 and 𝑥 ∗ 𝑦 = 𝑥 are
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satisfied. If it is satisfying, then we color with these elements.

𝑓 (𝑥) 𝑓 (𝑦) 𝑅1 𝑅2 𝑓 (𝑥) 𝑓 (𝑦) 𝑅1 𝑅2

0 0 ✓ ✓ 2 0 ✓ ✓

0 1 2 1
0 2 ✓ ✓ 2 2 ✓ ✓

0 3 2 3
1 0 3 0
1 1 ✓ ✓ 3 1 ✓ ✓

1 2 3 2
1 3 ✓ ✓ 3 3 ✓ ✓

(4.11)

Therefore, the cardinality of Hom(K(𝐾)) is equal to 8.

Example 4.4 As a last example, in this part, we have figure eight knot. The counting
invariant is computed.

Figure 4.6. Labelled a diagram of figure eight knot

Then the following applies for crossing relation,

K(𝐾) = ⟨𝑥, 𝑦, 𝑧,𝑤 | 𝑥 ∗ 𝑦 = 𝑧, 𝑦 ∗𝑤 = 𝑧, 𝑦 ∗ 𝑥 = 𝑤,𝑥 ∗ 𝑧 = 𝑤⟩. (4.12)

First, eliminating the generator w,

K(𝐾) = ⟨𝑥, 𝑦, 𝑧 | 𝑥 ∗ 𝑦 = 𝑧, 𝑦 ∗ (𝑦 ∗ 𝑥) = 𝑧, 𝑥 ∗ 𝑧 = 𝑦 ∗ 𝑥⟩. (4.13)
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Second, eliminating the generator z,

K(𝐾) = ⟨𝑥, 𝑦 | 𝑦 ∗ (𝑦 ∗ 𝑥) = 𝑥 ∗ 𝑦, 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦 ∗ 𝑥⟩. (4.14)

As a result one obtains two crossing relation 𝑅1 and 𝑅2 that are equal to these
equations, respectively, 𝑦 ∗ (𝑦 ∗ 𝑥) = 𝑥 ∗ 𝑦 and 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦 ∗ 𝑥.

∗ 0 1 2 3

0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

(4.15)

𝑓 (𝑥) 𝑓 (𝑦) 𝑅1 𝑅2 𝑓 (𝑥) 𝑓 (𝑦) 𝑅1 𝑅2

0 0 ✓ ✓ 2 0
0 1 2 1
0 2 2 2 ✓ ✓

0 3 2 3
1 0 3 0
1 1 ✓ ✓ 3 1
1 2 3 2
1 3 3 3 ✓ ✓

(4.16)

4.2. Quandles

In this section, we will define a quandle. Kei is also called the involutary quandle.
Quandles define oriented knots as opposed to kei.

Definition 20 A quandle is a set 𝑋 and with an operation ∗ : 𝑋 × 𝑋 → 𝑋 that satisfies the
following three conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .
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1. 𝑥 ∗ 𝑥 = 𝑥.

2. A function 𝛽𝑦 : 𝑋 → 𝑋 defined by 𝛽𝑦 (𝑥) = 𝑥 ∗ 𝑦 is invertible.

3. (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧).

We will use 𝑥 ∗−1 𝑦 instead of 𝛽−1
𝑦 (𝑥). We explain second axiom: it can be written

𝛽𝑦 (𝛽𝑦 (𝑥)) = 𝑥. Then, 𝛽𝑦 is its own inverse function, and write 𝛽−1
𝑦 (𝑥) = 𝛽𝑦 (𝑥).

Figure 4.7. Quandle coloring at a positive and negative crossing respectively

When we color each arc of an oriented knot diagram with a quandle element of
X, one can that the axiom assumes giving invariant quandle coloring under Reidemister
moves.
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Figure 4.8. Quandle Reidemeister moves

Examples of quandles:

Example 4.5 Let 𝑋 be set, with the operation ∗ called the trivial quandle. Such that
𝑥 ∗ 𝑦 = 𝑥 for all 𝑥, 𝑦 ∈ 𝑋 . The trivial quandle with n elements is denoted by 𝑇𝑛.

Example 4.6 G is any group; then it defines a quandle with conjugation operation such
that

𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥−1. (4.17)

Another example of a quandle is the Alexander quandle. This part will be examined
in detail.

4.2.1. Alexander Quandles

Definition 21 Consider a module 𝑀 over the ring of Laurent polynomial 𝐿 = 𝑍 [𝑡±1].
The action of 𝐿 on 𝑀 induces an Alexander quandle structure on 𝑀 , where the quandle
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operation ∗ is given by:

𝑥 ∗ 𝑦 = 𝑡𝑥 + (1− 𝑡)𝑦. (4.18)

Theorem 11 Alexander quandle is invariant.

Proof Alexander Quandle verifies the axioms of a quandle. Let us consider the first
axiom,

𝑥 ∗ 𝑥 = 𝑡𝑥 + (1− 𝑡) 𝑥 = (𝑡 +1− 𝑡)𝑥 = 𝑥. (4.19)

Then we have second axiom,

𝑥 = 𝑡𝑤 + (1− 𝑡)𝑦, (4.20)

𝑥− (1− 𝑡)𝑦 = 𝑡𝑤, (4.21)

𝑡−1𝑥− 𝑡−1(1− 𝑡)𝑦 = 𝑤, (4.22)

𝑡−1𝑥−
(
𝑡−1 −1

)
𝑦 = 𝑤, (4.23)

𝑡−1𝑥 +
(
1− 𝑡−1

)
𝑦 = 𝑤, (4.24)

Thus, we have

𝑥 ∗−1 𝑦 = 𝑡−1𝑥 +
(
1− 𝑡−1

)
𝑦. (4.25)

Finally, we have third axiom:

(𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑡 (𝑥 ∗ 𝑦) + (1− 𝑡)𝑧 (4.26)

= 𝑡 (𝑡𝑥 + (1− 𝑡)𝑦) + (1− 𝑡)𝑧 (4.27)

= 𝑡2𝑥 + 𝑡 (1− 𝑡)𝑦 + (1− 𝑡)𝑧, (4.28)
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since

(𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑧) = 𝑡 (𝑥 ∗ 𝑧) + (1− 𝑡) (𝑦 ∗ 𝑧) (4.29)

= 𝑡 (𝑡𝑥 + (1− 𝑡)𝑧) + (1− 𝑡) (𝑡𝑦 + (1− 𝑡)𝑧) (4.30)

= 𝑡2𝑥 + 𝑡 (1− 𝑡)𝑦 +
[
𝑡 (1− 𝑡) + (1− 𝑡)2] 𝑧 (4.31)

= 𝑡2𝑥 + 𝑡 (1− 𝑡)𝑦 +
[
𝑡 − 𝑡2 +1−2𝑡 + 𝑡2

]
𝑧 (4.32)

= 𝑡2𝑥 + 𝑡 (1− 𝑡)𝑦 + (1− 𝑡)𝑧. (4.33)

Thus, it can be shown that relations satisfy all axioms.
□

Definition 22 An oriented knot diagram K. Let us label all arcs with 𝑥1, 𝑥2, . . . , 𝑥𝑛. And
we get a quandle relation 𝑥𝑎 ∗𝑥𝑏 = 𝑥𝑐 for each crossing. Let’s consider this as an Alexander
Quandle relation, where we can write it as the equation 𝑡𝑥𝑎 + (1− 𝑡)𝑥𝑏 = 𝑥𝑐 or 𝑡𝑥𝑎 + (1−
𝑡)𝑥𝑏 − 𝑥𝑐 = 0. Therefore, we have a system of linear equations in which all the equations
are of identical form, and it can be represented it as a matrix equation: 𝐴®𝑥 = −→

0 . In matrix
rows, for each crossing, write 𝑡,1− 𝑡, or -1 for the arcs. If arcs involve crossing, one enters
0.

Figure 4.9. Alexander quandle relation

The Alexander Module of K is the kernel of matrix A. We explain this statement by
construing the relationship between the fundamental quandle of knot K and an Alexander
quandle. Matrix A is referred as the presentation matrix for the Alexander module.
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Example 4.7 There is a figure-eight knot. If we want to find a presentation matrix so
that we can label the arcs in a diagram with the crossing relations according to Alexander
Quandle operations:

Figure 4.10. Figure eight knot

�����������
−1 𝑡 1− 𝑡 0

1− 𝑡 0 −1 𝑡

−1 1− 𝑡 0 𝑡

0 𝑡 −1 1− 𝑡

�����������
(4.34)

We can remove one row and one column; the specific choice does not affect the
end result. Following that, we compute the determinant. In this example, eliminate row 1
and column 1:
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��������
0 −1 𝑡

1− 𝑡 0 𝑡

𝑡 −1 1− 𝑡

�������� = 0− (−1)
����� 1− 𝑡 𝑡

𝑡 1− 𝑡

�����+ 𝑡
����� 1− 𝑡 0

𝑡 −1

����� (4.35)

= 0− (−1)
[
(1− 𝑡)2 − 𝑡2

]
+ 𝑡 (𝑡 −1) (4.36)

=
[
1−2𝑡 + 𝑡2 − 𝑡2

]
+ 𝑡2 − 𝑡 (4.37)

= [1−2𝑡] + 𝑡2 − 𝑡 (4.38)

= 1−2𝑡 + 𝑡2 − 𝑡 (4.39)

= 1−3𝑡 + 𝑡2 (4.40)

(4.41)

And at the same time this equation represents that of Alexander Polynomial for
figure eight.

4.3. Singquandles

In this section, we will introduce the structure of a singquandle, which is used
to describe singular knots. Unlike quandles, which are associated with classical knots,
singquandles are defined as singular knots. We will begin by providing a brief overview
of singular knots.

4.3.1. A Review of singular knot

In this section, first we give a fundamental definition and theorem for singular
knots. We will use the articles (Juyumaya and Lambropoulou, 2009), (Ceniceros et al.,
2021).

Definition 23 A singular link with n components is created by immersed circles in three-
dimensional space. This embedding allows for a finite number of self-intersections, called
singular crossings. These crossings are restricted to simple double points, meaning that
at any given point, only two strands of the link intersect. In essence, a singular link
resembles a classical link, but with the added flexibility of a finite number of permitted
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transversal self-intersections. When a singular link consists of a single component, it is
called a singular knot.

Figure 4.11. Two examples of singular knot and link

𝐾1,𝐾2 be two singular links that are isotopic, which means that if there is a
homeomorphism of 𝑆3 carrying one to the other.

Theorem 12 Two singular link diagrams are isotopic if and only if they can be trans-

formed into each other using planar isotopy and a finite number of classical Reidemeister

movements see in figure 2.5 and singular Reidemeister motions, see in figure 4.12.

Figure 4.12. Singular Reidemeister moves

4.3.2. Singquandles

We see the definition of a singular knot, we can now introduce the concept of
singquandles. Unlike classical knots, singular knots lack over- and under-information at
their crossings. Therefore, we will define two maps to examine the singquandle structure
on these knots.
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Definition 24 Let (𝑋,∗) be a quandle. There are 𝑅1 and 𝑅2 be two mapp, from the set
𝑋×𝑋 to 𝑋 . An oriented singquandle is defined as the quadruple (𝑋,∗, 𝑅1, 𝑅2) that satisfies
the following axioms for any 𝑥, 𝑦, 𝑧 ∈ 𝑋:

𝑅1 (𝑥 ∗ 𝑦, 𝑧) ∗−1 𝑦 = 𝑅1(𝑥, 𝑧 ∗−1 𝑦) (4.42)

𝑅2 (𝑥 ∗ 𝑦, 𝑧) = 𝑅2(𝑥, 𝑧 ∗−1 𝑦) ∗ 𝑦 (4.43)(
𝑦 ∗−1 𝑅1(𝑥, 𝑧)

)
∗ 𝑥 = (𝑦 ∗𝑅2(𝑥, 𝑧)) ∗−1 𝑧 (4.44)

𝑅2(𝑥, 𝑦) = 𝑅1(𝑦, 𝑥 ∗ 𝑦) (4.45)

𝑅1(𝑥, 𝑦) ∗𝑅2(𝑥, 𝑦) = 𝑅2(𝑦, 𝑥 ∗ 𝑦). (4.46)

Let’s have an oriented singular knot and apply the quandle coloring. In the previous
section, quandle coloring had been explained. Until now, we have had information under
over-crossing. When we have a singular knot, some crossings do not have this information.
So, when we apply the quandle coloring, we need two maps.

Figure 4.13. Quandle coloring at a positive, negative, and singular crossing respectively

There are three types of crossings in figure 4.13. In positive and negative crossing,
one should use quandle coloring. But the other crossing is a singular crossing; and
therefore we use two maps, respectively, 𝑅1 and 𝑅2. When we color each arc of the knot
diagram, we see that the axioms give invariant singquandle coloring under Reidemeister
moves.
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Figure 4.14. Singquandle Reidemeister moves

4.4. Bondles

In the previous section, we explained the quandle and singquandle structures. In
this section, we will define the bondle structure. Although singquandles were defined for
singular knots with singular crossings, we will analyze these crossings in a new way. This
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new interpretation will allow us to develop the singquandle structure further and ultimately
define the bondle structure. In the following chapter, we will apply the bondle structure to
the analysis of protein structures.
There are two different bondles that are depending on the chosen orientation which can
seen in 4.15.

Figure 4.15. Parallel and anti-parallel strands

Despite the addition of two more functions, which is 𝑅3(𝑥, 𝑦) and 𝑅4(𝑥, 𝑦), doing
the act of rotating by 180 degrees results in a switch of the roles of x and y, which also
changes the roles of R3 and R4. Therefore, the result change 𝑅3(𝑥, 𝑦) = 𝑅3(𝑦, 𝑥). This
will be used to eliminate 𝑅4(𝑥, 𝑦) from all that follows relations.

Definition 25 An orientated bondle is a quandle that has an operation denoted by ∗, and
also has three functions, 𝑅1(𝑥, 𝑦), 𝑅2(𝑥, 𝑦), and 𝑅3(𝑥, 𝑦), which are used for determining
choices. These functions must satisfy the following conditions:

𝑅3

(
𝑦, 𝑥 ∗−1 𝑧

)
= 𝑅3(𝑦 ∗ 𝑧, 𝑥) ∗−1 𝑧, (4.47)

𝑅3(𝑥, 𝑦 ∗ 𝑧) = 𝑅3
(
𝑥 ∗−1 𝑧, 𝑦

)
∗ 𝑧, (4.48)(

𝑧 ∗−1 𝑅3(𝑥, 𝑦)
)
∗ 𝑥 =

(
𝑧 ∗−1 𝑦

)
∗𝑅3(𝑦, 𝑥), (4.49)

𝑅3(𝑥, 𝑦) ∗−1 𝑦 = 𝑅3
(
𝑥 ∗−1 𝑅3(𝑦, 𝑥), 𝑦

)
. (4.50)
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Figure 4.16. Bondle Reidemeister Moves
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CHAPTER 5

CIRCUIT TOPOLOGY

The aim of this chapter is to use the algebraic structures of quandles to study circuit
topology. Firstly, the chapter provides motivation for understanding the circuit topology
and the structure of proteins. Then it explains the relation with bondle and finally, it defines
the invariant of circuit topology. In this section, we will use these articles (Ceniceros et al.,
2021), (Mashaghi et al., 2014), (Golovnev and Mashaghi, 2020) and (Adams et al., 2020).

5.1. A Motivation

Circuit topology refers to a mathematical method used to classify the organization
of electrical connections. Researchers are now investigating the connection between circuit
topology and the well-accepted field of knot theory. Although circuit topology focuses
on interactions, knot theorists’ methods might enhance its effectiveness. Knot theorists
have created many coloring structures that might potentially be expanded to categorize
topological circuits. A new quandle coloring method has been recently devised for protein
analysis, with the potential to be modified to determine the range of potential circuit
topologies. The objective of this thesis is to utilize the algebraic structures of quandles for
the analysis of circuit topology. Using knot theory techniques, we create an unchanging
characteristic that enables us to categorize and differentiate chain configurations within
the context of circuit architecture.
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Figure 5.1. These represent circuit topology, generalized circuit topology, and knot

theory respectively

Proteins and nucleic acids, which are folded linear molecule chains, play an impor-
tant part in cell processes and the transmission of biological information. They frequently
fold to function to accomplish their purpose, offering important information for the de-
velopment of proteins. Several techniques have examined the geometric and chemical
characteristics of folded proteins and genomic DNA. However, the topological qualities
were given less attention due to the absence of a beneficial conceptual framework. The
application of knot theory to the study of proteins and nucleic acids has produced success-
ful outcomes. However, the effect on protein science has been restricted because almost
all of the discovered proteins belong to a single topological class, namely the unknot.

The knot theory approach fails to effectively classify proteins due to its disregard
for intra-molecular interactions or contacts, which drive the process of folding in molec-
ular chains and provide an essential part of their function. The inclusion of intra-chain
interaction is considered, and the prevalence of knots and links significantly improves.
Hence, it is important to develop a new topology framework that covers interactions inside
a chain and can effectively categorize the folding topology of biomolecular chains, namely
proteins.
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Figure 5.2. Structure of a protein

5.2. Coloring invariant for circuit topology

In this part, we examine the invariant of circuit topology. The topological equiv-
alence of two circuit topologies can be determined by comparing the number of distinct
colorings for each topology, according to the chosen bondle. We want to determine a set
of colorings for a circuit topology X using an identified bondle B.
In circuit topology, the topological arrangements of the loops are defined by examining
a linear polymer chain with 𝑁 contacts and 𝑀 loops. In this part, the contact sites are
labelled as 𝐶𝑠 = 𝐶𝑠1,𝐶𝑠2, . . . ,𝐶𝑠𝑁 and loops as 𝐿 = 𝐿1, 𝐿2, . . ., and 𝐿𝑀 .

Figure 5.3. Structure and topology figuration general, series, parallel and cross relation
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Figure 5.4. Series, parallel, and cross contacts

The circuit topology relations:
Series: 𝐿1S𝐿2 ⇔

[
𝐶𝑠𝑖,𝐶𝑠 𝑗

]
∩ [𝐶𝑠𝑘 ,𝐶𝑠𝑙] = ∅.

Parallel: 𝐿1P𝐿2 ⇔
[
𝐶𝑠𝑖,𝐶𝑠 𝑗

]
⊂ [𝐶𝑠𝑘 ,𝐶𝑠𝑙].

cross: 𝐿1X𝐿2 ⇔
[
𝐶𝑠𝑖,𝐶𝑠 𝑗

]
∩ [𝐶𝑠𝑘 ,𝐶𝑠𝑙] ∉

{
∅,

[
𝐶𝑠𝑖,𝐶𝑠 𝑗

]
,
[
𝐶𝑠𝑘 ,𝐶𝑠 𝑗

]}
.

Definition 26 𝐶𝑜𝑙𝐵 (𝑋) is defined as the set of colorings bondle B in the circuit topology
X.

Definition 27 Let’s assume a circuit topology X and a bondle B. Then, circuit topology
X has the bondle counting invariant by coloring bondle B and is defined by

𝜙𝐵 (𝑋) = |𝐶𝑜𝑙𝐵 (𝑋) |. (5.1)

𝜙𝐵 (𝑋) = |𝐶𝑜𝑙𝐵 (𝑋) |.

Here we see two different structures for intra-chain contacts. The first is h-contact,
and the second is S-contacts.

Figure 5.5. h-contact and s-contact
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Next, we will verify the connections using h-contact. With this arrangement, we
get the following coloring equations:

Figure 5.6. Two h-contacts for series arrangement, S

Analyze the S arrangement, and we get the following equations:

𝑦 = (𝑅3(𝑥, 𝑦)) (5.2)

𝑧 = 𝑅3 (𝑅3(𝑦, 𝑥), 𝑧) (5.3)

Figure 5.7. Two h-contacts for parallel arrangement, P
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Analyze the P arrangement, and we get these equations:

𝑧 = 𝑅3 (𝑅3(𝑥, 𝑦), 𝑧) (5.4)

𝑦 = 𝑅3 (𝑧, 𝑅3(𝑥, 𝑦)) (5.5)

Figure 5.8. Two h-contacts for cross arrangement, C

Analyze the x arrangement, and we get these equations:

𝑦 = 𝑅3 (𝑅3(𝑥, 𝑦), 𝑧) (5.6)

𝑧 = (𝑅3(𝑦, 𝑥)) (5.7)

We find coloring equations for each arrangement. Now we use these equations for
a specific bondle example.

Example 5.1 Let oriented bondle B, defined by (𝐵,∗, 𝑅1, 𝑅2, 𝑅3) and with 𝐵 = Z15. It
has operations defined by 𝑥 ∗ 𝑦 = 4𝑥 +12𝑦 = 𝑥 ∗−1 𝑦, 𝑅1(𝑥, 𝑦) = 10+14𝑥 +12𝑦, 𝑅2(𝑥, 𝑦) =
10+3𝑥 +8𝑦, 𝑅3(𝑥, 𝑦) = 10+10𝑥 +10𝑥2 +11𝑦.

We find coloring equations for series arrangement. This equation gives this form,

𝑦 = 𝑅3(𝑥, 𝑦) = 10+10𝑥 +10𝑥2 +11𝑦, (5.8)

𝑧 = 𝑅3 (𝑅3(𝑦, 𝑥), 𝑧) = 10𝑥2 +10𝑥𝑦 +10𝑦2 +10𝑥𝑦2 +5𝑦3 +10𝑦4 +11𝑧. (5.9)

Calculate by Mathematica gave 375 solutions. Therefore, Φ𝐵 (𝑆) = 375.
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For parallel arrangement. This equation becomes this form,

𝑧 = 𝑅3 (𝑅3(𝑥, 𝑦), 𝑧) = 10𝑥2 +5𝑥3 +10𝑥4 +10𝑥𝑦 +10𝑥2𝑦 +10𝑦2 +11𝑧, (5.10)

𝑦 = 𝑅3 (𝑧, 𝑅3(𝑥, 𝑦)) = 5𝑥 +5𝑥2 + 𝑦 +10𝑧+10𝑧2. (5.11)

Calculate by Mathematica and Maple gave 750 solutions. Therefore, Φ𝐵 (𝑃) = 750.
Lastly, for cross arrangement. This equation gives this form,

𝑦 = 𝑅3 (𝑅3(𝑥, 𝑦), 𝑧) = 10𝑥2 +5𝑥3 +10𝑥4 +10𝑥𝑦 +10𝑥2𝑦 +10𝑦2 +11𝑧 (5.12)

𝑧 = 𝑅3(𝑦, 𝑥) = 10+11𝑥 +10𝑦 +10𝑦2. (5.13)

In the first, changing the second equation gives the following equation to be solved
in Z15. :

10+10𝑥2 +11𝑥 +9𝑦 +10
(
10𝑥2 +10𝑥 +11𝑦 +10

)2
+5𝑦2 = 0. (5.14)

The calculations by Mathematica gave 10 solutions. Since 𝑧 can be written
by 𝑥 and 𝑦, we give the possible values of the pairs (𝑥, 𝑦). We list the 10 solutions:
(0,10), (2,2), (3,13)
, (5,5), (6,1), (8,8), (9,4), (11,11), (12,7), and (14,14). The system equation has 10 so-
lutions. Hence, Φ𝐵 (𝑋) = 10.

Example 5.2 Let (𝐵,∗, 𝑅1, 𝑅2, 𝑅3) be the oriented bondle with 𝐵 = Z15 and operations
defined by

𝑥 ∗ 𝑦 = 4𝑥 +12𝑦 = 𝑥 ∗−1 𝑦, (5.15)

𝑅1(𝑥, 𝑦) = 10+14𝑥 +12𝑦, (5.16)

𝑅2(𝑥, 𝑦) = 10+3𝑥 +8𝑦, (5.17)

𝑅3(𝑥, 𝑦) = 10+10𝑥 +10𝑥2 +11𝑦. (5.18)
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Figure 5.9. Oriented Bondle

This system of equations has 75 solutions. Hence, 𝜙𝐵 (𝑋) = 75.
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CHAPTER 6

VIRTUAL KNOTS

A virtual knot theory, a generalization of classical knot theory discovered by L.H.
Kauffman in 1996. In this section, firstly we will define virtual knot. Then we will give a
virtual quandle and virtual singquandle. In this section, we will use the articles (Kauffman,
2006), (Kauffman and Manturov, 2004).

The chapter will begin with the definition of the virtual knot.

Definition 28 A virtual link diagram is a four-valent graph on a plane. At each crossing,
it is either classical (it has information over crossing or under crossing) or virtual (it has
an extra structure by a circle).

There is a knot in three-dimensional space. And we take projection this knot.
When we take the projection of the knot, some crossing information can be unknown. So,
this crossing shows with a circle.

We allow a new type of crossing, denoted by a 4-valent vertex with a small circle
around it in 6.1.

Figure 6.1. Crossings and virtual crossings

We will explain the purpose of this attribute by the use of axioms that extend the
classical Reidemeister moves in 6.2
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Figure 6.2. Virtual Reidemeister moves

6.1. A Motivation

This section gives explanations for two sources of motivation. The first topic is
the study of knots in higher genus thickened surfaces. The second method involves the
utilization of knot theory in the analysis of Gauss codes and Gauss diagrams, both of
which are exclusively focused on combinatorial aspects.

6.1.1. A Review of Surfaces

We have illustrated the process of creating a diagram on the surface of a torus
in figure 6.3. There is a trefoil knot on the surface of the torus. Subsequently, the
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virtual intersections are perceived as vestiges of the torus’s projection onto the plane. The
knots depicted on the surface of the torus T correspond to knots on the three-dimensional
manifold T times I, where I represents the unit interval. If 𝑆𝑔 denotes a surface of genus-g,
then diagrams on 𝑆𝑔 that undergo the standard Reidemeister movements can be used to
describe knot theory on the surface 𝑆𝑔 × 𝐼.

Figure 6.3. Virtual knot on the torus and its projection on the plane

6.1.2. A Review of Gauss codes

The utilization of Gauss codes, offers additional motivation for the representation
of knots and links. The Gauss code is a series of crossing labels that are repeated twice
to indicate a path along the diagram, beginning and ending at a given position. When we
mention numerous link components, we are referring to a series of labels that are divided
by the partition symbol "/" to indicate the component circuits of the code. Every label
is repeated. In order to indicate whether a crossing is situated below (undercrossing) or
above (overcrossing), it is possible to include the symbols O and U in the labels assigned
to the crossings.

Example 6.1 We have two examples: trefoil and unknot.
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Figure 6.4. Trefoil and Hopf link

We have a virtual crossing in a diagram. We want to color it with elements of quandle X.
When we color a virtual crossing, we have a new map, 𝑣.

Figure 6.5. Virtual quandle coloring at a virtual crossing

We color each arc of knot diagram; we see that the axioms giving as invariant
coloring under Reidemeister moves.

55



Figure 6.6. Virtual Reidemeister moves

6.2. Virtual Singquandles

We combine singquandle in the previous section. We will introduce whose axioms
are motivated of Reidemeister of virtual singquandle.

Definition 29 Let (𝑋,∗) be a quandle. Let 𝑅1 and 𝑅2 be two maps from 𝑋 × 𝑋 to 𝑋 and 𝑣 is

an unary operation. The quintet (𝑋,∗, 𝑅1, 𝑅2, 𝑣) is called an oriented virtual singquandle if the

following axioms are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 :
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𝑅1

(
𝑥 ∗−1 𝑦, 𝑧

)
∗ 𝑦 = 𝑅1(𝑥, 𝑧 ∗ 𝑦) (6.1)

𝑅2

(
𝑥 ∗−1 𝑦, 𝑧

)
= 𝑅2(𝑥, 𝑧 ∗ 𝑦) ∗−1 𝑦 (6.2)(

𝑦 ∗−1 𝑅1(𝑥, 𝑧)
)
∗ 𝑥 = (𝑦 ∗𝑅2(𝑥, 𝑧)) ∗−1 𝑧 (6.3)

𝑅2(𝑥, 𝑦) = 𝑅1(𝑦, 𝑥 ∗ 𝑦) (6.4)

𝑅1(𝑥, 𝑦) ∗𝑅2(𝑥, 𝑦) = 𝑅2(𝑦, 𝑥 ∗ 𝑦). (6.5)

𝑣−1 (𝑅1(𝑣(𝑥), 𝑧) = 𝑅1(𝑥, 𝑣−1(𝑧)) (6.6)

𝑅2 (𝑣(𝑥), 𝑧) = 𝑣(𝑅2(𝑥, 𝑣−1(𝑧)) (6.7)

We see axioms in the singquandle section. We analyze the virtual knot with the
singquandle, we get two axioms from the Reidemester moves.

Figure 6.7. Virtual Singquandle Reidemeister move

We color all arcs of the knot diagram with operation v,∗ and map 𝑅1, 𝑅2. We see
that the axioms give invariant coloring under Reidemeister moves.

Definition 30 Let K be a oriented virtual singular knot diagram, the fundamental virtual

singquandle of K is the set of equivalence classes of finite length which consider words in
a set of generators by the edges of the labels in the graph, under the equivalence relation
generated by all axioms and the relations at the crossings.
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Theorem 13 The fundamental virtual singquandle is a knot invariant.

Proof Let 𝐾 be an oriented knot diagram colored appropriate to the axioms. Then
we get the finite-length set of equivalence classes. Since all axioms are obtained from
Reidemeister moves, these axioms guarantee that these equivalence classes are invariant
under the Reidemeister moves. Hence, the fundamental virtual singquandle of 𝐾 is a knot
invariant. □

Here we have an example.

Example 6.2 We have a trefoil knot with three different types of crossing: singular
crossing, virtual crossing, and classical crossing. First, we label each arc with a generator
and color it with axioms. We find a fundamental virtual singquandle.

Figure 6.8. Three types crossing: classical crossings, virtual crossing, and singular

crossing

VSQ(𝐾) = ⟨𝑥, 𝑦, 𝑧, 𝑘,𝑤, | 𝑧 = 𝑣(𝑥),𝑤 = 𝑣(𝑦), 𝑘 = 𝑅2(𝑦 ∗ 𝑧), (6.8)

𝑤 = 𝑅1(𝑦 ∗ 𝑧), 𝑥 = 𝑘 ∗−1𝑤⟩. (6.9)

We rewrite equation

VSQ(𝐾) = ⟨𝑥, 𝑦, 𝑘 | 𝑘 = 𝑅2(𝑦 ∗ 𝑣(𝑥)), 𝑣(𝑦) = 𝑅1(𝑦 ∗ 𝑣(𝑥)), (6.10)

𝑥 = 𝑅2(𝑦 ∗ 𝑣(𝑥)) ∗−1 𝑅1(𝑦 ∗ (𝑣(𝑥))⟩. (6.11)
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CHAPTER 7

CONCLUSION

In this thesis, we determined algebraic structures for knots. Colorability is the
main idea behind algebraic structures. So firstly, we gave some definitions and theorems
for colorability, saying that it is a knot invariant. Tricolorable and fox-n coloring was
satisfying in this classification, but sometimes it is not enough. Then we explained
the algebraic structures that are improved when we classify knots. These structures are
quandle, singquandle, and bondle. These structures offer a comprehensive understanding
of both classical and singular knots. In this part of this thesis, we define singquandle
because of proteins. In biology, protein structure is analyzed in many different ways.
Circuit topology is one of these methods. In this topology, we use knot theory. The
protein structure is similar to that of singular knots. So, we define a singquandle. Then
we used a bond for each singular crossing and defined bondle. The main idea of bondle
in knot theory is to apply to proteins. So, we found out how many different ways it can
be colored with bondle. Finally, we defined virtual knots and quandle virtual knots. We
also defined a new structure a virtual singquandle. As a result, algebraic structures offer a
comprehensive classification of knots.
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