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ABSTRACT

EFFICIENT PHOTON PAIR GENERATION FOR QUANTUM
INFORMATION TECHNOLOGIES

This thesis focuses on the design parameters of waveguides and ring resonators to

generate photon pairs through the four-wave mixing process. The goal was to design these

components specifically for generating visible-range photon pairs with the intention of

using visible-range photodetectors. These detectors offer a better photon detection range,

lower dark count, and faster response time compared to their telecom-range counterparts.

Additionally, visible wavelength photons are more effective in free-space communication.

A photonic platform, such as a Si3N4 waveguide or a ring resonator on a SiO2

layer, is utilized for photon pair generation due to several advantages. These advantages

include the ability to leverage CMOS technologies and operate at room temperature. The

choice of Si3N4 material aims to avoid a two-photon absorption process. Compared to

Si-based sources, which exhibit a two-photon absorption process due to their band energy,

utilizing Si3N4 helps circumvent this issue.

In this thesis, the dimensions of the waveguide are tailored to satisfy the phase-

matching condition, and its dispersion properties are studied. A ring resonator is con-

structed based on determined dimensions, and its spectral characteristics are analyzed for

efficient photon pair generation.
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ÖZET

KUANTUM BİLİŞİM TEKNOLOJİLERİ İÇİN VERİMLİ FOTON
ÇİFTİ ÜRETİMİ

Bu tez, dört dalga karışım (FWM) süreci yoluyla görünür dalga boylarında foton

çiftleri üretmek için kullanılan dalga kılavuzu ve halka rezonatörün tasarım parametreler-

ine odaklanmaktadır. Tezin amacı, görünür dalga boylarında foton çiftleri üretmektir ve

bu fotonları algılamak için görünür dalga boyunda çalışan fotodedektörler kullanılmak-

tadır. Bu dedektörler, telekomünikasyon muadillerine kıyasla daha iyi foton algılama ar-

alıgı, daha düşük karanlık sayım ve hızlı tepki süresi sunmaktadır. Ayrıca, görünür dalga

boyundaki fotonlar serbest uzay iletişiminde daha etkilidir.

Foton çift üretimi için Si3N4 dalga kılavuzu veya SiO2 tabakası üzerindeki halka

rezonatör gibi bir fotonik platform tercih edilmektedir. Bu platformlar, CMOS teknolo-

jilerini kullanma ve oda sıcaklıgında çalışma gibi avantajlar sağlar. Si3N4 malzemesinin

tercih edilme nedeni, iki foton emilim sürecinden kaçınmaktır. Si bazlı kaynaklar, bant

enerjileri nedeniyle iki foton emilim süreci sergilerken, Si3N4 kullanımı bu sorunu ortadan

kaldırır.

Tezde, dalga kılavuzunun boyutları faz uyumu koşulunu sağlamak amacıyla tasar-

lanmış ve dispersiyon özellikleri incelenmiştir. Belirlenen boyutlara göre tasarlanan halka

rezonatör, spektral özellikleri açısından verimli foton çift üretimi için analiz edilmiştir.
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CHAPTER 1

INTRODUCTION

Photon pair sources form the foundation of quantum communication2 and quan-

tum information processes3, including quantum cryptography, quantum computing, and

quantum teleportation. Consequently, photonic quantum technologies4 have become an

extensively studied area due to their advantages, such as the scalability and integrabil-

ity of quantum applications. Besides, they benefit from a technological background of

CMOS technologies for production, making them cost-effective and reliable and pro-

viding the possibility of mass production. Moreover, they provide easy integration into

fiber networks, especially in the telecom band. Recent studies have shown that integrated

platforms with high spectral brightness, photon purity, and long coherence time at room

temperature are promising for generating photon pairs in the telecommunications band.

However, these photon pair sources are not efficiently compatible with the current pho-

todetector. Most visible-range photodetectors, such as silicon avalanche photodetectors,

offer higher photon detection rates and lower dark counts than their infrared counterparts.

Besides, this detector response time is quite high for correlation measurement. All these

advantages of visible range photodetectors contribute to reducing noise, increasing fi-

delity, detecting weak signals, and providing higher resolution. Moreover, visible-range

photon pairs are better for free-space communication. Thus, it urges us to study visi-

ble range photon pair generation on photonic platforms. On the other hand, it has been

shown that generating visible-telecom entangled photon pair in Si3N4 ring resonator is

possible5. It motivates the combination of quantum memories that operate in the visible

range and telecommunication networks.

1.1. Thesis Outline

The thesis focuses on numerically studying waveguide and microring resonator

structures to generate photon pairs using Si3N4 material at the visible spectrum edge.

Chapter 2 provides a basic overview of the formulation of nonlinear optical processes,

including sum frequency generation and Four-wave mixing (FWM) processes. The chap-

ter then discusses the phase-matching requirement for the FWM process in the context
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of dispersion regimes for waveguides. Additionally, the material’s susceptibilities are ex-

amined within the framework of quantum mechanical description for nonlinear optical

processes.

In Chapter 3, commonly used waveguide structures are introduced, followed by

a discussion of materials used in the literature for various applications in nonlinear op-

tics. The chapter then demonstrates dispersion engineering to meet the phase requirement

necessary for the FWM process. It emphasizes that tailoring the material geometry can

change waveguide properties such as group velocity, dispersion, and effective refractive

index. It is also shown that proper waveguide dimensions can be determined through

numerical investigation, serving as the basis for the design of the ring resonator.

Chapter 4 provides a detailed simulation result of a ring resonator, explaining how

the cavity mode amplifies the nonlinear interaction, leading to a significant improvement

in the efficiency of photon pair generation.
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CHAPTER 2

NONLINEAR OPTICS

Nonlinear optics is a field of study that examines the interaction between light and

matter, specifically focusing on the effects that alter in a nonlinear manner. This means

that, when exposed to incident light, a material’s optical properties undergo changes. The

material’s response depends on the intensity of the incident light, and it is said that, due

to their high power, only lasers can unveil the nonlinear characteristics of materials. To

clarify the nonlinear effect, polarization is defined as the dipole moment per volume.

This refers to the phenomenon where the electric field of incident light causes a bounded

electron cloud to move in a dielectric substance, resulting in the separation of charges that

constitute dipoles. These dipoles align inside the material because of an external field,

leading to a net polarization effect. Nonetheless, some materials have already inherited

polarization properties, meaning that the source of polarization is not an external field.

The polarization of the material is conventionally linearly proportional to the electric field

strength of the incident light, i.e., P (t) = ε0χ
(1)E(t). However, this statement ceases to

be true under the influence of high-power light. Generally, polarization is expressed in a

power series of electric field strength in nonlinear optics.

P (t) = ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · · ) (2.1)

where χ(2), χ(3) are the second and third order nonlinear susceptibilities and ε0
is free space permittivity. It is assumed that time-dependent polarization relies on the

electric field instantaneously, implying that the light does not experience any loss or dis-

persion in the material. The fact that time-varying polarization can result in the generation

of new electromagnetic field components. In other words, new frequency components can

be created from incident electromagnetic fields due to nonlinear interactions. To see this

generation in the context of Maxwell’s equations, the wave equation for source, current-

free, and nonmagnetic medium is described by

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
(2.2)

where c is the speed of light in a vacuum and n is the refractive index. wave

equation can be described in terms of electric displacement fieldD, where

3



D = ε0E + P (2.3)

and the wave equation becomes

∇2E − 1

ε0c2

∂2D

∂t2
= 0 (2.4)

The displacement field is the result of the combination of the external electric

fields and the electric fields generated by the dipoles present in the material. One may

separate the polarization and displacement fields into linear and nonlinear components.

P = P (1) + PNL (2.5a)

D = D(1) + PNL (2.5b)

P (1) andD(1) are linear terms andD(1) can be written as

D(1) = ε0E + P (1) (2.6)

Equation (2.2) has the form using equations (2.5) and (2.6)

∇2E − 1

ε0c2

∂2D(1)

∂t2
=

1

ε0c2

∂2PNL

∂t2
(2.7)

This form of the inhomogeneous wave equation in equation (2.7) makes it easier

to use a dielectric tensor, which is important in understanding how light interacts with

matter and characterizing material anisotropy. This involves determining the principal re-

fractive indexes and the corresponding optical axes. Furthermore, the material’s nonlinear

response, which appears on the right-hand side of the equation, acts as a source of new

electromagnetic field components. To derive the general expression of the wave equation,

fields are written as the sum of their frequency components

E(r, t) =
∑

nEn(r)e−iωnt + c.c (2.8a)

D(1)(r, t) =
∑

nD
(1)
n (r)e−iωnt + c.c (2.8b)

PNL(r, t) =
∑

nP
NL
n (r)e−iωnt + c.c (2.8c)
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The first-order frequency-depended displacement field can be written as in equa-

tion (2.9) where the relation comes fromD = ε0E+ ε0χ
(1)E = ε0(1 +χ(1))E = εE. ε is

called permittivity of the material describing how easily dielectric material can be polar-

ized as in that χ. ε does not need to be scalar; it can be treated as a tensor. It is critical to

use as a tensor, especially in anisotropic material where the charges readily move along

particular axes. Besides, in anisotropic materials, the directions of the external fields and

the polarization are not the same.

D(1)
n (r) = ε0ε

(1)(ωn) ·En(r) (2.9)

Substituting the equations (2.8) and (2.9) into equation (2.7) yields

∇2En(r) +
ω2
n

c2
ε(1)(ωn) ·En(r) = − ω2

n

ε0c2
PNL
n (r) (2.10)

Equation (2.10) is known as the Helmholtz equation in the frequency domain.

2.1. Nonlinear Optical Processes

The polarization of materials related to crystal symmetry is crucial in determining

the type of nonlinear optical processes. Second-order nonlinear interaction takes place in

non-centrosymmetric materials such as LiNbO3 andKTP . Centrosymmetry, also known

as inversion symmetry, means the material remains unchanged when the coordinates are

inverted through its center. The material must lack inversion symmetry to observe the

χ(2) response. On the other hand, the χ(3) response can be observed in both isotropic and

anisotropic mediums. In an isotropic medium, the material properties remain the same

in all directions, resulting in χ(3) being simplified to a scalar quantity. This causes the

material to be unaffected by the polarization of the applied field. Only changes in the

refractive index occur due to the Kerr effect (discussed in section (2.1.2.3)), which is

also independent of the polarization of the applied field. For an anisotropic medium, the

third-order nonlinear susceptibility (χ(3)) becomes a tensor quantity, and the third-order

nonlinear response varies depending on the polarization of the applied field. This polar-

ization dependence is also important to consider for phase matching in the FWM process.

However, in this thesis, the study focuses on Si3N4, which is a typically isotropic ma-

terial. The polarization of the input field in the ring resonator simulation is chosen to

ensure efficient coupling from the bus waveguide to the ring resonator. Figure (2.1) illus-

trates the time-dependent polarization response of χ(2) and χ(3) materials. The following

5



section discusses the related nonlinear optical processes of these materials, specifically

sum-frequency generation and four-wave mixing.

Figure 2.1. Polarization as a functions of time of χ(2), and χ(3) materials

2.1.1. Sum-Frequency Generation

Sum-frequency generation can be considered as an instance of second-order non-

linear interaction in which the frequencies of the input fields are denoted as ω1 and ω2,

and the frequency of the output field is ω3. Due to the applied electric field, the atoms

within the nonlinear material undergo oscillations. The oscillation of the electron cloud

can result in the emission of dipole radiation. Nevertheless, the incident field determines

whether the dipole emission contains the frequencies of ω3 = ω1 +ω2. If the dipole emis-

sions are in phase, they will combine constructively, leading to the emission of radiation

in a beam form from the material. It is said that the phase-matching condition is satisfied.

The frequency components of the input fields are expressed as follows:

Ej(z, t) = Eje
−iωjt + c.c, Ej = Aie

ikjz, j = 1, 2 (2.11)

and using equation (2.1), second order term of the polarization is given as

P (2)(t) = ε0χ
(2)E(t)2 (2.12)

substituting the input fields equations (2.11) into the second-order polarization

equation (2.12) gives rise
6



Figure 2.2. a) Geometric representation of sum frequency generation. b) Energy level
diagram of sum frequency generation

P (2)(t) =ε0χ
(2)[E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+ 2E1E
∗
2e
−i(ω1−ω2)t + c.c] + 2ε0χ

(2)[E1E
∗
1 + E2E

∗
2 ]

(2.13)

Considering each component separately,

P (2ω1) = ε0χ
(2)E2

1 (2.14a)

P (2ω2) = 2ε0χ
(2)E2

2 (2.14b)

P (ω1 + ω2) = 2ε0χ
(2)E1E2 (2.14c)

P (ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 (2.14d)

P (0) = 2ε0χ
(2)(E1E

∗
1 + E2E

∗
2) (2.14e)

they show second-order interactions, equation (2.14a) through (2.14e) indicates

second harmonic generations (SHG) with different frequencies, sum-frequency gener-

ation (SFG), difference-frequency generation (DFG), and optical rectification (OR) re-

spectively. In order to confirm the validity of sum-frequency generation, each frequency

component of the field must fulfill equation (2.10). A comprehensive understanding of

nonlinear interactions requires a thorough knowledge of polarization. Generally, while

taking into account the tensor properties of permittivity, polarization is represented by

Pi(ωi + ωj) = ε
∑
jk

∑
(nm)

χ
(2)
ijk(ωn + ωm, ωn, ωm)Ej(ωn)Ek(ωm) (2.15)
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Summation is performed overall positive and negative frequency components for

all directions; thus, certain circumstances must be considered. Since polarization is a

measurable quantity, it must conform to conditions

Pi(−ωn − ωm) = Pi(ωn + ωm)∗ (2.16)

A similar fashion happens for complex frequency components of electric fields.

Ej = (−ωn) = Ej(ωn)∗ (2.17a)

Ek = (−ωm) = Ek(ωm)∗ (2.17b)

The relation between polarization and susceptibility indicates

χ
(2)
ijk(−ωn − ωm,−ωn,−ωm) = χ

(2)
ijk(ωn + ωm, ωn, ωm)∗ (2.18)

The susceptibility tensor can be reduced due to symmetries such as full permu-

tation symmetry, which is related to the interchangeability of the frequency component

of nonlinear susceptibility. Each frequency component of the susceptibility tensor can be

changed if the corresponding Cartesian coordinate indices change in the correct order. If

the medium has a considerable optical loss, then the product of field components can only

be interchanged, such as Ej(ωn)Ek(ωm).

Furthermore, The optical properties of the medium are related to the arrangement

of the atoms and ions in the crystal. Symmetrical medium refers to these properties that

remain invariant under transformation, such as reflection, rotation, and translation. In

nonlinear optics, symmetry is crucial in determining the behavior of the light-matter in-

teraction. In some cases, the material exhibits spatial and inversion symmetry, which is

the scope of Kleinman’s symmetry. Kleinman’s symmetry is based on the concept that the

nonlinear polarization response of a crystal is influenced by the input and output polar-

ization states, as well as the symmetry of the crystal lattice. By analyzing the symmetry

features of the crystal and the polarization states of the input and output, it is possible

to analyze the connections between the components of the nonlinear susceptibility tensor

and can reduce the number of independent variables in the tensor. It is quite helpful to

identify and simplify relationships between the tensor’s elements, and it is a powerful tool

for designing optical devices; however, Kleiman symmetry conditions are valid where the

medium is dispersionless.

8



To capture the material’s complete nonlinear response, frequency components of

polarization must satisfy the equation (2.10); the nonlinear source term PNL
n (r) that ap-

pears in the equation (2.10) is indicated as

P3(z, t) = P3e
iω3t + c.c (2.19)

assuming fields are linearly polarized, and propagation direction is ẑ. According

to equation (2.15),

P3 = 4ε0deffE1E2 (2.20)

where dijk = 1
2
χ

(2)
ijk and the effective value of the deff is the calculated value that

considers the crystal orientation, frequency of incident light, and symmetry properties of

the material. Finding the strength is crucial to revealing nonlinear effects.

Substituting the input fields that are defined in equation (2.11) into equation (2.20)

yields amplitude of the nonlinear polarization of P3

P3 = 4ε0deffA1A2e
i(k1+k2)z = p3e

i(k1+k2)z (2.21)

Following the second-order interaction, it is anticipated that the solution of equa-

tion (2.10) for generating the electromagnetic field at ω3 will be a plane wave propagating

in ẑ direction. Put simply, when the wave equation lacks a nonlinear source element, the

solution takes the form of a plane wave at ω3 as

E3(z, t) = A3e
i(kz−ωt) + c.c (2.22)

It is assumed that A3 is a slowly varying amplitude function in the propagation

direction and can be regarded as constant.

By transforming the right-hand side of the equation (2.10) into an appropriate

form, one can demonstrate the interaction between two fields in a nonlinear medium re-

sulting in the emergence of a new field. Substituting equations (2.11), (2.21) and (2.22)

into equation (2.10) obtains

d2A3

dz2
+ 2ik3

dA3

dz
=
−4deffω

2
3

c2
A1A2e

i(k1+k2−k3)z (2.23)

cancellation occurs since k2
3 = ε(1)(ω3)ω2

3/c
2 and the first term is comparatively

smaller than the second term on the left side of the equation as∣∣∣∣d2A3

dz2

∣∣∣∣� ∣∣∣∣k3
d2A3

dz

∣∣∣∣ (2.24)

9



This is known as slowly varying amplitude approximation. Equation (2.23) be-

comes, while taking k3 = ω3n3/c

dA3

dz
=

2ideffω3

n3c
A1A2e

i∆kz (2.25)

where n3 is the refractive index of material for the field at ω3, and it is assumed

that amplitudes A1, A2 do not vary, so they can be taken as constant. This equation is

called coupled-amplitude equation, which indicates how much amplitude of the ω3 field

is generated due to coupling of ω1 and ω2 fields. The momentum mismatch is defined as

∆k = k1 + k2 − k3 (2.26)

Perfect phase matching condition is satisfied where

∆k = 0 (2.27)

If this condition is satisfied, the output wave at ω3 is efficiently generated from

incident waves. In other words, emissions from each dipole in the material are coherently

added, resulting in an output wave in the propagation direction.

2.1.2. Four Wave Mixing

FWM is a nonlinear process that generates two output field waves as a result of

third-order interaction. In FWM, two input fields with frequencies ω1 and ω2 lead to the

generation of output fields with frequencies ω3 and ω4 as a result of the interaction of

these four waves inside the nonlinear material. Even though FWM has two output fields

and third-order interaction, the first analytical viewpoint closely resembles sum-frequency

generation. Initially, fields and polarization are defined and inserted into the wave equa-

tion. Subsequently, the solution of the coupled wave equation reveals the prerequisites for

the generation of new waves.

Polarization, in general, impacts the FWM process. In this study, the scalar case

of the FWM theory is examined, where all the fields’ polarizations are aligned along the

same axis and propagation direction is ẑ; thus, the total electric field is described by

E =
1

2

4∑
j=1

Eje
i(βjz−ωjt) + c.c (2.28)

10



Figure 2.3. a) Geometric representation of four-wave mixing. b) Energy level diagram
of four-wave mixing

where β is defined as propagation constant;

β =
n(ω)ω

c
(2.29)

here n indicates the mode index. Analogously, the nonlinear source term is defined

as

PNL =
1

2

4∑
j=1

Pje
i(βjz−ωjt) + c.c (2.30)

The 1/2 term appears before the total electric fields and polarizations to avoid

double counting when considering intensity calculations. From equation (2.1), third-order

polarization is written as

P (t) = ε0χ
(3)E3(t) (2.31)

Substituting equation (2.28) into equation (2.31) reveals many interaction terms

due to products of electric fields. One of them is P4 which is found as

P4 =
3ε0
4
χ(3)
xxxx[|E4|2E4 + 2(|E1|2 + |E2|2 + |E3|2)E4

+ 2E1E2E3e
iθ+ + 2E1E2E

∗
3e
iθ− + . . . ]

(2.32)

where

θ+ = (β1 + β2 + β3 − β4)z − (ω1 + ω2 + ω3 − ω4)t (2.33a)

θ− = (β1 + β2 − β3 − β4)z − (ω1 + ω2 − ω3 − ω4)t (2.33b)
11



Equations (2.33a) and (2.33b) classify the type of FWM process in a certain way

if the phase matching condition is satisfied, such as θ+, which is responsible for the gen-

eration of a single frequency field at ω4 from the interaction of three different frequency

fields at ω1, ω2 and ω3 i.e., ω4 = ω1 +ω2 +ω3. If ω1 = ω2 = ω3, then the process is called

third-harmonic generation. On the other hand, θ− is accountable for generating two new

frequency fields from two different incident frequency fields where

ω3 + ω4 = ω1 + ω2 (2.34a)

β3 + β4 = β1 + β2 (2.34b)

It is considered a general case for FWM to occur where ω1 6= ω2. Nonetheless, we

are quite interested in a special case where ω1 = ω2, in other words, a degenerate case.

In this special case, only one strong pump laser can lead to the generation of two new

frequency fields. From the point of view of quantum mechanics, when the conditions for

energy (2.34a) and momentum (2.34b) conservation are satisfied, two photons with the

same energy are destroyed, and two photons with a different frequency are created simul-

taneously in the nonlinear matter. A high-power laser pump at frequency ω1 generates

two sidebands at frequencies ω3 and ω4, which are symmetrically positioned relative to

ω1. The frequency shift is given by

Ω = ω1 − ω3 = ω4 − ω1 (2.35)

assuming ω3 < ω4. Pump frequency ω1,2 can also be represented as ωp. Addition-

ally, ω3 can written as ωs, whereas ω4 can be written as ωi, which denotes the Stokes and

anti-Stokes bands of ωp, respectively. The Stokes band corresponds to lower energy, while

the anti-Stokes band corresponds to higher energy. Generally, the Stokes band refers to

the signal wave, whereas the anti-Stokes band refers to the idler wave. This process is

shown in Figure (2.4), where a single pump field interacts with a χ(3) material, resulting

in the generation of the signal and idler waves from the noise.

On the other hand, the common case is pump degenerate FWM, where the weak

signal wave participates in the interaction, leading to the amplification of the signal wave

and generation of the idler wave simultaneously. This kind of amplification being referred

to is known as parametric gain, and energy conservation for pump degenerate FWM be-

comes ωi = 2ωp − ωs. This process is illustrated in Figure (2.5)
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Figure 2.4. Representation of generated signal and idler waves using FWM with a sin-
gle pump field.

Figure 2.5. Representation of signal and idler waves using FWM with pump degener-
ate field

One must solve the wave equation to describe the interaction between the pump,

signal, and idler waves. A similar methodology is used as previously: putting electric

fields and both linear and nonlinear polarization terms in the wave equation yields cou-

pled differential equations. It is necessary to consider the spatial distribution and spatial

symmetries inside the nonlinear material, namely the silicon nitride waveguide discussed

in this thesis. One may spatial distribution F (x, y) can be inserted in the electric field such

as Ej(r) = Fj(x, y)Aj(z). Spatial distribution defines how much field is distributed over

the material. Considering the waveguide, it shows how much field is confined. Addition-

ally, it establishes the amplitude profile on the cross-section of the waveguide on the x, y

plane, which is expected to be the same during propagation. Spatial distribution is also

related to the overlap integral, which defines spatial overlap between the fields inside the

material. This plays a crucial role in nonlinear interaction because it identifies how much

overlap occurs between pump, signal, and idler waves. Besides, if the overlap is robust,

interaction is said to be efficient. Understanding the relationship between spatial distri-
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bution and waveguide geometry allows efficient optical systems engineering.The overlap

integral fijkl is given by

fijkl =
〈F ∗i F ∗j FkFl〉

[〈|Fi|2〉〈|Fj|2〉〈|Fk|2〉〈|Fl|2〉]1/2
(2.36)

where 〈〉 indicates the integration over x and y coordinates. Assuming pump laser

intensity high enough (much stronger than signal and idler) and undepleted, then overlap

integral can be approximated as

fijkl ≈ fij ≈
1

Aeff
(2.37)

where Aeff is the effective mode area (discussed in section (3.4)) of the single-

mode waveguide. Thus, the coupled differential equation for pump, signal, and idler fields

can be written as:

dEp
dz

= iγ
[(
|Ep|2 + 2(|Es|2 + |Ei|2)

)
Ep + 2EsEiE

∗
pe

(i∆βz)
]

(2.38a)

dEs
dz

= iγ
[(
|Es|2 + 2(|Ep|2 + |Ei|2)

)
Es + E∗iE

2
pe

(−i∆βz)] (2.38b)

dEi
dz

= iγ
[(
|Ei|2 + 2(|Ep|2 + |Es|2)

)
Ei + E∗sE

2
pe

(−i∆βz)] (2.38c)

It is assumed that all the polarization and overlap are the same. The nonlinear

parameter that appears in coupled differential equations is defined by

γ ≈ n2ωj
cAeff

(2.39)

where n2 is the Kerr index (detail in section (2.1.2.3)) or nonlinear index coeffi-

cient, which has information about χ(3) interaction and field confinement, whereas mis-

match of propagation constant is

∆β = 2βp − βs − βi (2.40)

βp, βs, and βi are propagation constants of pump, signal, and idler fields.
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2.1.2.1. Phase Matching

To achieve an efficient FWM process, it is necessary to ensure that momentum

conservation is satisfied. The Solution of the couple differential equation results in a cri-

terion known as effective phase mismatch that is slightly different than the phase matching

requirement ∆k = 0 for sum-frequency generation, and it is defined as

κ ≡ ∆β + 2γPp = 0 (2.41)

The effective phase mismatch quantifies the degree of efficiency in converting the

interacting waves. It also includes an additional γPp term to account for the phase shift

caused by the Kerr effect. The coefficient of 2 in the equation (2.41) is included for

degenerate FWM. To fulfill the phase-matching condition in the equation (2.41), some

terms must be negative. Regarding this matter, κ can be separated as

κ = ∆kM + ∆kW︸ ︷︷ ︸
∆β

+ ∆kNL︸ ︷︷ ︸
2γP

= 0 (2.42)

where ∆kM , ∆W , and ∆NL are phase mismatches due to material dispersion,

waveguide dispersion, and nonlinear effect, respectively. Regarding the effective indices

as

neff = nM(ω) + ∆n (2.43)

Equation (2.43) indicates propagating fields experience changing refractive index

due to waveguiding, and this additional term is written as ∆n. Considering the degenerate

FWM phase mismatches can be written as

∆kM = (n3ω3 + n4ω4 − 2n1ω1)/c (2.44a)

∆kW = (∆n3ω3 + ∆n4ω4 − (∆n1 + ∆n2)ω1)/c (2.44b)

∆kNL = 2γP (2.44c)

Four strategies listed below can be used to achieve the phase-matching condition

to be fulfilled for FWM.

1. A low-intensity pump laser can be used for the FWM process; it leads to a reduction

in frequency shift, meaning 2γP is small, and if the ∆β is small enough, then phase
15



mismatch can be approximated to ∆β + 2γP ≈ 0. Most of the time, the contribu-

tion from the ∆kW is quite small, and reducing the pump power also reduces the

contribution from ∆kM and ∆kNL

2. Waveguide properties are adjusted for the wavelength of the pump laser where it

experiences nearly zero dispersion; in other words, the group of velocity dispersion

(GVD) becomes close to zero. It means linear phase mismatch term ∆β between

the interaction waves is close to zero and can be compensated with nonlinear term

2γP . In this case, the phase matching condition ∆β+ 2γP = 0 can be achieved by

tuning the power of the pump laser, i.e., ∆kW − (∆kM + ∆kNL) = 0

3. Similar to the nearly zero dispersion phase matching technique, waveguide proper-

ties can provide being in anomalous dispersion regime, meaning GVD is negative

or dispersion is positive. In other words, linear phase mismatch (∆β) becomes

negative. Thus, the nonlinear phase term (2γP ) can compensate for this negative

mismatch by adjusting the pump power, i.e., ∆kM − (∆kW + ∆kNL) = 0

4. Phase matching can be achieved by modal birefringence, in which the effective

refractive index changes for different waveguide modes. Thus, control over the

polarization states can be used for FWM.

In this thesis, the third technique (nearly zero dispersion) is used, which is a powerful

and easy-to-achieve method. Advantageously, the slow dispersion change at near-zero

dispersion wavelength provides phase matching for broadband pump wavelengths. As

seen, the linear phase mismatch is small in this technique, so it requires a low-power pump

laser, which is desired in most cases. Additionally, it can be said that it is more stable

compared to the anomalous dispersion technique, meaning it can overcome fluctuations

in the pump laser or small perturbations.

On the other hand, the anomalous dispersion technique can be more effective de-

pending on its applications and can provide spectral broadening through self-phase modu-

lation (SPM). Simply put, SPM is a phenomenon where the intense light pulse experiences

varying refractive indexes during propagation, resulting in a time-dependent phase shift

given as

φNL(t) = γPLeff (2.45)

where Leff is the effective length of the waveguide. Regarding initial pulse shape

is Gaussian, and it is described by a function U(z, t) that undergoes spectral change given

by
16



δω(t) = −∂φNL
∂t

= −γP0Leff
∂

∂t
|U(0, t)|2 (2.46)

2.1.2.2. Lugiato-Lefever Equation

Different parts of the pulse acquire different phase shifts, leading to frequency

chirp, which is the reason for spectral broadening. This process is essential to create

supercontinuum generation (SCG). To uncover how ultra-sharp pulse propagation occurs

in nonlinear material, one must need a more complete model, which is described by a

generalized nonlinear Schrödinger equation (GNSE)6:

∂E

∂z
= −α

2
E+
∑
k≥2

ik+1

k!
βk
∂kE

∂tk
+iγ

(
1 + iτs

∂

∂t

)(
E(z, t)

∫ +∞

−∞
R(t′)|E(z, t− t′)|2dt′

)
(2.47)

One mathematical model called the Lugiato-Lefever equation model, derived from

GNSE, is used to describe and simulate Kerr-mediated nonlinear optical phenomena. This

model enables the simulation of parametric frequency comb generation in the ring res-

onator based on the Lugiato-Lefever equation given by7

∂E(z, τ)

∂z
= −α

2
E + i

∑
k>1

βk
k!

(
i
∂

∂τ

)k
E + iγ|E|2E (2.48)

where E(z, τ) is a complex electric field propagating in the z-direction, τ is du-

ration time, α is loss per unit length, γ is a nonlinear coefficient, n2 Kerr index, and βk
is kth order of the Taylor expansion of propagation constant. This model describes the

dispersion effect in the context of the evolution of complex field amplitude for a driven,

damped Kerr-nonlinear ring resonator. For more information, refer to7.

2.1.2.3. Kerr Effect

Considering the phase matching techniques, they rely on the nonlinear optical

phenomenon known as the Kerr effect. This effect is crucial for the FWM process and

indicates how the material’s refractive index changes due to propagating light intensity.

Intensity dependent refractive index is expressed as
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n(ω, I) = n0(ω) + n2I (2.49)

where n0 is the linear refractive index, I is the light intensity, and n2 is the Kerr

index, also known as the nonlinear index coefficient, and it is given as

n2 =
3

4n2
0ε0c
· χ(3) (2.50)

Therefore, there is a linear relationship between n2 and the third-order suscepti-

bility χ(3). The nonlinear parameter γ is given by the expression γ = n2ω/cAeff . This

coefficient takes place in the relationship between wave overlaps and phase-matching

criteria. Therefore, having knowledge of n2 allows us to determine the strength of the

interactions. Furthermore, by tailoring waveguide geometry and material, it is possible to

achieve a dispersion profile for an efficient FWM process.

2.1.3. Quantum Mechanical Description of Susceptibility

Expressions for nonlinear optical susceptibilities can be derived from the quantum

mechanical framework, which covers the motivation to find susceptibilities’ dependency

on material properties such as atomic energy levels and dipole transition moments. The

derived expressions also show the importance of internal symmetry of susceptibilities.

Additionally, nonlinear optical susceptibilities can be numerically predicted to reveal the

functionalities of materials. This section discusses the fundamental approach to find-

ing nonlinear optical susceptibility. The main approach is to solve the time-dependent

Schrödinger equation, which is

i~
∂ψ

∂t
= Ĥψ (2.51)

and as a starting point, the Hamiltonian of the system is described by:

Ĥ = Ĥ0 + V̂ (t) (2.52)

where Ĥ0 is the Hamiltonian of the free atom and V̂ (t) is the interaction Hamil-

tonian that represents the interaction between the atom and the applied electric field. The

interaction Hamiltonian is given by

V̂ (t) = −µ̂ · E(t) (2.53)
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µ̂ stands for electric dipole moment operator that is defined as µ̂ = −r̂, where e

is the charge of electron. Generally, given the Hamiltonian of the system in the equation

(2.52), it cannot be solved exactly. To solve the Schrödinger equation, one may use per-

turbation theory. In this approach, a perturbation parameter is added to the interaction

Hamiltonian, such as

Ĥ = Ĥ0 + λV̂ (t) (2.54)

where λ is the perturbation parameter that ranges from zero to unity and indicates

the strength of the interaction. Thus, λ can be written in power series, and the solution

also takes the form of

ψ(r, t) = ψ(0)(r, t) + λψ(1)(r, t) + λ2ψ(2)(r, t) + · · · (2.55)

i~
∂ψ(0)

∂t
= Ĥ0ψ

(0) (2.56)

i~
∂ψ(N)

∂t
= Ĥ0ψ

(N) + V̂ ψ(N−1), N = 1, 2, 3, . . . (2.57)

Equation (2.56) depicts the system’s equation in the absence of an applied field

and the solution is given by

ψ(0)(r, t) = ug(r)e
−iEgt/~ (2.58)

assuming system in the ground state and Eg represent the ground state energy,

whereas a set of equations (2.57) reflects the system’s equation under the condition of an

applied field, and it can be solved using eigenfunctions of a free atom as a basis set

ψ(N)(r, t) =
∑
l

a
(N)
l (t)ul(r)e

−iωlt (2.59)

where a(N)
l is the probability amplitude of N-th order and the ψN is the N − th-

order contribution of wavefunction. The system of equation becomes if the equation

(2.59) is substituted in equation (2.57)

i~
∑
l

ȧ
(N)
l ul(r)e

−iωlt =
∑
l

a
(N−1)
l V̂ ul(r)e

−iωlt (2.60)

Multiplying the equation (2.60) by u∗m from left and side, taking integral and con-

sidering the orthonormality condition, the time derivative of the probability amplitude

becomes
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ȧ(N)
m (t) = (i~)−1

∑
l

a
(N−1)
l (t)Vml(t)e

iωmlt (2.61)

where ωml = ωm − ωl representing frequency difference and Vml is the matrix

element of hamiltonian that is given as

Vml ≡ 〈m|V̂ |l〉 =

∫
u∗mV̂ ul d

3r (2.62)

Thus N-th order probability amplitude can be found by

a(N)
m (t) = (i~)−1

∑
l

∫ t

−∞
dt′ Vml(t

′)a
(N−1)
l (t′)eiωmlt

′
(2.63)

Equation (2.63) indicates that if the N-1-th order of probability amplitude is known,

then N-th order amplitude can be found by taking the time integral of N-1-th amplitude.

Therefore, the procedure follows to initiate the system in the ground state, and then first,

second, and higher-order amplitudes can be determined iteratively. To find a(1)
m , a series

of modifications are implemented on equation (2.63) as listed below.

1. Assuming system in ground state, a(N−1)
l = a0

l is replaced by Kroneker-Delta func-

tion δlg.

2. Vml(t′) is replaced by −
∑

pµml ·E(ωp) exp(−iωpt′)

3. Electric-dipole transition moment µml is defined by µml =
∫
u∗mµ̂ul d

3r

By evaluating the integral on the modified equation yields a(1)
m , and it can be used

to calculate a(2)
n . A similar fashion holds for a(3)

v and it is determined as

a(3)
ν (t) =

1

~3

∑
pqr

∑
mn

[µvn · E(ωr)][µnm · E(ωq)][µmg · E(ωp)]

(ωvg − ωp − ωq − ωr)(ωng − ωp − ωq)(ωmg − ωp)

× ei(ωvg−ωp−ωq−ωr)t (2.64)

Determined a(1)
m , a(2)

n , and a(3)
v are substituted into equation (2.59) to find ψ(1),

ψ(2), ψ(3) which are used to calculate nonlinear optical susceptibilities.

Considering the polarization equation (2.1), once the polarization is calculated,

optical susceptibilities can be determined. At this point, the relationship between polar-

ization and electric dipole moment is used, as defined by
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P = N〈p〉 (2.65)

where P is polarization, p is electric-dipole moment, and N is number density of

atoms. In addition, the expectation value of the p is defined by

〈p〉 = 〈ψ|µ̂|ψ〉 (2.66)

For the simplest case, i.e., χ(1), the relation becomes P(1) = N〈p(1)〉 and the

expectation value of first-order electric dipole moment is given by

〈p(1)〉 = 〈ψ(0)|µ̂|ψ(1)〉+ 〈ψ(1)|µ̂|ψ(0)〉 (2.67)

Substituting the ψ(0) and ψ(1) into the equation (2.67) and using the relation be-

tween polarization and χ(1) that is given by

P
(1)
i (ωp) = ε0

∑
j

χ
(1)
ij Ej(ωp) (2.68)

The first-order optical nonlinear equation is found as

χ
(1)
ij (ωp) =

N

ε0~
∑
m

(
µigmµ

j
mg

ωmg − ωp
+

µjgmµ
i
mg

ω∗mg + ωp

)
(2.69)

The methodology for determining the χ(2) and χ(3) is similar to that used for first-

order susceptibilities. To derive the χ(3), expectation value of third-order electric-dipoles

moment is written by

〈p̃(3)〉 = 〈ψ(0)|µ̂|ψ(3)〉+ 〈ψ(1)|µ̂|ψ(2)〉+ 〈ψ(2)|µ̂|ψ(1)〉+ 〈ψ(3)|µ̂|ψ(0)〉 (2.70)

and third-order polarization is defined as

Pk(ωp + ωq + ωr) =
∑
hij

∑
pqr

χ
(3)
kijh(ωr, ωq, ωp)Ej(ωr)Ei(ωq)Eh(ωp) (2.71)

Using the same analogy, χ(3) is found as
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χ
(3)
kijh(ωσ, ωr, ωq, ωp) ≡

N

ε0~3
PF
∑
mnv

µkgvµ
j
vnµ

i
nmµ

h
mg

(ωvg − ωσ)(ωng − ωq − ωp)(ωmg − ωp)
(2.72)

where ωσ = ωp +ωq +ωr and PF is the full permutation operator that is described

by

(−ωσ, ωq, ωp)→(−ωσ, ωp, ωq), (ωq,−ωσ, ωp), (ωq, ωp,−ωσ),

(ωp,−ωσ, ωq), (ωp, ωq,−ωσ).

The use of the full permutation operator guarantees the incorporation of all possi-

ble permutations of the frequency components since the nonlinear susceptibilities exhibit

exchange symmetry on frequency components. In other words, it ensures all possible

interactions between the input frequencies and output frequencies.
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CHAPTER 3

OPTICAL WAVEGUIDE

3.1. Waveguiding

A waveguide aims for light confinement, enabling long propagation distances with

minimum losses. Total internal reflection (TIR) occurs when light propagates through a

substance and encounters a material with a lower refractive index at a greater than critical

angle, resulting in waveguiding. Hence, refractive index contrast is essential for waveg-

uiding. One of the most popular waveguides is optical fiber, illustrated in Figure (3.1.a),

which allows long-distance communication via light. Standard optical fibers consist of

a silica core surrounded by slightly lower-index silica cladding, achieved by doping the

materials, and 10µm cored fiber is typically considered as single-mode fiber for telecom-

munication bandwidth.

A planar waveguide is another fundamental form of waveguide, which, as illus-

trated in Figure (3.1.b), consists of one planar core sandwiched by two planar cladding

layers. In comparison to optical fiber, a planar structure is more feasible to fabricate for an

integrated photonic platform, whereas fiber’s cylindrical shape is favorable for mass pro-

duction. Only these two types of geometrical waveguides can be analytically solved and

designed. More complex geometrical designs need to be handled numerically. Although

field confinement occurs only in the vertical direction in a planar waveguide, adding lat-

eral confinement is possible with a strip waveguide with a core trimmed in horizontal

and vertical dimensions, as shown in Figure (3.1.c). Strip waveguides can be produced

with modern etching techniques, even bending them to maintain a ring shape integrated

with a photonic structure such as a micro ring resonator. Figure (3.1.d) shows another

waveguide form, namely rib waveguide, which has an additional narrower strip layer (rib)

on top using the same or similar material. It requires at least two etching processes,

which makes it complicated to fabricate compared to a strip waveguide. Although rib

waveguides show more control on mode confinement for broad bandwidth, a larger ef-

fective area, and less loss, strip waveguides provide strong confinement and flexibility on

bending. In this thesis, strip waveguide design is studied to achieve high confinement
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Figure 3.1. Representation of waveguide structures including: a) optical fiber, b) pla-
nar waveguide, c) strip waveguide, d) rib waveguide, and e) diffused
waveguide.

and longer effective length with a ring resonator. Another waveguide type is a diffused

waveguide, as shown in Figure (3.1.e). In this design, a high index region, the core, is

created on the substrate due to the diffusion of dopants. One common example is the

LiNbO3 waveguide, where the core is made by the process of Ti diffusion. The diffusion

process can be achieved through thermal diffusion, ion exchange, etc. This design brings

the advantages of smoothly varying refractive index from core to cladding to reduce scat-

tering losses. However, this smooth varying index does not allow for the achievement

of high contrast in refractive index between core and cladding, resulting in a decrease in

mode confinement. Another challenge is that this design requires a unique fabrication

technique.

3.2. Material Based Nonlinear Optics

The polarization of a material plays a crucial role in producing third-order nonlin-

ear interaction, as stated in section (2.1). Within this framework, crystalline silicon stands

out as a favored platform due to its cubic lattice structure; third-order nonlinear effects
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can be clearly observed. The fact that physical phenomena such as the Kerr effect and Ra-

man gain can be achieved in silicon-on-insulator (SOI) compact waveguides, even in the

low power regime, has made silicon a material that is studied in areas such as telecommu-

nications, stimulated Raman scattering, self and cross-phase modulation, and especially

four-wave mixing. Following developments in integrated photonic circuits, research on

silicon-based quantum light sources is a widely studied area in the literature. Lin and

Agrawal demonstrated, for the first time, that photon pairs can theoretically be produced

via SFWM in silicon-based waveguides8. This study shows that the production of highly

correlated photon pairs is possible in the silicon waveguide due to the lack of spontaneous

Raman scattering. Also, the spectral brightness of the photon pairs produced was found to

be at a level comparable to other photon pair sources. In addition, the pump frequency is

about 15.6 THz away from the silicon Raman spectrum. Therefore, if the pump frequency

is set appropriately, generated photon pairs can be distinguished from scattered photons.

Development in Si technologies has led to the experimental demonstration of correlated

photon pair generation in Si waveguides9. Furthermore, the first time-bin entangled pho-

ton pair generation was demonstrated using a one-centimeter-long Si waveguide and CW

telecom laser, reaching two-photon visibility to 0.7310, which was then updated to 0.95

with the following research11. Besides, it has also been shown that polarization-entangled

photon production is possible using Si waveguides12,13. Even though high confinement is

necessary for nonlinear interaction, increasing interaction length is crucial for FWM pro-

cess and can be achieved using a Si ring resonator, as shown in14,15. Besides, energy-time-

entangled photon pair generation16 and supercontinuum generation17 were demonstrated

using a Si ring resonator and Si waveguide, respectively.

Although the success of the Si platform for nonlinear optics shows phenomena

such as FWM, photon pair, and entangled photon generation, it exhibits two-photon

absorption, as reported in18,19 for telecom wavelengths, due to photons exceeding its

half-band energy. This makes it necessary to study other platforms, namely chalco-

genides20,21,22,23,24, III-IV materials25,26,27,28, and CMOS-compatible, for nonlinear optical

processes in the literature.

This thesis primarily focuses on using CMOS-compatible materials, such as sili-

con nitride. These compatible materials have garnered interest in nonlinear optics due to

the low cost and mass production of CMOS technologies. Since silicon nitride is widely

used in integrated photonic circuits, has a large transparency window, and has a high Kerr

coefficient, it is an ideal choice for enhancing nonlinear processes.

Other nonlinear materials compatible with CMOS technologies, such as stoichio-
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metric silicon nitride, are also used. Stoichiometric silicon nitride provides lower prop-

agation loss29, a higher quality factor30, and reduced two-photon absorption. However,

complex fabrication is required due to the formation of high stress while depositing a

thick layer, which causes cracking. Using this material, Kerr frequency comb generation

in the resonator has been shown31,32,33. The cracking issue of this material can be over-

come by changing the ratio of silicon and nitride, which alters the mechanical properties

of the material. This kind of material is known as silicon-rich nitride. Although it pro-

vides higher refractive index contrast and Kerr index, reducing band gap energy causes

two-photon absorption. Additionally, silica-based glass, also known as Hydex, is used for

nonlinear optical applications such as FWM in ring resonators34, supercontinuum35, and

frequency comb generation36,37.

3.3. Eigen-Mode Solution

The Eigenmode of the waveguide refers to the electromagnetic field profile that

propagates through the waveguide without being affected by any disturbances that alter

its shape. These modes are found from solution Maxwell’s equations using boundary

conditions determined by waveguide structure. Offering uniformity along one axis is im-

portant in the waveguide geometry. Thus, the spatial dependence of the dielectric constant

decreases since it only exhibits lateral dependence. Conventionally, this uniformity is rep-

resented in z-coordinate; therefore, the dielectric constant is written as ε(r⊥), where (r⊥)

indicates plane constituted in x-y coordinates which is normal to z-coordinate.

Figure 3.2. Cross-section of strip waveguide and its dimensions

Figure (3.2) shows the cross-section of the strip waveguide that is used in this the-
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sis. In this geometry, the waveguide is invariant along the z direction, which brings some

important consequences. The first one removes one dimension of the dielectric constant,

hence eliminating the z-derivatives arising from Maxwell’s equations. This simplifica-

tion speeds up the computation process to find the mode profile of the waveguide. The

following advantage is it allows us to write the electric field of the propagation wave as

E(r) = e(r⊥)eiβz (3.1)

where e(r1) is the transverse spatial distribution of the field, and β is the propa-

gation constant. The waveguide material in this thesis, silicon nitride, is dielectric, non-

magnetic, and lacks free charge and current. Thus, the optical modes of the waveguide

are the eigenstates, and propagation constants are the square root of eigenvalues of the

modal vector wave equation that is given by38

∇2
⊥e⊥ +∇⊥(e⊥ · ∇ ln ε(r⊥)) + ε(r⊥)k2

0e⊥ = β2e⊥ (3.2)

where k0 is the wavenumber and β is the propagation constant.

The finite difference element method based on Lumerical MODE solution is used

to find the waveguide’s mode profile and dispersion characteristics based on the proce-

dure39. This approach includes the process of discretizing the cross-section of the waveg-

uide by meshing, which provides a way to handle complex structures. Nevertheless, By

increasing the discretization, one may get accurate computation. Once the meshing is con-

structed, Maxwell’s equations are formulated according to this discretization. It provides

for writing partial differential equations in a system of linear algebraic equations, which

can be represented as a matrix eigenvalue problem indicated in equation (3.2). Therefore,

the sparse matrix technique can be used to solve eigenvalue problems efficiently.
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3.4. Disperison Engineering

Light propagating in a material, in this case, a waveguide structure, encounters

varying refractive indices at various wavelengths. This phenomenon is called disper-

sion. In other words, the propagation constant of each mode of the waveguide is depen-

dent on the wavelength of the light. Dispersion explains phenomena such as two pulses

with different wavelengths exhibiting varying group and phase velocities inside the same

waveguide. It is also responsible for pulse broadening, which is critical for supercon-

tinuum generation. The waveguide dispersion profile plays a critical role in determining

the phase-matching requirement for the FWM process, as discussed in section (2.1.2.1).

The modification of the phase velocities of the interacting wave gives rise to wavelength

conversion and photon pair generation. The waveguide dispersion profile depends on its

dimension; therefore, tailoring the waveguide geometry can enhance the FWM efficiency,

which is significant for optical communication and photonic applications.

Introducing parameters is the first step to determining the characteristics of the

waveguide mode. Therefore, the first parameter is the effective refractive index, which

shows how light propagates inside the waveguide and includes information about the ma-

terial and waveguide structure. The effective refractive index is defined as

neff =
β

k0

(3.3)

where k0 = 2π/λ0 and β is the propagation constant.The effective refractive index

of a waveguide varies with the wavelength of the light, and various modes of waveguide

have different effective refractive indexes. The effective refractive index is used when

designing the waveguide geometry and selecting the core and cladding materials. As

stated in the equation (3.4), the effective refractive index must be lower than the core’s

refractive index and greater than the cladding’s refractive index for waveguiding to occur.

ncladding ≤ neff ≤ ncore (3.4)

Figure (3.3) displays the refractive indices of Si3N4 and SiO2 in comparison to

the waveguide’s effective refractive index as a function of wavelength. The waveguide’s

height is 460 nm, and its width is 570 nm, and this geometry satisfies the waveguiding

condition in equation (3.4) for a 780 nm pump field. The waveguiding condition indicates

how much the electric field of the corresponding mode is confined within the waveguide’s

core. If the effective refractive index is close to the effective index of the core, the electric

field is tightly confined inside the core. In contrast, if the effective index is close to the
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cladding’s refractive index, the electric field confinement tends to leak into the cladding.

In other words, the spatial distribution of the electric field of the corresponding mode lies

inside the core for a higher effective refractive index, whereas a lower effective refractive

index causes a more extended evanescent field inside the cladding. This wavelength de-

pendency allows for the engineering of the waveguide geometry, such as increasing the

evanescent wave for efficient coupling to other photonic devices like ring resonators or

increasing field confinement inside the core to achieve higher nonlinear interaction for

efficient conversion. In the case of the Silicon nitride waveguide, as the wavelength of the

pump field decreases, there is a greater degree of confinement inside the core.

Figure 3.3. The refractive index of Si3N4, SiO2, and the effective index as a function
of wavelength for a waveguide with a height of 460 nm and a width of 570
nm.

Figure (3.4) shows the geometry dependence of the effective refractive index. By

sweeping the waveguide’s height and width by 50 nm steps, the effective refractive index

is calculated for the 780 nm pump field. From this figure, it is clear that increasing

the section area of the waveguide causes an increase in the effective refractive index.

However, it only indicates that most of the electric field lies inside the core; it does not

show how dense it is at the center of the core.

To gain more information on this wavelength dependency and phase shift inside

the waveguide, the propagation constant is expanded in the Taylor series around the center

frequency, i.e., βm =
(
dmβ
dωm

)
ω=ω0

:
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Figure 3.4. The effective index of a Si3N4 waveguide as a function of its height and
width at a 780 nm pump wavelength

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 +

1

6
β3(ω − ω0)3 + . . . (3.5)

where βm is a different contribution to the propagation constant, increasing order

of propagation constant represents different propagation effects. β0 is related to the phase

velocity of the propagation field by vp = ω0

β0
and the first order of the propagation constant

β1 is linked to group velocity and group index, such as:

β1 =
1

vg
=
ng
c

=
1

c

(
n+ ω

dn

dω

)
(3.6)

where vg is group velocity and ng is group index. Group velocity is defined as the

velocity of the wave envelope through the material. Considering the FWM process, four

different frequency components have different group velocities, which impact the phase-

matching requirement, and the group index is the ratio of the speed of light in a vacuum

to the group velocities of wavepackets (ng = c
vg

). A higher group index (lower group ve-

locity) increases the nonlinear interaction through the waveguide or ring resonator due to

increasing interaction time, leading to an efficient FWM process. Moreover, the distance

between the resonance peaks (Free Spectral Range, abbrev. FSR ) of the ring resonator is

also inversely proportional to the group index.
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FSR ∝ 1

ng
(3.7)

Increasing the group index causes a small FSR. Controlling the group index is

crucial to designing the ring resonator with the desired FSR, where applications such

as photon pair generation FSR want to be big enough to separate the photon pair by

wavelengths with optical filters. Figure (3.5) shows group index and group velocity as a

function of wavelength for 460 nm thick and 570 nm wide silicon nitride waveguide.

Figure 3.5. ng and vg of a Si3N4 waveguide with 460 nm height and 570 nm width as
a function of wavelength.

The second-order propagation constant represents the group velocity dispersion

(GVD), and it is related to β1 as β2 = dβ1
dω

:

β2 =
1

c

(
2
dn

dω
+ ω

d2n

dω2

)
(3.8)

Using GVD, the dispersion parameter, D, can be written as:

D =
dβ1

dλ
= −2πc

λ2
β2 = −λ

c

d2n

dλ2
(3.9)

Figure (3.6) shows the calculation of dispersion and group velocity dispersion for a silicon

nitride waveguide with a width of 570 nm and a height of 460 nm.

The sign and value of dispersion explain the temporal broadening of the differ-

ent frequency components during the propagation inside the waveguide. The dispersion

characteristic is distinguished by two different regimes known as normal and anomalous

dispersion. Different scenarios for dispersion regimes are listed below:
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Figure 3.6. D and GVD of a Si3N4 waveguide with 460 nm height and 570 nm width
as a function of wavelength

1. Most of the material shows normal dispersion that occurs D<0 (GVD>0). In this

regime, longer-wavelength components propagate faster than shorter ones. There-

fore, the leading edge (high wavelength) of the pulse arrives at the end of the wave-

length. It can cause an up-chirped and stretched pulse.

2. In anomalous dispersion D>0 (GVD<0), this regime leads shorter wavelength com-

ponents to propagate faster than longer ones and can cause a reversal of the color

order during the propagation. The pulse can possess down-chirping and compres-

sion because the trailing edge (lower wavelength) passes the leading edge (higher

wavelength). Additionally, the anomalous dispersion regime plays a crucial role

in achieving phase matching for the FWM process that is mentioned in Section

(2.1.2.1).

Dispersion characteristics can be engineered by changing the dimensions of the

waveguide. In this thesis, one of the main goals is to achieve phase matching via the

near-zero dispersion method; therefore, the waveguide is tailored where the pump laser is

in the anomalous regime and quite close to the zero dispersion wavelength (ZDW). Be-

sides, it is considered that the waveguide dimension leads to high modal confinement for

efficient nonlinear interactions. To determine optimal waveguide geometry, the waveg-

uide dimensions are varied in steps of 50 nm for both its height and width, and dispersion

is calculated for 780 nm pump wavelength and multi-coefficient fitting to silicon nitride

refractive index data which is shown in Figure (3.7) is used. Without proper fitting, it is
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observed that artifacts occur in calculations.

Figure 3.7. Multi-coefficient fitting to experimentally provided refractive index of
Si3N4

1

Figure (3.8) shows the results of the dispersion calculation in relation to the di-

mension of the waveguide. Sweeping a wide range of width and height gives insight into

the appropriate geometry of the waveguide where the pump wavelength is close to ZDW.

Based on the calculations, it is feasible to acquire proper geometry, where dimensions are

within the range of 500 − 600 nm for width and 350 − 500 nm for height, and this range

is boxed in the figure. For this reduced range of waveguide dimensions, a more precise

computation is performed by varying the width and height in increments of 10 nm while

also increasing the number of wavelength points.

Another important parameter for designing a waveguide is the effective mode area,

which is given by

Aeff =

(∫ ∫ +∞
−∞ |E(x, y)|2 dx dy

)2

∫ ∫ +∞
−∞ |E(x, y)|4 dx dy

(3.10)

The effective mode area quantifies the degree of spatial confinement of the sup-

ported modes, a crucial quantity to consider in nonlinear interactions. A smaller effective

mode area results in a more confined pump laser, leading to higher power for the FWM

process. It is assumed that the mode profile doesn’t change during the propagation inside

the waveguide. The effective mode area as a function of waveguide height and width at

a pump wavelength of 780 nm is shown in Figure (3.9). As the figure shows, increasing
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Figure 3.8. Dispersion of a Si3N4 waveguide as a function of its height and width at a
780 nm pump wavelength

the waveguide size leads to an increase in the effective mode area. Therefore, smaller

dimensions are preferable to obtain high-intensity confinement.

The nonlinear parameter is inversely proportional to the effective mode area, which

is indicated as

γ ≈ n2ω

cAeff
(3.11)

The calculation of the nonlinear parameter for the silicon nitride waveguide at pump 780

nm pump wavelength, where the dimensions vary, is shown in Figure (3.10). In this

calculation, the Kerr index is taken from the literature, which is n2 = 2.4 · 10−19m2W−1.

Considering Figures (3.8) and (3.10), a comparison of dispersion and nonlinear

parameter calculations for waveguides with changing dimensions shows that the ZDW

region is not far away from a high nonlinear parameter region. Without sacrificing spatial

confinement, near-zero dispersion phase matching is possible. This is an advantage of

using a silicon nitride waveguide at the 780 nm pump wavelength.

Figure (3.11) demonstrates the wavelength dependence of nonlinear parameters.

For a waveguide with 460 nm height and 570 nm width, increasing the pump wavelength

decreases the nonlinear parameter, which indicates that using a high-frequency pump laser

makes the nonlinear process more efficient.

A near-zero dispersion regime for the 780 nm pump wavelength is achieved for a
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Figure 3.9. The effective area of a Si3N4 waveguide as a function of its height and
width at a 780 nm pump wavelength

waveguide with 460 nm height and 570 nm width. The dispersion value for this waveguide

is found to be D = 2.25 at a wavelength of 780 nm. The peak point of the dispersion curve

occurs at a wavelength of 801 nm, which has a dispersion value of around 9.7. The

dispersion curves are shown in Figure (3.12), where the height remains constant at 460

nm while the width varies.

To achieve broadband phase matching for FWM, the peak point of the dispersion

curve is desired to occur at the pump wavelength. In Figure (3.13), the dispersion curves

for the 780 nm wavelength are shown, where height is constant at 460 nm while width

is varying. As seen in the figure, the peak point occurring at 780 nm is achieved for a

waveguide with a height of 450 nm and a width of 470 nm. Although this waveguide

structure provides high confinement of the field, the dispersion value is quite far away

from the near-zero dispersion regime.

Furthermore, the parametric gain resulting from the coupled differential equations

is given by

gp =

√
(γP )2 −

(κ
2

)2

(3.12)

Equation (3.12) demonstrates how the amplification strength is influenced by the

effective phase mismatch κ. The graph in Figure (3.14) displays the calculated parametric

gain for a waveguide with a height of 460 nm and a width of 570 nm, with varying pump
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Figure 3.10. Nonlinear parameter of a Si3N4 waveguide as a function of its height and
width at a 780 nm pump wavelength

power. The x-axis of the figure represents the wavelength difference between the signal

and idler waves. It is evident that maximum gain occurs when the phase mismatch is zero

for all pump powers. Furthermore, the shape of the gain can be adjusted for different

waveguide dispersion values and the bandwidth of the gain changes with varying pump

power.
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Figure 3.11. Nonlinear parameter of a Si3N4 waveguide with 460 nm height and 570
nm width as a function of wavelength

Figure 3.12. Dispersion curve of a Si3N4 waveguide with 460 nm height and varying
widths as a function of wavelength
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Figure 3.13. Dispersion curve of a Si3N4 waveguide with 450 nm height and varying
widths as a function of wavelength

Figure 3.14. Parameter gain of a Si3N4 waveguide with 460 nm height and 570 nm
width as a function of wavelength difference between signal and idler
waves
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3.4.1. Mode Profile

The mode profile of the waveguide refers to the spatial distribution of the electric

and magnetic field of the corresponding mode on the cross-section of the waveguide. The

mode of the waveguide is calculated by solving the Maxwell equation, and the shape of

the mode does not change during propagation in the waveguide if the losses are negligi-

ble. By definition, the fundamental mode is the lowest order mode with no nodes, and

conventionally, TE modes are chosen where the polarization of the field lies on the x-

axis. Similarly, primarily polarized in the y-axis modes are called TM modes. Subscripts

of modes such as TE00 (fundamental mode) indicate the number of nodes. The first sub-

script corresponds to the x-axis, and the second one corresponds to the y-axis. Figure

(3.15) shows the first four modes of a waveguide with a height of 460 nm and a width

of 570 nm. Figure (3.15a, b, c, and d ) represent the modes arranged in ascending or-

der. Figure (3.15 a) corresponds to the fundamental mode of the waveguide, TE00 mode.

On the other hand, Figure (3.15b) relates to the TM00 mode. Effective refractive indices

are indicated for each mode profile, which decreases as the mode order increases. The

polarization fraction of modes for the x-axis is given by

TE polarization fraction (Ex) =

∫
|Ex|2 dx dy∫

(|Ex|2 + |Ey|2) dx dy
(3.13)

For a waveguide with 460 nm height and 570 nm width, TE00 is found to be

totally polarized on the x-axis, and TM00 mode’s polarization is totally on the y-axis. In

addition, the effective mode area is found to be 0.23µm2.

The propagation loss can be calculated in mode solution using complex refractive

index such as n+ iκ, where κ refers to the imaginary part of the refractive index. Hence,

the electric field for propagation wave can be written as

E(z) = ei2π(n+iκ)z/λ0 (3.14)

Considering propagation loss is given by

loss = −10 log10

(
P (z)

∣∣
z=1 m

P (z)
∣∣
z=0 m

)
= −10 log10

(
|E(1)|2

|E(0)|2

)
= −20 log10

(
|E(1)|
|E(0)|

)
(3.15)

substituting the equation (3.14) yields
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Figure 3.15. First four mode profiles of a waveguide with a 460 nm height and 570 nm
width

loss = −20 log10

(
e−2πκ/λ0

)
(3.16)

The propagation loss for a waveguide with a height of 460 nm and width of 570nm

is 0.0092 dB/cm.
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CHAPTER 4

RING RESONATOR

A ring resonator is an integrated optical device that offers many advantages, such

as wavelength filtering and multiplexing, modulation of optical signals, and photon pair

generation. It is used in many different quantum applications, including quantum key dis-

tribution, quantum computing, and quantum metrology. In this thesis, add-drop microring

resonator configuration is studied, as illustrated in the figure. The arrangement contains a

microring resonator (closed-looped waveguide) positioned between two bus waveguides.

Light coming from the input port, its evanescence wave can couple to a ring resonator,

which allows the light that is resonant to the microring to circulate. This circulation arises

when the light constructively interferes inside the ring resonator. With this, when the light

is confined in a round-shaped dielectric material, it experiences total internal reflection

after each round trip, resulting in the formation of whispery gallery modes. To achieve

constructive interference, the length of the ring resonator must be multiple integers of the

wavelength of the light that is given by

2πR = mλ (4.1)

where R is the radius of the ring resonator, and m is the integer number. In the

context of FWM, if the resonant condition is satisfied via constructive interference, light

intensity is significantly increased, which enhances nonlinear interaction. This statement

is closely related to the quality factor of the resonator, which quantifies the amount of

stored energy. The chapter aims to investigate the ring resonator properties in a way to

achieve efficient nonlinear interactions.

The spectral characteristics of the silicon nitride microring resonator are inves-

tigated using the finite difference time domain method based on Lumerical var-FDTD

solution. In this method40, instead of using a two-dimensional planar monitor to find the

transmission of ports, a linear monitor placed inside the waveguide along with the po-

larization direction of the electric field is used to speed up the computational time. The

figure shows the light source positioned at the input port. According to the waveguide’s

mode profile calculation, the 780 nm pump light that is placed to the input port and its po-

larization direction is adjusted to the x-axis because the waveguide’s fundamental mode

is polarized along the x-axis. Moreover, monitors are placed on outputs and inside the
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ring resonator to measure the transmission.

Figure 4.1. Representation of all pass ring resonator structure

A crucial design parameter known as the free spectral range (FSR) is considered

to determine the radius of the ring resonator. The FSR is given by

FSR =
λ2

ngL
(4.2)

FSR represents the distance between the resonance wavelength peaks of the ring

resonator, and it is inversely dependent on the ring’s round trip length and the waveguide’s

group index. The group index is calculated from the effective index as

ng = neff − λ0
dneff

dλ
(4.3)

The waveguide, which has a height of 460 nm and a width of 570 nm, has a

calculated group index of 2.19 at the pump wavelength of 780 nm. Also, the desired FSR

is considered at least to be 5 nm, indicating that there should be a spectral separation of

10 nm between the signal and idler waves. This separation is quite enough to distinguish

idler and signal waves with the optical instruments in the experimental study scenario.

Based on these values, the radius of the ring resonator is determined to be approximately

10 µm.

The finesse (F) of a ring resonator is another parameter that measures the sharp-

ness of the resonance peaks. It indicates the presence of a highly confined field inside the

resonator and is defined as the ratio of the FSR to the resonance’s linewidth.
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F =
FSR

FWHM
(4.4)

Finesse is also related to a quality factor commonly used to describe the res-

onator’s performance and efficiency. It explains how much energy is stored during each

round trip before being lost from the resonator due to internal losses and coupling to the

bus waveguide. Thus, the quality factor of the all-pass ring resonator is considered to be

greater than that of all drop ring resonators. In this thesis, all drop ring resonators are

used to achieve feasible simulation time for computational power. Besides, the quality

factor is found as the number of oscillations of the field inside the resonator before it is

reduced to 1/e of the initial energy; similarly, finesse indicates the number of round trips

before reaching 1/e to its initial energy. From this point of view, reducing round trip and

coupling losses leads to achieving high-quality factor resonators. In addition, the quality

factor is defined by

Q =
λres

FWHM
(4.5)

Regarding the relationship between finesse and quality factor and taking FWHM

as a common parameter, the quality factor can be expressed as

Q =
ngL

λ
F (4.6)

Using the analogy from the Fabry-Perot cavities, finesse can be expressed as

F =
π |t11|

1− |t11|
(4.7)

where τ11 is the transmission coefficient to output 1 port. The quality factor then

becomes

Q =
ngLπ

λ

|τ11|
1− |τ11|2

(4.8)

It is assumed that there is no loss in this expression. For analytical investigation,

the loss contribution from each part can be added to the quality factor. While this equation

suggests that increasing the group index and round trip length of the resonator can lead

to an increased quality factor, it should be noted that this modification can also cause

an increase in losses. Furthermore, the equation indicates that reducing the wavelength

causes a higher quality factor.
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4.1. FDTD Solution

This section presents outcomes obtained from FDTD simulation of the silicon

nitride ring resonator. One critical condition for constructing an FDTD simulation is

choosing the right meshing step size and simulation times. This affects the accuracy

and robustness of the results because FDTD methods handle discrete functions. Thus, to

determine simulation time, a constraint on the time step δt is taken into account. If dδt

is too big, it causes unnecessary simulation time. Conversely, if δt is too small, it results

in imprecise outcomes. There is an inequality that connects the mesh step size and time

step known as Courant stability criterion or Courant-Friedrichs-Lewy condition, and it is

given by38

δt ≤ 1

c0

{(
1

δx

)2

+

(
1

δy

)2

+

(
1

δz

)2
}−1/2

(4.9)

Therefore, the 3D meshing time step becomes

δt ≤ δx

c0

√
3

(4.10)

On the other hand, a reasonable step size of mesh in the form of wavelength is

given by38

Nλ =
λ0

δx
≥ 10n (4.11)

where λ0 is the vacuum wavelength, and n is the refractive index of the medium.

Thus, the required mesh step is chosen, and In Lumerical FDTD solutions, while the

mesh step size is adjusted, the time step is automatically chosen according to the given

condition (4.10).

Figure (4.2) shows the transmission spectrum of the ring resonator on output 1

port where the gap distance between the bus waveguide and microring is 75 nm. In this

and following simulations, the mesh step size is considered to give an accurate result. The

radius of the ring is chosen to be 10 µm. In addition, the waveguide dimension is taken

to be a height of 460 nm and a width of 570 nm.

To determine the optimal distance for effective coupling of the evanescent wave

to the ring resonator, a simulation is conducted, where the transmission through the ring

is simulated. The gap distance varies from 0 to 200 nm, while the radius is fixed. In this

simulation, the wavelength range is taken to cover only signal, pump, and idler waves.

The result is shown in Figure (4.3), which represents the power measurement of waves
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Figure 4.2. Transmission spectrum of a Si3N4 resonator with a 460 nm height and
570 nm width, and 10 µm radius from output 1 port as a function of wave-
length. The gap distance between the bus waveguide and ring resonator is
75 nm

inside the ring as a function of gap distance. Based on the results, it is clear that the most

effective gap distance is 160 nm.

Figure (4.4) shows the transmission spectrum on the output 1 port for signal,

pump, and idler waves where the gap distance is 160 nm. Furthermore, the FSR for

each peak is highlighted in the figure, with an approximate value of 5 nm. This value is

in good agreement with the initial assumption.

The properties resonance peaks of the micro ring resonator are characterized by

fitting a Lorentzian function that is given by

f(λ) = −A 1

1 +
[
c
γ

(
1
λ
− 1

λres

)]2 +B
( c
λ

)
(4.12)

where γ is half width at half maximum. The Lorentzian fitting method is a com-

monly used method to investigate resonance characteristics. It is quite reliable and robust

method for extracting parameters such as FWHM, which is essential for finding the qual-

ity factor of the resonator that reveals its performance.

In Figure (4.5), the Lorentzian fitting to the resonance peak at the pump wave-

length (782 nm) is shown. The full width at half maximum (FWHM) is measured to be

0.0061. Using the equation (4.5), the quality factor of the silicon nitride ring resonator

with 10 µm radius, 460 nm height, and 570 nm width is calculated to be approximately
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Figure 4.3. Power coupling from the bus waveguide to ring resonator with 460 nm
height and 570 nm width as a function of gap distance between bus waveg-
uide and ring resonator

Q = 1.2× 105. Moreover, positioning the 2D plane power monitor beneath the microring

resonator device unveils whispery gallery modes, demonstrating the occurrence of total

internal reflection within the resonator, as shown in Figure (4.6).

In the table (4.1), Q-factors in the literature for the Si3N4 waveguide using a pump

wavelength near 780 nm are shown. Compared to the values in the references, the simu-

lation used in the thesis for the ring resonator gives promising results.

Table 4.1.: Q-factors in the literature for a Si3N4 ring resonator with a pump wavelength
near 780 nm

Material Wavelength(nm) Diameter(µm) Q-factor Ref.

Si3N4 668.38 25 (1.52± 0.02)× 105 5

Si3N4 780 20 1.5× 104 41

Si3N4 780 20 1.2× 105 This Work

Si3N4 780 600 (1.38± 0.04)× 106 42

SixNy 850 200 1.3× 105 43

Si3N4 933.62 25 (1.04± 0.02)× 106 5
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Figure 4.4. Transmission spectrum of a Si3N4 resonator with a 460 nm height and
570 nm width, and 10 µm radius from output 1 port as a function of wave-
length. The gap distance between the bus waveguide and ring resonator is
160 nm, and the FSRs are 4.91 nm and 4.89 nm from signal to pump and
pump to idler, respectively

Figure 4.5. Lorentzian fitting to pump resonance peak of a Si3N4 resonator with a
460 nm height and 570 nm width, and a 10 µm radius. The gap distance
between the bus waveguide and ring resonator is 160 nm, and FWHM is
0.0061 nm
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Figure 4.6. Whispering gallery modes of a Si3N4 resonator with a 460 nm height and
570 nm width and a 10 µm radius. The gap distance between the bus
waveguide and ring resonator is 160 nm
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4.2. Photon Pair Generation

FWM is a highly researched topic that utilizes a ring resonator to create large in-

tensity through constructive interference inside the ring. Third-order nonlinear interaction

is made possible by the elastic scattering of two photons at the pump frequency, result-

ing in the generation of two new photons at different frequencies44 , known as the signal

and idler. This study focuses on the design of ring resonators using classical electromag-

netic modeling to investigate the nonlinear properties of Si3N4 material. It is expected to

increase the efficiency of the ring resonator classically and enhance the quantum mechani-

cal nonlinear interaction due to the connection between quantum mechanical and classical

FWM efficiencies. The primary objective is to achieve spontaneous FWM since it results

in the production of correlated45 or entangled photons46,47 for quantum information and

quantum computation. Moroever, photon pair generation rate is given by45,48,49

R = (Pγ)24
Q3v4

g

ω3L2

(
1±
√

Γ
)3

(4.13)

for continuous wave pump and signal and idler wave are generated at resonances

of the ring resonator. In equation (4.13), P is the pump power, L is the ring length, Q is the

quality factor, vg is group velocity, γ is a nonlinear coefficient, and Γ is the normalized

transmission through the waveguide. For the given ring resonator in Figure (4.6), the

photon pair generation rate based on equation (4.13) is found to be approximately 6.5 ×
105Hz for 1 mW pump and the losses are neglected.
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CHAPTER 5

CONCLUSION

In this thesis, the design processes of strip waveguides and micro-ring resonators

to produce photon pairs using nonlinear materials through the FWM in the visible spec-

trum range, focusing on the 780 nm pump wavelength, have been studied. Chapter 2

begins with an overview of the theoretical background of nonlinear optics and then fo-

cuses on new frequency generation through the FWM processes. Then, we discussed how

to fulfill the phase and energy matching conditions under different scenarios based on the

dispersion regimes of the waveguide. Chapter 2 also shows that employing appropriate

dispersion engineering techniques makes it possible to achieve photon pair generation

within a waveguide. In this context, it has been discussed that operating in an anomalous

and near-zero dispersion regime can lead to the FWM process. In contrast, the strong

anomalous regime can result in supercontinuum generation.

In Chapter 3, we introduced the different types of waveguides commonly used

in literature. We focused on the strip waveguide to analyze its dispersion properties, as

it serves as the basis for ring resonators and provides strong confinement. We also ex-

plored nonlinear materials and their applications in the literature. Based on our research,

we selected the Si3N4 material due to its compatibility with CMOS technologies, low

propagation loss, high refractive index contrast, and broad transparency window.

We then examined dispersion engineering on strip waveguides to determine the

appropriate geometry, as tailoring dimensions is crucial for achieving phase-matching

conditions. Consequently, we calculated the waveguide’s width and height, effective re-

fractive index, dispersion values, effective areas, and nonlinear coefficients. Utilizing this

knowledge, we identified a smaller dimension range for further analysis.

Subsequently, we found that a waveguide with a height of 460 nm and a width

of 570 nm met the criteria for zero dispersion wavelength and optimal field confinement.

Additionally, we presented the mode profile of this waveguide geometry.

In Chapter 4, we focused on studying ring resonators with specific thickness and

width based on dispersion studies. Our goal is to align the resonance peaks of ring res-

onators with the FWM. Initially, we demonstrated the fundamental properties of ring

resonators and then determined the ring radius to be 10 µm in order to achieve a 5 nm

FSR. We then conducted var-FDTD simulations, varying the distance between the bus
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waveguide and ring resonator, and found the optimal distance to be 160 nm. Finally,

we demonstrated that using a Lorentzian fit to the resonance peak at 780 nm yielded an

FWHM of 0.00611 nm. Utilizing these values, we calculated the Quality factor to be

1.2 × 105 and the photon pair generation rate to be 6.5 × 105, which is comparable to

values found in the literature.
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