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ABSTRACT 

 

PROCESS PARAMETER OPTIMIZATION OF ADDITIVELY 

MANUFACTURED MARAGING STEEL 

 
This study investigates additive manufacturing parameters of maraging steel parts 

using laser powder bed fusion. Laser powder bed fusion can be used to quickly 

manufacture lightweight and strong parts but requires precise calibration of process 

parameters such as laser power, scanning speed and layer thickness. Maintaining a good 

compatibility between these factors is important and the ability to predict the part quality 

is essential due to this method’s complexity and cost. Maraging steel is known for its high 

strength, hardness and ductility. During additive manufacturing, maraging steel 

constantly undergoes a phase change from austenite to martensite, due to the constant 

cooling and heating cycles caused by layer-by-layer manufacturing. 

This thesis aims to utilize a phase-changing maraging steel material model, create 

finite element analyses of laser powder bed fusion and employ direct optimization 

methods to introduce artificial factors to the analyses to align the finite element model to 

yield consistent results with the physical tests from literature. Then, metamodel of optimal 

prognosis from the simulation and experiment data is created. Stochastic optimization 

methods are discussed, and an evolutionary algorithm is trained with the metamodel of 

optimal prognosis to predict parameter compatibility and identify optimal manufacturing 

parameters. 

This thesis prioritizes deflection caused by the residual effects of metal additive 

manufacturing as the main failure output of the optimization problem. The findings 

demonstrated that, despite hardships, near residual effect free maraging steel parts could 

be additively manufactured by utilizing simulation and optimization methods. A method 

for increasing the accuracy and efficiency of additive manufacturing of maraging steel is 

proposed, highlighting the benefits of finite element analysis and stochastic optimization 

methods. 

Keywords: Laser Powder Bed Fusion, Additive Manufacturing, Maraging Steel, Finite 

Element Analysis, Stochastic Optimization, Evolutionary Algorithm, Thermomechanical 

Simulation 
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ÖZET

EKLEMELİ İMALATLA ÜRETİLEN MARAŞLAMA ÇELİĞİNİN 

PROSES PARAMETRE OPTİMİZASYONU 

 

Bu çalışmada lazer toz yatak füzyonu ile üretilen maraşlama çeliği parçaların 

üretim parametleri araştırılmaktadır. Lazer toz yatak füzyonu, hafif ve mukavim 

parçaların hızlı üretilmesini sağlar ancak lazer gücü, tarama hızı ve katman kalınlığı gibi 

proses parametrelerinin hassas bir şekilde kalibre edilmesi gerekmektedir. Üretim 

yönteminin karmaşıklığı ve maliyetleri nedeniyle parametreler arası uyumun ve parça 

kalitesinin öngörülebilir olması kritiktir. Maraşlama çeliği yüksek mukavemet, sertlik ve 

süneklik gibi mekanik özelliklere sahiptir. Maraşlama çeliği, metal eklemeli imalat 

esnasında gerçekleşen katmanlı üretim nedeniyle peş peşe ısınma ve soğuma döngülerine 

maruz kalır ve süreç boyunca östenit ve martenzit fazları arasında geçiş yapar. 

Bu çalışma, içerisinde faz dönüşümü bilgisi içeren bir maraşlame çeliği malzeme 

modelini kullanmayı, lazer toz yatağı füzyonunun sonlu elemanlar analizini oluşturmayı, 

analize yapay faktörler ekleyerek analiz modelini literatürden alınan fiziksel test 

sonuçlarıyla uyumlu çıktılar verecek şekilde direkt optimizasyon metotlarıyla kalibre 

etmeyi içermektedir. Sonrasında ise simülasyon ve literatür çıktıları ile optimum öngörü 

sağlayacak bir metamodel oluşturulmaktadır. Stokastik optimizasyon metotları 

incelendikten sonra evrimsel bir algoritma metamodel verisi ile eğitilmekte, üretim 

parametreleri arası uyum ve ideal eklemeli imalat parametreleri elde edilmektedir. 

Bu araştırmada üretim sebebiyle oluşan deformasyon başlıca optimizasyon 

problemi olarak belirlenmiştir ve bu etkinin minimuma indirgenmesi hedeflenmiştir. 

Araştırmada elde edilen bulgular, maraşlama çeliğinin simülasyon ve optimizasyon 

metotları sayesinde sıfıra yakın deformasyon ile üretilebileceğini göstermektedir. Bu 

çalışmada maraşlama çeliği eklemeli imalatının doğruluğunu ve verimliliğini artırmak 

adına bir yöntem önerilmekte olup, bu doğrultuda sonlu elemanlar analizi ve 

optimizasyon yöntemlerinin faydaları vurgulanmaktadır.

Anahtar Kelimeler: Lazer Toz Yatağı Füzyonu, Eklemeli İmalat, Maraşlama Çeliği, 

Sonlu Elemanlar Analizi, Stokastik Optimizasyon, Evrimsel Algoritma, Termomekanik 

Simülasyon   
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter provides an introduction to additive manufacturing of maraging steel, 

laser powder bed fusion simulation and optimization methods. In this chapter, objective 

of this thesis is explained along with a literature review. 

 

1.1. Literature Survey 

 

 By enabling distributed manufacturing and the production of parts-on-demand, 

additive manufacturing—also known as direct digital manufacturing, free form 

fabrication, 3D printing, etc.—a rapidly evolving manufacturing technology possesses 

the potential to completely change the global parts manufacturing and logistics industry 

while also possibly reducing costs, energy consumption, and carbon footprint (Frazier 

2014). 

Complex metallic 3D components can be manufactured with the widely utilized 

metal additive manufacturing method referred to as laser powder bed fusion (L-PBF). 

One of the metals utilized in additive manufacturing (AM) is maraging steel, a material 

that is a member of the class of ultra-high-strength steels used in the tooling and aerospace 

industries even though its microstructure and mechanical characteristics require post-AM 

thermal treatment (Kizhakkinan et al. 2023).  

Numerical simulation developed specifically for additive manufacturing offers a 

viable alternative for producing metallic parts through AM, particularly when it comes to 

process parameter optimization for minimizing residual stress and preventing cracks or 

distortion in the final parts. This can help reduce the significant time and cost associated 

with AM studies (Chen 2019). The significance of numerical simulation in additive 

manufacturing lies in its capacity to effectively and precisely predict and analyse complex 

physical phenomena such as heat and mass transfer and microstructure evolution. This 

makes it an important instrument for picking process parameters in metal additive 

manufacturing (Gao et al. 2021). 

Scan speed, laser power, and hatch distance are some of the most essential 

variables in the L-PBF process given that they can combine to produce broad 
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solidification techniques that have significant effects on the mechanical properties of the 

printed parts (Cacace and Semeraro 2022). The residual stress in additively built 

components is influenced by build process parameters, like energy beam power and 

movement speed, which have been extensively studied in the L-PBF (W. Zhang et al. 

2022). Similar parameters are utilized as such in numerical simulations of AM such as 

finite element analysis (FEA).   

The most significant process variables that either directly or indirectly impact the 

L-PBF process are layer thickness, scanning speed, laser power, and hatch distance. 

Specifically, it is also known that the shape and melt pool formation are controlled by 

laser power and scanning speed. For all these reasons, it is often necessary to 

recharacterize the information. Therefore, it's critical to create techniques that cut down 

on the time and expense required to define a trustworthy set of process parameters. The 

process of determining the ideal set of process parameters requires thorough specimen 

analysis to ensure that the material is fully dense and free of processing-related defects. 

Typically, this involves printing a large number of specimens and analysing them later to 

assess the material density and potential presence of defects (Giorgetti et al. 2023). Thus, 

combined with the fact that sample manufacturing can be costly, optimization methods 

are used to fine-tune parameters in AM. 

AM Process optimization involves numerically characterising a process in an 

organized manner and then identifying the best machine configuration and process 

parameters to meet specific objectives. A high-quality item is primarily dependent on 

having optimal process parameters during the printing process. To properly optimize a 

process, a number of parameters and the consequent geometric and physical qualities 

need to be taken into account. In metal AM research, machine learning (ML) technologies 

are being employed more and more to handle the intricate interplay between parameters 

and properties (Roberts, Xia, and Kennedy 2022). Machine learning, evolutionary 

algorithms, and genetic algorithms are being applied increasingly in additive 

manufacturing to improve various aspects of the process, from optimization and quality 

control to novel design approaches. 

For a variety of applications, additive manufacturing is actively involving 

machine learning (ML) models. In laser-based metal additive manufacturing methods, 

machine learning techniques are applied to detect defects, providing additional channels 

for immediate process and quality control (Herzog et al. 2024). In order to drive the next 

generation of additive manufacturing by obtaining improved process efficiency and 
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material quality, more developments in machine learning models investigate process-

dependent material evolution (Parsazadeh, Sharma, and Dahotre 2023).  

Evolutionary and genetic algorithms are branches of machine learning, inspired 

from natural selection. Evolutionary algorithms have demonstrated the ability to optimize 

additive manufacturing process factors, such as scheduling and design optimization, to 

increase the effectiveness of the process and the quality of printed components (Leirmo 

and Martinsen 2019). On the other hand, genetic algorithms are especially helpful in 

resolving intricate optimization issues in additive manufacturing. They have been used to 

cut operational expenses and lead to optimized production capacity (Castillo-Rivera et al. 

2020). 

Finite element analysis plays a crucial role in metal additive manufacturing as it 

can provide insights into the structural performance of manufactured parts, but also can 

make use of machine learning, evolutionary and genetic algorithms. Engineers may 

design more dependable and efficient parts by using simulation to forecast how structures 

will respond to various loads and stress conditions (Castellazzi et al. 2015). Additive 

manufacturing gains from improved design validation, optimized metal parts for 

particular applications, and the capacity to anticipate and deal with possible 

manufacturing problems prior to production through the use of FEA. When FEA and 

metal AM work together, manufacturing efficiency is increased, material waste is 

decreased, and components that are both structurally sound and customized to meet 

particular user requirements are produced. 

This study focuses on numerically investigating the AM process of maraging 

steel, making use of data from existing publications, thermal and structural FEA, direct 

and stochastic optimization methods, in order to present a solid solution towards fault free 

metal additive manufacturing of maraging steel. 

 

1.2. Objectives of the Study 

 

Laser powder bed fusion additive manufacturing can create lightweight and strong 

metal parts very quickly. However, several factors, such as laser power, scanning speed, 

layer thickness, and part quality, must be carefully calibrated in order to produce high-

quality parts. Predicting these characteristics' compatibility and the quality of the final 

product is crucial due to the production method's complexity and cost. Usually, finite 
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element simulations of the additive manufacturing process, test part printing, and 

simulation software calibration using physical outcomes are used to reach this forecast. 

This way, successful prints can be made without having to pay high manufacturing 

expenses. 

Maraging steel, which has a reputation for having exceptional strength and 

hardness, is frequently utilized in vital components that demand these qualities and can 

be used in additive manufacturing. The components that compose this alloy include iron, 

nickel, and cobalt along with titanium, aluminium, and molybdenum. Maraging steel is 

used in industrial environments where high strength and ductility are necessary. As it 

cools during the metal additive manufacturing process, maraging steel transitions from 

austenite to martensite. Predicting the behaviour of the material during manufacturing 

requires a thorough simulation of this phase change (ANSYS 2024). 

Based on the literature review, manufacturing high quality maraging steel parts 

via metal additive manufacturing is difficult and expensive due to the necessity of good 

compatibility between manufacturing parameters and phase change characteristics of the 

material during simulation. Design of experiment studies or trainable optimization 

algorithms could be conducted to predict the results of this complex process. So, in order 

to print quality maraging steel parts with ease, the aim of this thesis carries the following 

objectives: 

1) Utilizing a phase changing material model from literature and finding physical 

experiment results of a benchmark maraging steel laser powder bed fusion 

part. 

2) Making use of direct optimization to calibrate the phase changing material 

model and finite element analysis so physical and numerical additive 

manufacturing processes produce consistent results. 

3) Training a stochastic optimization algorithm with the calibrated numerical 

simulation models. 

4) Having the trained algorithm predict compatibility of different parameters and 

suggest parameters combinations for manufacturing. 

5) Identification of optimum manufacturing parameter combinations for laser 

powder bed fusion of maraging steel. 
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CHAPTER 2 

 

ADDITIVE MANUFACTURING 

 

This chapter investigates the archetypes of additive manufacturing along with a 

clear definition of what AM is. Several methods and classifications of AM are discussed 

and established, followed by a deeper understanding of metal additive manufacturing 

(MAM) and MAM types. This chapter also investigates the parameters used in MAM and 

how they affect the printed part. Moreover, subjects such as residual stresses and MAM 

part failures are discussed. 

 

2.1. Additive Manufacturing 

 

Today's highly competitive global market demands that manufacturers 

concentrate on delivering high-quality goods quickly, effectively, and affordably if they 

wish to witness their manufacturing processes succeed. Global competitiveness is greatly 

aided by additive manufacturing, sometimes referred to as 3D printing, layer-wise 

manufacturing, rapid prototyping/manufacturing, or solid free-form fabrication 

(Mugwagwa and Dimitrov 2019). 

A variety of technologies are referred to as additive manufacturing because they 

can convert virtual solid model data into physical models through an automated process. 

The information is divided into a set of finite-thickness 2D cross-sections. These cross-

sections are put into additive manufacturing machines, where they are formed, assembled, 

and combined layer by layer to make the physical part. As a result, the AM machine 

replicates the digital part's geometry physically without requiring any modifications for 

manufacturing processes, such as tooling, undercuts, draft angles, or other features 

(Gibson et al. 2020). This method is more effective than traditional methods of 

manufacturing such as drilling, milling, and casting. Considered an energy and material-

efficient technique, 3D printing can save up to 50% of energy while using up to 90% of 

resources (Kantaros, Ganetsos, and Piromalis 2023). 

From being limited to quick prototyping in the late 1980s, additive manufacturing 

has grown in importance over time for low-volume end-use component manufacturing. 

The processing of metals and composites, as well as quality enhancement, have become 
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more important since the year 2000 (Mugwagwa and Dimitrov 2019). A chart of revenue 

rise for AM can be found in Figure 2.1. 

 

 

 

There are now a number of additive manufacturing techniques available; they vary 

in terms of the materials that can be utilized, the operating principle, and the way layers 

are deposited to build things. Certain techniques, such as selective laser melting (SLM), 

selective laser sintering (SLS), and fused deposition modeling (FDM), cure liquid 

materials, yet other techniques, such as stereolithography (SLA), melt or soften materials 

in order to generate layers. Because each approach has benefits as well as disadvantages 

of its own, some manufacturers provide an option between powder and polymer for the 

substance that the object is made of (Bikas, Stavropoulos, and Chryssolouris 2016). 

 

2.1.1. Extrusion Based Processes 

 

In order to soften or melt material—typically plastic—provided in the form of 

wire, thermal material extrusion techniques employ a heated extrusion nozzle. When the 

material has melted, it is deposited through an extrusion nozzle and allowed to cool before 

Figure 2.1. Rise in revenue for AM services between 2008 and 2022 

(Source: Wohlers et al. 2023) 
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solidifying to form the final part geometry (Bikas, Stavropoulos, and Chryssolouris 

2016). 

 

2.1.1.1 Fused Deposition Modeling  

 

A moveable head is used in the FDM process to deposit a thread of molten 

thermoplastic material onto a substrate. A simple schematic explaining the deposition 

process can be found in Figure 2.2. 

In order for the material to solidify immediately after extrusion and subsequently 

weld to the preceding layers, it is heated to a temperature that is 1°C over its melting point 

(Chryssolouris G 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1.2 Robocasting   

 

Robocasting is a freeform production method based on layer-wise deposition of 

heavily loaded colloidal slurries for thick ceramics and composites. Parts of the process 

can be manufactured, dried, and fully sintered in less than 24 hours, and it is essentially 

binderless with less than 1% organic material (Cesarano, King, and Denham n.d.).  

Figure 2.2. Filament deposition process (Source: Chryssolouris G 2005) 
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2.1.2. Material Jetting 

 

Using material jetting (MJ) technology, functional parts can be built by selectively 

curing liquid photopolymer. Air-excluding tanks are used in MJ to hold photopolymer 

ingredients, which are then heated in the transmission line that transfers photopolymer 

from tank to nozzle and deposited as droplets that form an extremely thin layer on the 

build platform. On the build platform, molten material is exposed to ultraviolet (UV) 

radiation for curing, which causes the material to solidify (Gülcan, Günaydın, and Tamer 

2021). A simple schematic explaining the material jetting process can be found in Figure 

2.3. 

 

 

 

 

2.1.2.1 Inkjet Printing   

 

Using ink droplets, inkjet printing is a non-contact digital printing method that 

transfers digital data from a computer that represents a character or image onto a substrate. 

Apart from its well-recognized use in document processing as an automated office tool, 

inkjet technology has also been extensively utilized in the electronics and micro-

engineering sectors for printing electronic components (Boland et al. 2006). Figure 2.4 

Figure 2.3. Material jetting process (Source: Gülcan et al. 2021) 
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demonstrates a schematic of additive manufacturing of ceramics components by inkjet 

printing. 

 

 

 

2.1.2.2 Multijet Modeling   

 

The layering concept, which supports most other rapid prototyping methods, is 

the basis of multijet modeling (MJM) and a simple schematic of the process can be found 

in Figure 2.5. The MJM uses a three-dimensional inkjet printing-like method to construct 

its models. Building a single layer of the model, the MJM head travels in the x-y plane, 

depositing unique thermo-polymer substance only where needed. Every time a pass is 

made, a UV lamp flashes to cure the thermo-polymer deposit. The platform is moved 

away from the head (z-axis) once the layer is finished, and the head then starts 

constructing the subsequent layer (Bikas, Stavropoulos, and Chryssolouris 2016).  

 

 

Figure 2.4. Schematic of inkjet printing for ceramics (Source: Derby 2015) 
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2.1.3. Electron Beam Based Processes 

 

This AM technique is called selective electron beam melting, or EBM. In this 

procedure, the metal powder layer is selectively melted and fused in a vacuum setting 

using an electron beam. Within a powder bed, a 3D target shape is built layer by layer in 

accordance with CAD data.  EBM provides novel material fusing and melting techniques 

because of its extremely high velocity limit, inertia-free movement and focus 

characteristics, and the rapid movement capacity of the electron beam (Uçak, Çiçek, and 

Aslantas 2022). 

 

2.1.4. Laser Based Processes 

 

Laser-based processes in additive manufacturing refer to a group of fabrication 

techniques that use laser energy as a primary source to melt and fuse material powder or 

wire feedstock, layer by layer, to build three-dimensional objects. These processes are 

characterized by their use of a high-intensity laser beam to selectively melt and solidify 

regions of a material bed based on digital 3D model data. The most common laser-based 

AM processes include laser powder bed fusion, laser directed energy deposition (DED) 

and stereolithography. 

 

 

Figure 2.5. Multijet Modeling (Source: Baier and Witt 2014) 
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2.1.4.1 Stereolithography   

 

The process of local photopolymerization, which is initiated by UV light and 

occurs in a bath including liquid monomers, oligomers, and photo-initiators, is what 

makes SLA possible. An increasing number of materials have been developed for a wide 

range of applications, such as soft robotic actuators, sensors, medical implants, 

microfluidics devices, and energy storage components, because stereolithography is 

versatile enough to generate a variety of highly complex 3D structures with high precision 

and at an affordable cost (J. Huang, Qin, and Wang 2020). A typical stereolithography 

system can be found in Figure 2.6. 

 

 

 

2.1.4.2 Selective Laser Sintering   

 

Selective laser sintering fuses tiny raw material particles together with a powerful 

laser to create 3D solid objects. Before printing, in order to reduce thermal distortions, 

the powder bed is heated slightly below the melting point of the material. The material is 

locally and partially melted by the energy from the absorbed laser beam, generating the 

layer contour of the part, while the unsintered powder stays in situ to maintain the 

structure. Material solidifies as a result of heat transfer via radiation, convection, and 

conduction as the laser beam travels. Following the layer's solidification, the powder bed 

is lowered by one layer thickness, and the sintering/build process is restarted with fresh 

Figure 2.6. A typical stereolithography system (Source:  J. Huang et al. 2020) 
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powder material poured into the newly formed empty space on top of the powder bed. 

Diverse materials, including metals, polymers, ceramics, and composite materials, can be 

employed in SLS, along with distinct binding and sintering methods (Papazoglou et al. 

2022). 

 

2.1.4.3 Selective Laser Melting   

 

A technique that is comparable to SLS is selective laser melting; the two are 

variations on the same theme but have different technological aspects, as demonstrated in 

Figure 2.7. In the selective laser melting method, a part is formed via powder melting as 

opposed to sintering. As a result, laser beam power is often greater (around 400 W) 

(Bikas, Stavropoulos, and Chryssolouris 2016) 

 

 

 

 

Figure 2.7. Schematic presentation of SLS and SLM processes  

(Source: Papazoglou et al. 2022) 
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2.2. Metal Additive Manufacturing 

 

In recent years, there is a noticeable trend toward AM of load bearing, structural 

structures, by utilizing the inherent design freedom of such a technique. Since metal is 

required to construct those structures, industrial applications such as SLM/SLS, and EBM 

are the focus (Bikas, Stavropoulos, and Chryssolouris 2016). 

 

2.2.1. Directed Energy Deposition 

 

The ISO/ASTM 52900 standard defines the DED process as an additive 

manufacturing process in which focused thermal energy is used to fuse materials by 

melting as they are being deposited. Cladding and welding procedures are technologies 

that are utilized in the DED process. The printed layer is the receiver of thermal energy, 

such as a laser, electron beam, etc. The feedstock containing various wire and powder 

types is fed to the thermal energy focused zone simultaneously. Melting of the feedstock 

and the preceding layer in and around the concentrated thermal energy location creates 

the molten pool. The molten pool cools to produce the deposit bead. By repeating the 

aforementioned process, a 3-D metallic component is created (Ahn 2021).  

Figure 2.8 showcases two different stock feeding methodologies of powder-fed 

DED. 

 

 

 

 

Figure 2.8. Powder feeding methodologies of DED processes: (a) co-axial feeding and 

(b) off-axis feeding (Source: Ahn 2021) 
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2.2.2. Laser Powder Bed Fusion 

 

A common metal additive manufacturing technique for producing metallic parts 

for several industries, including aerospace and biomedical, is laser powder bed fusion. 

The evenly distributed powder coating is selectively melted using a high-energy laser. 

Lowering the build table causes the melted area to solidify and distributes a new layer of 

powder. This procedure is repeated until the part is produced to completion (Kizhakkinan 

et al. 2023). This process is a sub-branch of SLM and contains several distinct 

manufacturing parameters such as laser power and scan speed, further discussed in this 

study and demonstrated in Figure 2.9.  

 

 

 

2.2.2.1 Process Parameters 

 

In L-PBF, the parameters which have the greatest impact are laser power, scan 

speed, layer thickness, and scan spacing, which is also referred to as hatch distance 

(Depboylu et al. 2023). Among these parameters, laser power uses the unit of Watts, scan 

speed is usually denoted by millimetres per seconds, layer thickness has the unit of 

micrometres and scan spacing millimetres. A schematic of these process parameters, 

along with process mechanisms and defects can be found in Figure 2.10. 

Figure 2.9. Common process parameters in laser powder bed fusion AM 

(Source:  Depboylu et al. 2023) 



15 

 

 
Figure 2.10. Process parameters 
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2.2.2.1.1  Laser Power  

 

Laser power is measured in Watts and indicates the amount of energy per unit time 

that is delivered by the laser. 

The laser power used in the L-PBF process significantly affects the microstructure 

and mechanical properties of the resulting products. Studies show that using high-

powered L-PBF can produce parts with better tensile properties than die-cast AlSi10Mg 

(Liu, Wei, and Zeng 2022). It has also been noted that varying the laser power and layer 

thickness directly affects the cooling speeds, which in turn affects the microstructure and 

possible performance of the additively built component (Kosiba et al. 2023). Laser power 

can affect imperfection characteristics in addition to material attributes. When optimum 

process settings are used, increased laser power can cause hot fractures but also allow for 

higher build rates, producing extremely dense samples (G. Huang et al. 2022).  

Overall, the L-PBF method allows for the efficient manufacturing of high-

performance parts with desired material characteristics by altering laser power to modify 

microstructural features and mechanical qualities to satisfy specific requirements. 

 

2.2.2.1.2  Scan Speed  

 

Another important factor in the laser powder bed fusion process that affects the 

mechanical, microstructural, and quality characteristics of printed parts is scan speed. 

Literature review shows a relationship between melt pool shape and crack formation, 

demonstrating that scan speed, preheating temperature, and laser power may all be tuned 

to minimize hot cracking while processing high-speed steel HS2-2-2 components (Lücke 

et al. 2023). According to a different study, different inclination angles and scan speeds 

have a considerable impact on the surface roughness and near-surface porosity of 

unsupported overhangs produced by high-speed L-PBF, which can lead to changes in the 

quality of the final product (Shange et al. 2022). Furthermore, research has demonstrated 

that scan speed has a significant effect on the texture, grain size, and cell size of stainless-

steel components, which in turn affects mechanical characteristics like ductility and 

tensile strength (Pauzon et al. 2020).  

In summary, careful control over scan speed is necessary to maintain ideal 

component quality in L-PBF and regulate laser-material interactions. It serves as an 
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example of how differences in scan speed shape the final features of 3D printed 

components, influencing everything from surface polish to microstructure and from 

defect generation to mechanical performance. 

 

2.2.2.1.3  Hatch Distance 

 

Hatch distance, or the distance between consecutive scan tracks in L-PBF, is an 

important factor that affects the final part's mechanical characteristics, surface quality, 

microstructure, and densification.  

A study performed on an AlMgScZr alloy produced by L-PBF revealed that 

utilizing a hatch distance of 60 μm resulted in nearly complete relative density. Smoother 

surfaces exhibiting fewer capillary instability were obtained by processing specimens 

with a hatch distance of 120 μm; no noticeable impact on microhardness was observed. 

This suggests that surface roughness, microstructural characteristics, and relative density 

can all be efficiently controlled by hatch distance optimization (Li et al. 2023). The impact 

of hatch distance on the mechanical anisotropy and microstructure of 316L stainless steel 

produced by L-PBF was also investigated, demonstrating that changing the hatch distance 

can change the physical properties of components and enhance printing quality (Z. Zhang 

et al. 2023). 

Overall, hatch distance optimization plays a major role in densification, surface 

finish, and mechanical performance, making it essential to producing high-quality 

components in L-PBF. As seen by its critical position in the process parameter 

combination, the appropriate hatch distance can help reduce common L-PBF concerns 

like porosity and surface irregularity. 

 

2.2.2.1.4  Deposition Thickness   

 

In laser powder bed fusion, deposition, or layer thickness refers to the thickness 

of each layer of powder that is melted by the laser during deposition. The productivity, 

surface quality, and mechanical characteristics of the produced parts are all directly 

impacted by this parameter. 

For the AlSi10Mg alloy, the effect of layer thickness on defect generation and 

mechanical properties was examined in a study. The results indicated that thinner layers 



18 

 

had better tensile qualities than thicker ones (Liu, Wei, and Zeng 2022). Additional 

investigation on how layer thickness affects the mechanical characteristics of parts 

created with L-PBF revealed that greater build speed—which is usually made possible by 

thicker layers—had an impact on the parts' microstructure and fatigue strength. The 

results showed a relationship between the layer thickness used and microstructural 

alterations, increased porosity, and decreased fatigue life (Rautio et al. 2023).  

In general, thicker layers present a number of obstacles, including greater defect 

formation, particularly in the case of porosity, and probably lower mechanical qualities, 

even though they can greatly increase the building rate and thereby contribute to higher 

productivity. Careful layer thickness control is necessary to maximize L-PBF's potential 

for improving production efficiency while maintaining or enhancing material qualities, 

finding a balance between productivity and component quality. 

 

2.2.2.2 Maraging Steel in Laser Powder Bed Fusion 

 

A kind of ultra-high strength steel called maraging steel is renowned for its 

remarkable ability to maintain malleability while maintaining a high tensile strength and 

toughness.  

Because of its great strength and ability to gain even more strength by post-process 

aging, maraging steel is especially well-suited for applications involving additive 

manufacturing. The final qualities of the printed part are significantly influenced by the 

manufacturing parameters (Paul et al. 2022). A common option for AM, maraging steel's 

great strength and simple post-processing make it perfect for obtaining intricate part 

geometries and high precision (Rao and Rao 2022). 

Maraging steel is unique in that it can be produced using additive manufacturing 

methods such as L-PBF and DED, and it can meet the engineering requirements of high 

strength, toughness, and ductility. Its applicability across a range of sectors continues to 

be enhanced by advancements in alloy formation and process optimization. However, 

maraging steel also comes with its unique hardships. 

The mechanical characteristics and manufacturability of tool steels such as 

maraging steel, as determined by SLM have not been thoroughly studied. Each powder 

layer goes through multiple phase transitions quickly, and these changes establish the 

final microstructure and the corresponding mechanical qualities that will come from the 
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process (Mugwagwa and Dimitrov 2019). Thermal stresses are created during SLM due 

to the rapid transition from solid to liquid and back again. A brittle martensitic phase is 

also formed as a result of the quick cooling. Rapid heating and cooling cycles are 

produced by the localized melting and heating of powders at these high temperatures, as 

well as by the brief interaction between the powder bed and the high-energy laser beam. 

This causes thermal stresses to develop in the part that is being solidified. When all of the 

heat has finally been removed from the material, residual stresses will still be present if 

these stresses are greater than the yield strength of the material. Part distortion from these 

stresses manifests as warping or bending, pores, cracks, delamination, and plastic 

deformation during the consolidation process (Mugwagwa and Lameck 2016). 
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CHAPTER 3 

 

OPTIMIZATION IN ADDITIVE MANUFACTURING 

 

Many process parameters that affect the printed part are involved in metal AM 

procedures. The mechanical qualities of the AM component, such as tensile strength, 

ductility, surface roughness, fatigue life, and hardness, are influenced by the 

microstructure of the part, which is influenced by the temperature history of the AM 

process. Producing high-quality AM parts thus requires a thorough grasp and ideal 

management of the process parameters. It is therefore necessary to identify the ideal 

process parameters for any given design aim, production objective, and feedstock 

material. The process parameter optimization of various metal AM materials has been 

extensively studied in the literature, and AM has been the subject of multiple review 

studies. The necessity of process parameter optimization in AM is acknowledged and 

emphasized in the literature (Chia et al. 2022).  

In L-PBF, the parameters which have the greatest impact are laser power, scan 

speed, layer thickness, and scan spacing, which is also referred to as hatch distance 

(Depboylu et al. 2023). Direct comparisons based solely on combinations of these criteria 

may be deceptive because the parameters do not exactly correlate in a linear sense. In 

reality, several parameter combinations with comparable values may result in various 

mechanical qualities (Chia et al. 2022). Thus, use of optimization methods is required to 

establish a deeper understanding of these parameters, how sensitively they affect the part 

and how can they be combined. 

 

3.1. Optimization Stages in Additive Manufacturing 

 

It is possible to methodically condense optimization frameworks in AM into four 

primary sections: design of experiments, modeling, characterisation (gathering data), and 

optimization (Chia et al. 2022). Additional steps such as creating external surrogate 

models or conducting simulations with the data could also be beneficial for optimization 

of AM. The relationship between these sections is demonstrated in Figure 3.1.  
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3.1.1. Design of Experiments 

 

The application of Design of Experiments (DoE) in decision-making has spread 

to numerous industries, whether in the context of manufacturing process optimization, 

new product creation, or both. It is employed not just in the engineering field but also in 

the fields of administration, marketing, healthcare, pharmaceuticals, food, energy, and 

architecture. DoE is relevant to both computer simulation models and real-world systems 

(Durakovic 2017).  

DoE is a multivariate experimental design in which two or more variables 

(sometimes referred to as factors) are consistently examined in a single experiment. It is 

the most effective way to conduct experiments when defining variable effects is crucial 

to achieving a goal. Even with DoE, the more study variables there are, the more work 

there is (Porter, Verseput, and Cunningham 1997).  

Even though it can require a large number of experiments, DoE enables the 

identification of optimal conditions for achieving desired performance outcomes. 

Predictive models can be developed more easily when important interactions and 

Figure 3.1. Optimization framework in AM summarized into four sections: design of 

experiments; characterization; modeling; optimization (Source: Chia et al. 

2022) 
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significant outcomes are found in the analysis of experimental data. By identifying the 

set of parameters that produce the greatest outcomes, these models guide the optimization 

process. In the end, DoE optimization results in increased product quality, decreased 

costs, and better process performance, making it a crucial tool for industrial and technical 

applications. 

DoE has been used in previous works mentioned in this study, where several 

different combinations of AM parameters are utilized in a design of experiment fashion 

to get varying deformation results (L. Mugwagwa et al. 2018). 

 

3.1.2. Modeling 

 

Modeling stage creates a link between the input and output parameters of the 

optimization problem and acts as the processing unit where the input data is shaped into 

a comprehensive form where the shape of the input would allow outputs to be coherently 

processed. Inspecting Figure 3.2 from top to bottom demonstrates a sample modelling 

problem where physical or numerical experiments are conducted to gather data, and then 

the data is used incorporated into a suitable modeling technique. 

In metal AM, certain forms of modelling like Kriging and neural networks have 

been utilized (Chia et al. 2022). 

Parameter sensitivity studies could also be conducted during the modeling stage 

as sensitivity analyses tend to be integral to the model development. Such studies can 

give results about how inputs correlate with eachother and what types of outputs are 

affected in what scale. 

For this study, the modelling stage uses finite element analysis for the direct 

optimization and tabular data along with metamodel prognosis for the stochastic 

optimization.  

 

3.1.3. Characterization  

 

The data acquisition, or characterization, in this study can be split into two parts. 

First part is the data acquired from literature (L. Mugwagwa et al. 2018) where a 

benchmark part has been printed with ranges of parameters in order to calculate the 

influence of process parameters, hence consisting of a design of experiment method. The 
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Figure 3.2. Modeling for optimization in AM (Source: Chia et al. 2022) 
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second part is where the simulation model of the same part is calibrated so that 

simulations yield the same results as the physical parts. The first stage has been conducted 

via a DoE method (L. Mugwagwa et al. 2018) while the second stage follows a single 

objective direct optimization method. Data for the first stage is given in Table 3.1, while 

the data for the second stage, with further explanation, is discussed in Chapter IV. 

The data presented in Table 3.1 originates from literature (L. Mugwagwa et al. 

2018) and focuses on measuring the displacement at the tip of the printed part after the 

majority of the part has been cut off from the baseplate. Therefore, the maximum 

deflection column of Table 3.1 is the measured maximum distortion. 

 

3.1.4. Optimization 

 

Every optimization study starts with the definition of an optimization problem. 

The method, inputs, outputs, and objectives vary but the problem at hand should be stated. 

In order to obtain the problem, the study must be thoroughly investigated. For a problem 

to exist, an objective is created which can either be to minimize the work necessary or 

maximize the intended benefit. Problem definition is the process of figuring out the 

conditions that yield the maximum or least value of a function since the amount of work 

needed or the expected benefit in any real-world scenario can be described as a function 

of specific decision variables. Given a set of restrictions, optimization techniques can be 

used to find the minimum of a function involving multiple variables.  

Table 3.1. Design of experiment data of L-PBF samples (Source: Mugwagwa et al. 2018) 

Inputs Outputs  

Layer 

thickness 

(µm) 

Laser 

power (W) 

Scanning 

speed 

(mm/s) 

Relative 

density 

(%) 

Porosity (%) Maximum 

deflection 

(mm) 

30 80 400 88.48 11.52 0.5 

30 80 300 90.98 9.02 0.39 

30 80 200 94.75 5.25 0.18 

30 100 500 96.04 3.96 0.74 

30 100 400 95.97 4.03 0.51 

Cont. on next page 
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Table 3.1. (cont.) 

30 100 300 91.03 8.97 0.33 

30 120 500 98.04 1.96 0.87 

30 120 400 95.63 3.47 0.65 

30 120 300 93.89 6.11 0.34 

30 140 600 98.77 1.23 0.89 

30 140 500 96.9 3.1 0.88 

30 140 400 96.27 3.73 0.71 

30 160 700 99.06 0.94 1.1 

30 180 700 99.35 0.65 1.16 

30 160 600 98.91 1.09 1.03 

30 160 400 96.59 3.41 0.81 

30 160 300 95.39 4.61 0.65 

30 160 800 96.35 3.65 1.13 

30 180 800 99.21 0.79 1.16 

30 180 900 97.77 1.23 1.09 

30 180 1000 98.47 1.53 1.18 

30 180 600 99.58 0.42 1.04 

30 180 500 98.62 1.38 0.87 

30 180 400 94.89 5.11 0.38 

45 120 400 90.42 9.58 0.2 

45 120 300 90.06 9.94 0.14 

45 120 200 89.76 10.24 0.25 

45 120 500 95.81 4.19 0.41 

45 140 400 90.59 9.41 0.13 

45 140 300 91.62 8.38 0.02 

45 160 500 95.86 4.14 0.12 

45 160 400 95.24 4.76 0.1 

45 160 300 92 8 0.01 

45 180 600 99.35 0.65 0.51 

45 180 500 98.48 1.52 0.3 

45 180 400 89.72 10.28 0.09 

45 180 300 92.91 7.09 0.07 
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Stochastic search techniques can be applied to evaluate issues described by a set 

of random variables with known probability distributions. To obtain the most accurate 

representation of the physical condition, statistical approaches allow the analysis of 

experimental data and the creation of empirical models (Rao 2019).  

An optimization or mathematical programming issue is defined as follows: 

 

 

Find 𝑋 =

{
 
 

 
 
𝑥1
𝑥2
.
.
 
𝑥𝑛}
 
 

 
 

  which minimizes f(x) (3.1) 

 

depending on the conditions 

 

 
𝑔𝑗  (𝑋)  ≤  0      𝑗 =  1,2, … ,𝑚 (3.2) 

 
𝑙𝑘 (𝑋) =  0     𝑘 =  1,2… . , 𝑝 (3.3) 

 

Here, 𝑓(𝑋) is the objective function, 𝑔𝑗(𝑋) and 𝑙𝑘(𝑋), respectively, are the 

inequality and equality constraints, and 𝑋 is an n-dimensional vector known as the design 

vector. The number of constraints 𝑚 and/or 𝑝 and the number of variables 𝑛 do not have 

to be related in any manner. The optimization problem in Equation 3.1 is referred to as a 

constrained optimization problem. There are certain optimization problems that are 

unconstrained, or that have no limitations (Rao 2019). 

Since this study utilizes two different optimization methods, two different 

optimization problems have been defined. For the first optimization problem, where DoE 

data is given to the simulation model and direct optimization is utilized in order to match 

the data from experiments, the problem definition was to “seek targets”. The target being 

sought was the deformation results from the experimental data. The second optimization 

problem, where a stochastic algorithm was used, had the problem definition of “minimize 

results” where the deformation of the printed part, hence residual effect of AM was 

minimized.   
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3.1.4.1 Genetic and Evolutionary Algorithms  

 

Algorithms inspired by nature, like the genetic algorithm (GA), are becoming 

more popular for resolving challenging engineering problems. GA creates a system of 

mathematical equations to address challenging non-linear issues. Initially presented by (J 

R Koza 1992), GA uses machine-learning methods to use Darwinian natural selection to 

symbolically optimize a set of mathematical solutions. In order to mimic the biological 

evolution of survival of the fittest, the GA technique employs three main processes: 

crossover, mutation using a population of feasible solutions, and selection or 

reproduction. A regression method assumes a basic type of relationship between 

independent and dependent variables. Next, the parameters of the model are selected to 

maximize its fit to the data. This is a disadvantage of conventional regression techniques, 

which base their analysis on a predetermined polynomial function (Altıntaş and Artem 

2021).  

The method by which variation is incorporated into the population distinguishes 

the two primary forms, evolution algorithms (EA) and genetic algorithms (GA). The 

majority of variety in genetic algorithms arises from gene recombination through 

crossover operators, although adaptive mutation for evolution techniques adds variation 

to the population, as can be seen in Figure 3.3. 

Efficiency values must be assigned in order to choose individuals for reproduction 

using random selection techniques. The scalability issue with the proportional fitness 

assignment is resolved by using a rank-based fitness assignment. The likelihood of 

choosing a design with poor fitness is low because of the random selection process and 

the fitness ranking. But since it's not impossible, a weak design might likewise be used to 

the generation of newer iterations. 

By sharing information between chromosomes, two parent individuals can 

produce two children through a recombination mechanism called the crossover operator. 

The goals are to preserve population diversity (exploration) and acquire individuals who 

have superior qualities (exploitation). 

In genetic algorithms, crossover is considered to be the primary search operator 

(ANSYS 2024). 

Evolutionary algorithms on the other hand are a branch of artificial intelligence 

that solves optimization issues by simulating natural evolution. The survival 
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of the fittest theory, which holds that the best or most optimal solutions to a problem 

emerge over generations, is the foundation upon which EAs function. Selection, mutation, 

recombination, and inheritance are the main mechanisms of evolutionary algorithms. By 

utilizing and exploring the search space, these mechanisms direct the evolutionary 

process towards optimal solutions.  

Finding several minimum components in a single iteration inside partially sorted 

combination sets is one of the unique characteristics of evolutionary algorithms. EAs are 

very useful in tackling difficult optimization problems where traditional approaches may 

fail because of this feature, which is especially prized for its efficiency in getting to the 

set of minimal elements within a finite number of iterations (Rudolph 1999). 

At the beginning of an evolutionary algorithm, 𝜇 number of parents of the starting 

population of 𝑃𝑡 produce 𝜆 offspring in some probabilistic functionality (𝜆 ≥ 𝜇 ≥ 1). 

Members of the new generation, or the offspring, are harvested in a set of 𝑄 where 

identical offsprings might exist and are not removed from the population pool. Those 

among 𝑄 yielding optimal values for the objective are moved to 𝑄∗. As the creation of 

Figure 3.3. Evolutionary and genetic algorithm working structures  

(Source: ANSYS 2024) 
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the first offspring generation comes to an end, the new generation is partitioned into the 

sets of 𝑄 and 𝑄∗ where |𝑄∗| ≥ 1 and |𝑄| + |𝑄∗| = 𝜆. Each member of 𝑄 is expected to 

demonstrate lower qualities than offsprings is 𝑄∗.  

For the following generation, for each offspring 𝑞 from 𝑄∗, given that the parent 

pool 𝑃𝑡 only contains the first offspring generation, all parents from 𝑃𝑡 that yield worse 

results than the members of offspring 𝑞 are separated and discarded from 𝑃𝑡. Then, the 

offspring 𝑞 is moved from 𝑄∗ to 𝑃′. If no older generations yield worse results than the 

offspring 𝑞, and it is incomparable to none in the parent pool, then 𝑞 is relocated from 𝑄∗ 

to 𝑄′. As the second generation stops populating, 𝑃′ has the more successful offsprings 

that are better than most parents, 𝑄′ has offsprings that are either better than some parents 

or those incomparable to all parents and 𝑄∗ has offsprings that are worse than most 

parents. Older generations that are not partitioned into any newer sets, left in 𝑃𝑡, are 

incomparable to each offspring in 𝑃′ ∪ 𝑄′. Entire set of 𝑄 is expected to have lower 

qualities than any member of 𝑃′ ∪ 𝑄′ ∪ 𝑄∗. 

After the second generation, the pool 𝑃𝑡+1 parents of the third and following 

generations consist of the members of 𝑃′ and any residual left in 𝑃𝑡. At that stage, for the 

members of 𝑃𝑡+1, |𝑃𝑡+1| = |𝑃𝑡 ∪ 𝑃
′| = |𝑃𝑡| + |𝑃

′| ≤ 𝜇 is expected.  

If |𝑃𝑡+1| < 𝜇 then members of 𝑄′ are relocated to 𝑃𝑡+1. If 𝑄′ contains more than 

expected members to increase the population of 𝑃𝑡+1, artificial set of rules may be applied 

to filter which members of 𝑄′ are selected to populate 𝑃𝑡+1. If 𝑄′ contains less than 

expected members to increase the population of 𝑃𝑡+1, artificial set of rules may be applied 

to filter which members of 𝑄∗ are selected to populate 𝑃𝑡+1, and at some cases, similar 

procedures may be applied to 𝑄 aswell. Given that 𝜆 > 𝜇, each new following population 

can continue with a completed population of at least 𝜇 members. For the case of any 𝜆 

having less than its respective 𝜇, 𝑃𝑡+1 may be filled with randomly created members. 

At the end of any following generation, each individual of the original population, 

𝑃𝑡, who was not overqualified by some offspring are passed to the newest population, 

𝑃𝑡+1, while each member of the previous populations that had lower qualities than some 

offspring are replaced by newer and better generations (Rudolph 1999). 

Evolutionary algorithms provide a reliable computational method for solving 

optimization issues in a variety of domains. Their ability to adapt and find the best 

answers for intricate, multi-dimensional issues derives from their origins in the theories 
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of natural selection and evolution, which positions them as a key technology in 

optimization research. 

 

3.1.4.2 Metamodel of Optimal Prognosis  

 

Metamodel of Optimal Prognosis (MOP) was developed as an automated 

technique to find the optimal filter meta-model configurations by Dynardo (Will and Most 

2009). MOP eliminates the need for additional analysis by enabling the testing of several 

design configurations using a proxy model of the real physical problem. A metric for 

describing estimate quality must first be defined before an automation technique can be 

constructed. This eliminates the need for additional analysis by enabling the testing of 

several design configurations using a proxy model of the real physical problem. 

Specifically, the MOP uses the generalized Coefficient of Determination (CoD) to provide 

pure polynomial regression. To evaluate the accuracy of an approximation in a 

polynomial regression, the CoD calculates the proportion of variance explained by the 

approximation: 

 

    𝑅2 =
𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

;   0 ≤ 𝑅2 ≤ 1 (3.4) 

 

In Equation 3.4, when SST is used to formulate total variation, SSR is used to 

determine variation in regression and SSE is used to dictate unexplained variance, as can 

be seen in Equation 3.5: 

 

 

𝑆𝑆𝑇 =∑(𝑦𝑖 − 𝜇𝑌)
2, 𝑆𝑆𝑅

𝑁

𝑖=1

=∑(𝑦̂𝑖 − 𝜇𝑌̂)
2, 𝑆𝑆𝐸

𝑁

𝑖=1

=∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑁

𝑖=1

 (3.5) 

 

However, to avoid unnecessary fitting, the modified coefficient of determination, 

given in Equation 3.6, was developed: 

 

 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑁 − 1

𝑁 − 𝑝
(1 − 𝑅2)  (3.6) 
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There are N sample points and p regression coefficients. The prognostic quality 

was used to evaluate an approximation's quality using an extra test data set. The degree 

of agreement between the estimates from the meta-model and the actual test data is 

measured by the coefficient of prognosis. CoP is specified in Equation 3.7 by (Will and 

Most, 2009). 

 

 

𝐶𝑜𝑃 = (
𝐸|𝑌𝑡𝑒𝑠𝑡 ∗ 𝑌̂𝑡𝑒𝑠𝑡|

𝜎𝑌𝑡𝑒𝑠𝑡𝜎𝑌̂𝑡𝑒𝑠𝑡
)

2

; 0 ≤ 𝐶𝑜𝑃 ≤ 1 (3.7) 

 

An optimal metamodel can be identified with a defined CoP. Every possible 

significance is investigated for each meta-model by varying the significance percentage 

from 99% to a predetermined minimum value. After that, a polynomial regression is 

constructed, and Equation 3.8 is used to determine the coefficients of significance (CoI) 

for every variable.  

 

 𝐶𝑜𝐼𝑌,𝑋𝑖 = 𝑅𝑌,𝑋
2 − 𝑅𝑌,𝑋~𝑖

2
 (3.8) 

 

The CoD of the reduced model, which takes out all linear, quadratic, and 

interaction terms from Xi, is represented by R2
Y,X~i, whereas the CoD of the complete 

model, which contains all terms of the variables in X, is represented by R2
Y,X.  

A specified value is used in place to cover the 1% threshold in the 𝐶𝑜𝐼𝑌,𝑋𝑖 

calculation. Each variable's CoI is used to build the meta-model and determine the 

coefficient of prognosis. The optimal meta-model is chosen from the maximal 

configuration of CoP. The meta-model is constructed using the training data set, and the 

CoP is computed using the test data set. 

Alternatively, a merged data set comprising both test and training data is utilized 

for significance filter correlations and importance filter regression. To maintain similarity 

in answer ranges across training and test sets, the original data set is divided into these 

subsets if an additional test data set is unavailable. This division makes sure that the 

distribution and characteristics of the entire data is preserved. By utilizing the full 

spectrum of available data, this approach provides a balanced evaluation of the model’s 

performance. 
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3.1.4.3 Stochastic Design Improvement  

 

Without requiring in-depth understanding of potential relationships in design 

space, Stochastic Design Improvement (SDI) is a local, single-objective optimization 

process that enhances a suggested design through the use of a straightforward stochastic 

technique. From an initial start design, a uniformly distributed Latin Hypercube Sampling 

within a defined range produces a start population of size µ. As seen in Figure 3.4, the 

best design is chosen as the new centre point for the sample of the subsequent iteration at 

each iteration stage.  

 

 

 

At every iteration, the sampling scheme's ranges are modified. The population as 

a whole may relocate to a better area and improve every step, depending on the 

optimization problem. Using the parameter-free constraint management technique used 

in evolutionary algorithms, all individuals of a single iteration will be compared with 

respect to the aim and constraints. The algorithm converges if the maximum number of 

iterations is reached, if a given improvement over the original design is gained, or if a 

specific performance decrease is noticed between two iteration steps (ANSYS 2024). 

The SDI is particularly robust and works for a large number of unsuccessful 

designs, discrete and continuous parameters, design variables, and constraint conditions 

because of its pure stochastic approach. It was not intended to uncover globally ideal 

solutions, but rather to enhance a preliminary design. Because of this, its efficiency might 

be much lower than that of evolutionary algorithms (ANSYS 2024).  

Figure 3.4. Stochastic design improvement (Source: ANSYS 2024) 
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CHAPTER 4 

 

SIMULATION IN ADDITIVE MANUFACTURING 

 

Simulation of the metal additive manufacturing laser powder bed fusion process 

requires realistic adaptation of manufacturing and real-world parameters into numerical 

modeling. This chapter investigates the methodologies used in this thesis. 

 

4.1. Finite Element Analysis 

 

A popular computer tool in engineering, finite element analysis enables the 

analysis of complicated structures under varied loading scenarios and boundary 

conditions. Fundamental to mechanical engineering, finite element analysis breaks down 

large, complex problems into smaller, more computationally manageable parts. In order 

to better understand the likelihood of failure or other problems, engineers can use this 

approach to forecast how materials and structures will behave under stress, strain, or 

temperature influences. 

FEA is essential for enabling structural study of creating irregular geometry, by 

means of semi-automated processes that translate three-dimensional point clouds into 

finite element models. This tackles the problem of preserving and restoring complex 

geometry, where conventional CAD-based models might not be adequate (Castellazzi et 

al. 2015). Differential equations that explain physical processes are solved at the core of 

FEA. The behaviour of the material or structure under investigation is generally 

represented by a set of equations that define each finite element. These components come 

together to form a mesh because they are joined at what are referred to as nodes. An 

isolated representation of the geometry under study is provided by the mesh. Predicting 

the values of the physical quantities throughout the domain requires FEA software to 

build the equations at each node and solve them concurrently. 

First step of FEA is pre-processing. During this stage, the problem's physical 

boundaries, including its geometry, material qualities, boundary conditions, and loading 

circumstances, must be defined. This stage, in which the domain is discretized into finite 

elements, depends critically on mesh generation (Bathe 1996). 
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Next step is solution, where, based on the inputs, FEA software calculates the 

behaviours in each element and node. Numerical approximations for stresses, strains, or 

other desirable physical parameters throughout the whole problem domain are obtained 

by solving the mathematical models. 

In the last stage, the simulation's outcomes are visualized, examined, and 

interpreted. Engineers, depending on the nature of the problem, can look at temperature 

fields, fluid velocities, or detailed distributions of stresses and deformations 

(Zienkiewicz, Taylor, and Zhu 2005). 

Since FEA consists of model discretization, a load can be applied to entire 

geometries or to local features. Results, just like loads, can be interpreted for entire 

models or for local features. Both linear and nonlinear analyses—the latter of which 

addresses complexities including geometric nonlinearities, material nonlinearities, and 

contact mechanics—might be included in FEA (Kim 2015). Figure 4.1 investigates a 

linear finite element analysis, where the change in input is expected to behave in a linear 

fashion accordingly to the output. While problems solved in FEA can range from simple 

to extremely complicated, the quality of the input data and the resolution of the mesh have 

a major impact on the accuracy of the outcomes. 

 

 

 

 

Figure 4.1. Linear relationship of input and output in FEA (Source: Kim 2015) 
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4.2. Additive Manufacturing Simulation 

 

In additive manufacturing, finite element analysis is essential, particularly when 

examining the behaviour and performance of lattice structures in interbody cages. The 

body-centered cubic (BCC) structure is one lattice arrangement that has been found to 

produce optimal stress and strain values through FEA studies. These results are important 

for the design and operation of AM components (Bozyiğit et al. 2023). 

When using wire arc additive manufacturing (WAAM), FEA is also crucial for 

examining various scanning patterns and energies that impact residual stress and 

deformation. These findings have important implications for improving the AM process 

and the quality of the finished manufactured parts (Ali and Han 2023). In laser-based 

metal additive manufacturing types, factors including laser power, scanning speed, and 

strategy are crucial because they affect the location of stress in the cladding layers. 

Essential factors in the creation of the AM process, FEA aids in finding these parameters 

to lower stress and enhance part quality (Meng et al. 2023). Residual stress in functionally 

graded materials produced by laser additive manufacturing has been predicted and 

managed using finite element analysis. The residual stress of the form can be optimized 

by varying the laser energy and composition of the transitional layer material, which is a 

major concern in MAM (Zhao et al. 2022). 

While AM includes microscale, mesoscale and macroscale phenomena, FEA of 

AM is usually only interested in the macroscale formations, ignoring some mesoscale and 

most microscale settings (ANSYS 2024). 

In FEA, simulation of PBF process is mainly divided into two main subjects as 

inherent strain and thermal-structural methods.  

 

4.2.1. Inherent Strain and Thermomechanical Methods 

 

Inherent strain simulations are structural only calculations where effects of 

temperature during the printing process are ignored by the solver. Instead of calculating 

the thermal properties, inherent strain studies utilize a factor named “Strain Scaling 

Factor” where thermal effects are artificially added instead of solved.   

For the Inherent Strain approach, necessary material information are mechanical 

properties such as Poisson’s ratio, Young’s Modulus, Yield Strength, Bilinear or 



36 

 

Multilinear Hardening Curves that are temperature independent. Temperature dependent 

properties are not required unless a thermal simulation, such as heat treatment, is going 

to be solved (ANSYS 2024). 

Stress is necessary for the strain to fit inside the body and for the inherent strain 

technique to work. If we consider this to be a mechanical process, the body must be 

distorted in order to accommodate the strain field. After removing the loads necessary to 

cause the body to deform, equilibrium is reached to determine the residual stress state. 

Phase transformation, thermal strain, plastic deformation, and other processes may result 

in the poorly fitted strain field. The term "inherent strain" refers to the sum of all such 

potential sources of incompatible strain that exist within the body. The inherent strain, or 

strain that does not fit, is what causes any tension to exist in the unloaded body (Hill et 

al. 1999). 

A relationship between the stress change resulting from aforementioned processes 

is requested for the stress, 𝜎, and the inherent strain field within the body, 𝜀∗, assuming 

that the material behavior of the body is linear elastic. The following tensor is used for 

the representation of this relation: 

 

 𝜎 = 𝑓(𝜀∗) (4.1) 

 

Here, 𝑓() is a second order tensor function while 𝜎 and 𝜀∗ are second order tensor 

functions of the spatial coordinates. Considering the distribution of intrinsic strain, 𝑓() 

denotes a somewhat complicated set of methods needed to solve for stress.  

According to the constitutive relation for an elastic material, inherent strain enters 

the elasticity problem as: 

 

 𝜎 = 𝐶 ⋅ (𝜀 − 𝜀∗) (4.2) 

 

where 𝐶 is the elastic constitutive tensor. The total strain must be found to satisfy the 

equilibrium problem of the application of an inherent strain to any problem (Hill et al. 

1999). 

Thermomechanical simulations, on the other hand, solve for both structural and 

thermal loads. These simulations require temperature dependent material properties such 

as specific heat capacity, temperature dependent Poisson’s ratio etc. Thermomechanical 

simulations use a weak coupling that constitutes convergence between both the 
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temperature and structural fields. Weak couplings are also called load vector or sequential 

couplings. These equations have the stiffness matrix account for the dependency of  [𝐾11] 

and {𝐹1} on {𝑋2} as well as [𝐾22] and {𝐹2} on {𝑋1} in Equation 4.1, whereas [𝐾11] and 

[𝐾22] are stiffness matrix variables, {𝐹1} and {𝐹2} are force vectors and {𝑋1} and {𝑋2} are 

two types of degrees of freedom. Instead of having a single degree of freedom, due to the 

coupling nature of the problem, coming from both structural and thermal solvers, has two 

different degrees of freedom. 

 

 [
[𝐾11({𝑋1}, {𝑋2})] [0]

[0] [𝐾22({𝑋1}, {𝑋2})]
] {
{𝑋1}

{𝑋2}
} = {

{𝐹1({𝑋1}, {𝑋2})}

{𝐹2({𝑋1}, {𝑋2})}
} (4.1) 

 

In thermomechanical AM simulations, the movement of the laser is not followed 

as the laser moves very quickly and a whole layer can be created in a very short amount 

of time. Instead, entire layers are assumed to be manufactured at once. These simulations 

assume the thermal effects in the printing direction are more dominant than those at in 

plane direction (ANSYS 2024). 

Thermomechanical AM simulations in ANSYS do not constitute the thermal-

structural coupling via power equations, but instead follow the temperature changes 

during the process, as shown in Figure 4.2. This means that while the actual printing 

process has parameters connected to laser power, simulations will be using the 

temperature data instead of laser power related parameters.  

 

 

 

Figure 4.2. Laser power application strategies in FEA of AM where a) demonstrates 

power application by energy and b) demonstrates power application by 

temperature (Source: ANSYS 2024)      
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4.2.1.1 Strain Scaling Factor  

 

Inherent Strain simulations make use of an artificial coefficient named the Strain 

Scaling Factor. This factor enables the extremely fast and accurate solution of AM 

simulations without the inclusion of thermal properties. In order to calculate this property, 

benchmark parts are printed beforehand and measured for several aspects of potential 

errors.  

Manual measurement methods include measuring deformations with a calliper, 

micrometre or a digital height gage while more automatic measuring methods utilize tools 

such as Coordinate Measurement Method (CMM) or laser scanners. Dimension 

differences, or error, between the printed part and the CAD model are then calculated in 

order to get the strain scaling factors. Strain scaling factors can work in 3 translational 

dimensions, can optionally include the laser traveling direction or not, depending on the 

simulation. Equations 4.2, 4.3 and 4.4 demonstrate how the strain scaling factor is 

factored in when conduction the calculations. 

 

 𝜀𝑥𝑥 = 𝑆𝑆𝐹 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 (4.2) 

   

 𝜀𝑦𝑦 = 𝑆𝑆𝐹 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 (4.3) 

   

 𝜀𝑧𝑧 = 𝑆𝑆𝐹 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 (4.4) 

 

The strategy given in Equations 4.2, 4.3 and 4.4, where SSF is the strain scaling 

factor, 𝜎𝑦𝑖𝑒𝑙𝑑 is the yield strength of the material, E is the elasticity modulus and 𝜀𝑖𝑗 is the 

calculated strain for the respective direction, will lead to a uniform change of deformation 

in X, Y and Z directions. This effect is only assumed to happen when the laser scanning 

strategy follows a chessboard pattern, given in Figure 4.3 (ANSYS 2024). 

For the case of other scanning patterns, like the singular direction pattern given in 

Figure 4.4, more variables are added to the strain scaling factor calculation to include the 

effects of laser scan pattern, given in Equations 4.5, 4.6 and 4.7. Patterns other than the 

chessboard pattern require the calculation of these additional variables in order to 

calculate realistic strains. 
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 𝜀𝑥𝑥 = 𝑆𝑆𝐹 ∗ 𝐴𝑆𝐶𝑥 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 

(4.5) 

   

 𝜀𝑦𝑦 = 𝑆𝑆𝐹 ∗ 𝐴𝑆𝐶𝑦 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 

(4.6) 

   

 𝜀𝑧𝑧 = 𝑆𝑆𝐹 ∗ 𝐴𝑆𝐶𝑧 ∗
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸
 

(4.7) 

 

For the case of this irregular scanning strategy, ASC demonstrates anisotropic 

strain coefficients, and these variables can be different for all scanning strategies (ANSYS 

2024). 

 

4.2.1.2 Thermal Strain Scaling Factor   

 

Thermomechanical simulations do not require the use of a strain scaling factor 

since all the necessary inputs to include thermal effects in the simulation should be 

Figure 4.3. Chessboard scanning pattern (Source: ANSYS 2024) 

Figure 4.4. Singular direction scan pattern (Source: ANSYS 2024) 
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established before solving these simulations. However, to minimize the variation between 

printed parts and simulated parts, another artificial coefficient used in FEA of AM is the 

thermal strain scaling factor. This factor, in most cases, has the default value of 1. In 

specific situations, for example when an unusual material is used, or some machine 

parameters are unknown, or in cases where environmental variables can vary, this factor 

is calculated. This factor has minimal effect on the results compared to strain scaling 

factor. 

 

 𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝜀𝑝𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜀𝑝ℎ𝑎𝑠𝑒 + 𝜀𝑐𝑟𝑒𝑒𝑝 (4.8) 

 

Equation 4.8 demonstrates the entire scale of strains that can be calculated during 

a finite element analysis and the thermal strain scaling factor only applies to the 

calculation of 𝜀𝑡ℎ𝑒𝑟𝑚𝑎𝑙 (ANSYS 2024). 

 

4.3. Meshing Methodology 

 

For FEA of AM, a method called “Lumped Layer Approach” is used. This method 

combines several physical layers of the manufactured part, assuming that combining these 

several layers would not alter the general results, and that not all layers yield different 

results meaning layers with similar behaviour can be grouped together, or “lumped”. The 

motivation behind this approach is shortening the simulation time while catching the 

global stress, strain and deformation. Generally, lumping 10 to 20 layers is recommended 

and mesh is created accordingly. A single element height is recommended to take space 

between 10 to 20 times of a single physical layer height (ANSYS 2024). 

Three different approaches exist for FEA of AM for meshing parts. First approach 

is creating a cartesian mesh, demonstrated in Figure 4.5. Cartesian mesher creates a hex 

mesh that approximates the geometry but details like small faces, curved features etc. 

may not be accurately captured using this method. This method requires the user to obey 

the 10 – 20 element size rule-of-thumb, also making sure that element size is small enough 

to capture bigger details of the part. This method is fast, and accuracy is adequate. This 

method utilizes cubic elements that can be deformed to capture the geometry. 
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Another option for meshing of FEA for AM is using voxels. Voxelized mesh 

option uses cubic elements. This method, just like the cartesian method, may not capture 

small details but utilizes a knockdown factor to account for the uncaught details.  

Last option when it comes to meshing is the layered tetrahedrons method, 

demonstrated in Figure 4.6. This method creates a tetrahedron mesh and can easily 

capture details like small faces and curved features. This method is recommended for use 

with organic shapes, holes, tiny features and thin walls. While layered tetrahedrons 

method can capture many details with ease, this method generates more mesh elements 

than the other two, meaning this method requires more time and hardware in order to 

solve the FEA (ANSYS 2024). 

 

 

 

 

Figure 4.5. Cartesian mesh 

Figure 4.6. Layered tetrahedrons mesh 
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4.4. Material Modeling 

 

Additive manufacturing simulations require material properties dependent or 

independent with temperature depending on the simulation approach. While inherent 

strain scenarios can be solved with no temperature dependent data, thermomechanical 

scenarios require in-depth temperature dependent material properties. Since many 

properties are required, material data for thermomechanical simulations is scarce and 

experimenting can be expensive. Simulation packages such as Ansys offer several 

commonly used materials with the FEA solver such as AlSi10Mg or Ti64. Maraging Steel, 

on the other hand, is not that commonly used and has unique aspects to it that makes it 

harder to simulate.  
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

In this thesis study, a benchmark comb shaped part shown in Figure 5.1 has been 

simulated using finite element analysis. The material for these simulations was selected 

to be maraging steel and displacement results were compared to an existing reference 

study (L. Mugwagwa et al. 2018).  

 

5.1. Problem Statement 

 

A benchmark comb shaped geometry was printed using several different 

combinations of input parameters. Then, thinner legs of these printed parts were cut from 

the baseplate while the thicker part remained attached. This enabled the demonstration of 

residual stresses and strains that warped, or curved, the printed part for strain relief. The 

amount of deformation at the lower right-most tip of the part, which moved away from 

the baseplate depending on the amount of residual effects, was the output for the reference 

study (L. Mugwagwa et al. 2018). This deformation can be seen in Figure 5.1. Simulations 

in this study has the purpose of matching the same amount of deformation as recorded by 

the physical parts.  

 

 

 

 

Figure 5.1. Separation from baseplate (Source: Mugwagwa et al. 2018) 
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5.2. Geometry Preparation 

 

The geometry used in this study is a simple comb shaped benchmark part. The 

dimension for the geometry is given in Figure 5.2.  

 

 

 

This part was designed to the specified dimensions given in Figure 5.2 using 

ANSYS SpaceClaim. Afterwards, a baseplate (the plate where the printed part is 

manufactured on) with the dimensions of 125x125x5 millimetres, shown in Figure 5.3 

was drawn below the benchmark part with the parts touching each other directly.  

 

 

 

5.3. Meshing 

 

For discretization of geometries to be used in finite element analysis of L-PBF, 

using element sizes between 10 to 20 times of the layer thickness is recommended 

Figure 5.2. Dimensions of the benchmark part (Source: Mugwagwa et al. 2018) 

Figure 5.3. Benchmark part with baseplate 
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(ANSYS 2024). Since the reference study included layer heights of 30 and 45 

micrometres, a uniform element size (for width and height) of 0.3 millimetres was deemed 

appropriate (L. Mugwagwa et al. 2018). Considering the available element technologies, 

given that the part in this study mainly consists of chunky geometry, a cartesian mesh 

with element size of 0.3 has been used. Baseplate, on the other hand, has been meshed 

with an element size of 3 millimetres. Mesh quality parameters can be found on Table 

5.1. As it can be seen on Table 5.1, cartesian method created a near ideal mesh. This mesh 

size yielded results with good convergence. 

Table 5.1. Mesh quality parameters 

Mesh Quality Parameter Parameter Value 

Minimum Element Quality 0.98077 

Maximum Element Quality 1 

Average Element Quality 0.99946 

Standard Deviation of Element Quality 0.0031786 

  

5.4. Material Modeling of Maraging Steel 

 

Maraging steel and similar materials are alloys consisting of iron, nickel, and 

cobalt with additional titanium, aluminium, and molybdenum. They are employed in 

industry where ductility along with great strength and toughness are required. Maraging 

steel during AM cools and changes from austenite to martensite in its solid-state phase. 

The material properties need to take the phase change into account for simulation package 

to accurately represent the phenomena. To account for the phase change, a beta extension 

of Ansys has been used. Maraging steel has the melting temperature of 1413 °C, which is 

also assumed to be the zero thermal strain temperature where the material is assumed to 

dissipate any inherent strains. The Maraging Steel Beta Tool can only be used with 

thermomechanical simulations and comes with material data for both austenite and 

martensite phases of maraging steel. These data, except for the Poisson’s ratio which is 

assumed to be 0.3, is highly dependent on temperature, hence temperature dependent 

mechanical properties are utilized.  The temperature dependent data for both stages can 

be found on Table 5.2.  
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Table 5.2. Mechanical properties of maraging steel (ANSYS 2024) 
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5.5. Simulation and Calibration 

 

Every thermomechanical simulation for this study has been conducted with the 

same software and hardware combination. Ansys 2024 R1 software package along with 

Intel Xeon W-1350P @4.00 GHz with 6 cores, 128 GB of RAM and a 1 TB Samsung 

SSD hardware specifications have been used. All simulations were solved on 6 cores 

using Shared Memory Parallel method due to the limitations of the beta-stage maraging 

steel tool. 

FEA solution consisted of 3 load steps. The first load step had the part being built 

layer by layer, following a chessboard scanning pattern utilizing the formulas given in 

Equations 4.2, 4.3 and 4.4, and was formed by 54 substeps. Second load step was the 

cooldown step where the part was solved for cooling down via convection. This step 

consisted of 21 substeps. The last step was where the separation, or cutting, from the 

baseplate took place. The solver was programmed to cut the part in 4 substeps. A sequence 

scheme for these steps can be found in Figure 5.4, where the User Step under the Static 

Structural title is when cutting from baseplate takes place. 

 

 

 

The cutting operation was done using the “Contact Step Control” option of Ansys 

Mechanical. This option allows certain contacts to be “killed” or “birthed” during certain 

steps. The contact between the part and baseplate was created accordingly, and this 

contact where the thinner comb legs touch the baseplate was “killed” one by one during 

Figure 5.4. Sequence scheme for FEA 
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the third load step of this simulation. The thicker comb part was left in contact with the 

baseplate, as it was for the physical measures. 

Before solutions, thermal strain scaling factor was defined as an input parameter 

and directional deformation on the print direction at the tip of the calibration part was 

defined as an output parameter. In order to match physical results as accurately as 

possible, only the deformation at the Z direction, which is the directions the part was 

being built at was taken as the single output parameter.  

Other parameters (layer thickness, laser power and scanning speed) were defined 

as constants to the software, and each parameter combination was created as a single 

simulation study. This meant that this study had 37 distinct simulation models. Existing 

combinations of these parameters can be found in Figure 5.5 while exemplary distinct 

simulation models can be found in Figure 5.6.  

 

 

 

Thermomechanical simulations can yield different results from physical parts 

because many simulations are estimations of physical processes and not all parameters 

during the manufacturing process can be accounted for. To overcome this, thermal strain 

Figure 5.5. Combinations of parameters 
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scaling factors for all distinct simulation models have been calculated using direct 

optimization methods.  

 

 

 

 

 

Direct optimization over the DoE data has been used to calculate thermal strain 

scaling factor of each simulation model. The reference study included the separation of 

Figure 5.6. a) Simulation model for the 30 micrometres, 200 mm/s combination only 

had 1 model while b) 30 micrometres, 500 mm/s combination had 4 distinct 

models         

Figure 5.7. TSSF range and "Seek Results" command for 30 micrometres, 500 mm/s at 

100 W combination 
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the tip of the part from the baseplate for each sample combination (L. Mugwagwa et al. 

2018). Considering this data was given, what should be calculated as the directional 

deformation, or separation from the baseplate, at the tip of the benchmark part was given 

to the software as the target with a tolerance of 0.001. Only variable the software could 

change during this approximation was the thermal strain scaling factor, with the default 

value taken as 1. 

A range of 0 to 3 was defined as the initial range for the thermal strain scaling 

factor. Adaptive Single-Objective method was used as the DoE optimizer. Initial number 

of samples was set as 5, maximum number of evaluations was set as 22 and maximum 

number of candidates was set as 3 as can be seen in Figure 5.8. 

 

 

 

All models were subjected to the optimization engine individually and candidates 

were attained. Convergence of the thermal strain scaling factor for some models can be 

found in Figures 5.9, 5.10 and 5.11. Initial range of 0 to 3 for the thermal strain scaling  

Figure 5.8. Settings for direct optimization engine 
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Figure 5.9. Convergence graph of 45 micrometres, 500 mm/s and 140 W combination 

Figure 5.10. Convergence graph of 30 micrometres, 1000 mm/s and 180 W combination 

Figure 5.11. Convergence graph of 45 micrometres, 200 mm/s and 120 W combination 
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factor has been altered for several of the design points in order to attain correct 

coefficients. All models were successfully calculated, or calibrated, to yield thermal strain 

scaling factors where deformations of the physical samples could be met. See Appendix 

A for a table of thermal strain scaling factors calculated for each distinct simulation 

model.  

 

5.6. Stochastic Optimization of Simulation Results 

 

Since a DoE study was already conducted on the existing data in order to calibrate 

the simulation, a software package called OptiSlang 24R1 was utilized to extract the 

metamodel of optimal prognosis of the direct optimization, or the calibration study. For 

the MOP; laser power, layer thickness and scanning speed taken from the reference study 

were given as inputs. Thermal strain scaling factors gained from the direct optimization 

study were also given to the software as inputs. Maximum distortion calculated during 

the simulations were taken as the output. Since the directional deformation at the print 

direction, or the separation from the build plate, are the same for both calibration and the 

reference study, this was taken as a single parameter, hence the output (L. Mugwagwa et 

al. 2018).  

MOP creation was done using the Excel plug-in of OptiSlang. One of the first 

outputs of the MOP was the correlation matrix, shown in Figure 5.12. A correlation matrix 

is a representation of the correlations between several variables. Two variables' 

correlation coefficient is represented by each cell in the matrix. When one variable grows, 

the other increases proportionately, or in a perfect positive correlation, which is shown by 

a correlation coefficient value of +1. The correlation coefficient has values ranging from 

-1 to +1. When one variable rises, the other falls proportionately, and this is known as a 

perfect negative correlation, which has a value of -1. No linear association exists between 

the variables when the value is 0.  

When a variable is perfectly correlated with itself, its diagonal elements, which 

show how each variable relates to itself, always equal 1. 

Another output of the MOP is the histogram. A histogram is a kind of graphical 

representation that shows the distribution of numerical data. It is made up of bars whose 

heights represent the proportion of observations that fall into each of a set of adjacent 

intervals, sometimes referred to as buckets or bins. 
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Patterns, trends, and possible outliers in the data are easily discernible since the 

area of each bar is proportionate to the number of observations inside the interval it 

represents. Figure 5.13 represents the histogram data for the thermal strain scaling factor, 

showing that values between 0 to 0.5 had the highest frequency of appearance. 

According to the MOP, when the distortion from DoE is submitted to a linear 

regression approximation model, coefficient of prognosis, which typically refers to a 

statistical measure used to understand the predictive accuracy or reliability of a prognostic 

model, yielded a result of 91%. This shows that the calculated MOP has a high accuracy 

of prediction and can be used for further investigative studies to determine new values 

for distortion. Figure 5.14 represents the 3D response surface plot where input and output 

combinations of the DoE study are mapped on a 3D plot for visualization. 

To accommodate the fitness of the response surface, the residuals, or errors, from 

a regression analysis or other prediction models are displayed graphically in statistical 

analyses using a residual plot. The difference between each data point's observed value 

and its anticipated value by the model is used to compute residuals. 

 

Figure 5.12. Correlation matrix 
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A residual plot, given in Figure 5.15 is used to evaluate a model's quality of fit 

and validate the basic assumptions of the regression study. In particular, it's employed to 

identify data patterns that the model would have missed. Here, data points for both fitting 

and prediction are supposed to not be far away from each other to prove a good fit. 

Figure 5.13. Histogram of thermal strain scaling factor 

Figure 5.14. 3D response surface plot 
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Coefficient of Prognosis (CoP) is a model independent measure to assess model 

quality in optimization, shown in Equation 5.1: 

 

 𝐶𝑜𝑃 = 1 −
𝑆𝑆𝐸

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑆𝑇
 (5.1) 

 

Where the nominator is the sum of squared prediction errors, and the denominator 

is the total variation of the output. The cross-validation method is used to estimate these 

errors. The set of support points is translated to a determinate number of subsets in the 

cross-validation process. A single subset is then eliminated from the support points, and 

the remaining point set is used to approximate the subset model output in order to 

construct the approximation model. This indicates that only at the subsets where the 

approximation model is not constructed is the model quality estimated. This strategy is 

applicable to both regression and interpolation models, as the prediction error is utilized 

instead of the fit. The computation of the CoP requires additional computational work due 

to the examination of the cross-validation subsets, which are typically between 5 and 10 

sets (ANSYS 2024). 

Figure 5.15. Residual plot 



56 

 

As it can be observed from Figure 5.16, while the thermal strain scaling factor, an 

artificial coefficient that was added for this study, has a higher percentage of CoP than 

laser power, a physical input parameter that directly affects the printed part, the effect of 

these parameters are quite different on the actual output. Similarly, looking at Figure 5.12, 

the correlation matrix from the MOP demonstrates that deflection and scanning speed 

have a high rate of positive correlation. Figure 5.16 further demonstrates this relationship 

by showing that scanning speed has a high rate of CoP. Layer thickness on the other hand 

demonstrates a high rate of negative correlation with deflection while maintaining a 

strong effect on the output regardless of the sign of the correlation. 

 

 

 

After the calculation of MOP, the metamodel was sent to a stochastic optimization 

solver, specifically the evolutionary algorithm solver in OptiSlang. While setting up the 

EA, the testing type was set as “Cross validation”. Tested metamodels option was set to 

“Polynomial + MLS + Kriging”. Variable reduction option was set to “No reduction”. 

This meant that design points would be cross validated for the EA, several metamodel 

extraction methods would be utilized and even if some parameters were found to be 

unimportant, they would not be reduced, meaning all parameters would exist in the EA 

Figure 5.16. Coefficient of prognosis 
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regardless of importance or sensitivity. A screenshot of this setup can be found in Figure 

5.17. 

 

 

 

Some inputs were necessary for this solver, starting with the input parameters. 

Input parameters (thermal strain scaling factor, scanning speed, layer thickness and laser 

power) were forwarded directly from the MOP. Ranges for these parameters were taken 

from the direct optimization study. Specifically, for the layer thickness parameters, as 

only two values existed (30 and 45 micrometers of layer thickness), this parameter was 

introduced to the EA solver as nominal discrete while other parameters were introduced 

as continuous within their respected ranges, as can be seen in Figure 5.18. 

 

 

Figure 5.17. MOP data transfer settings 

Figure 5.18. Parameter introduction to EA 
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Then, start designs were introduced to the solver settings. Afterwards, the 

stochastic optimization problem was defined. The problem statement here was that the 

maximum deformation result, or separation from the build plate, were to be minimized 

within the acceptable data range. Considering this is a numerical solution, a limit to the 

criteria was added saying that the minimized deformation had to be a positive number, as 

seen in Figure 5.19. 

 

 

 

After the problem statement, evolutionary algorithm solver was selected. A 

maximum number of 10000 samples were set in the program with search strategy set to 

a balanced load. Balanced load meant that the starting population size for the EA was set 

as 10, maximum number of generations as 1000, fitness method as weighted sum, number 

of parents as 5, ranking method as linear, selection method as stochastic and crossover 

probability as %50.  

Aforementioned settings were given to the EA and results were gained through 

OptiSlang. The evolutionary algorithm solver yielded 480 different design points. During 

this process, the solver engine was kept calculating for 48 different generations and 28th 

generation yielded the best results. There were a total of 316 feasible design points and 

272nd design point, part of the 28th generation, was selected as the best design. 

Figure 5.19. Criteria settings for EA 
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Looking at a plot of thermal strain scaling factors, at Figure 5.20, a general idea 

of successful and failed generations can be visualized. According to this history plot, 

while the EA initially tried a wide range for TSSF, values around 1.5 yielded the best 

results including the best generation.  

 

 
 

Figure 5.21 on the other hand represents a history plot of scanning speed over 

design points. A steep drop in in speed after several iterations  can be observed as the EA 

moved forward with newer generations, implying that while scanning speeds around 800 

mm/s yielded good results for the initial generations, optimum results were achieved at 

newer generations with lower speeds, around 200 to 300 mm/s. Scanning speed values in 

the range of 300 to around 400 milimetres per second yielded relatively lower ratio of 

successful iterations and were not favoured by the optimization engine. 

Laser power of around 150 Watts yielded good results, but a trend of slight 

increase as the EA generated newer iterations can be observed in Figure 5.22. The slight 

increase in laser power as newer generations were created indicates that while the 

optimization was calculating design iterations, a decrease in deflection was observed with 

larger amounts of laser power and this behaviour further encouraged the increase in laser 

power for the newer generations. The trend of slight increase was diminished at  

Figure 5.20. Parameter history plot of thermal strain scaling factor 
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Figure 5.21. Parameter history plot of scanning speed 

Figure 5.22. Parameter history plot of laser power 
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around half point of the generations created as the optimum point was reached and the 

optimization engine tested out different values in the 140-160 Watts range until the 

calculation was concluded. The optimum generation had the laser power of 150.843 

Watts. 

 

5.7. Best Generation Specifications 

 

The best candidate, namely the 272nd design point, had the following 

specifications, given in Figure 5.23. 

 

 

According to the EA, a combination of 45 micrometres of layer height, 150.843 

Watts of laser power and 253.871 mm/s scanning speed would yield the minimum amount 

of deformation for the benchmark part and a thermal strain scaling factor of 1.4482 could 

be used to simulate this combination and similar combinations beforehand. 

The best, or 272nd, design point yields a deformation, or separation from baseplate, 

at a value of 6.283*10(-5) millimetres. This result is quite low and could potentially be 

assumed to be zero.  

 

5.8. Successful Generations 

 

Examining the output deformation results, some important assumptions could be 

made. One key assumption could be that if any of the results show a deformation smaller 

Figure 5.23. Parameters of best design 
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than one thousandth of a millimetre, which is also known as a micrometre, that amount 

of deformations could be considered to be zero. This meant that even if there exists a very 

small amount of deformation, as long as the yielded result is less than a micrometre, the 

parameter combination could be assumed to be successful. 

Making this assumption can help simplify the data and results. This process of 

treating very small deformations as zero could allow more effective filtering of results. 

As a result of this assumption, many more successful combinations of parameters can be 

found. These successful combinations can be important because they make it possible to 

use other parameter combinations than the best design. It could prove difficult to replicate 

the 272nd design point for every L-PBF machine, due to the limits of each and every 

machine has. So, by assuming that deformations smaller than a micrometre were zero, 

more successful combination parameters can be gained and used for successful metal AM 

of maraging steel. 

The EA used in this study yielded 480 distinct design points and out of those 

design points, 51 different design points, including the 272nd yielded deformation results 

that were smaller than a micrometre. See Appendix B for design points yielding 

deformations smaller than a micrometre and their respective parameter combinations. 
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CHAPTER 6 

 

CONCLUSION 

 

In this thesis, inputs and outputs shared by a reference study where maraging steel 

parts were additively manufactured have been simulated using thermomechanical finite 

element analysis simulation approach, and thermal strain scaling factors have been 

calculated with a direct optimization method to provide a precise convergence between 

printed parts and simulated parts (L. Mugwagwa et al. 2018). Then a stochastic 

optimization method was utilized to solve and predict many other parameter 

combinations for ideal manufacturing parameters of maraging steel. 

Metal additive manufacturing of maraging steel can yield hard to predict results 

because of the low phase change temperatures of maraging steel. This material is both 

hard to manufacture and simulate. Previous studies include metal additive manufacturing 

parameters of several different combinations for maraging steel along with deformation 

results of utilized parameter sets (L. Mugwagwa et al. 2018). These parameter sets were 

introduced to finite element analysis in order to gain matching results from both 

simulations and physical tests. These finite element simulations made use of a 

thermomechanical approach where every layer, quite similar to the actual AM process, 

were simulated by creating mesh elements of a layer at the melting temperature and then 

solving for the thermal and mechanical strains while the layer solidified. This process was 

repeated layer by layer until the comb shaped benchmark part was completed.  

An unusual material introduction method was used in this study which introduced 

maraging steel’s martensite and austenite phases as the same temperature dependent 

material but allowed for phase transformation if the material had spent a predetermined 

amount of time at the phase change temperature. This material method was incorporated 

to the calculation of every mesh node, and each element had the possibility to go through 

phase transformation at any point of the simulation if suitable conditions existed. 

Considering metal AM has many parameters and is a complex process, a variable 

was added to the finite element analysis called the strain scaling factor. This factor, along 

with the FEA was subjected to a direct optimization algorithm. This algorithm was given 

the results for any of the parameter combinations the physical tests would yield. From 

there, the algorithm optimized the finite element analysis using the strain scaling factor 
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and created trial and error simulations until FEA yielded almost perfectly matching results 

to the physical tests. 

Having calibrated the FEA model with the physical data, these simulations were 

then taken to a stochastic optimization engine to solve and predict parameter 

combinations for an even better output of deformation. An evolutionary algorithm was 

utilized with the settings shared in Chapter IV.  

Despite the complex nature of additively manufacturing maraging steel, getting 

near-ideal parts with this material was found to be possible. Also, due to the low phase 

change temperature characteristic of maraging steel, this material was difficult to simulate 

and thus, it proved difficult to predict the result of metal additive manufacturing. Making 

use of existing literature, simulation technology, a material model with phase change data 

and stochastic optimization methods, this study was able to create successful metal 

additive manufacturing simulations and parameter combinations for maraging steel. 

Throughout this study, both finite element analysis, phase changing material modeling 

and evolutionary algorithm proved themselves beneficial in additive manufacturing of 

maraging steel. 

Additionally, while this thesis study primarily focuses on faults in metal additive 

manufactured parts caused by residual effects, failure modes such as blade crash or hot-

spot defects may occur. Thanks to the calibrated FEA model, other potential failure modes 

could also be predicted and prevented with the method presented. 
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APPENDIX A 

 

 

Table A.1. Thermal strain scaling factors calculated for each distinct simulation 

Inputs Outputs 

Layer 

thickness 

(µm) 

Laser 

power 

(W) 

Scanning 

speed 

(mm/s) 

Thermal 

Strain 

Scaling 

Factor 

Porosity 

(%) 

Relative 

density (%) 

Maximum 

deflection 

(mm) 

30 80 400 1.7802 11.52 88.48 0.5 

30 80 300 1.6538 9.02 90.98 0.39 

30 80 200 0.0181 5.25 94.75 0.18 

30 100 500 1.9084 3.96 96.04 0.74 

30 100 400 1.7846 4.03 95.97 0.51 

30 100 300 1.6421 8.97 91.03 0.33 

30 120 500 2.0483 1.96 98.04 0.87 

30 120 400 1.8326 3.47 95.63 0.65 

30 120 300 1.6445 6.11 93.89 0.34 

30 140 600 2.0946 1.23 98.77 0.89 

30 140 500 2.0631 3.1 96.9 0.88 

30 140 400 1.8703 3.73 96.27 0.71 

30 160 700 2.5990 0.94 99.06 1.1 

30 180 700 2.7506 0.65 99.35 1.16 

30 160 600 2.4324 1.09 98.91 1.03 

30 160 400 1.9552 3.41 96.59 0.81 

30 160 300 1.7134 4.61 95.39 0.65 

30 160 800 2.6818 3.65 96.35 1.13 

30 180 800 2.7623 0.79 99.21 1.16 

30 180 900 2.5778 1.23 97.77 1.09 

30 180 1000 2.8202 1.53 98.47 1.18 

30 180 600 2.4579 0.42 99.58 1.04 

Cont. on next page 
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Table A.1. (cont.) 

30 180 500 2.0482 1.38 98.62 0.87 

30 180 400 1.7499 5.11 94.89 0.38 

45 120 400 0.3673 9.58 90.42 0.2 

45 120 300 0.3893 9.94 90.06 0.14 

45 120 200 0.2779 10.24 89.76 0.25 

45 120 500 0.2875 4.19 95.81 0.41 

45 140 400 0.4009 9.41 90.59 0.13 

45 140 300 0.4450 8.38 91.62 0.02 

45 160 500 0.4105 4.14 95.86 0.12 

45 160 400 0.4152 4.76 95.24 0.1 

45 160 300 0.4496 8 92 0.01 

45 180 600 0.2576 0.65 99.35 0.51 

45 180 500 0.3225 1.52 98.48 0.3 

45 180 400 0.4207 10.28 89.72 0.09 

45 180 300 0.4221 7.09 92.91 0.07 
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APPENDIX B 

 

 

Table B.1. Design points yielding deformations smaller than a micrometre 

Inputs Output 

Design  

Point # 

Layer 

thickness 

(µm) 

Laser  

power (W) 

Scanning 

speed (mm/s) 

Thermal 

Strain Scaling 

Factor 

Maximum 

deflection (mm) 

156 45.00 149.105 251.122 1.4482 0.000963 

163 45.00 146.542 253.871 1.4482 0.000421 

182 45.00 149.609 251.122 1.4482 0.000991 

220 45.00 146.784 253.871 1.4482 0.000308 

221 45.00 146.784 253.871 1.4482 0.000308 

223 45.00 146.636 253.871 1.4482 0.000376 

226 45.00 152.121 253.871 1.4482 0.000631 

232 45.00 146.883 253.871 1.4482 0.000265 

243 45.00 146.824 253.871 1.4482 0.000291 

244 45.00 146.695 253.871 1.4482 0.000349 

247 45.00 146.068 253.871 1.4482 0.000676 

248 45.00 152.560 253.871 1.4482 0.000897 

249 45.00 151.489 253.871 1.4482 0.000312 

253 45.00 146.790 253.871 1.4482 0.000306 

254 45.00 146.819 253.871 1.4482 0.000293 

262 45.00 146.817 253.871 1.4482 0.000293 

265 45.00 146.912 253.871 1.4482 0.000253 

272 45.00 150.843 253.871 1.4482 0.000063 

273 45.00 146.884 253.871 1.4482 0.000265 

279 45.00 146.530 253.871 1.4482 0.000428 

285 45.00 151.252 253.871 1.4482 0.000211 

287 45.00 146.911 253.871 1.4482 0.000253 

288 45.00 146.884 253.871 1.4482 0.000265 

290 45.00 150.251 253.871 1.4504 0.000782 

294 45.00 147.371 253.871 1.4482 0.000079 

295 45.00 151.506 253.871 1.4482 0.000319 

300 45.00 150.843 253.871 1.4482 0.000063 

303 45.00 151.252 253.871 1.4482 0.000211 

310 45.00 151.252 252.493 1.4482 0.000808 

Cont. on next page 
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Table B.1. (cont.) 

315 45.00 148.839 252.625 1.4482 0.000319 

319 45.00 151.299 252.493 1.4482 0.000828 

328 45.00 147.371 252.625 1.4482 0.000596 

329 45.00 146.650 252.493 1.4482 0.000936 

330 45.00 152.149 253.871 1.4482 0.000647 

350 45.00 147.371 253.871 1.4482 0.000079 

376 45.00 147.371 253.871 1.4482 0.000079 

379 45.00 147.371 253.871 1.4482 0.000079 

399 45.00 150.843 253.871 1.4482 0.000063 

405 45.00 147.371 253.871 1.4482 0.000079 

406 45.00 150.843 253.871 1.4482 0.000063 

413 45.00 147.371 252.295 1.4482 0.000734 

420 45.00 150.843 253.871 1.4482 0.000063 

423 45.00 145.982 253.871 1.4482 0.000727 

433 45.00 145.636 253.871 1.4482 0.000945 

438 45.00 146.325 253.871 1.4482 0.000533 

441 45.00 147.371 253.871 1.4482 0.000079 

443 45.00 150.843 253.871 1.4482 0.000063 

457 45.00 148.453 251.859 1.4482 0.000679 

477 45.00 147.371 251.859 1.4482 0.000919 

478 45.00 151.824 253.871 1.4482 0.000472 

479 45.00 150.862 252.343 1.4482 0.000729 

156 45.00 149.105 251.122 1.4482 0.000963 

163 45.00 146.542 253.871 1.4482 0.000421 

182 45.00 149.609 251.122 1.4482 0.000991 

220 45.00 146.784 253.871 1.4482 0.000308 

221 45.00 146.784 253.871 1.4482 0.000308 

223 45.00 146.636 253.871 1.4482 0.000376 

226 45.00 152.121 253.871 1.4482 0.000631 

232 45.00 146.883 253.871 1.4482 0.000265 

243 45.00 146.824 253.871 1.4482 0.000291 

244 45.00 146.695 253.871 1.4482 0.000349 

247 45.00 146.068 253.871 1.4482 0.000676 

248 45.00 152.560 253.871 1.4482 0.000897 

 


